
SLURP: An Interactive SPARQL Query Planner

Jannik Dresselhaus1,3, Ilya Filippov1,3, Johannes Gengenbach1,3,
Lars Heling1,2[0000−0001−9668−8935], and Tobias Käfer1,2[0000−0003−0576−7457]

1 Institute AIFB, Karlsruhe Institute of Technology, Germany
2 {firstname.lastname}@kit.edu

3 {firstname.lastname}@student.kit.edu

Abstract. Triple Pattern Fragments (TPFs) allow for querying large
RDF graphs with high availability by offering triple pattern-based ac-
cess to the graphs. The limited expressivity of TPFs leads to higher
client-side querying and communication costs with potentially many in-
termediate results that need to be transferred. Thus, the challenge of
devising efficient query plans when evaluating SPARQL queries lies in
minimizing these costs. Different heuristics and cost-based query plan-
ning approaches have been proposed to obtain such efficient query plans.
However, we also require means to visualize, manually modify, and ex-
ecute alternative query plans, to better understand the differences be-
tween existing planning approaches and their potential limitations. To
this end, we propose Slurp4, an interactive SPARQL query planner that
assists RDF data consumers to visualize, modify, and compare the per-
formance of different query execution plans over TPFs.

1 Introduction

Motivation. Since the inception of the Linked Data Fragment (LDF) frame-
work [6] to describe Web interfaces for publishing and querying Linked Data, a
variety of LDF interfaces have been proposed. These interfaces differ in their em-
phasis on server load, availability, and expressivity. This development also drove
research in client-side query processing because less expressive LDF interfaces,
such as Triple Pattern Fragment (TPF) servers, require the clients to devise ef-
ficient query plans to execute SPARQL queries. These TPF clients [1,3,5,6] rely
on simple statistics to obtain efficient query plans that minimize the runtime
and the number of requests during execution. To this end, the clients imple-
ment different query planning methods ranging from heuristics [1, 5, 6] to cost-
model-based [3] approaches. However, it is difficult to understand the differences
between these approaches by just comparing their execution performance on
benchmark queries. Moreover, researchers might want to investigate alternative,
custom query plans, which are potentially more efficient than the plans obtained
by the well-known query planning approaches. For instance, for specific types
of queries or RDF datasets with uncommon data distribution, the existing ap-
proaches might not find the optimal query plans, which can lead to excessive
runtimes and a larger number of requests submitted to the server.

4 https://people.aifb.kit.edu/zg2916/slurp/

https://people.aifb.kit.edu/zg2916/slurp/


2 J. Dresselhaus et al.

In this demo, we present Slurp4 to address these shortcomings. Slurp is a
Web application for interactive SPARQL query planning that allows to visualize,
modify, execute, and analyze the performance of execution plans for basic graph
patterns over a given Triple Pattern Fragment (TPF) server. The tool is designed
to help users to understand and compare different query planning approaches
as well as to allow expert users to modify and optimize query plans to their
needs. Moreover, Slurp can be used to support teaching students about query
planning and query optimization.

Related Work. In the area of relational databases, approaches to visual-
ize query execution plans have been proposed [2] and many databases support
the Explain keyword to provide information on the execution plan. However,
few approaches have focused on the visualization, modification, and analysis of
SPARQL query execution plans. Jakobsen et al. [4] propose the Performance In-
spector and Plan Explorer (PIPE). PIPE enables the comparison of query plans
devised by different federated SPARQL query engines with respect to their plan-
ning time, execution time, and the number of answers. Moreover, PIPE allows
for visualizing and comparing the execution plans obtained by these engines.
Similar to PIPE, Slurp enables the visualization and execution of query plans
for different query planning approaches. In contrast to PIPE, Slurp does not
focus on federated query processing over multiple SPARQL endpoints but on
client-side query processing over single TPF servers. Furthermore, Slurp also
allows users to modify execution plans and analyze their execution performance
regarding runtime, requests performed, and answers produced.

2 System Architecture

An overview of the Slurp architecture is provided in Fig. 1. The architecture
can be separated in the Web application frontend and an API provided by the
backend. The source code for our demonstration is available online on GitHub5.

Frontend. The frontend consist of a Main Page, an Editor page, and a Result
Page. The Main Page provides an overview of the recently executed query plans.
On the Editor page, users can specify a new query and the TPF server to execute
the query over. As of now, queries with basic graph patterns are supported.
Slurp allows the user to choose a query plan optimizer to obtain an initial query
plan for the query. This enables users to (i) get an initial starting point when
modifying the query plan, and (ii) compare query plans devised by different query
planning approaches. For this demonstration, Slurp provides a basic left-linear
query planner that uses the triple patterns’ count metadata for join ordering.
Moreover, Slurp also supports the query planner from nLDE6 and the planner
from CROP7 with parameters settings used in [3]. For the initial query plan,
the users can inspect the cardinalities of the individual triple patterns as well

5 https://github.com/Lars-H/slurp
6 https://github.com/maribelacosta/nlde
7 https://github.com/Lars-H/crop

https://github.com/Lars-H/slurp
https://github.com/maribelacosta/nlde
https://github.com/Lars-H/crop


SLURP: An Interactive SPARQL Query Planner 3

API

GET /task

Task Queue

…
Query 2
Query 1

POST /plan

Database

GET /plan

TPF Server

Frontend

Query Engine

Execution

Planner

Result PageEditor PageMain Page

Backend

Fig. 1: Overview of the Slurp system architecture.

as the join cardinalities estimated by the query planning approach. The Editor
Page provides an interactive execution plan editor that allows users to modify
the initial plan or build a new plan in a drag-and-drop fashion. The leaves of the
execution plan correspond to triple patterns evaluated over the selected TPF
server and the inner nodes represent join operators. Users can build query plans
with an arbitrary join order and place nested loop join (NLJ) or symmetric
hash join (SHJ) operators in the execution plan. Upon modification, the plan
can be executed and the user is redirected to the Result Page. On this page,
which is automatically refreshed during query execution, the user can analyze
the execution plan’s performance with respect to its execution time, requests
performed, intermediate result (i.e., join cardinalities), and answers produced.

Backend. The backend consists of three components that the frontend interacts
with via an API. The query planer is used by the frontend to obtain the query
plan for a given query, TPF server, and planning approach (GET /plan). The
task queue manages the execution plans to be executed by the engine in a first-
in-first-out queue (POST /plan). For this demonstration, a single execution plan
is executed at once and we set a timeout to 60 seconds. In a local deployment
of the tool, these parameters can be adjusted accordingly. The database stores
the queries, execution plans, and statistics of their execution (GET /task).

Given a SPARQL query, a TPF server URL, and the name of an optimizer,
the query planning component in the backend obtains an initial query plan
which is serialized as a JSON object and provided to the frontend. The planning
component currently implements the nLDE optimizer, the CROP optimizer, and
a left-linear optimizer. Further optimizers may be implemented in the planning
component and exposed to the frontend. When a user submits a query plan to
be executed, the frontend serializes the plan as a JSON object and the Slurp
backend creates the corresponding physical query plan. We use the network of
Linked Data Eddies (nLDE) [1] as the engine to execute physical query plans.

Interoperability and Reuse. The source code of Slurp is publicly available
on GitHub5 and licensed under the open source MIT License. Slurp is devel-
oped in a containerized fashion using docker and docker-compose to facilitate
installation and deployment. With the Slurp API, any application can inter-



4 J. Dresselhaus et al.

(a) Query Editor. (b) Execution Plan Editor.

(c) Execution Statistics.

Fig. 2: Slurp: Query editor, plan visualization, and execution statistics.

act with the query planner (GET /plan) and the query execution engine (POST
/plan). The query plans are represented in a binary tree with the triple patterns
as the tree’s leaves and join operators as its inner nodes. The query plans are
serialized in JSON. In future work, we want to investigate a more generic and
flexible query plan representation and serialization to support the integration of
additional query planning approaches and query execution engines.

3 Demonstration

In the demonstration at the conference, Slurp (https://people.aifb.kit.
edu/zg2916/slurp/) will be used to showcase different query planning ap-
proaches and how the modification of query execution plans affects their execu-
tion performance. The attendees will use Slurp to formulate SPARQL queries
in the query editor over a public Triple Pattern Fragment (TPF) server (Fig. 2a).
Thereafter, they will obtain an initial execution plan using one of the query plan
optimizers. The attendees will be able to inspect and modify the plan in the
execution plan editor (Fig. 2b): (1) changing the join order by switching triple
patterns, (2) selecting nested loop or hash join operators, or (3) building a query
plan from scratch by dragging and dropping sub-plans. Upon modification, the
attendees will be able to execute the query plan and analyze its performance
concerning its execution time, the number of performed requests, and the an-
swers produced (Fig. 2c). In summary, the attendees will learn about client-side

https://people.aifb.kit.edu/zg2916/slurp/
https://people.aifb.kit.edu/zg2916/slurp/


SLURP: An Interactive SPARQL Query Planner 5

query planning over TPF servers and the challenges in devising query plans that
minimize the execution time and requests.

4 Conclusion

In this paper, we presented our demonstration of Slurp, an interactive SPARQL
query planner that allows users to visualize, modify, execute, and analyze the
performance of SPARQL query execution plans over Triple Pattern Fragment
(TPF) servers. Slurp enables the users to compare alternative query plans ob-
tained by different planning methods for client-side query processing. Further-
more, the users are able to modify or build query execution plans from scratch.
Finally, with the query execution engine in the backend, these query plans can
be executed and their performance can be compared according to the execution
time, the number of requests performed, and query answers produced. In future
work, we want to extend Slurp to support more features of SPARQL (e.g., filter,
union, and optional expressions), additional LDF interfaces, and further query
plan execution engines. Moreover, we further want to improve the tool’s usability
as well as facilitate the creation and comparison of alternative execution plans
for the same query.

Acknowledgement. This work was supported by the grant QUOCA (FKZ 01IS17042)
from the German Federal Ministry of Education and Research (BMBF).

References

1. Acosta, M., Vidal, M.: Networks of linked data eddies: An adaptive web query
processing engine for RDF data. In: ISWC. vol. 9366. Springer (2015)

2. Gawade, M., Kersten, M.L.: Stethoscope: A platform for interactive visual analysis
of query execution plans. Proc. VLDB Endow. 5(12), 1926–1929 (2012)

3. Heling, L., Acosta, M.: Cost- and robustness-based query optimization for linked
data fragments. In: ISWC. Springer (2020)

4. Jakobsen, A.L., Montoya, G., Hose, K.: How diverse are federated query execution
plans really? In: ESWC (Satellite Events). vol. 11762, pp. 105–110. Springer (2019)

5. Taelman, R., Herwegen, J.V., Sande, M.V., Verborgh, R.: Comunica: A modular
SPARQL query engine for the web. In: ISWC. Springer (2018)

6. Verborgh, R., Sande, M.V., Hartig, O., Herwegen, J.V., Vocht, L.D., Meester, B.D.,
Haesendonck, G., Colpaert, P.: Triple pattern fragments: A low-cost knowledge
graph interface for the web. J. Web Semant. 37-38, 184–206 (2016)


	SLURP: An Interactive SPARQL Query Planner

