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Abstract

Physical measurements constitute a large por-
tion of numbers in academic papers, engineer-
ing reports, and web tables. Current bench-
marks fall short of properly evaluating numer-
acy of pretrained language models on mea-
surements, hindering research on developing
new methods and applying them to numeri-
cal tasks. To that end, we introduce a novel
task, Masked Measurement Prediction (MMP),
where a model learns to reconstruct a number
together with its associated unit given masked
text. MMP is useful for both training new nu-
merically informed models as well as evalu-
ating numeracy of existing systems. To ad-
dress this task, we introduce a new Generative
Masked Measurement (GeMM) model that
jointly learns to predict numbers along with
their units. We perform fine-grained analy-
ses comparing our model with various abla-
tions and baselines. We use linear probing
of traditional pretrained transformer models
(RoBERTa) to show that they significantly un-
derperform jointly trained number-unit models,
highlighting the difficulty of this new task and
the benefits of our proposed pre-training ap-
proach. We hope this framework accelerates
progress towards building more robust numeri-
cal reasoning systems in the future.1

1 Introduction

Many natural language processing tasks require
a deep understanding of numbers – for example,
reading comprehension (Ran et al., 2019), textual
entailment (Sammons et al., 2010; Roy, 2017) and
hybrid table tasks such as fact-verification (Chen
et al., 2020) or question answering (Chen et al.,
2021). Masked number prediction (MNP) is a popu-
lar pretraining objective to imbue language models
with numerical understanding and evaluate existing
models for their numerical capacity.

1We will release our trained models and data-splits upon
acceptance on Github.

Figure 1: We present the Masked Measurement Predic-
tion (MMP) task where the model predicts the dimen-
sion, unit and real-valued number. We also show the
model architecture of Generative Masked Measurement
model (GeMM), the model we propose to perform MMP.
We display the fixed operations used during unit conver-
sion in yellow. In black, we show the different compo-
nents of the model’s prediction.

As an example of MNP, given the sentence
“Cats have [#NUM] paws.” a model learns to pre-
dict the number 4. While appropriate for numerical
commonsense, MNP is deficient when it is used
to predict measurements. Measurements, such as
2 meters or 13.2 square miles, are a special class
of particularly common numbers in text that have
a well-defined and typed system of units. Given
a simple question: “How long did Alex Honnold
climb for?”, a single number alone is an insuffi-
cient answer since it is meaningless without the
unit. Answers like 1000 meters or 4 hours could
both suffice.

Current MNP systems do not jointly reason
about numbers with units. It is reasonable to ex-
pect that pretrained models like BERT could lever-



age information of units directly as text without
any special treatment. However, in preliminary ex-
periments we find that this yields poor numerical
abilities (see Appendix B). Furthermore, including
units as text directly raise more questions: should
we evaluate using all units (meters, feet, inches)?
Should we equally weight across the units? Cur-
rent models have no opinion about which unit is
appropriate because they are not required to make
unit predictions during training. Together, this indi-
cates that current training objectives do not capture
sufficient representations of measurements and that
a direct application of MNP to evaluate numeracy
of measurements is ill-suited.

To address these shortcomings, we propose the
more challenging task of Masked Measurement
Prediction (MMP) along with a new model. In this
task, a model must reconstruct both the number
together with the correct unit. In Figure 1 we show
how in a MMP setting our model generates a di-
mension (“Length”), a number in metric log-space
(“3.00”), the unit ("feet") and then uses the con-
version factor (“3.28”) to deterministically output
the full measurement (“3280 feet”). This exam-
ple illustrates a key distinction in that our model
is flexible and can generate non-metric measure-
ments (feet) but evaluates numerical prediction in
canonical units (meters).2

MMP is useful for two reasons: 1) as a way to
train models to give them better numeracy 2) as a
new kind of evaluation that allows for a much more
fine-grained analysis of reasoning over numerical
quantities. The task of measurement estimation
decouples the different aspects of numeracy allow-
ing for a more interpretable and thorough analy-
sis of numerical reasoning. We introduce a new
evaluation benchmark for MMP based on Wiki-
Convert (WiCo) (Thawani et al., 2021a), a large
scale dataset of English Wikipedia sentences with
ground truth measurement annotations. We com-
pare the performance of our models on their ability
to accurately predict the dimension, unit, and value
of a measurement. We employ a large pretrained
transformer model as our textual encoder and ex-
amine the performance of different discriminative,
generative, and latent variable models along with
several ablations. Our contributions are as follows:

• We introduce a novel challenging task MMP

2Our metric of choice described in Equation 2 is invariant
to the specific choice of canonical unit i.e., log-mae in meters
is equal to log-mae in feet.

Figure 2: GeMM as a graphical model. The broken
arrows represent a deterministic unit conversion. Exam-
ples of unit values and their corresponding dimension
values are also shown.

for pretraining and evaluating numeracy.

• We show that linear probing of existing pre-
trained models on MMP significantly under-
performs fully finetuned models.

• We train a model that reasons jointly about
numbers and units which predicts numbers
8.1 times more accurately than the probed
pretrained models.

• We find our best performing generative model
outperforms human annotators on two evalu-
ations, achieving 7.4-7.8% better dimension
accuracy and 33.5-39.9% better unit accuracy.
Furthermore, this model predicts a number
closer to ground truth than our annotators
66.2-78.8% of the time.

Furthermore there are numerous applications
of better measurement prediction and unit re-
construction such as in table to text genera-
tion (Moosavi et al., 2021), answering numeri-
cal queries (Sarawagi and Chakrabarti, 2014; Ho
et al., 2019) or for improving e-commerce product
search(Arici et al., 2021). We hope that Masked
Measurement Prediction becomes a standard bench-
marking tool from which we can gain insight how
to best incorporate new numeracy modeling tech-
niques as well as evaluate existing models.

2 Models

2.1 Background + Notation
The International System of Units (SI) defines
seven fundamental dimensions (Length, Time,
Mass, etc.) and seven corresponding base SI units



(meters, seconds, kilograms, etc.). The SI system
is the most widely adopted measurement standard
and is used internationally in domains such as com-
merce, finance, logistics, and science. We des-
ignate D to be the set of composite dimensions
obtained from (and including) the fundamental di-
mensions. Values of D include velocity and power.
We let U be the set of all units: the various ways to
describe dimensions. For example, units of Length
include meters and miles. Each training example
consists of a real number y, a dimension d ∈ D, a
unit u ∈ U , and the remainder of the sentence S.
In MMP, our task is to predict y, d, and u given
only S. In the next sections we describe our gen-
erative model designed for MMP followed by the
ablations we consider.

2.2 Model

Measurements have complex semantic meanings,
shaped by many standards, particular instruments,
and natural world phenomena. Consider a text
concerning rainfall. From a dimensional analysis
perspective, the units inches per year (in/y) and
meters per second (m/s) share the same dimension
velocity. However, mentioning in/y usually implies
that the text is discussing total rainfall in a region.
Likewise, the use of m/s suggests that the text is
examining the speed of falling rain droplets. To
capture this complexity, we consider a generative
model that learns the joint distribution of the num-
ber, dimension, and unit.

We now describe the generative process of our
full model. To start, conditioned on S, our model
samples a discrete dimension variable D. Then
conditioned on the sampled dimension, our model
samples a discrete unit variable U compatible with
the dimension. For example, conditioned on the
dimension velocity our model will output a distri-
bution over the units of velocity such as [miles per
hour; meters per second, inches per year] as op-
posed to all of U . We then separately predict a
distribution on the canonicalized measurement, Ȳ ,
which is the numerical quantity represented in a
base canonical (metric) unit like meters. During
inference time, we use the highest scoring dimen-
sion and unit and choose the proper conversion
factor to deterministically produce the final num-
ber y represented in the predicted unit. We refer
to this Generative Masked Measurement model as
GeMM, where the joint p(D,Y ,U |S) is given by

the following equation:

p(D|S)× p(U |D,S)× p(Y |S)

We show the graphical model of GeMM in Figure
2. We also consider, GeMM U)Y , a slight variant
where we have a direct dependence between the
unit and number prediction with a joint equal to:

p(D|S)× p(U |D,S)× p(Y |U ,S)

2.3 Discrete Latent Dimension Model
We also consider an unsupervised generative model
which treats the dimension as a discrete latent vari-
able. We use the same number of dimension classes
|D| and train to maximize the log-likelihood of the
observed Y . We refer to this model as Lat-Dim
and is characterized by:

p(Y |S) =
∑
D

p(D|S)× p(Y |D,S)

To evaluate this model we build a contingency
matrix of the predicted classes and using a linear
solver find the best mapping between our predicted
and true dimensions. We can then apply this map-
ping to the model predictions and calculate classifi-
cation metrics for dimension prediction.

2.4 Model Ablations
We also consider several model ablations of GeMM.
Our first ablation is GeMM -Y -U which models
p(D|S). The second, GeMM -Y , learns the distri-
bution p(U ,D|S) = p(D|S)× p(U |D,S). The
third, GeMM -U , models p(Y ,D|S) = p(D|S)×
p(Y |D,S). Our final ablation is GeMM -U -D

which learns P (Y |S) directly.

2.5 Model Architectures
For our textual encoder, we use the Huggingface
Transformers (Wolf et al., 2020; Liu et al., 2019)
implementation of RoBERTa, a pretrained 12-layer
transformer. We refer to this text encoder as T
such that given a sentence S, our model outputs a
768-dimensional vector hT . We use a single linear
layer, WS ∈ R768×M, to project hT to h and treat
the dimension M as a hyper-parameter. To form
a distribution over the real number line R we use
a Log-Laplace model, a competitive model used
in the numeracy literature (Spokoyny and Berg-
Kirkpatrick, 2020; Thawani et al., 2021a; Zhang
et al., 2020). This is equivalent to L1 regression
in log-space and yields the following loss function



Split Examples Max # Min #

All 919,237 5.5E+36 1E-06

Train 728,629 5.5E+36 1E-06

Val 91,110 4.4E+14 1.2E-06

Test 91,092 1.6E+21 1.8E-06

Table 1: Summary statistics for Wiki-Convert. The
median number of characters and tokens per example is
106 and 33, respectively.

where Y and Y ∗ are predicted and ground truth
numbers, respectively:

logP (Y |S) = |logY ∗ − logY |+ log

∣∣∣∣ 1Y
∣∣∣∣ (1)

As shown in Figure 1, we project h with a lin-
ear layer WD ∈ RM×|D| to obtain a distribution
over D. We then use a separate linear layer,
WU ∈ RM×|U|, to project h and obtain a distri-
bution over U . To predict Ȳ , we project h with
a linear layer WY . In the case of GeMM, we let
WY ∈ RM×|D| in order to parameterize a mean
of a Log-Laplace distribution for each dimension
in D. For GeMM U)Y , we set WY ∈ RM×|U|

to output the mean of a Log-Laplace distribution
for each unit in U and the remaining models, we
set WY ∈ RM×1 resulting in a single mean of
a Log-Laplace distribution. For training, we use
cross-entropy loss for the dimension and unit dis-
tributions, and the loss from the equation above for
number prediction.

3 Dataset

We train and evaluate our models on WiCo
(Thawani et al., 2021a), a dataset of English
Wikipedia sentences where the number and unit
in each sentence are human-annotated. We canoni-
calize the units and map each to a single dimension.
For example both feet per second and miles per
hour map to velocity. We show the distribution of
all measurements and lengths in Figure 3. The re-
sulting dataset consists of 919,237 sentences with
annotated (number, unit, dimension) triples. We
provide more details on the data in Appendix A.

4 Experiments

We train all models using a batch size of 200 and
use the AdamW (Loshchilov and Hutter, 2019)
optimizer with a learning rate of 1e−4 and a linear

Model 10-shot 40-shot 70-shot 100-shot

GeMM -Y -U^ 15.5 50.0 52.5 53.4

GeMM -Y -U 42.5 51.2 57.6 60.5

Majority 14.3 14.3 14.3 14.3

Table 2: Results (measured by F1 ↑) of our few-shot ex-
periment on dimension classification (probing p(D|S)).
x-shot implies the model is trained on x labeled exam-
ples per dimension. GeMM -Y -U indicates an ablation
of GeMM where Y and U are not modeled. ^ indi-
cates the model’s parameters are frozen during training.

Model 10-shot 40-shot 70-shot 100-shot

GeMM -U -D^ 1.94 1.82 1.72 1.75
GeMM -U -D 1.70 1.56 1.43 1.41

Median 1.99 1.99 1.99 1.99

Table 3: Results (log-mae ↓) of our few-shot experiment
on number prediction (probing p(Y |S)).

warm-up schedule of 500 steps. We use the “^”
symbol to indicate that we freeze the transformer
parameters for training. For all frozen models we
use a log frequency weighted cross-entropy due to
the highly imbalanced classes as well as a higher
learning rate of 1e−3. We employ early stopping
with a patience of five epochs on validation score.

To evaluate the performance of our models, we
report the macro averaged F1 score for dimension
and unit prediction and log-mae to evaluate number
prediction. We define log-mae in Equation 2 where
Y is the predicted number and Y ∗ is the ground
truth number. As a simple baseline for dimension
and unit prediction, we employ majority class vot-
ing. For number prediction we use the median of
all the numbers in the training set.

log-mae =
1

|Dtest|
∑
Dtest

| log10 Y ∗ − log10 Y |

(2)

4.1 Few-Shot
To study the degree to which current pretrained
models capture different aspects of numeracy, we
consider the following few-shot experiment. We
sample a balanced dataset of dimensions where
each class gets 10, 40, 70, or 100 labeled exam-
ples. We train GeMM -Y -U and GeMM -U -D on
the few-shot task where the pretrained text encoder
T parameters are frozen and compare their perfor-
mance against full fine-tuning. Due to the high
variance of GeMM -Y -U , we report the average



Figure 3: Histograms of WiCo numbers binned by base-10 exponent. All numbers are canonicalized to their SI
form. Left: All numbers labeled by dimension. Right: Numbers in the length dimension labeled by unit.

Model Probing Type Val Test

Majority - 33.1 33.1

GeMM^ p(D|S) 69.1 67.5

GeMM -Y -U p(D|S) 88.0 86.8

GeMM -Y p(D|S) 87.0 87.3

GeMM -U p(D|S) 87.2 86.6
Lat-Dim p(D|S) 9.0 9.1
GeMM p(D|S) 87.4 87.0

GeMM U)Y p(D|S) 86.4 86.1

Table 4: Results (F1 ↑) for dimension prediction con-
ditioned on S only. GeMM U)Y indicates a variant of
GeMM where Ȳ is dependent on U (in addition to S).

Model Probing Type Val Test

GeMM -U p(D|Ȳ ,S) 95.5 95.7

GeMM U)Y p(D|Ȳ ,S) 96.4 96.6

Table 5: Results (F1 ↑) for dimension prediction condi-
tioned on Ȳ and S.

of three random seeds. In Table 2 and Table 3 we
show results of GeMM -Y -U and GeMM -U -D

respectively.

Although performance improves with more data,
the frozen models significantly underperform their
unfrozen counterparts across all dataset sizes. For
example, in the 100-shot dataset, the frozen model
shows 7.1 lower F1 and 0.34 higher log-mae. These
results suggest that current pretrained transformers
do not capture numeracy to a large extent.

Model Probing Type Val Test

Majority - 8.9 9.0

GeMM^ p(U |D,S) 29.8 29.8

GeMM -Y p(U |D,S) 52.9 51.7
GeMM p(U |D,S) 51.5 54.9

GeMM U)Y p(U |D,S) 49.3 47.8

Table 6: Results (F1 ↑) on unit prediction conditioned
on the true dimension and text. Ablations are above the
double horizontal line.

4.2 Dimension Prediction

We train our models and their ablations on the full
dataset and measure their performance on dimen-
sion prediction. In Table 4, we show the results
of dimension prediction conditioned on S. We ob-
serve that the performance gap between the frozen
and unfrozen GeMM grows to 19.5 F1 on the test
split despite training on 3 orders of magnitude more
training data than the few-shot setting.

By using Bayes’ rule, we perform dimension
prediction conditioned on both S and Ȳ and show
our results in Table 5. We observe that both models
show improved dimension prediction ability when
supplied with the number with GeMM U)Y reach-
ing 96.6 F1 score, an effective error rate reduction
of 75%.

4.3 Unit Prediction

We show the unit prediction performance of our
models in Table 6. The strongest performing model
for unit prediction was GeMM with a F1 score of
54.9. Again, the frozen GeMM^ produced a 25.1
lower F1 score than its unfrozen counterpart.

We note that even though the F1 scores on unit



Model Probing Type Val Test

Median - 1.98 1.97

GeMM^ p(Ȳ |S) 1.377 1.370

GeMM -U -D p(Ȳ |S) 0.529 0.531

GeMM -U p(Ȳ |D,S) 0.468 0.469
p(Ȳ ,D|S) 0.517 0.518

Lat-Dim p(Ȳ ,D|S) 0.545 0.546

GeMM p(Ȳ |S) 0.517 0.515

GeMM U)Y p(Ȳ |U ,D,S) 0.401 0.401
p(Ȳ ,U ,D|S) 0.526 0.526

Table 7: Results (log-mae ↓) for number prediction con-
ditioned on S. In the second row of GeMM -U , we
select the highest scoring d∗ ∈ D and predict y condi-
tioned on d∗ and S. In the second row of GeMM U)Y ,
we select the highest scoring u∗ ∈ U and d∗ ∈ D and
predict y conditioned on u∗, d∗, and S. For Lat-Dim,
we sum over the latent variable D to predict y condi-
tioned on S.

prediction are much lower than dimension predic-
tion, they are still significantly better than the ma-
jority baseline. Although one can freely substitute
a unit with one in the same dimensional class, we
tend to be more systematic and choose units that
allow for more straightforward human readability
or reflect the actual instruments used for measure-
ment. As a result, we gravitate towards regularities
that models can learn to recognize. The converse
of this is also interesting as it suggests that the ex-
pressed units imply more semantic meaning than
what is captured in the standardized measurement.

4.4 Number Prediction

We show the number prediction performance of our
models in Table 7. Consistent with our previous
experiments, all models outperform GeMM^. Fur-
thermore, we observe that not modeling U and D
(as is the case in GeMM -U -D ) increases log-mae,
i.e., results in worse numerical prediction. While
competitive with GeMM and its variants on num-
ber prediction, Lat-Dim cannot predict dimensions
with the same efficacy (Table 4).

We also experiment with the setting where
GeMM -U conditionally generates the number for
a particular dimension. In this setting, GeMM -U

improves log-mae to 0.469. Extending this set-
ting further, we condition GeMM U)Y on both a
unit and a dimension to produce the best log-mae
among our models: 0.401.

We now revisit our original motivating example:
“Alex Honnold climbed for [NUM] [UNIT]”. As-
sume we want to know the distance of a climb. To
do this, we condition GeMM U)Y on D = length
and U = feet. If, on the other hand, we want to
know the duration of a climb, we change the condi-
tioning to D = time and U = hours. Now, if we
want to know the length of Alex Honnold’s climb-
ing career, we condition GeMM U)Y on D = time
and U = years. These examples illustrate the flex-
ibility of GeMM U)Y and the importance of jointly
modeling numbers, units, and dimensions.

4.5 Quantitative Analysis
4.5.1 Dimensions and Unit
In Figure 4a we visualize a confusion matrix of
dimension predictions by GeMM U)Y . The low
accuracy for electric charge and temperature is at-
tributed to a mislabeling in the dataset.3 For mass,
we find many ambiguous situations where either
mass or length are appropriate. See the first row of
Table 10 for such an example.

Thus far, we have treated dimensions as distinct
classes with no relationships. However, dimen-
sions are compositions of the seven fundamental
dimensions. Therefore, dimensions that share fun-
damental dimensions are more similar than those
that do not. To quantify this similarity, we can treat
dimensions as a vector where each element rep-
resents the exponent of a fundamental dimension.
Then to measure the similarity of two dimensions,
we take their Manhattan distance. To illustrate,
assume there exist only two fundamental dimen-
sions: Length and Time. Let speed = (1,−1) and
length = (1, 0) where the first element represents
Length and the second represents Time. The Man-
hattan distance between speed and length is equal
to one. In Figure 5, we visualize the Manhattan dis-
tance between the predictions of GeMM U)Y and
ground truth. We observe that there is generally
an inverse relationship between error count and the
distance of the errors. This observation suggests
that our model has learned that some dimensions
are more similar than others. This suggestion is re-
inforced by Figure 4a where misclassifications tend
to have small distances from the true dimension.
For example, velocity is most often misclassified as
length. For unit prediction, we find that most mis-
takes occur substituting units with ones that have

3Sentences with mislabeled Celsius as Coulombs,
which may due to wrong annotation between ◦C and C. Also
observed by Elazar et al. (2019)



(a) (b)

Figure 4: Confusion matrices for predictions by GeMM U)Y over the validation split. Left 4a: Dimension prediction.
Most misclassified dimensions are similar to their ground truth counterparts in terms of Manhattan distance. Right
4b: Unit prediction for examples that share the length dimension. Most misclassified units of length share similar
magnitudes to their ground truth units.

Figure 5: Manhattan distance between true and pre-
dicted dimensions by GeMM U)Y . We treat dimensions
as vectors whose elements are the exponents of the fun-
damental dimensions that compose a given dimension.
Note that the y-axis is in log-scale.

similar magnitudes like feet for meters or kilome-
ters for miles.

4.5.2 Numeracy

In Table 8, we show log-mae by dimension as pre-
dicted by GeMM U)Y . We note that errors are not
uniform across dimensions, predicting areas is 2.2
times harder velocities. We also observe that the
magnitudes of errors seem to be positively corre-
lated with the variances observed in Figure 3.

Length Area Velocity Mass Power

0.37 0.54 0.19 0.55 0.27

Table 8: log-mae ↓ by dimension. It is harder to predict
numbers of Area and Mass than other dimensions.

Model Human Model >
Human

D U D U Y

Tech Ann. 96.7 86.2 88.9 46.3 78.8

AMT Ann. 96.7 77.0 89.3 43.5 66.2

Table 9: Dimension and unit prediction accuracy of
our human evaluation experiment. GeMM U)Y outper-
formed the human annotators in both evaluations. Tech
Ann. is over a balanced set of 90 sentences labeled by
Technical Annotators. AMT Ann. is over a balanced
set of 2,122 sentences annotated by AMT Annotators.
The final column shows the model predicted a number
closer to ground truth in 66.2-78.8% of the cases.

4.5.3 Human Evaluation

We perform two evaluations of GeMM U)Y against
human annotators. In the first evaluation, we com-
pare against the combined effort of three Technical
Annotators on a balanced set of 90 sentences ran-
domly sampled from the test set. The annotators
worked together to predict the missing dimensions,
units, and accurate measurement estimates. Ex-
amples of sentences and annotations shown in Ta-
ble 10.



True GeMM U)Y Prediction Human Prediction

# Text Dim Unit Num Dim Unit Num Dim Unit Num

1 Hope is gaff rigged, ’V’-bottomed and has an [#NUM] [UNIT]
centerboard.

Mass pounds 385.6 Length feet 2.97 Length meter 50

2 Some have been running for over 50 years, each covering about
[#NUM] [UNIT].

Velocity
miles
year

0.10 Area sqkm 2.09E+10 Area sqmi 2.59E+07

3 Another medium-sized corvid, the [#NUM] [UNIT] Eurasian magpie
(Pica pica) is also amongst the most widely reported secondary prey
species for goshawks there.

Mass grams 0.22 Mass grams 0.05 Mass grams 0.2

4 The twin cylinder, liquid-cooled, in-line two-stroke, [#NUM] [UNIT]
Rotax 582 has also been used.

Power horse-
power

47725 Power horse-
power

39248 Power horse-
power

45000

5 Chrysothamnus may grow up to a [#NUM] [UNIT] tall shrub or
subshrub, usually with woody stem bases

Length cms 1.2 Length meters 1.147 Length meters 1

6 Kurt Busch was the fastest in the first practice session with a time of
21.372 seconds and a speed of [#NUM] [UNIT].

Velocity
miles
hour

75.1 Velocity
miles
hour

63.584 Velocity
meters
second

10

Table 10: Instances of the MMP task performed during our human evaluation experiment, all numbers are in SI
units. In ex. 1, both the model and humans predict the incorrect dimension length instead of mass. The preceding
sentence of ex. 2 references “trains” leading both to incorrectly predict area instead of velocity. In ex. 6 the model
predicts the speed of the NASCAR driver Kurt Busch’s car whereas the humans had mistaken him for a runner.

In the second evaluation, we compare against
Amazon Mechanical Turk (AMT) Annotators on a
balanced set of 2,122 sentences randomly sampled
from the test set. We show the results for both
evaluations in Table 9.

In both evaluations, the model outperforms the
human annotators on every task. For dimension pre-
diction, the model led by 7.4-7.8 percentage points.
Of the sentences where the dimension was correctly
annotated, the model led by 33.5-39.9 percentage
points on unit prediction. For sentences where both
the model and human correctly predicted the di-
mension, the model predicted a number closer to
ground truth 66.2-78.8% of the time.

4.6 Qualitative Analysis

4.6.1 Semantic Head Embeddings

In Figure 6 we plot the t-SNE embeddings of the
sentences’ h, the output of our text encoder. We
label each h with the masked measurement’s true
dimension, unit and exponent of the number. In 6a
we observe that most embeddings labeled by their
true dimension tend to form tight clusters. In 6b
we filter to only show embeddings that share the
Length dimension and label them by their units.
We find that clusters are organized by the rela-
tive magnitudes of their units: large (Kilometers,
miles), medium (feet, meters), and small (millime-
ters, inches, centimeters). Further we see that yards
appear close to other imperial units of feet and
miles. Finally, in 6c when embeddings are binned
by the exponent of their values we observe that
the left to right direction appears to capture the

increasing magnitude of a number.

5 Related Work

5.1 Numeracy

Multiple works have probed word embeddings like
word2vec, GloVe, FastText (Naik et al., 2019) and
contextual embeddings from models like BERT
(Wallace et al., 2019; Zhang et al., 2020) or T5
(Pal and Baral, 2021) on a variety of numerical
tasks like sorting, numeration, magnitude predic-
tion, and common sense (Lin et al., 2020). Several
works have targeted numeracy pretraining using
left to right language models (Spithourakis and
Riedel, 2018), CNN and RNN based models (Chen
et al., 2019), pretrained transformers (Spokoyny
and Berg-Kirkpatrick, 2020; Jin et al., 2021), for
an overview (Thawani et al., 2021b).

Incorporating synthetic mathematical data aug-
mentations (Geva et al., 2020) has improved ques-
tion answering while numerical pretraining has
been shown to lower masked language modelling
perplexity (Thawani et al., 2021a). Either directly
or indirectly units have been involved in providing
more interpretable explanation of quantities (Cha-
ganty and Liang, 2016), solving Fermi problems
(Kalyan et al., 2021) and resolving numeric Fused-
Heads (Elazar and Goldberg, 2019).

5.1.1 Numeracy Benchmarks
Several numeracy benchmarks have been proposed
like quantitative reasoning in natural language en-
tailment (Ravichander et al., 2019) and synthetic
measurement estimation (Jin et al., 2021). The



(a) (b) (c)

Figure 6: t-SNE visualizations of semantic head embeddings labeled by (left 6a) dimension, (middle 6b) units of
length, and (right 6c) number exponent bin. Middle: we observe a clustering of imperial units: feet, yards, miles.
Right: we show two directions where magnitudes of length and area measurements increase in value.

closest benchmark to our work is the Distribution
over Quantities dataset (DoQ) introduced by Elazar
et al. (2019). A rule-based method was combined
with simple heuristics to build DoQ resulting in its
high-coverage albeit also higher noise. Although,
WiCo is smaller, it has much higher fidelity since
it utilizes a feature used by editors of Wikipedia to
automatically convert quantities into different units.
Further, WiCo provides the whole sentence as con-
text as opposed to triplets of words. Zhang et al.
(2020) use artificial templates to probe models on
DoQ and find little difference between numerically
pretrained and frozen embeddings such as ELMo.
In contrast, our findings show there is a significant
gap on WiCo between fully finetuned models and
their frozen counterparts.

6 Limitations

The pretrained RoBERTa model we use in ex-
periments was likely pretrained on data that in-
cluded WiCo. Thus, it is reasonable to be con-
cerned about inflated test performance. That said,
the task we consider is distinct from the self-
supervised task used to pretrain RoBERTa (i.e.
masked word classification vs. masked number
regression). Further, our experiments on directly
probing RoBERTa to predict masked numbers and
units showed poor performance – indicating, per-
haps, that even if RoBERTa’s pre-training set did
include WiCo, RoBERTa did not memorize aspects
of our test set relevant to masked number predic-
tion, partially mitigating these concerns.

The human evaluation studies we conducted are
a quite limited ‘guesstimating’ task. The human
annotators were not allowed to use any external
information from searching the internet or looking
up answers in knowledge-bases. Their total aver-
age completion time per question was 33 seconds.

Furthermore, many annotators may not have strong
intuition about measurements with unfamiliar and
uncommon unit types. For these reasons it is not
surprising that our models outperform the human
annotators in this limited experiment. However,
these human evaluation studies do help calibrate
the difficulty of the MMP task on WiCo.

7 Conclusion

In this work we propose Masked Measurement Pre-
diction, a new task that requires models to jointly
predict masked numbers and units in running text.
We motivate this task as an important extension
of existing masked number-only prediction tasks
that addresses their limitations and allows for bet-
ter evaluation of numeracy in NLP models. In
our study, we show that probing of traditional pre-
trained transformers exposes a gap in their under-
standing of contextualized quantities. Through
careful quantitative and qualitative analysis of our
new model, which directly reasons about underly-
ing units and dimensions, we find that it is possible
to learn good representations of measurements. For
future work we aim to extend this dataset to cover
more existing standardized units from organiza-
tions such as UNECE.4 We hope our MMP task
encourages research into further development of
better numeracy methodologies.
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A Dataset

We train and evaluate our models on Wiki-Convert
(WiCo) (Thawani et al., 2021a), a dataset of
English Wikipedia sentences where the number
and unit in each sentence are human-annotated.
The built-in template in Wikipedia can ensure
the text contains numbers and units. For ex-
ample, {{convert|2|km|mi}} displays as 2
kilometres (1.2 mi). By searching within
Wikipedia articles for the use of this template,
the authors of WiCo automatically extract human-
annotated numbers. To perform unit canonical-
ization, we use Pint 5 whenever the mapping is
unambiguous. In the ambiguous case, we man-
ually inspect the sentence and perform the map-
ping. For example, we map the unit sqmi in
WiCo to square miles to let pint perform unit
canonicalization. Table 10 shows examples of the
extended dataset. The original dataset contains
924,473 sentence. The median sentence length is

5Pint: https://github.com/hgrecco/pint

Figure 7: log-mae ↓ by units of length. Predicting num-
bers for small magnitude units is easier than predicting
numbers for their larger counterparts.

106 characters, with 29,597 sentences has a length
shorter than 20 characters. We provide statistics of
the data in Table 1. For preprocessing we exclude
sentences which have more than 64 tokens to have
efficient computing memory or where the number
is negative for simplicity. According to Thawani
et al. (2021a) WiCo, “... has been extracted from
Wikipedia dumps, which are licensed under the
GNU Free Documentation License (GFDL) and
the Creative Commons Attribution-Share-Alike 3.0
License.” Thawani et al. (2021a) constructed WiCo
with the intent that it be used to further numeracy
NLP research. Our use of WiCo is aligned with its
authors’ goals.

B MLM Preliminary Unit Probe

We perform a preliminary unit probe shown in Ta-
ble 11. The model predicts vastly different numbers
when conditioned on different units. We observe a
mean of 3086.8 and a standard deviation of 5820
for all the converted metric output.

C Experiments

We train our model GeMM U)Y on a single Nvidia
GeForce RTX 2080 Ti for 4 hours and 14 minutes
with a total parameter of 124,696,538.

C.1 Quantitative Analysis
In Figure 7, we show log-mae is relatively small
for small magnitude units, which means predicting
numbers for small magnitude units is easier than
predicting numbers for their larger counterparts.

In Figure 4, we show confusion matrices of di-
mension and unit predictions by GeMM U)Y .
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Input: [UNIT] m km ft mi yd in meters kilometers feet miles yards inches -

Output 200 10 200 2 100 1 200 20 20 2 50 3 -

Convertion factor 1 1000 0.3048 1609.34 0.9144 0.0254 1 1000 0.3048 1609.34 0.9144 0.0254 -

Metric Output 200.0 10000.0 60.96 3218.68 91.44 0.0254 200.0 20000.0 6.096 3218.68 45.72 0.0762 -

Mean (Metric Output) - 3086.8 m

std (Metric Output) - 5820 m

Table 11: Example outputs for Alex Honnold climbed for [MASK] [UNIT].

D Human Annotators

D.1 Evaluation 1
The Technical Annotators have diverse scientific
backgrounds ranging from chemistry, earth sci-
ences, and computer science. One annotator is a
native Chinese speaker, and two are native English
speakers.

D.2 Evaluation 2
In Figure 8 we show the instructions provided along
with the interface we designed for our MMP task.
While the workers’ geographic location were not
provided to us by Mechanical Turk, we aimed to
compensate the workers above the US federal min-
imum wage of $7.25. We paid workers $0.15 per
annotation with an average completion time of 33
seconds. This equates to an hourly rate of $12.80
after Mechanical Turk fees. Other demographic
information is only provided by Mechanical Turk
for an extra fee.

E Ethical Considerations

Like any system that makes predictions, those made
by GeMM are not necessarily accurate and may be
used by malicious actors to generate fake infor-
mation to mislead their audience. Additionally,
GeMM is an extension of RoBERTa and therefore
inherits the biases learned during the training of
RoBERTa. Our work focuses exclusively on En-
glish and Arabic numerals. As noted by Thawani
et al. (2021a), the units in WiCo are heavily biased
towards European and American units as they are
over-represented in English Wikipedia.



Figure 8: Left: Instructions for labeling task. Right: we show the interface used by the labelers


