
Robust Algorithmic Collusion

Nicolas Eschenbaum Department of Economics
University of St. Gallen
St. Gallen, Switzerland

nicolas.eschenbaum@unisg.ch

Filip Melgren
Stockholm School of Economics

Stockholm, Sweden
filip.mellgren@gmail.com

Philipp Zahn
Department of Economics

University of St. Gallen
St. Gallen, Switzerland
philipp.zahn@unisg.ch

Abstract

This paper develops an approach to assess reinforcement learners with
collusive pricing policies in a testing environment. We find that algorithms
are unable to extrapolate collusive policies from their training environ-
ment to testing environments. Collusion consistently breaks down, and
algorithms instead tend to converge to Nash prices. Policy updating with
or without exploration re-establishes collusion, but only in the current
environment. This is robust to repeated learning across environments. Our
results indicate that frequent market interaction, coordination of algorithm
design, and stable environments are essential for algorithmic collusion.

1 Introduction

Software systems that take over pricing decisions are spreading quickly. Pricing algorithms
can allow firms to monitor and process large amounts of data and adjust prices quickly
to changing circumstances. The ascent of such systems poses a potential challenge for
the current regulatory landscape: pricing algorithms based on artificial intelligence (AI)
may learn to autonomously collude without any previous intentional agreement or explicit
instruction to do so.

A growing literature has shown algorithmic collusion to be possible in principle. The results
documented so far are a clear warning sign: Even simple algorithms learn to tacitly collude
and thereby harm consumers. However, existing analyses have studied the behavior of
algorithms in their training environment. It is well-known that algorithms tend to overfit to
the training environment, and results cannot easily be extrapolated to other environments
(e.g. Lanctot et al., 2017). In practice, firms train their algorithms offline before using
them and face substantial uncertainty about important parameters of the market and
their competitors, as well as potentially significant cost from randomized learning in the
marketplace. Thus, it is implicitly assumed that the training environment and market
environment are symmetric and identical, and that results can be extrapolated from one
environment to the other.

In this paper, we develop a simple approach to assess the behavior of reinforcement learn-
ing algorithms in pricing games when training is separated from the ensuing market
interactions. To construct artificial testing environments, we consider small variations of
structurally relevant parameters. We assess two dimensions of mis-specification of the

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



training environment: (i) rival parameters, and (ii) demand parameters. To study the
impact of uncertainty over competitor parameters, we train algorithms in environments
with dfferent marginal cost, and match them following convergence. To study the effect of
uncertainty regarding the market environment, we vary the demand function parameters
following convergence for a given cost level. We then study the outcome (i) in the first 100
iterations following the change, (ii) after convergence when learning is absent, and (iii) after
convergence if learning is instead permitted.

Our results are as follows: First, we confirm existing findings of the literature. Algorithms
which jointly learn overwhelmingly achieve collusive prices. Second, when we separate
training from “market” interactions – by rematching learners after an initial learning
phase – so that learners trained with one cost parameter may face a learner that trained
with a different cost parameter, collusion breaks down. This happens even with small
changes to the environment. Moreover, as cost differences become smaller, prices played
converge towards Nash prices. Third, the breakdown of collusion is permanent and does
not recover with further iterations. Fourth, subsequent learning in this new environment
re-establishes collusive outcomes. Yet, this is again limited to that specific environment.
In particular, if after collusion is re-established the player is rematched again – back to
his original environment – collusion breaks down again and Nash play is reinforced. Fifth,
re-establishing collusion in the new environment requires learning but not exploration.
That is, when algorithms only exploit (and do not randomly explore) but continue to update
their policy, they also re-establish collusive outcomes. Lastly, this breakdown of collusion,
yet stubborn return if learning continues (with or without exploration) also arises when
algorithms play against a previously unseen competitor in an unchanged environment.1
This breakdown of collusion holds for repeated learning across different parameterized
environments, implying that algorithmic collusion in this setting is a consequence of
algorithm overfit.

Our findings illustrate a key problem with the current setup of the analysis of algorithmic
collusion: results are reported based on the outcomes in the training environment. In
practice however, algorithms are trained and deployed in separate environments. The
tendency of machine learning algorithms to overfit to the training environment (or data),
and that therefore a separate testing environment is required to assess their behavior is
well-established (see e.g. Lanctot et al., 2017; Zhang et al., 2018b,a; Song et al., 2019). But
this testing environment is not readily available with reinforcement learners.

Our work in this paper develops a possible approach to overcome this limitation in the
context of pricing algorithms. Small variations in structurally relevant parameters, such
as firms’ cost levels, can serve to mimick the uncertainty firms face when training their
respective algorithms. By testing the behavior in environments with slight parameter
differences or against previously unseen competitors, we can assess the likelihood of a
given algorithm to achieve collusive outcomes in the market. While we document here that
collusion breaks down with the specific learning model that we consider, this may not apply
to other models. Firms may even explicitly attempt to construct a learner that successfully
extrapolates collusive strategies across environments and competitors. We also observe that
the fragility of algorithmic collusion is balanced against its stubborn and relatively fast
return when learning continues or is re-started.

This paper contributes to a growing literature on algorithmic collusion (for a recent survey
of the economic literature on AI see Abrardi et al. (2021)). We employ simple Q-learning
algorithms in line with related work in e.g. ?Klein (2021). Our baseline scenario and
parameterization is built on the environment studied in ?. The repeated Bertrand setting
with logit demand that we use implies that both the Nash and joint-profit maximizing
profits are constant across marginal cost levels. Equally, the Nash price and joint-profit
maximizing price stays constant when a competitors’ cost level changes. Thus, differences in
outcomes observed are not due to changes in possible payoffs for players. To the best of our
knowledge, we are the first to explicitly study the behavior of algorithms that have learnt

1Calvano et al. (2020b) report a similar finding for symmetric algorithms. Our work shows that
this arises due to continued updating.

2



collusive strategies outside their training environment, and investigate pricing algorithm
overfit.

Our paper is related to the computer science literature that studies the overfitting of
reinforcement learning algorithms. Lanctot et al. (2017) show that the overfitting to rival
agents’ policies we observe is a common problem in RL. Zhang et al. (2018b) examine
different ways how deep RL algorithms overfit to the environment and show that attempted
solutions in the literature of adding stochasticity to the environment do not necessarily
prevent overfitting. Closely related to our approach is a strand of literature that assumes
there exists a distribution of Markov-decision-problems of the scenario of interest, and then
trains algorithms on a finite set of samples from this distribution before testing the behavior
on the entire distribution (e.g. Zhang et al., 2018a; Nichol et al., 2018; Justesen et al., 2018).

Lastly, our paper contributes to the literature on competition policy and regulatory re-
sponses to algorithmic collusion. The potential challenge to policy has been previously
discussed both by the European Commissioner for Competition (Vestager, 2017) and Com-
missioner of the Federal Trade Commission (Ohlhausen, 2017), and potential solutions
have been suggested (e.g. Calvano et al., 2020a; Harrington, 2018; Beneke and Mackenrodt,
2021). Our results provide some novel perspectives and qualify existing results: A key
ingredient for collusive behavior appears to be that the learning phase is shared between
opponents in the same market. Thus, most prone to possible collusion are markets where
learning in the market itself is feasible and not too costly. This comprises markets with
frequent interactions, small unit prices, and a very stable set of competing companies. Our
results also suggest that the actual danger of algorithmic collusion may not necessarily be
in the market interaction itself but in coordinative moves beforehand. For instance, when
companies of an industry buy pricing-services from the same dominant upstream supplier,
creating scenarios where collusion results may be more likely.2 Particular attention may
therefore be warranted when there is evidence of coordination of algorithm design.

The remainder of this paper is organized as follows. section 2 introduces the economic
model of the environment (in subsection 2.1), and learning model of the algorithm (in
subsection 2.3), and explains the matching across different-cost environments that we study
in subsection 2.6. section 3 presents our results. ?? presents robustness checks of our
analysis. Finally, section 4 concludes.

2 Learning and Market Environment Model

2.1 Economic model

We model the economic environment as a standard repeated Bertrand setting. The specifi-
cation of the demand function and baseline parameterizations are in line with the setup
employed in Calvano et al. (2020b). This provides a benchmark of existing findings of
algorithmic collusion that our results can be directly compared to.

In each round of the game, each player i obtains their profit πi(pi,t ,pj,t) = (pi,t −ci)qi,t , where
i , j, i, j ∈ {1,2}, and pi,t ,pj,t denote the period-t prices of players i and j respectively, qi,t ,qj,t
the corresponding quantities, and ci , cj the marginal cost. The demand function is given by
a classic logit-demand specification of

qi,t =
e
ai−pi,t
µ∑n

j=1 e
aj−pj,t
µ + e

a0
µ

,

where ai denotes the quality parameter of the good supplied by firm i (vertical differentia-
tion) with a0 = 0 being the product quality of the outside good, and µ the index of horizontal
differentiation, so that the goods are perfect substitutes in the limit when µ→∞. For our
baseline parameterization we set ai − ci = 1 and µ = 1/4

2This has been noted before, see e.g. Harrington Jr (2021) for a model of sellers that outsource their
pricing algorithms to a third-party.

3



We consider constant marginal cost levels in the range ci , cj ∈ [1,1.7]. We stop at 1.7 to
ensure that either players’ cost remain below the monopoly price of a seller with the lowest
cost c = 1, so that it is never optimal for the market to be served by only one firm.

This specification of demand is particularly well-suited for our analysis. It implies that both
the Nash equilibrium profits and the joint profit maximizing profits are constant across
all cost levels and all combinations of cost, since ai − ci = 1. Only the associated optimal
prices change. Thus, when an algorithm faces a different-cost competitor than previously,
no change in the equilibrium price is required by the agent. Only a strategy to support
high, supra-competitive profits will require a different set of prices, but can be obtained
by appropriately ‘shifting’ the prices along the grid in line with the change in cost of the
competitor. Hence, the challenge the algorithm faces in playing against a rival with different
cost is particularly simple and the profits that can be obtained remain constant, ensuring
that differences in the outcome observed are not due to a change in possible payoffs for the
players.

2.2 Action space

The learning model we consider requires a discretization of the action space. We construct
the grid of prices algorithms can choose from as follows.

Let the set of one-shot Nash equilibrium prices corresponding to the cost levels we consider
be pN and similarly let the set of joint profit maximizing prices be pC . Then the grid of
prices available is given by k = 20 equally spaced points in the interval [pN −ξ(p̄C −pN ), p̄C +

ξ(p̄C − pN )] with ξ = 0.1, where pN = [min{p ∈ pN }]2 and p̄C = [max{p ∈ pC}]2 The cost

levels under consideration imply that pN ≈ (1.47,1.47) and p̄C ≈ (2.62,2.62).

2.3 Learning model

We employ Q-learning as our learning model, a standard model-free reinforcement learning
algorithm. Q-learning was designed to tackle Markov-decision problems and attempts to
learn the value of an action a among the set of actions A for each state s among the set of
states S in order to maximize a cumulative reward function. The algorithm computes a
so-called Q-function of expected rewards for an action taken in a given state –Q : S×A→R.

Q-learning stores the (current) computed Q-value of each state-action pair in a table and
hence requires the action and state space to be discrete. In each period, the cell in this
Q-matrix corresponding to the current periods state-action combination, Qt(st , ai,t), is
updated based on the observed reward in the current period, πt(ai,t , aj,t)), and a learning
rate α ∈ [0,1], according to the following Bellman equation

Qt+1(st , ai,t) = (1−α)Qt(st , ai,t) +α(πt + δmax
a∈A

Qt(st+1, a)),

where δ is the discount factor.

The initial state and the initial Q-matrix must be specified by the programmer at the start
of the learning process. We initialize the Q-matrix with the Q-values that would arise if
both agents were to play entirely random. We also choose the initial state at random.

In each period, the algorithm chooses an action (a price) either in order to explore the
environment or to exploit its current state of knowledge. When exploring, the agent chooses
an action at random. When exploiting, it chooses the action with the highest Q-value in
the current state. We employ standard εt- greedy exploration in which the agent explores
with probability εt and exploits with probability 1− εt . We let εt vary according to εt = e−βt

where β = 4× 10−6, implying that agents explore relatively often at the start and focus on
exploiting over time. We focus on a learning rate of α = 0.15 and specify the state space
to be the previous period prices, st = (pi,t−1,pj,t−1), implying that agents have a one-period
long memory.3

3This is in line with existing work in the literature, allowing our results to be directly compared.
In addition, a larger memory significantly increases the size of the Q-matrix.

4



We stop the learning process when we observe that the algorithms have converged. Specif-
ically, a given run is stopped if for each player i the action ai,t = argmax{Qi,t(a,st)} does
not change for 100000 consecutive periods, or after one billion total repetitions. We obtain
convergence for over 99 percent of runs.

2.4 Cost of learning

Because the algorithms must explore the environment in order to learn an optimal policy, a
firm employing such a learner faces possible short-term costs from exploration that must be
balanced against the possible long-term gains from the algorithms chosen optimal policy.4
A useful benchmark for this cost of learning is the competitive outcome, the one-shot Nash
equilibrium.

Table 1 shows the profit loss relative to Nash play in our setting with the baseline param-
eters when both players randomize. Players with a high cost level consistently lose from
randomizing, compared to playing the unique Nash equilibrium. But they also lose if the
opponent randomizes and the agent itself plays Nash or the best-response to random play.
Low cost players on the other hand benefit from randomized play and achieve above-Nash
profits.

Table 1: Profit gain or loss in percentage of Nash-equilibrium profit

Opponent Randomizes
Cost Level Both Randomize Nash Best-response

1.00 0.13% 0.63% 0.80%
1.10 0.09% 0.50% 0.67%
1.20 0.02% 0.36% 0.53%
1.30 -0.08% 0.32% 0.39%
1.40 -0.21% 0.17% 0.25%
1.50 -0.36% 0.04% 0.11%
1.60 -0.54% -0.04% -0.02%
1.70 -0.73% -0.17% -0.15%

This important fact illustrates a key aspect of the price grid definition: for low cost agents,
almost all prices lie above the Nash equilibrium price and on average these will yield a
higher profit than the Nash equilibrium. For high-cost types this is not the case, since the
Nash price already lies in the upper part of the price grid and thus most prices in the grid
yield below-Nash profit.

For intermediate and high cost players our setup thus captures the trade-off that firms face:
employing pricing algorithms may cost in the short run due to exploration, but may pay off
in the long run due to seemingly collusive play when exploiting. These costs can be avoided
by training offline first. For low-cost types instead, there is no cost to exploration and we
would therefore expect that these types will learn to converge to above-Nash prices.

Figure 8 in the Appendix shows the time to convergence. Agents consistently require more
than 1 million rounds of play and on average over 2 million rounds to achieve convergence.
Thus, learning online is likely infeasible in practice. In light of the potential high per-period
cost for the firm from exploration, there may be hundreds of thousands of periods of
significant losses before the algorithm begins achieving supra-Nash profits.

4See also the ‘cold-start problem’ of model-free machine learners in general, e.g. Zhu et al. (2019);
Yuan et al. (2016); Liu et al. (2021); Ding and Soricut (2017).

5



2.5 Measures of Collusion

To assess the propensity of algorithms to collude, we focus on two measures of profit: the
collusion index M and the profit gain ∆. Both express the realized profit in relation to the
static Nash equilibrium and joint profit maximizing profits. Specifically, the two metrics
are defined as

M =
π̄ −πN

πC −πN
,

∆i =
π̄i −πNi
πCi −π

N
i

,

where π̄i denotes the average profit of agent i, πNi the profit of agent i in the one-shot Nash
equilibrium of the game, and πCi the profit of agent i in the joint profit maximizing outcome
of the one-shot game. π̄, πN , and πC are defined analogously, but always represent the
(average of the) sum of profits of players i and j , i, i, j ∈ {1,2}.
Thus, for both the collusion index and an individual player’s profit gain, when the respective
measure is zero the average profit is equal to the Nash profit, while a value of one implies
that the average profit is equal to the joint profit maximizing profit. Note that by definition,
the collusion index is equal to the average of the profit gains of the two players.

In addition, we investigate the actions played by agents in more detail. We classify outcomes
based on the unique convergence to specific actions. If both agents choose the same price in
more than 90% of rounds, we classify the outcome as symmetric convergence. If both agents
choose a unique but different price in more than 90% of rounds, we classify the outcome
as asymmetric convergence. Finally, if at least one agent plays the same sequence of prices
repeatedly in over 90% of rounds, we classify the outcome as a price cycle.5 If we cannot
identify either unique convergence or a price cycle, we classify the outcome as other. The
vast majority of our learning runs converge to unique symmetric or asymmetric prices and
we barely observe any longer price cycles.

2.6 Learning Environment vs. Market Environment

To study the asymmetry between the learning environment of a learning agent and the
market environment in which the agent competes, following convergence in the learning
environment we rematch players from different learning environments. In the ‘market’
environment, no learning takes place and agents are just exploiting, i.e. choosing the
optimal action given their Q-matrix. In the initial learning environment, we always match
agents with the same parameters.6

We begin our analysis of behavior in the market environment by matching players with
different cost parameters. For example, if we have two separate, symmetric learning
environments e1 and e2 each with two players, p1

1,p
2
1 in the first environment, and p1

2,p
2
2 in

the second, we rematch players by matching p1
1 with p2

2 and p2
1 with p1

2 respectively. That is,
we always pair player 1 from one environment with player 2 from a different environment,
as well as vice versa across all cost environments.

Thus, the 8 symmetric cost level environments agents learn in initially lead to 56 asymmetric
cost matches for rematching. As we run numerous individual sessions of learning algorithms
in each initial cost environment, there are an exponential number of possible matches of
agents for any two cost levels. We ensure that the number of sessions for each asymmetric
cost rematch is equal to the number of sessions that we run in each symmetric environment,
by always pairing players from the same respective session number.7

5In principle, we can search for price cycles of any length. However, in practice we limit ourselves
to a search for cycles with a maximum length of 15 to avoid costly computations.

6As we will see later, this is not a critical assumption.
7Note that the sessions per cost level run independently of one another. The session number has no

further implications, but since there are an exponential number of possible player-cost-session-number
matches, using it is a straightforward way to limit computations.

6



The cost level of any agent remains the same before and after rematching. It is only the
cost level of the competing player that may change. As discussed above, the specification
of demand and the quality parameters ensure that after being matched to a player with a
different cost level, in order to keep its profit constant all the algorithm needs to do is to
appropriately ’shift’ its optimal actions across the grid in response. Both the level of the
Nash and the joint profit maximizing profit, as well as the associated prices, are unchanged.

3 Results

3.1 Cost asymmetries

Table 2 shows the summary statistics for the initial learning phase with symmetric costs.
Across all cost levels, we observe a high collusion index and predominantly convergence
to unique prices. The average collusion index for the low and intermediate cost levels are
in line with previous estimates. The average collusion index for high cost runs is slightly
lower. However, it continues to be at a supra-competitive level, showing that findings of
algorithmic collusion extend to and are stable in environments in which exploration is
costly, and short-run costs from learning must be balanced by long-term benefits from
algorithmic collusion. We further observe almost no longer price cycles across all cost levels.

Table 2: Summary Statistics Initial Learning

Convergence Type
Collusion Index Cycle

Cost Level Mean SD Symmetric Asymmetric 2 3 4 5+

1.00 0.79 0.16 79 52 59 27 23 10
1.10 0.81 0.13 89 51 65 26 12 7
1.20 0.87 0.11 159 20 39 15 9 8
1.30 0.87 0.10 171 23 36 9 4 7
1.40 0.84 0.10 168 36 42 3 0 1
1.50 0.75 0.12 164 49 32 5 0 0
1.60 0.70 0.13 156 50 38 5 1 0
1.70 0.73 0.15 154 52 40 3 1 0

Main results from the rematched runs are shown in Figure 1. The figure shows an 8 × 8
matrix corresponding to the cost levels of the two players. Each entry in the matrix shows
the mean collusion index obtained over 250 individual sessions for a given match, i.e. cost
level of player 1 (indicated along x-axis) and cost level of player 2 (indicated along the
y-axis). Cost levels are increasing from left to right and bottom to top. Hence, the entries
on the diagonal show the average when learning and market environment are symmetric,
while the off-diagonals show the averages when the two environments are asymmetric.

Figure 1 shows that while the collusion index along the diagonal is in line with previous
estimates and shows evidence of algorithmic collusion, off-diagonal the profit agents obtain
is substantially smaller. For many cost-combinations the average profit of players is only
slightly above the Nash profit. The definition of the price grid implies that both the Nash
and joint profit-maximizing prices are never one of the grid points, and thus collusion
indices equal to 0 or 1 are (almost) impossible to obtain. Hence, the smallest estimates in
Figure 1 of up to 0.1 and above can therefore be interpreted as effectively Nash play.

We further quantify the effect of asymmetry between environments on the profit algorithms
obtain by computing the average proportional loss, L, which is given by L = (D̄−Ō)/D̄, where
D̄ is the mean value of the diagonal and Ō is the mean value of the off-diagonal entries. The
average proportional loss for Figure 1 is L = 0.72. Thus, even if all parameterization except
the rivals marginal cost level stays constant between environments, the collusion index is
72% lower on average compared to the outcome in the training environment.

7



0.76

0.11

0.16

0.23

0.26

0.28

0.37

0.57

0.11

0.76

0.08

0.13

0.14

0.17

0.35

0.53

0.15

0.1

0.82

0.11

0.12

0.12

0.28

0.47

0.24

0.14

0.14

0.82

0.12

0.09

0.18

0.36

0.25

0.16

0.11

0.09

0.8

0.07

0.11

0.26

0.27

0.18

0.12

0.09

0.07

0.7

0.04

0.16

0.41

0.34

0.28

0.17

0.1

0.04

0.67

0.06

0.55

0.52

0.47

0.36

0.26

0.14

0.07

0.69

Cost level of player 1

C
os

t l
ev

el
 o

f p
la

ye
r 

2

Figure 1: Collusion index

This effect is surprisingly stronger for small cost differences than for larger ones. As the two
agents’ cost levels become very similar, the collusion index approaches 0. That is, the profit
players obtain on average approaches the Nash equilibrium profits. This pattern can be
seen in the prices played by learners. We classify the off-diagonal matches by the absolute
difference in cost levels between the two players, and the prices by their position on the
price grid relative to a given players Nash price. Hence, for each learner in every match
the Nash price has position zero on the grid, while all available prices on the grid have a
positive value (greater than Nash) or negative value (lower than Nash) corresponding to the
number of grid points to the Nash price. The result is shown in Figure 2.

We observe in Figure 2 that the distribution of prices played increasingly converges towards
the Nash equilibrium price between −1 and 1 as the absolute difference in cost levels
becomes smaller. That is, algorithms tend towards Nash play, if the cost level of the
competitor is marginally different in the market environment compared to the learning
environment.

In addition to the collusion index, we also document the average profit gain in Figure 3.
This shows how profit gains are distributed between relatively high cost and low cost firms.

We observe that with relatively small asymmetries in cost levels, profit gains are also
correspondingly distributed relatively evenly. But as cost differences become large, the low-
cost player obtains an increasingly dominant share of the overall profits and approaches the
profit gains obtained along the diagonal. We quantify the relative cost of being the high-cost
competitor relative to being the low-cost competitor in the same match in an analogous way
to the average proportional loss as C = (C̄− − C̄+)/C̄−), where C̄− is the average profit gain of
player i when ci < cj , j , i, and C̄+ the average profit gain of player i when ci > cj . We find
that for Figure 3, C = 0.3. However, this value rises to to 0.54 when considering only the
largest cost differences.

3.2 Re-learning restores collusion

Our results show that findings of algorithmic collusion are very sensitive to changes in
the environment and resulting asymmetry between learning and market environment.
Collusive results disappear almost entirely with small parameter asymmetries, and instead
we observe a tendency to play Nash prices. We now re-start the learning process for the

8



pN

pN

pN

pN

pN

pN

pN

0.5 0.6 0.7

0.1 0.2 0.3 0.4

0

2000

4000

6000

8000

0

2000

4000

6000

8000

Figure 2: Price Distributions

0.76

0.08

0.18

0.2

0.15

0.04

0.22

0.78

0.12

0.75

0.16

0.17

0.1

0.11

0.4

0.84

0.13

0.06

0.81

0.11

0.08

0.03

0.34

0.79

0.25

0.1

0.14

0.81

0.09

−0.01

0.19

0.66

0.36

0.18

0.18

0.13

0.81

−0.01

0.11

0.49

0.5

0.26

0.23

0.19

0.15

0.7

0.06

0.39

0.5

0.29

0.22

0.17

0.12

0.03

0.67

0.23

0.34

0.21

0.11

0.06

0.03

−0.1

−0.11

0.7

0.75

0.15

0.15

0.26

0.37

0.51

0.53

0.36

0.09

0.76

0.01

0.08

0.18

0.24

0.29

0.21

0.17

0.14

0.83

0.1

0.16

0.21

0.22

0.15

0.22

0.18

0.14

0.83

0.16

0.19

0.16

0.07

0.15

0.13

0.05

0.04

0.8

0.15

0.12

0.03

0.04

0.1

0.01

−0.01

−0.01

0.7

0.02

−0.08

0.31

0.39

0.34

0.18

0.08

0.05

0.68

−0.11

0.77

0.82

0.82

0.67

0.49

0.37

0.26

0.68

Player 1 Player 2

Cost level of player 1

C
os

t l
ev

el
 o

f p
la

ye
r 

2

Figure 3: Profit gains by player.

matched algorithms in order to see if algorithms can learn to collude in asymmetric cost
environments and overcome this breakdown of collusion. The summary statistics are
reported in Table 3 and Table 4 in the Appendix.

Figure 4 shows the average collusion index for each match across the 250 sessions per
match. We observe a complete return of collusive outcomes across all environments: agents
consistently obtain very high profits irrespective of the exact cost levels, showing that
asymmetric cost levels are no hindrance to algorithmic collusion in principle. We also
observe that the highest returns arise with symmetric cost and that the larger the cost
difference, the lower the collusion index after convergence. It appears that while high,

9



0.77

0.79

0.78

0.78

0.81

0.81

0.8

0.8

0.77

0.77

0.79

0.83

0.81

0.81

0.8

0.79

0.78

0.8

0.83

0.82

0.83

0.79

0.8

0.78

0.8

0.83

0.85

0.82

0.81

0.8

0.77

0.76

0.81

0.83

0.82

0.81

0.8

0.78

0.74

0.73

0.81

0.8

0.81

0.79

0.78

0.74

0.72

0.7

0.81

0.81

0.8

0.77

0.75

0.72

0.68

0.66

0.82

0.8

0.78

0.77

0.74

0.7

0.66

0.65

Cost level of player 1

C
os

t l
ev

el
 o

f p
la

ye
r 

2

Figure 4: Collusion index after re-learning

seemingly collusive profits can always be obtained, more asymmetric agents find it harder
to coordinate on a high price level.

This is reflected in the prices played. Figure 11 in the Appendix shows the distribution
of prices across matches, and the respective Nash and joint-profit maximizing prices. For
asymmetric cost pairs, for each player we observe convergence to the same distribution of
prices that they converge to in their respective symmetric cost match.

We also report the time to convergence in Figure 8 in the Appendix. We observe on average
significantly faster convergence in the re-learning phase compared to the initial learning
phase. This shows that learning in the market becomes more feasible after previously
learning offline, giving firms a possible avenue to overcome the (relatively) low profits when
the market environment is different to the initial learning environment. However, learning
continues to take on average more than a million rounds until convergence, likely making it
still unfeasible and potentially costly in many markets.

3.3 Sequential asymmetric learning

Since re-learning can re-establish collusive outcomes, it may be that learning in multiple
environments allows an algorithm to achieve collusive outcomes across environments. This
would imply that a firm could train its algorithm in all possible environments in order to
obtain a pricing policy robust to all possible competitors. We now show that this is not the
case.

We sequentially match the same algorithm against different-cost competitors across all
cost levels. Each time, we restart the learning process and following convergence study its
behavior against competitors from all other cost levels.8

Figure 5 shows the mean value of the collusion index (in red), and the mean value of
the profit gain for each player. With 8 cost levels, there are 8 separate learning phases
and 8 subsequent exploit phases. We find that sequential learning across all possible
parameterizations of the environment does not allow algorithms to establish collusion
outside of their specific training environment. If anything, we observe a slight decrease in
profits over the repeated learning phases. Thus, the breakdown of collusive outcomes we
document is robust to repeated learning.

8We only investigate this for one specific cost level to limit computations. Otherwise, repeated
learning for each cost level would lead to an exponential increase in possible asymmetric matches
following convergence.

10



0.0

0.1

0.2

0.3

4 8 12 16
Exploit Phase

M
ea

n 
E

st
im

at
e 

an
d 

95
%

 C
on

fid
en

ce
 In

te
rv

al

Figure 5: Outcomes after sequential learning and re-matching

We document the average collusion index and profit gains in Table 7 in the Appendix in
detail. During each learning phase, the algorithms achieve high, collusive outcomes. As
seen from Figure 5, when rematching across environments, each time there is no evidence
of collusion. However, we also observe that the player repeatedly learning (shown in blue)
consistently outperforms the opposing player, who only learnt once in the initial learning
phase. Thus, there is a benefit from sequential learning.

3.4 Rematching identical agents

The breakdown of algorithmic collusion that we document is most severe when the struc-
tural asymmetry between algorithms is particularly small. We now show that the same
finding arises when there are no structural differences. We run two instances of 250 sessions
of the same experiment with symmetric cost differing only in the seed used to initialize the
runs. To limit computations, we only consider three cost levels, low, medium, and high.9

Each of the two instances that we run yields converged policies for the two algorithms for
each of the 250 sessions. We document our results in Figure 6. The entries of the matrix
show the mean collusion index obtained across 250 sessions when players are matched
across the two instances.

Along the diagonal, we observe the usual outcome of high, collusive profits. But across all
three cost levels, off-diagonal we observe as before a breakdown of collusion with profits
only slightly above Nash equilibrium profits. The average proportional loss over all three
cost levels is equal to L = 0.8. Thus, even with an unchanged environment, playing against
a previously unseen opponent results on average in a loss of 80% of the supra-competitive
profits achieved before. This implies that the collusive outcomes observed and pricing
policies learned are sensitive to the learning path.

9Since all our previous results are highly symmetric across cost levels and matches, we consider
this to be without loss as it is highly likely that our findings here extrapolate to the remaining 5 cost
levels.

11



0.79

0.790.19

0.16 0.88

0.880.18

0.19 0.7

0.70.1

0.1

1 1.3 1.7

1 2 1 2 1 2

1

2

Player 1

P
la

ye
r 

2

Figure 6: Mean Collusion Index

4 Conclusion

Companies worldwide increasingly make use of reinforcement learning (RL) and other
machine learning techniques for their pricing decisions. The application of such tools and
the resulting automation of pricing decisions has gained the attention of policy-makers
and researchers. One major concern is that self-learning pricing algorithms may lead to
collusion without any explicit instruction to do so by firms. A nascent literature that studies
the behavior of RL in economic games indicates that concerns about algorithmic collusion
are not unfounded and algorithms can indeed learn sophisticated strategies supporting
supra-competitive pricing.

This paper shows that algorithms are unable to successfully use their learned, collusive
policies outside their training environment. We train algorithms in environments with
slight structural differences in the parameterization and match them following convergence
to collusive policies. We find that collusion breaks down with even the smallest parameter
asymmetries, and instead algorithms tend to play Nash prices. Re-learning in the new
environment re-establishes collusive outcomes consistently, however it continues to be the
case that algorithms are only able to collude in their latest training environment. We let
algorithms learn repeatedly across the different environments and study their behavior
across environments after each learning round. We observe a consistent breakdown of
collusion in all but the most recent training environment.

We show that these findings are driven by algorithm overfit. We train algorithms in
identical environments and match them across individual, separate runs. We find that
when algorithms play against previously unseen competitors in an unchanged environment,
they equally tend towards Nash play. This shows that the convergence proporties of the RL
algorithms we consider depend on the learning path and the specific counterpart during
learning. Our analysis illustrates a key challenge in the assessment of pricing algorithms:
a testing environment is required that is not identical to the training environment. Our
approach in this paper shows that economically relevant changes to the environment, and
matching up converged algorithms across learning environments can serve as an artificial
testing environment.

Our results provide a novel perspective on the existing findings of algorithmic collusion.
A key ingredient for collusive behavior appears to be that the learning phase is shared

12



between opponents in the same market. Hence, when learning in the market is feasible,
algorithms may be prone to collusion. In addition, we argue that our findings suggest that
symmetry between algorithms and firms make algorithmic collusion more likely. Thus,
policymakers may want to pay particular attention to any evidence of a coordination of
algorithm design.

13



References
Abrardi, L., Cambini, C., and Rondi, L. (2021). Artificial intelligence, firms and consumer

behavior: A survey. Journal of Economic Surveys, pages 1–23.

Beneke, F. and Mackenrodt, M.-O. (2021). Remedies for algorithmic tacit collusion. Journal
of Antitrust Enforcement, 9(1):152–176.

Calvano, E., Calzolari, G., Denicolò, V., Harrington, J. E., and Pastorello, S. (2020a). Protect-
ing consumers from collusive prices due to ai. Science, 370(6520):1040–1042.

Calvano, E., Calzolari, G., Denicolò, V., and Pastorello, S. (2020b). Artificial intelligence,
algorithmic pricing, and collusion. American Economic Review, 110(10):3267–97.

Ding, N. and Soricut, R. (2017). Cold-start reinforcement learning with softmax policy
gradient. arXiv preprint arXiv:1709.09346.

Harrington, J. E. (2018). Developing competition law for collusion by autonomous artificial
agents. Journal of Competition Law & Economics, 14(3):331–363.

Harrington Jr, J. E. (2021). The effect of outsourcing pricing algorithms on market competi-
tion. Available at SSRN 3798847.

Justesen, N., Torrado, R. R., Bontrager, P., Khalifa, A., Togelius, J., and Risi, S. (2018).
Illuminating generalization in deep reinforcement learning through procedural level
generation.

Klein, T. (2021). Autonomous algorithmic collusion: Q-learning under sequential pricing.
The RAND Journal of Economics, 52(3):538–558.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J., Silver, D., and
Graepel, T. (2017). A unified game-theoretic approach to multiagent reinforcement
learning. arXiv preprint arXiv:1711.00832.

Liu, J., Zhang, Y., Wang, X., Deng, Y., and Wu, X. (2021). Dynamic pricing on e-
commerce platform with deep reinforcement learning: A field experiment. arXiv preprint
arXiv:1912.02572.

Nichol, A., Pfau, V., Hesse, C., Klimov, O., and Schulman, J. (2018). Gotta learn fast: A new
benchmark for generalization in rl. arXiv preprint arXiv:1804.03720.

Ohlhausen, M. K. (2017). Should we fear the things that go beep in the night? some initial
thoughts on the intersection of antitrust law and algorithmic pricing.

Song, X., Jiang, Y., Tu, S., Du, Y., and Neyshabur, B. (2019). Observational overfitting in
reinforcement learning. arXiv preprint arXiv:1912.02975.

Vestager, M. (2017). Algorithms and competition. In Bundeskartellamt 18th Conference on
Competition, Berlin, 16 March 2017.

Yuan, J., Shalaby, W., Korayem, M., Lin, D., AlJadda, K., and Luo, J. (2016). Solving cold-start
problem in large-scale recommendation engines: A deep learning approach. In 2016
IEEE International Conference on Big Data (Big Data), pages 1901–1910.

Zhang, A., Ballas, N., and Pineau, J. (2018a). A dissection of overfitting and generalization
in continuous reinforcement learning. arXiv preprint arXiv:1806.07937.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. (2018b). A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893.

Zhu, Y., Lin, J., He, S., Wang, B., Guan, Z., Liu, H., and Cai, D. (2019). Addressing the item
cold-start problem by attribute-driven active learning. IEEE Transactions on Knowledge
and Data Engineering, 32(4):631–644.

14



A Figures

Figure 7: Profit gain by player after re-learning

0.77

0.73

0.73

0.73

0.75

0.78

0.75

0.75

0.82

0.79

0.78

0.81

0.78

0.79

0.8

0.76

0.87

0.82

0.84

0.81

0.81

0.78

0.79

0.78

0.86

0.83

0.86

0.82

0.79

0.79

0.78

0.75

0.84

0.85

0.83

0.81

0.8

0.78

0.72

0.72

0.85

0.83

0.82

0.78

0.79

0.73

0.72

0.69

0.87

0.83

0.81

0.79

0.75

0.71

0.68

0.67

0.88

0.83

0.8

0.77

0.75

0.7

0.66

0.65

0.77

0.85

0.84

0.83

0.86

0.84

0.85

0.86

0.73

0.76

0.8

0.84

0.84

0.84

0.81

0.82

0.7

0.77

0.82

0.83

0.85

0.8

0.8

0.79

0.74

0.82

0.83

0.82

0.82

0.81

0.77

0.76

0.77

0.81

0.81

0.81

0.79

0.79

0.76

0.73

0.77

0.77

0.8

0.8

0.76

0.75

0.71

0.7

0.76

0.78

0.79

0.75

0.76

0.74

0.69

0.65

0.77

0.78

0.77

0.76

0.73

0.69

0.66

0.65

Player 1 Player 2

Cost level of player 1

C
os

t l
ev

el
 o

f p
la

ye
r 

2

Figure 8: Time to convergence

(a) Initial Learning

0.00

0.05

0.10

0.15

1e+06 2e+06 3e+06 4e+06 5e+06
Iterations Until Convergence

F
re

qu
en

cy

(b) Re-learning

0.0

0.1

0.2

0.3

0.4

1e+06 2e+06 3e+06 4e+06 5e+06
Iterations Until Convergence

F
re

qu
en

cy

15



Figure 9: Convergence type frequency

(a) On-diagonal after re-matching

0.0

0.1

0.2

0.3

0.4

0.5

Sym
m

et
ric

Asy
m

m
et

ric

Cyc
le 

2

Cyc
le 

3

Cyc
le 

4

Cyc
le 

5

Cyc
le 

6

Cyc
le 

7

Cyc
le 

8

Cyc
le 

9

Cyc
le 

10

Cyc
le 

11

Cyc
le 

12
Oth

er

Convergence Type

F
re

qu
en

cy

(b) Off-diagonal after re-matching

0.0

0.2

0.4

0.6

0.8

Sym
m

et
ric

Asy
m

m
et

ric

Cyc
le 

2

Cyc
le 

3

Cyc
le 

4

Cyc
le 

5

Cyc
le 

6

Cyc
le 

7

Cyc
le 

8

Cyc
le 

9

Cyc
le 

10

Cyc
le 

11

Cyc
le 

12
Oth

er

Convergence Type

F
re

qu
en

cy

(c) On-diagonal after re-learning

0.0

0.2

0.4

Sym
m

et
ric

Asy
m

m
et

ric

Cyc
le 

2

Cyc
le 

3

Cyc
le 

4

Cyc
le 

5

Cyc
le 

6

Cyc
le 

7

Cyc
le 

8
Oth

er

Convergence Type

F
re

qu
en

cy

(d) Off-diagonal after re-learning

0.0

0.2

0.4

0.6

Sym
m

et
ric

Asy
m

m
et

ric

Cyc
le 

2

Cyc
le 

3

Cyc
le 

4

Cyc
le 

5

Cyc
le 

6

Cyc
le 

7

Cyc
le 

8

Cyc
le 

9

Cyc
le 

10
Oth

er

Convergence Type

F
re

qu
en

cy

16



Figure 10: Frequency of prices after re-matching

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

1.
7

1.
6

1.
5

1.
4

1.
3

1.
2

1.
1

1

0

5000

10000

15000

20000

0

5000

10000

15000

20000

0

5000

10000

15000

20000

0

5000

10000

15000

20000

0

5000

10000

15000

20000

0

5000

10000

15000

20000

0

5000

10000

15000

20000

0

5000

10000

15000

20000

Player 1 cost level

P
la

ye
r 

2 
co

st
 le

ve
l

Player

1

2

Prices

Max

Nash

17



Figure 11: Frequency of prices after re-learning

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

1.
7

1.
6

1.
5

1.
4

1.
3

1.
2

1.
1

1

0
5000

10000
15000
20000

0
5000

10000
15000
20000

0
5000

10000
15000
20000

0
5000

10000
15000
20000

0
5000

10000
15000
20000

0
5000

10000
15000
20000

0
5000

10000
15000
20000

0
5000

10000
15000
20000

Player 1 cost level

P
la

ye
r 

2 
co

st
 le

ve
l

Player

1

2

Prices

Max

Nash

18



Figure 12: Time to convergence during sequential learning

15

11 13

7 9

3 5

1000000 1500000 2000000

1000000 1500000 2000000

0.000

0.005

0.010

0.015

0.020

0.000

0.005

0.010

0.015

0.020

0.000

0.005

0.010

0.015

0.020

0.000

0.005

0.010

0.015

0.020

Iterations Until Convergence

F
re

qu
en

cy

19



B Tables

Table 3: Summary Statistics Symmetric Cost After Re-matching

Convergence Type
Cost Player Collusion Index Cycle
1 2 Mean SD Symmetric Asymmetric 2 3 4 5+ Other

1.00 1.00 0.76 0.19 73 48 51 27 25 12 14
1.10 1.10 0.76 0.22 80 45 62 24 12 6 21
1.20 1.20 0.82 0.19 144 15 39 16 8 8 20
1.30 1.30 0.82 0.17 150 25 33 9 5 7 21
1.40 1.40 0.80 0.19 158 30 38 3 0 3 18
1.50 1.50 0.70 0.19 147 43 28 4 0 3 25
1.60 1.60 0.67 0.18 140 47 40 4 1 0 18
1.70 1.70 0.69 0.20 137 48 40 3 1 2 19

20



Table 4: Summary Statistics Asymmetric Cost After Re-matching
Convergence Type

Cost Player Collusion Index Cycle
1 2 Mean SD Symmetric Asymmetric 2 3 4 5+ Other

1.00 1.10 0.11 0.18 0 5 6 1 0 2 236
1.00 1.20 0.16 0.16 0 4 1 1 1 1 242
1.00 1.30 0.23 0.17 0 5 3 2 1 5 234
1.00 1.40 0.26 0.17 0 13 1 4 3 9 220
1.00 1.50 0.28 0.19 0 17 8 5 2 13 205
1.00 1.60 0.37 0.19 0 24 11 8 2 26 179
1.00 1.70 0.57 0.23 0 25 30 21 19 56 99
1.10 1.00 0.11 0.16 2 3 2 1 1 5 236
1.10 1.20 0.08 0.17 2 2 0 0 1 1 244
1.10 1.30 0.13 0.18 0 3 5 2 1 3 236
1.10 1.40 0.14 0.16 0 3 4 3 2 3 235
1.10 1.50 0.17 0.17 0 17 1 1 4 12 215
1.10 1.60 0.35 0.21 0 25 8 15 9 30 163
1.10 1.70 0.53 0.22 0 18 32 25 18 68 89
1.20 1.00 0.15 0.16 0 3 1 3 0 1 242
1.20 1.10 0.10 0.20 3 5 1 3 0 3 235
1.20 1.30 0.11 0.18 2 2 1 0 2 4 239
1.20 1.40 0.12 0.19 0 10 0 2 1 4 233
1.20 1.50 0.12 0.16 0 8 7 0 4 8 223
1.20 1.60 0.28 0.18 0 15 11 7 2 38 177
1.20 1.70 0.47 0.17 0 5 24 14 23 77 107
1.30 1.00 0.24 0.22 0 14 6 4 2 4 220
1.30 1.10 0.14 0.21 0 7 4 2 0 4 233
1.30 1.20 0.14 0.19 2 4 4 0 1 8 231
1.30 1.40 0.12 0.21 0 7 5 2 2 7 227
1.30 1.50 0.09 0.18 0 7 3 4 1 6 229
1.30 1.60 0.18 0.13 0 6 5 6 0 20 213
1.30 1.70 0.36 0.18 0 7 12 13 11 69 138
1.40 1.00 0.25 0.19 0 17 3 1 1 7 221
1.40 1.10 0.16 0.18 0 6 5 1 0 9 229
1.40 1.20 0.11 0.16 0 5 0 4 0 3 238
1.40 1.30 0.09 0.17 0 4 1 0 1 6 238
1.40 1.50 0.07 0.19 3 4 3 4 0 7 229
1.40 1.60 0.11 0.13 0 3 5 5 3 12 222
1.40 1.70 0.26 0.15 0 8 8 8 6 57 163
1.50 1.00 0.27 0.17 0 16 5 6 3 11 209
1.50 1.10 0.18 0.16 0 10 4 5 4 9 218
1.50 1.20 0.12 0.14 0 4 1 3 3 13 226
1.50 1.30 0.09 0.16 0 5 1 1 3 8 232
1.50 1.40 0.07 0.18 0 5 0 4 1 8 232
1.50 1.60 0.04 0.15 0 3 5 4 3 10 225
1.50 1.70 0.16 0.15 0 10 5 5 5 27 198
1.60 1.00 0.41 0.21 0 31 18 7 10 29 155
1.60 1.10 0.34 0.20 0 26 14 12 7 33 158
1.60 1.20 0.28 0.19 0 19 8 6 14 17 186
1.60 1.30 0.17 0.13 0 4 5 5 2 20 214
1.60 1.40 0.10 0.13 0 3 3 2 3 16 223
1.60 1.50 0.04 0.16 0 9 4 1 2 8 226
1.60 1.70 0.06 0.12 0 1 4 1 6 15 223
1.70 1.00 0.55 0.22 0 19 39 17 11 61 103
1.70 1.10 0.52 0.22 0 19 32 17 15 64 103
1.70 1.20 0.47 0.16 0 5 21 14 29 79 102
1.70 1.30 0.36 0.17 0 8 13 9 10 70 140
1.70 1.40 0.26 0.15 0 9 4 9 8 56 164
1.70 1.50 0.14 0.14 0 8 3 2 3 30 204
1.70 1.60 0.07 0.13 1 4 2 5 2 15 221

21



Table 5: Summary Statistics Asymmetric Cost After Re-learning

Convergence Type
Cost Player Collusion Index Cycle
1 2 Mean SD Symmetric Asymmetric 2 3 4 5+ Other

1.00 1.00 0.77 0.14 51 72 72 25 12 9 9
1.10 1.10 0.77 0.16 87 64 60 15 6 6 12
1.20 1.20 0.83 0.11 154 25 38 20 6 3 4
1.30 1.30 0.82 0.10 154 25 45 12 5 4 5
1.40 1.40 0.80 0.11 159 35 38 10 2 3 3
1.50 1.50 0.74 0.11 164 33 44 7 0 1 1
1.60 1.60 0.68 0.13 154 43 44 5 2 0 2
1.70 1.70 0.65 0.13 150 39 52 3 1 1 4

22



Table 6: Summary Statistics Asymmetric Cost After Re-learning
Convergence Type

Cost Player Collusion Index Cycle
1 2 Mean SD Symmetric Asymmetric 2 3 4 5+ Other

1.00 1.10 0.79 0.14 17 129 63 20 8 6 7
1.00 1.20 0.78 0.13 0 148 63 26 7 4 2
1.00 1.30 0.78 0.15 0 158 57 17 6 5 7
1.00 1.40 0.81 0.12 0 162 51 18 8 3 8
1.00 1.50 0.81 0.11 0 165 60 13 7 2 3
1.00 1.60 0.80 0.11 0 178 51 13 4 1 3
1.00 1.70 0.80 0.11 0 183 48 8 4 4 3
1.10 1.00 0.77 0.13 22 135 62 19 6 2 4
1.10 1.20 0.79 0.13 6 159 50 19 6 6 4
1.10 1.30 0.83 0.12 0 180 46 8 6 3 7
1.10 1.40 0.81 0.12 0 176 53 14 2 1 4
1.10 1.50 0.81 0.11 0 175 52 10 6 2 5
1.10 1.60 0.80 0.10 0 194 43 5 3 2 3
1.10 1.70 0.79 0.11 0 177 59 7 3 0 4
1.20 1.00 0.78 0.14 1 139 68 24 5 9 4
1.20 1.10 0.80 0.12 8 159 50 13 12 3 5
1.20 1.30 0.82 0.10 1 175 47 13 8 4 2
1.20 1.40 0.83 0.10 0 196 37 10 3 1 3
1.20 1.50 0.79 0.10 0 193 39 7 3 1 7
1.20 1.60 0.80 0.11 0 191 43 10 1 3 2
1.20 1.70 0.78 0.11 0 175 60 5 3 2 5
1.30 1.00 0.80 0.13 0 170 50 18 6 1 5
1.30 1.10 0.83 0.11 0 184 40 10 8 3 5
1.30 1.20 0.85 0.10 1 183 48 8 3 3 4
1.30 1.40 0.81 0.10 1 188 45 6 1 3 6
1.30 1.50 0.80 0.10 0 183 46 12 2 1 6
1.30 1.60 0.77 0.11 0 188 48 7 4 2 1
1.30 1.70 0.76 0.11 0 188 47 8 4 1 2
1.40 1.00 0.81 0.12 0 164 57 10 8 5 6
1.40 1.10 0.83 0.10 0 167 61 11 6 1 4
1.40 1.20 0.82 0.10 0 189 39 13 2 4 3
1.40 1.30 0.81 0.10 0 187 42 10 6 2 3
1.40 1.50 0.78 0.10 2 196 43 4 1 1 3
1.40 1.60 0.74 0.11 0 185 55 5 0 1 4
1.40 1.70 0.73 0.12 0 194 45 8 1 0 2
1.50 1.00 0.81 0.11 0 167 47 23 5 2 6
1.50 1.10 0.80 0.11 0 180 47 9 5 2 7
1.50 1.20 0.81 0.11 0 193 36 13 3 0 5
1.50 1.30 0.79 0.11 0 196 38 10 3 1 2
1.50 1.40 0.78 0.10 4 205 33 5 0 0 3
1.50 1.60 0.72 0.12 1 196 41 6 1 1 4
1.50 1.70 0.70 0.12 0 192 46 4 3 0 5
1.60 1.00 0.81 0.11 0 177 41 16 5 4 7
1.60 1.10 0.81 0.11 0 188 40 12 3 2 5
1.60 1.20 0.80 0.10 0 189 46 7 0 4 4
1.60 1.30 0.77 0.11 0 202 38 5 0 1 4
1.60 1.40 0.75 0.11 0 197 40 7 1 1 4
1.60 1.50 0.72 0.11 1 195 46 6 0 0 2
1.60 1.70 0.66 0.12 1 195 52 1 0 0 1
1.70 1.00 0.82 0.11 0 188 46 8 3 1 4
1.70 1.10 0.80 0.11 0 184 47 10 4 3 2
1.70 1.20 0.78 0.11 0 191 46 6 3 0 4
1.70 1.30 0.77 0.11 0 191 46 7 1 1 4
1.70 1.40 0.74 0.11 0 197 43 6 1 0 3
1.70 1.50 0.70 0.12 0 193 51 2 0 0 4
1.70 1.60 0.66 0.12 1 182 52 7 2 0 6

23



Table 7: Summary Statistics Sequential Learning

Profit Gain
Phase Collusion Index Learning Player Opposing Player

Number Type Mean SD Mean SD Mean SD

1 learn 0.79 0.14 0.79 0.19 0.79 0.19
2 exploit 0.18 0.20 0.19 0.35 0.17 0.25
3 learn 0.79 0.13 0.86 0.21 0.72 0.20
4 exploit 0.13 0.24 0.16 0.38 0.09 0.28
5 learn 0.82 0.12 0.82 0.18 0.81 0.17
6 exploit 0.15 0.22 0.20 0.38 0.10 0.27
7 learn 0.84 0.11 0.85 0.16 0.82 0.17
8 exploit 0.16 0.21 0.20 0.36 0.12 0.26
9 learn 0.82 0.10 0.81 0.17 0.83 0.15

10 exploit 0.16 0.20 0.23 0.33 0.10 0.26
11 learn 0.78 0.11 0.77 0.17 0.79 0.16
12 exploit 0.16 0.19 0.25 0.32 0.07 0.26
13 learn 0.77 0.11 0.77 0.16 0.77 0.15
14 exploit 0.14 0.19 0.22 0.33 0.07 0.27
15 learn 0.77 0.11 0.76 0.17 0.77 0.16
16 exploit 0.14 0.19 0.17 0.27 0.11 0.29

Table 8: Summary Statistics Identical Agents

Convergence Type
Collusion Index Cycle

Cost Instance Mean SD Symm. Asymm. 2 3 4 5+ Other
low same 0.79 0.16 326 232 228 102 48 104 4
low different 0.17 0.20 34 18 16 14 8 104 866
med same 0.88 0.09 692 54 168 30 28 58 0
med different 0.19 0.28 104 8 8 2 8 58 840
high same 0.70 0.15 590 182 202 16 4 84 0
high different 0.10 0.19 62 16 18 8 16 84 802

24



TODO

25


	Introduction
	Learning and Market Environment Model
	Economic model
	Action space
	Learning model
	Cost of learning
	Measures of Collusion
	Learning Environment vs. Market Environment

	Results
	Cost asymmetries
	Re-learning restores collusion
	Sequential asymmetric learning
	Rematching identical agents

	Conclusion
	Figures
	Tables

