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ABSTRACT

Multi-label classification aims to learn classification models from instances asso-
ciated with multiple labels. It is pivotal to learn and utilize the label dependence
among multiple labels in multi-label classification. As a result of todays big and
complex data, noisy labels are inevitable, making it looming to target multi-label
classification with noisy labels. Although the importance of label dependence has
been shown in multi-label classification with clean labels, it is challenging and
unresolved to bring label dependence to the problem of multi-label classification
with noisy labels. The issues are, that we do not understand why the label depen-
dence is helpful in the problem, and how to learn and utilize the label dependence
only using training data with noisy multiple labels. In this paper, we bring label
dependence to tackle the problem of multi-label classification with noisy labels.
Specifically, we first provide a high-level understanding of why label dependence
helps distinguish the examples with clean/noisy multiple labels. Benefiting from
the memorization effect in handling noisy labels, a novel algorithm is then pro-
posed to learn the label dependence by only employing training data with noisy
multiple labels, and utilize the learned dependence to help correct noisy multiple
labels to clean ones. We prove that the use of label dependence could bring a
higher success rate for recovering correct multiple labels. Empirical evaluations
justify our claims and demonstrate the superiority of our algorithm.

1 INTRODUCTION

Multi-label classification assigns a set of multiple labels for each instance (Zhang & Zhou, 2013). As
a practical learning paradigm, multi-label classification has been widely applied in various domains,
ranging from computer vision (Chen et al., 2019b) and natural language processing (Onoe et al.,
2021), to recommendation systems (Zhang et al., 2021a) and bioinformatics (Cheng et al., 2017).
Consensually, compared with multi-class classification (He et al., 2016), where each instance is
assigned with a single label, multi-label classification is more challenging (Liu et al., 2017). Plenty
of advanced methods are proposed in recent years for multi-label classification (Zhu & Wu, 2021;
Ridnik et al., 2021; Gao & Zhou, 2021; Zhao et al., 2021; Liu et al., 2018; Chheda et al., 2021).

The great majority of the methods assume that training data are annotated precisely. However, noisy
labels are inevitable in multi-label classification (Liu et al., 2021), especially for classification with
big and complex data. They may be resulted by unintentional mistakes of manual and automatic
annotators (Veit et al., 2017; Zheng et al., 2020), or intentional corruptions on clean labels (Vahdat,
2017; Pleiss et al., 2020). Noisy labels severely impair the generalization of learned models, over-
parameterized deep models in particular (Kim et al., 2019). A straightforward way to address the
problem of multi-label classification with noisy labels is to treat each label in isolation and convert
the multi-label problem into a number of binary classification problems. Afterward, the methods
in multi-class classification with noisy labels (Han et al., 2020; Song et al., 2022) are applied to
train independent binary classifiers, which capture instance-label dependence robustly to strengthen
classification. This way is a remedy to handle noisy labels, but ignores the label dependence among
multiple labels. It is essential to learn and utilize the label dependence in multi-label classifica-
tion (Zhang & Zhang, 2010; Hang & Zhang, 2021; Cui et al., 2020; Li et al., 2022).

Prior works (Ye et al., 2020; Chen et al., 2021; Wang et al., 2016) illustrate the successes of con-
sidering the label dependence among multiple labels in multi-label classification with clean labels.
In different ways, e.g., helping learn inter-dependent classifiers (Chen et al., 2019b), the label de-
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Figure 1: The illustration of why the label dependence among multiple labels help distinguish the examples
with noisy/clean multiple labels. The arrow presents the label dependence between a label pair. For the labels
“a” and “b”, “a → b” means that, when “a” appears, “b” will also occur with high probability. The example
comes from web search. The set of clean multiple labels is {Sea,Human,Motorboat}, where the label
dependence is strong with both “Motorboat → Sea” and “Motorboat → Human”. However, due to label
corruption, Motorboat is flipped to be Motorcycle, which causes “Motorcycle ↛ Sea”. Therefore,
the label dependence among noisy multiple labels is weaker than the label dependence among corresponding
clean ones.

pendence can be used to boost the learning of the instance-label dependence, which improves final
classification. Inspired by the successes, it is concerned that the label dependence could be ex-
ploited to handle the problem of multi-label classification with noisy labels. However, there are
few attempts before for this important problem. At least three questions make the solution remain
mysterious. First, in intuition, we need to understand why the label dependence is helpful for the
problem. Second, in technique, we need to know how to learn and utilize the label dependence into
the problem. As we only have training data with noisy labels, both the accurate catch and application
of the label dependence are challenging. Third, in verification, we need to know what improvements
the label dependence can bring.

In this paper, we answer the three questions one by one. The first answer is illustrated in Figure 1.
That is, compared with noisy multiple labels, the label dependence among clean multiple labels is
stronger with high probability. Therefore, such dependence could help distinguish the examples
with noisy/clean multiple labels for our problem. The second answer is given by the proposed
combinatorial correction for multi-label classification with noisy labels (aka CCMLN). Specifically,
CCMLN inherits the memorization effect in handling noisy labels (Arpit et al., 2017; Jiang et al.,
2018; Wang et al., 2021): the deep model would firstly memorize the training examples with clean
labels, leading to reliable model predictions in early training. In CCMLN, the label dependence is
learned by a dynamic graph (Ye et al., 2020), and then applied to correcting noisy multiple labels. In
more detail, the combinatorial score in CCMLN is proposed to holistically measures the instance-
label and label dependences in an example. The stronger instance-label and label dependences make
a larger combinatorial score. We compare the ratio between the combinatorial scores of the example
with noisy multiple labels and its variant with predicted multiple labels, with an easily determined
threshold. The noisy multiple labels are corrected or changeless based on the comparison result.
Benefiting from the memorization effect, both dependence learning and multi-label correction are
useful. Besides, they fulfill a positive cycle (Bai & Liu, 2021). Namely, better dependence learning
results in better multi-label correction, and better multi-label correction makes better dependence
learning, leading to final enhanced classification.

The third answer is given by both theoretical analyses and empirical evaluations. Theoretically, we
show that the additional use of label dependence brings higher probability to handle noisy multi-
ple labels successfully than the sole use of instance-label dependence under some conditions. Em-
pirically, we demonstrate the power of label dependence by experiments and show that, in most
situations, CCMLN outperforms comparison methods with large margins.

2 PRELIMINARIES

Problem statement. Let X ∈ Rd denote the input space and Y ∈ {l1,⋯, lq} denote the label space
with q class labels. An example with multiple labels is denoted as (x,y), where x ∈ X is the feature
vector of an instance, and y ⊆ Y is its set of associated labels. Denote the size of the label set y
as ∣y∣. For the feature vector x, its label set y may be corrupted and is flipped into ȳ ⊆ Y with
∣ȳ∣ = ∣y∣. We utilize a class-dependent noise transition matrix T (Pene et al., 2021; Shu et al., 2020)
to characterize the label flip process. Formally, for any i ≠ j, Tij = P(lj ∈ ȳ ∧ li ∉ ȳ∣lj ∉ y ∧ li ∈ y)
represents the probability of the i-th class label to be flipped into the j-th class label. Consider a
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noisy multi-label dataset comprising several examples (x, ȳ). The aim is to learn a classification
model robustly by only using the noisy dataset. Given an instance in testing, with the learned model,
we can predict its relevant label set precisely.

It should be noted that some works employ another problem setting that the total number of multiple
labels can be changed after label flipping, which is referred to as multi-label classification with
missing or redundant labels. For classification with missing labels, it is not accurate to consider it
as classification with noisy labels, since all annotated labels are correct (Yu et al., 2014; Wu et al.,
2015). Besides, for classification with redundant labels, it is normally called partial multi-label
learning (Xie & Huang, 2018), which is different from the problem setting of this paper, as detailed
in Appendix C.4. Our setting, i.e., the total number of labels is preserved after label flipping, is
realistic. In many practical situations, it is easy to determine the number of objects in an image,
in particular with object detection techniques. In contrast, it can be harder to annotate the objects
perfectly, resulting in noisy labels.

Preparation technology. As discussed, we need both the instance-label dependence and the label
dependence among multiple labels. Given an example (x,y), for the instance-label dependence, it
can be learned with the conditional probability of li ∈ y given x according to model’s probability
outputs. For the label dependence among multiple labels, it is often estimated by counting the
occurrence of label pairs in training data (Chen et al., 2019b).

Recently, the graph convolutional network (GCN) is used in multi-label classification and achieves
great successes (Chen et al., 2019b; Ye et al., 2020; Chen et al., 2021). The advantage of the GCN-
based methods is that they can capture the instance-label and label dependences simultaneously dur-
ing training. In this paper, we inherit the advantage of the GCN-based methods and build CCMLN
based on ADDGCN (Ye et al., 2020). ADDGCN designs a semantic attention module (SAM) to
estimate the content-aware class-label representations for each class from the extracted feature map.
The representations are fed into a GCN module (GCNM) for final classification. We provide the
technical details of ADDGCN (Ye et al., 2020) in Appendix C.1. Before delving into the next sec-
tion, readers only need to remember that the instance-label and label dependences can be learned
during training. Note that we also review prior works on multi-class classification with noisy labels
and multi-label classification with clean/noisy labels in Appendix C.2 and Appendix C.3.

3 PROPOSED METHOD

3.1 COMBINATORIAL JUDGMENT IN MULTI-LABEL CLASSIFICATION

Combinatorial score. We begin with an example with clean multiple labels. Given an example
(x,y), we can measure the instance-label dependence Sf , and the label dependence Sl. Denote the
variable of clean multiple labels by Y . Mathematically, we define two dependences as Sf

z(x) ∶=
∑{Y =z,li∈z}P(li∣x) and Sl

z(x) ∶= ∑{Y =z,li,lj∈z}
1
2
[P(lj ∣li,x) +P(li∣lj ,x)]. The combinatorial

score of the example (x,y) considers two dependences at the same time. Formally, we denote the
combinatorial score of (x,y) as Sy(x) and define it as

Sy(x) ∶= Sf
y(x) + Sl

y(x). (1)

Afterward, denote the variable of noisy multiple labels by Ȳ . For the example with noisy multiple
labels, i.e., (x, ȳ), the instance-label dependence and label dependence are measure by S̄f

z(x) ∶=
∑{Ȳ =z,li∈z}P(li∣x) and S̄l

z(x) ∶= ∑{Ȳ =z,li,lj∈z}
1
2
[P(lj ∣li,x) +P(li∣lj ,x)]. Accordingly, the

combinatorial score of the example (x, ȳ) is denoted by S̄ȳ(x), which is defined as S̄ȳ(x) ∶=
S̄f
ȳ(x) + S̄l

ȳ(x). Note that, during training, we cannot access S̄f
ȳ(x) and S̄l

ȳ(x). Instead, the

estimated posterior probabilities are used. We denote the estimations of S̄f
ȳ(x) and S̄l

ȳ(x) as ˆ̄Sf
ȳ(x)

and ˆ̄Sl
ȳ(x). The estimation of the combinatorial score is ˆ̄Sȳ(x) = ˆ̄Sf

ȳ(x)+ ˆ̄Sl
ȳ(x). With preparation

technology discussed in Section 2 and Appendix C.1, ˆ̄Sf
ȳ(x) and ˆ̄Sl

ȳ(x) can be obtained.

Combinatorial correction. For the example (x, ȳ), we feed it into the deep network h included in
ADDGCN (Ye et al., 2020). The memorization effect in handling noisy labels (Jiang et al., 2018;
Liu et al., 2020b) shows that the deep network would first memorize the training data with clean
labels and then the training data with noisy labels. Therefore, early in training, the outputs of the
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deep network are relatively reliable, which can be used for label correction. For (x, ȳ), we denote
its set of predicted multiple labels as y∗. Here, the set of predicted labels is obtained with the top
∣ȳ∣ predictions based on model’s probability outputs.

Algorithm 1 Combinatorial Correction.

Input: (x, ȳ), h, and δ̂.
Output: ȳnew.
1: y∗ = h(x)
2: κ(h,x, ȳ) = ˆ̄Sȳ(x)/ ˆ̄Sy∗(x)
3: if κ(h,x, ȳ) ≤ δ̂ then
4: ȳnew = y∗
5: else
6: ȳnew = ȳ
7: end if

Recall that the combinatorial score of an example holis-
tically measures the instance-label dependence and la-
bel dependence among multiple labels simultaneously.
From both human and machine cognition, if an exam-
ple is annotated accurately, both dependences should be
strong (Zhang & Zhang, 2010; Hang & Zhang, 2021; Yu
& Zhang, 2021; Li et al., 2016; Chen et al., 2019b) with
high probability. Namely, the combinatorial score is large.
We propose to check the ratio between the combinato-
rial score on (x, ȳ) and combinatorial score on (x,y∗).
Specifically, we check

κ(h,x, ȳ) = ˆ̄Sȳ(x)/ ˆ̄Sy∗(x). (2)

We compare this ratio with a predetermined threshold δ̂. The value of δ̂ is given in the next subsec-
tion. If κ(h,x, ȳ) ≤ δ̂, we flip the labels ȳnew = y∗. Otherwise, the labels remain unchanged with
ȳnew = ȳ. The detailed algorithm of combinatorial correction for multi-label classification with
noisy labels (aka CCMLN) is provided in Algorithm 1. After combinatorial correction for noisy
labels, we use (x, ȳnew) to train the deep network h based on ADDGCN (Ye et al., 2020).

3.2 THEORETICAL INSIGHTS

We extend the Tsybakov condition (Zheng et al., 2020; Bahri et al., 2020; Gao et al., 2016) from
multi-class classification to multi-label classification. Specifically, denote by ax the label set pre-
dicted based on Sf(x) with ax ∶= h∗(x) = argmaxz S

f
z(x). Besides, denote by bx the second

best prediction with bx ∶= argmaxz≠ax S
f
z(x). The maximum length of a label set is denoted as

m (m ≪ q). In this paper, we call the predicted label set by the Bayes optimal classifier for an
instance as the correct label set.

Definition 1 (Tsybakov condition on instance-label dependence) ∃C1, λ1 > 0 and ∃t0 ∈ (0,m],
such that for all t ≤ t0, we have

P[Sf
ax
(x) − Sf

bx
(x) ≤ t] ≤ C1t

λ1 . (3)

Definition 2 (Combinatorial Tsybakov condition) ∃C2, λ2 > 0, and ∃t0 ∈ (0,m], such that for
all t ≤ t0, we have

P[Sax(x) − Sbx(x) ≤ t] ≤ C2t
λ2 . (4)

Remark 1 Definition 1 stipulates that the uncertainty of Sf is bounded. The margin region that
is close to the decision boundary has a bounded volume. Definition 2 shares the similar idea and
bound the uncertainty of S.

Theorem 1 Suppose S(x) fulfills the combinatorial Tsybakov condition for constants C2, λ2 > 0,
and t0 ∈ (0,m]. We define ϵ ∶= maxx,z [∣ ˆ̄Sf

z(x) − S̄f
z(x)∣, ∣ ˆ̄Sl

z(x) − S̄l
z(x)∣, ∣S̄l

z(x) − Sl
z(x)∣] and

τ ∶=mini Tii. We analyze two cases:

(1) If ȳ is corrected by κ(h,x, ȳ) with δ̂, let δ1 = min [
τSbx(x)+∑lj∈ȳ∑i≠j TijP(li∣x)

ˆ̄Sy∗(x)
] and

ρ1 ∶= ∣δ̂ − δ1∣. Assume that ϵ ≤ t0τ−ρ1m
3

. Then, P[ȳnew = h∗(x), ȳ is flipped] is at least
1 −C2[O(max(ϵ, ρ1))]λ2 −P[ax ≠ {y∗, ȳ}].

(2) If ȳ is not corrected by κ(h,x, ȳ) with δ̂, let δ2 = max [
ˆ̄Sȳ(x)

τSbx(x)+∑lj∈y∗ ∑i≠j TijP(li∣x)] and

ρ2 ∶= ∣δ̂ − δ2∣. Assume that ϵ ≤ t0δ
2
2τ−ρ2m−ρ2

2m

3δ22
. Then, P[ȳnew = h∗(x), ȳ is accepted] is at least

1 −C2[O(max(ϵ, ρ2))]λ2 −P[ax ≠ {y∗, ȳ}].
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The proof of Theorem 1 is provided in Appendix B.1. Theorem 1 extends the theoretical results of
(Zheng et al., 2020) to multi-label classification with noisy labels. It claims that, even though with
noisy multiple labels, the combinatorial correction has a guaranteed success rate to make proper
corrections. Besides, if we can reasonably approximate the optimal δ with δ̂, our algorithm flips
noisy multiple labels to correct ones with a good chance. Below, as a corollary of Theorem 1, we
show that, there are certain circumstances, the use of combinatorial scores has a better chance to
make corrections satisfactorily, than the sole use of instance-label dependence.

Corollary 1 Suppose that S(x) fulfills the combinatorial Tsybakov condition. Denote the set
threshold δ̂ and optimal threshold δ. We define ρ ∶= max ∣δ̂ − δ∣. We have that, ∃ϵ and ρ, if
C2[O(max(ϵ, ρ))]λ2 < C1[O(max(ϵ, ρ))]λ1 , combinatorial correction brings higher probability
to handle noisy labels successfully than instance-label dependence.

The proof of Corollary 1 is provided in Appendix B.2. Corollary 1 claims that there exist cases
where combinatorial scores better combat noisy labels. Note that, from a theoretical view, we do not
state that combinatorial scores can always work better. Nevertheless, with the determination of the
threshold δ̂, combinatorial scores can perform better in experiments, which demonstrates the help of
label dependence to handle noisy multiple labels.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We verify the effectiveness of the proposed method on the synthetic noisy versions of
three datasets, i.e., Pascal-VOC 2007 (Everingham et al., 2008), Pascal-VOC 2012 (Everingham
et al., 2008), and MS-COCO (Lin et al., 2014). Pascal-VOC 2007 contains 5,011 images in train
and validation sets, while Pascal-VOC 2012 consists of 11,540 images in train and validation sets.
The images come from 20 common object categories. For Pascal-VOC 2007 and Pascal-VOC 2012,
we train methods using the noisy training and validation sets, and evaluate them on the test set of
Pascal-VOC 2007 that has 4,952 images (Gao & Zhou, 2021). MS-COCO contains 82,081 training
images and 40,137 validation images from 80 common object categories. As did in (Zhao et al.,
2021; Chen et al., 2019a; Ye et al., 2020; Zhu & Wu, 2021), we evaluate the performance of methods
using validation images.

Noisy-label generation. The class-dependent noise transition matrix T (Patrini et al., 2017;
Hendrycks et al., 2018; Shu et al., 2020; Zhang et al., 2021d) is used to corrupt the three datasets.
Here, for any i ≠ j, Tij = P(lj ∈ ȳ ∧ li ∉ ȳ∣lj ∉ y ∧ li ∈ y) represents the probability of the i-th class
label to be flipped into the j-th class label. We consider both symmetric (abbreviated as Sym.) and
pairflip (abbreviated as Pair.) noise settings (Han et al., 2018). The details of the transition matrix
are provided in Appendix D.2. For symmetric noise, the noise rate is set to 30%, 40%, and 50% .
For pairflip noise, the noise rate is set to 20%, 30%, and 40%.

Baselines. We exploit three types of baselines in total. Specifically, Type-I baselines contain the
methods that are designed for multi-label classification with clean labels. Type-II baselines consider
the methods for multi-class classification with noisy labels. Type-III baselines consider the methods
that focus on multi-label classification with noisy labels. It should be noted that, there are relatively
few methods belonging to this type (Liu et al., 2021). More advanced methods belonging to Type-III
baselines need to be investigated (Liu et al., 2021), which is also our focus in this paper.

In more detail, Type-I baselines include CSRA (Zhu & Wu, 2021) and ADDGCN (Ye et al., 2020).
Type-II baselines include APL (Ma et al., 2020), CDR (Xia et al., 2021), and JOINT (Tanaka et al.,
2018). Type-III baselines include WSIC (Hu et al., 2019) and CCMN (Xie & Huang, 2022). As
a simple baseline, we compare our method with the standard deep network that directly trains on
noisy datasets (abbreviated as BCE). We detail all baselines in Appendix D.1.

Network & Optimizer. We use a ResNet-50 network (He et al., 2016) pretrained on ImageNet as
the backbone for all methods. We train the models for 30 epochs in total. We utilize Adam (Kingma
& Ba, 2014) for the network optimization. The batch size is set to 128 for all the datasets. The
learning rate is fixed to 5 × 10−5. The images in Pascal-VOC 2007, Pascal-VOC 2012, and MS-
COCO resize to 224 × 224. Note that, to make experiments more comprehensive, we also employ
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Metrics Methods / Noise Sym. 30% Sym. 40% Sym. 50% Pair. 20% Pair. 30% Pair. 40%

mAP ↑

BCE 64.50±1.20 58.65±2.16 48.19±0.23 71.77±1.15 60.94±4.25 48.72±2.13
CSRA 66.99±0.48 59.62±0.61 46.97±0.48 72.45±0.69 63.58±1.48 52.72±1.52
ADDGCN 63.89±0.94 55.75±1.98 44.14±1.37 71.02±0.95 61.05±0.06 50.18±2.70
APL 66.79±1.19 58.86±1.53 47.64±1.81 72.61±0.99 61.99±0.78 49.10±0.15
CDR 67.35±1.70 60.05±1.06 49.12±0.59 72.66±0.79 64.58±0.60 50.51±2.49
JOINT 67.43±0.73 63.37±0.92 53.27±4.70 70.28±1.85 68.70±2.88 58.57±2.75
WSIC 65.43±0.55 59.53±0.73 48.34±0.47 72.57±1.03 61.88±2.57 50.15±0.86
CCMN 69.97±1.36 62.58±1.47 53.20±1.28 70.68±1.08 60.94±3.12 48.62±1.26
CCMLN† 72.07±0.67 70.20±0.46 68.00±0.89 74.83±0.64 69.86±1.61 60.09±1.73

OF1 ↑

BCE 63.52±0.48 56.70±2.45 48.10±1.43 68.28±0.69 58.30±2.82 51.18±3.10
CSRA 65.40±0.47 59.39±0.81 48.32±1.50 69.72±0.50 61.89±0.43 51.56±2.28
ADDGCN 62.63±0.18 55.50±1.87 44.38±2.92 68.95±0.64 59.64±0.56 53.12±0.62
APL 64.85±1.46 56.51±1.70 47.54±2.40 68.89±0.89 58.04±0.97 52.27±2.20
CDR 65.31±0.99 57.93±1.05 48.86±1.71 69.53±0.65 59.89±1.07 51.68±3.83
JOINT 69.72±0.88 67.93±0.77 61.62±1.40 71.24±1.03 64.20±0.88 60.30±1.24
WSIC 63.45±0.97 57.96±1.25 48.38±2.41 69.88±1.22 57.97±2.19 51.99±1.65
CCMN 69.66±1.55 60.43±1.31 53.84±0.69 67.12±0.61 59.55±1.45 53.46±1.04
CCMLN† 71.03±0.33 69.08±1.00 68.62±0.48 72.09±0.74 65.76±2.39 60.71±1.37

CF1 ↑

BCE 58.91±1.34 53.21±2.04 43.66±0.53 65.93±0.81 57.03±3.43 47.21±1.89
CSRA 62.31±0.50 55.67±0.61 43.11±0.76 67.39±0.80 59.66±1.04 51.13±1.12
ADDGCN 60.41±1.04 53.72±1.38 42.42±0.59 66.05±0.97 57.81±0.58 48.89±2.64
APL 60.23±1.53 52.85±2.18 42.38±1.67 66.59±0.71 58.33±0.49 47.67±1.83
CDR 61.37±1.47 54.17±0.86 43.60±0.82 67.11±0.63 59.91±0.39 48.40±1.98
JOINT 63.13±0.38 60.22±1.68 48.17±5.01 66.03±1.25 62.05±2.98 54.03±3.17
WSIC 59.54±1.10 54.22±0.53 43.82±0.62 66.97±1.00 58.04±1.70 48.19±0.96
CCMN 65.19±1.10 58.55±1.31 49.85±1.06 65.47±0.93 58.05±2.24 48.46±0.80
CCMLN† 68.87±0.10 66.62±0.81 64.82±0.48 69.95±1.19 65.13±1.04 57.54±1.84

Table 1: Comparisons with advanced methods on noisy Pascal-VOC 2007. The mean and standard
deviation of results (%) are presented.

different experimental settings, e.g., different networks and different image sizes. The details are
provided in Section 4.3.

Measurement. As did in multi-label classification (Zhu & Wu, 2021; Chen et al., 2019b), evaluation
metrics include the mean average precision (mAP) (Zhang & Zhou, 2013), the average F1-measure
(OF1), and the average per-class F1-measure (CF1). For fair comparison, we implement all methods
with default parameters by PyTorch, and conduct all experiments on NVIDIA GTX3090 GPUs. All
experiments are repeated three times with different random seeds. Following the works in learning
with noisy labels (Han et al., 2018; Wang et al., 2018; Li et al., 2020; 2021b), the mean and standard
deviation of results in the last epoch are reported. In addition, for different evaluation metrics,
we report the mean and standard deviation of best results. Supplementary results are shown in
Appendix E. Afterwards, the best mean results are highlighted and bolded. The second best mean
results are also highlighted.

4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

The results on noisy Pascal-VOC 2007, Pascal-VOC 2012, and MS-COCO are shown in Table 1,
Table 2, and Table 3 respectively. In summary, CCMLN consistently works best across all noise
settings. In many cases, the best results achieved by CCMLN outperform the second best results by
a large margin, especially when the noise level is high. Below, we further discuss the results based
on the comparisons with three different types of baselines.

Compared with Type-I baselines. We first notice that Type-I baselines are fragile to noisy labels
in multi-label classification. Without considering the side-effect of noisy labels, in many cases,
they perform worse than BCE, which clearly illustrates the necessity for attention to handling noisy
labels. Second, we compare CCMLN with ADDGCN. Without the proposed correction method
for combating noisy labels, CCMLN will reduce to ADDGCN. As shown in the reported results,
CCMLN performs much better than ADDGCN. To be specific, on noisy Pascal-VOC 2007, for
Sym. 40%, CCMLN brings about +15% performance improvement w.r.t. three evaluation metrics
over ADDGCN. For Sym. 50%, the performance improvement is increased to more than +20%.
Also, for Pair. 30% and Pair. 40%, CCMLN enhances ADDGCN with about +10% improvement.
On noisy Pascal-VOC 2012 and MS-COCO, the performance improvement is also very clear.

Compared with Type-II baselines. On noisy Pascal-VOC 2007, with Sym. noise, we can see
that CCMLN outperforms APL, CDR, and JOINT clearly, especially for Sym. 50%. Additionaly,
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Metrics Methods / Noise Sym. 30% Sym. 40% Sym. 50% Pair. 20% Pair. 30% Pair. 40%

mAP ↑

BCE 66.74±0.80 56.07±0.50 45.15±1.56 70.91±1.13 57.61±1.14 49.85±0.36
CSRA 66.35±0.50 56.20±1.35 45.54±1.14 71.29±0.83 60.71±1.18 47.63±1.56
ADDGCN 63.34±0.96 54.54±0.86 44.88±1.71 70.41±0.54 57.96±0.68 47.66±1.08
APL 67.07±1.04 56.79±1.86 43.51±1.93 71.32±1.60 59.59±1.27 48.14±1.16
CDR 66.13±1.49 56.85±0.48 44.84±1.11 71.55±1.87 60.13±1.89 49.44±1.81
JOINT 65.19±2.17 58.40±2.87 45.13±1.69 68.93±2.54 61.64±1.78 53.64±1.61
WSIC 65.96±0.79 56.34±0.41 44.80±0.54 70.40±1.11 59.40±1.87 48.95±1.34
CCMN 69.15±0.66 61.00±1.01 50.71±0.26 69.08±1.78 59.72±2.32 46.67±2.78
CCMLN† 72.14±0.66 70.11±0.27 68.69±1.04 74.51±0.67 69.90±0.43 64.20±1.26

OF1 ↑

BCE 64.99±1.10 56.92±2.08 45.49±2.23 68.48±2.28 60.21±1.35 54.05±1.95
CSRA 64.08±0.37 56.25±2.57 48.67±3.14 69.06±0.65 59.75±1.70 52.89±0.95
ADDGCN 63.53±1.41 54.28±0.86 47.56±2.67 47.62±2.39 57.90±1.78 52.33±0.56
APL 64.70±1.17 58.05±1.68 45.74±1.55 70.68±1.03 60.22±1.58 51.38±1.55
CDR 64.06±1.38 57.31±1.21 46.51±0.95 70.45±1.44 60.57±1.24 52.26±2.42
JOINT 67.35±1.86 64.57±2.39 54.37±3.33 70.81±1.40 64.40±1.76 56.27±1.29
WSIC 62.74±2.10 57.13±0.73 45.52±1.28 69.72±1.19 59.11±2.04 52.49±1.38
CCMN 65.77±0.23 59.91±0.93 51.45±0.94 67.93±1.73 59.26±0.51 48.61±4.71
CCMLN† 71.14±0.60 69.50±0.40 67.80±0.33 72.13±0.26 67.59±0.96 64.28±0.81

CF1 ↑

BCE 62.47±0.44 53.26±0.41 43.43±1.67 66.03±1.69 55.90±0.70 49.29±0.64
CSRA 62.08±0.70 53.23±1.27 43.23±1.25 66.02±0.74 57.71±1.02 47.46±1.68
ADDGCN 59.67±1.14 52.61±0.52 44.33±1.99 65.22±0.86 55.32±0.76 47.30±1.12
APL 62.99±1.07 53.69±1.80 41.72±1.42 66.44±1.40 57.52±0.91 48.14±1.02
CDR 62.18±1.04 53.61±0.45 42.83±0.87 66.29±2.12 57.23±1.43 49.03±1.50
JOINT 60.57±2.82 54.39±3.72 40.48±7.70 66.30±2.33 59.72±2.12 55.06±0.36
WSIC 61.70±0.92 53.10±0.74 42.72±0.54 65.34±1.48 57.21±1.62 48.51±1.12
CCMN 64.46±0.62 57.45±0.99 48.27±0.68 67.48±1.44 56.93±1.69 47.01±1.82
CCMLN† 69.54±0.56 67.35±0.48 65.72±1.48 70.07±0.41 65.68±0.94 60.57±1.27

Table 2: Comparisons with advanced methods on noisy Pascal-VOC 2012. The mean and standard
deviation of results (%) are presented.

Metrics Methods / Noise Sym. 30% Sym. 40% Sym. 50% Pair. 20% Pair. 30% Pair. 40%

mAP ↑

BCE 53.23±0.15 47.33±0.79 40.25±0.26 56.58±0.22 49.16±0.04 41.57±0.64
CSRA 53.89±0.40 47.64±0.86 39.58±0.19 58.27±0.23 50.95±0.07 43.07±0.64
ADDGCN 51.08±0.95 44.75±1.15 38.66±1.30 56.94±0.61 50.28±0.81 41.45±0.19
APL 54.34±0.32 48.61±0.72 43.55±1.43 57.73±0.20 50.87±0.34 41.77±0.50
CDR 54.01±0.04 49.01±0.26 43.94±1.25 57.03±0.28 50.99±0.77 42.71±0.09
JOINT 53.93±0.41 48.01±1.04 45.27±0.68 57.30±0.33 51.94±0.20 42.74±0.55
WSIC 52.99±0.53 46.84±0.86 39.76±0.64 56.66±0.31 49.46±0.25 42.52±0.62
CCMN 51.73±0.18 50.36±0.71 45.32±0.89 58.13±0.44 51.17±0.29 42.12±0.76
CCMLN† 54.87±0.68 51.09±0.53 48.15±0.50 58.55±0.09 53.41±0.13 45.91±0.39

OF1 ↑

BCE 51.34±1.70 44.36±0.82 34.85±1.24 59.16±0.95 52.44±0.81 42.94±1.13
CSRA 52.03±1.86 41.63±1.41 33.47±3.18 59.17±0.14 50.27±0.88 41.75±1.36
ADDGCN 55.67±1.48 47.79±0.40 35.95±3.73 60.96±0.65 55.05±1.78 47.47±0.77
APL 51.07±1.32 43.93±2.70 33.90±4.00 60.04±1.16 50.64±2.86 44.34±1.99
CDR 53.43±1.16 45.10±0.83 34.91±0.90 59.34±0.61 52.72±0.63 44.17±0.61
JOINT 54.56±0.06 49.00±1.66 37.78±0.93 58.20±0.40 53.21±0.17 46.55±0.61
WSIC 50.91±0.52 42.93±0.85 35.47±1.52 58.89±1.13 51.63±1.57 43.99±1.47
CCMN 52.71±1.04 43.24±1.19 34.62±1.38 58.61±1.18 52.18±0.76 45.92±0.59
CCMLN† 59.92±0.65 57.84±0.38 55.47±0.95 62.28±0.06 58.56±0.37 51.09±0.60

CF1 ↑

BCE 45.92±0.23 38.96±1.61 31.34±0.27 52.54±0.58 45.54±0.63 39.79±0.99
CSRA 44.97±1.88 37.49±1.73 28.96±1.16 52.18±0.44 44.96±0.43 36.88±0.21
ADDGCN 46.77±1.80 39.35±1.83 30.57±1.57 54.18±0.23 47.55±0.18 39.44±0.33
APL 42.91±0.54 38.38±0.77 28.17±2.50 52.87±1.07 46.27±1.27 37.76±1.02
CDR 46.62±0.42 39.47±0.54 29.59±2.52 52.51±0.69 45.75±0.81 39.15±0.53
JOINT 49.51±0.81 42.38±1.21 24.24±0.61 54.39±0.17 49.90±0.85 38.34±0.55
WSIC 45.30±1.09 39.15±1.62 31.42±0.94 52.04±0.28 45.76±0.70 39.44±1.11
CCMN 44.20±1.19 35.18±1.01 27.90±1.25 53.23±0.58 46.88±0.92 40.55±0.89
CCMLN† 51.94±0.63 49.24±0.30 46.69±0.66 55.44±0.13 50.91±0.48 43.35±0.82

Table 3: Comparisons with advanced methods on noisy MS-COCO. The mean and standard devia-
tion of results (%) are presented.

with Pair. noise, although the improvement is less than the cases with Sym. noise, CCMLN still
performs best. On noisy Pascal-VOC 2012, for both Sym. and Pair. noise, the improvement is
significant. Lastly, for noisy MS-COCO, CCMLN works better than all Type-II baselines with
varying enhancement.

Note that, compared with APL and CDR, JOINT seems to be a stronger baseline. Benefiting from
label correction, after a few training epochs, JOINT less overfits to wrong labels, following better
performance. Nevertheless, the proposed label-correction paradigm is argued to be more advanced.
As shown in all results, CCMLN surpasses JOINT, which verifies the effectiveness of our method.
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Compared with Type-III baselines. On noisy Pascal-VOC 2007 and noisy Pascal-VOC 2012,
CCMLN outperforms WSIC and CCMN distinctly. For example, with Sym. 50% noise, more than
+10% performance promotion is brought by our method. On noisy MS-COCO, although WSIC and
CCMN are sometimes competitive w.r.t. mAP, they are inferior w.r.t. both OF1 and CF1.

4.3 MORE ANALYSES AND JUSTIFICATIONS

In this subsection, we conduct performance analysis in more detail. The experiments are conducted
with Sym. 50% noise, which is more challenging than the experiments in low-noise-rate cases.

Dataset Noisy Pascal-VOC 2007
Methods mAP ↑ OF1 ↑ CF1 ↑
CCMLN w/o l. 67.06±0.41 67.23±1.92 63.42±0.58
CCMLN 68.00±0.89(+0.94) 68.62±0.48(+1.39) 64.82±0.48(+1.40)
Dataset Noisy Pascal-VOC 2012
Methods mAP ↑ OF1 ↑ CF1 ↑
CCMLN w/o l. 67.88±0.75 66.30±1.28 64.33±1.67
CCMLN 68.69±1.04(+0.81) 67.80±0.33(+1.50) 65.72±1.48(+1.39)
Dataset Noisy MS-COCO
Methods mAP ↑ OF1 ↑ CF1 ↑
CCMLN w/o l. 46.21±0.36 52.90±0.92 44.51±1.29
CCMLN 48.15±0.50(+1.94) 55.47±0.95(+2.57) 46.69±0.66(+2.18)

Table 4: Ablation study results on noisy Pascal-VOC 2007,
Pascal-VOC 2012, and MS-COCO. The mean and standard de-
viation of results are presented. The performance improvement
is highlighted.

Role of label dependence. We
study the effect of removing
the consideration of label depen-
dence to provide insights into
what makes CCMLN success-
ful. The experiments are con-
ducted on noisy Pascal-VOC
2007, Pascal-VOC 2012, and
MS-COCO. The ResNet-50 net-
work pretrained on ImageNet is
used as the backbone. The im-
age size is set to 224 × 224.
Recall that CCMLN considers
instance-label and label depen-
dences simultaneously. When
we remove the consideration of
the label dependence in CCMLN, the corresponding method is named as CCMLN w/o l. here.
For both CCMLN w/o l. and CCMLN, the value of the threshold δ̂ is searched in the range
{0.25,0.30,0.35,0.40,0.45}. We use the 10% noisy training data as a validation set for the threshold
determination and performance report. The results are shown in Table 4. As can be seen, CCMLN
outperforms CCMLN w/o l.. The results justify our claims that the label dependence could help com-
bat the noisy labels in multi-label classification, which demonstrate the effectiveness of the proposed
combinatorial correction.

Figure 2: Ablation study results with different values of the set
threshold δ̂. The experiments are conducted on noisy Pascal-
VOC 2007 (Left) and noisy Pascal-VOC 2012 (Right).

Analysis of the threshold δ̂. We
analyze the influence of differ-
ent values of the threshold δ̂.
The experiments are conducted
on noisy Pascal-VOC 2007 and
Pascal-VOC 2012. The ResNet-
50 network pretrained on Im-
ageNet is used as the back-
bone. The image size is set
to 224 × 224. The value
of the threshold δ̂ is chosen
in {0.25,0.30,0.35,0.40,0.45}.
Figure 2 shows that CCMLN is robust to the determination of the threshold δ̂ in the certain range,
which facilitates the practical application of our method.

Evaluations with different networks. We exploit pretrained ResNet-50 before. To show that our
method is robust to the choice of network structures, we use different networks in experiments.
Specifically, we employ pretrained ResNet-34 (He et al., 2016) and pretrained ResNet-101 (He
et al., 2016) respectively. The noisy MS-COCO is considered. The image size is 224 × 224. The
experimental results on mAP are reported in Table 5. As can be seen, with different networks,
CCMLN still works well.

Evaluations with different image sizes. We resize the image size to 224 × 224 before. To test
the performance of advanced methods with different image sizes, we further consider 112 × 112
384 × 384, and 448 × 448 image sizes. Pretrained ResNet-50 is used. The results are reported in
Table 6. For mAP, we can see that CCMLN is competitive compared with CCMN and CSRA. For
OF1 and CF1, CCMLN works better than all baselines with a clear margin.
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Metrics Methods/
Networks ResNet-34 ResNet-101

mAP ↑

BCE 42.63±0.74 38.17±0.41
CSRA 41.35±0.18 37.24±1.20
ADDGCN 40.15±0.98 36.13±0.69
APL 44.82±0.70 40.90±1.51
CDR 45.43±0.65 41.00±0.38
JOINT 44.81±0.77 39.96±1.30
WSIC 41.86±0.62 37.49±0.68
CCMN 45.31±0.47 46.01±1.01
CCMLN† 46.05±0.81 46.24±2.13

OF1 ↑

BCE 37.65±2.46 38.65±2.50
CSRA 35.05±0.78 34.28±2.40
ADDGCN 35.11±1.26 37.18±0.50
APL 34.31±1.73 37.89±1.30
CDR 36.67±3.43 39.88±1.15
JOINT 39.66±1.13 41.36±0.88
WSIC 35.08±1.74 38.44±0.57
CCMN 32.86±1.50 37.03±1.48
CCMLN† 44.11±0.80 47.79±4.19

CF1 ↑

BCE 28.95±2.09 34.11±1.13
CSRA 27.40±0.44 31.21±1.57
ADDGCN 26.11±0.86 30.41±0.72
APL 26.64±2.39 31.97±1.95
CDR 27.13±2.39 35.17±1.06
JOINT 30.77±1.63 37.63±0.81
WSIC 27.62±0.65 33.83±0.61
CCMN 24.75±0.48 26.65±0.26
CCMLN† 34.79±1.41 40.88±2.42

Table 5: Comparisons with advanced
methods on noisy MS COCO with dif-
ferent networks. The mean and standard
deviation of results (%) are presented.

Metrics Methods/
Image sizes 112 × 112 384 × 384 448 × 448

mAP ↑

BCE 32.22±0.69 39.40±1.36 35.24±1.73
CSRA 29.55±0.16 43.55±0.70 44.56±0.75
ADDGCN 32.34±0.46 38.72±1.64 34.87±1.89
APL 34.41±0.48 43.65±0.28 41.44±1.21
CDR 34.75±0.39 43.26±0.72 39.97±1.40
JOINT 32.89±0.16 42.95±0.88 40.17±1.26
WSIC 31.98±0.23 39.57±1.02 36.08±0.23
CCMN 36.17±0.41 44.39±0.39 44.03±0.17
CCMLN† 35.98±1.05 45.12±0.13 44.23±1.20

OF1 ↑

BCE 26.70±0.88 34.71±2.76 26.72±3.35
CSRA 20.14±1.28 36.41±0.71 38.54±0.78
ADDGCN 26.36±2.29 42.83±2.05 40.73±1.04
APL 24.02±1.22 34.68±1.46 30.73±2.64
CDR 26.50±1.23 31.31±1.76 31.15±3.46
JOINT 34.11±0.95 38.67±1.25 38.11±0.69
WSIC 24.61±1.10 34.09±2.94 30.69±0.97
CCMN 23.89±1.49 36.16±2.12 25.03±2.48
CCMLN† 39.05±2.68 46.55±3.77 45.14±2.34

CF1 ↑

BCE 19.61±0.61 30.77±2.28 24.94±3.31
CSRA 13.34±1.29 32.66±0.98 32.68±0.22
ADDGCN 18.67±1.47 35.63±1.37 33.89±2.41
APL 17.21±0.78 29.24±0.09 25.01±1.31
CDR 18.04±1.07 29.62±1.19 26.28±1.23
JOINT 20.76±0.75 34.90±1.88 33.75±1.31
WSIC 19.07±0.57 31.63±2.49 28.50±1.36
CCMN 16.75±1.21 30.09±2.32 26.68±1.57
CCMLN† 29.70±2.07 40.34±2.14 37.48±2.36

Table 6: Comparisons with advanced methods on noisy
MS COCO. The mean and standard deviation of results
(%) are presented. Difference image sizes are consid-
ered here.
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Figure 3: Ablation study results with different optimizations.

Evaluations with different optimizations. We use the Adam optimizer (Kingma & Ba, 2014)
before. Here, the optimizer is changed to RAdam (Liu et al., 2020a). The experiments are conducted
on noisy Pascal-VOC 2007 and Pascal-VOC 2012. The ResNet-50 network pretrained on ImageNet
is used as the backbone. As shown in Figure 3, with RAdam, CCMLN still outperforms all baselines
clearly.

5 CONCLUSION

In this paper, we focus on the realistic problem of multi-label classification with noisy labels. We
learn and utilize the label dependence among multiple labels to handle this problem. With the help of
the label dependence, a novel algorithm named CCMLN is proposed to correct noisy multiple labels
to clean ones. We demonstrate the effectiveness of our algorithm both theoretically and empirically.
For future work, we are interested in adapting CCMLN to other domains such as natural language
processing and recommendation systems. We are also interested in promoting our algorithm to
tackle instance-dependent label noise (Zhang et al., 2021c; Berthon et al., 2020; Zhu et al., 2021;
Liu, 2022) in multi-label classification.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2(4):343–370,
1988.
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Appendix of “CCMLN: Combinatorial Correction for Multi-Label
Classification with Noisy Labels”

A SUPPLEMENTARY THEORETICAL RESULTS

Lemma 1 Suppose Sf(x) fulfills the Tsybakov condition on instance-label dependence for
constants C1, λ1 > 0, and t0 ∈ (0,m]. Let κf(h,x, ȳ) ∶= ˆ̄Sf

ȳ(x)/ ˆ̄S
f
y∗(x). We define

ϵ ∶= maxx,z [∣ ˆ̄Sf
z(x) − S̄f

z(x)∣, ∣ ˆ̄Sl
z(x) − S̄l

z(x)∣, ∣S̄l
z(x) − Sl

z(x)∣] and τ ∶= mini Tii. We analyze
two cases:

(1) If ȳ is corrected by κf(h,x, ȳ) with the threshold δ̂, let δ1 = min [
τSf

bx
+∑lj∈ȳ∑i≠j TijP(li∣x)

ˆ̄Sf

y∗
]

and ρ1 ∶= ∣δ̂ − δ1∣. Assume that ϵ ≤ t0τ − ρ1m. Then, P[ȳnew = h∗(x), ȳ is flipped] is at least
1 −C1[max(ϵ, ρ1)]λ1 −P[ax ≠ {y∗, ȳ}].
(2) If ȳ is not corrected by κf(h,x, ȳ) with the threshold δ̂, let δ2 =

max [
ˆ̄Sf
ȳ(x)

τSf
bx
(x)+∑lj∈y∗ ∑i≠j TijP(li∣x)

] and ρ2 ∶= ∣δ̂ − δ2∣. Assume that ϵ ≤ t0δ
2
2τ−ρ2m−ρ2

2m

δ22
.

Then, P[ȳnew = h∗(x), ȳ is accepted] is at least 1 −C1[max(ϵ, ρ2)]λ1 −P[ax ≠ {y∗, ȳ}].

Lemma 1 claims that, even though with noisy multiple labels, there is a guaranteed success rate to
make proper label corrections by instance-label dependency.

B PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF THEOREM 1

Proof 1 For the case (1),

P[ȳnew ≠ h∗(x), ȳ is flipped] = P
⎡⎢⎢⎢⎢⎣
ȳnew ≠ h∗(x),

ˆ̄Sȳ(x)
ˆ̄Sy∗(x)

< δ̂
⎤⎥⎥⎥⎥⎦

(5)

≤ P
⎡⎢⎢⎢⎢⎣
h∗(x) = ȳ,

ˆ̄Sȳ(x)
ˆ̄Sy∗(x)

< δ̂
⎤⎥⎥⎥⎥⎦
+P[ax ≠ {y∗, ȳ}]. (6)

For the first term,

P

⎡⎢⎢⎢⎢⎣
h∗(x) = ȳ,

ˆ̄Sȳ(x)
ˆ̄Sy∗(x)

< δ̂
⎤⎥⎥⎥⎥⎦
= P [Sf

ȳ(x) > S
f
bx
(x), ˆ̄Sȳ < δ̂ ˆ̄Sy∗(x)] (7)

= P [Sȳ(x) − Sl
ȳ(x) > Sbx(x) − Sl

bx
(x), ˆ̄Sf

ȳ(x) + ˆ̄Sl
ȳ(x) < δ̂ ˆ̄Sy∗(x)] (8)

≤ P [Sȳ(x) ≥ Sbx(x), S̄
f
ȳ(x) + ˆ̄Sl

ȳ(x) < δ̂ ˆ̄Sy∗(x) + ϵ] (9)

≤ P [Sȳ(x) ≥ Sbx(x), S̄
f
ȳ(x) + Sl

ȳ(x) < δ̂ ˆ̄Sy∗(x) + 3ϵ] (10)

≤ P
⎡⎢⎢⎢⎢⎣
Sȳ(x) ≥ Sbx(x), Sȳ(x) <

δ ˆ̄Sy∗(x) −∑lj∈ȳ∑i≠j TijP(li∣x)
τ

+ 3ϵ +mρ1
τ

⎤⎥⎥⎥⎥⎦
. (11)

If δ = min [
τSbx(x)+∑lj∈ȳ∑i≠j TijP(li∣x)

ˆ̄Sy∗(x)
], we have P [h∗(x) = ȳ,

ˆ̄Sȳ(x)
ˆ̄Sy∗(x)

< δ̂] ≤

C2[O(max(ϵ, ρ1)]λ2 . Therefore, for the case (1),

P[ȳnew = h∗(x), ȳ is flipped] ≥ 1 −C2[O(max(ϵ, ρ1))]λ2 −P[ax ≠ {y∗, ȳ}]. (12)
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For the case (2),

P[ȳnew ≠ h∗(x), ȳ is accepted] = P
⎡⎢⎢⎢⎢⎣
ȳnew ≠ h∗(x),

ˆ̄Sȳ(x)
ˆ̄Sy∗(x)

≥ δ̂
⎤⎥⎥⎥⎥⎦

(13)

≤ P [Sf
y∗(x) > S

f
bx
(x), ˆ̄Sy∗ ≤ ˆ̄Sȳ(x)/δ̂] +P[ax ≠ {y∗, ȳ}]. (14)

For the first term,

P [Sf
y∗(x) > S

f
bx
(x), ˆ̄Sy∗ ≤ ˆ̄Sȳ(x)/δ̂] (15)

≤ P [Sy∗(x) − Sl
y∗(x) > Sbx(x) − Sl

bx
(x), S̄f

y∗(x) +
ˆ̄Sl
y∗(x) ≤ ˆ̄Sȳ(x)/δ̂ + ϵ] (16)

≤ P
⎡⎢⎢⎢⎢⎣
Sy∗(x) ≥ Sbx(x), Sy∗(x) ≤

ˆ̄Sȳ(x)/δ̂ −∑lj∈y∗ ∑i≠j TijP(li∣x)
τ

+ 3ϵ

τ

⎤⎥⎥⎥⎥⎦
(17)

≤ P
⎡⎢⎢⎢⎢⎢⎣
Sy∗(x) ≥ Sbx(x), Sy∗(x) ≤

ˆ̄Sȳ(x)/δ −∑lj∈y∗ ∑i≠j TijP(li∣x)
τ

+ 3ϵ

τ
+

ρ2
ˆ̄Sȳ(x)

δ(δ−ρ2)

τ

⎤⎥⎥⎥⎥⎥⎦
. (18)

If δ =max [
ˆ̄Sȳ(x)

τSbx(x)+∑lj∈y∗ ∑i≠j TijP(li∣x)], we have

P [Sf
y∗(x) > S

f
bx
(x), ˆ̄Sy∗ ≤ ˆ̄Sȳ(x)/δ̂] (19)

≤ P [Sbx(x) ≤ Sy∗(x) ≤ Sbx +
3ϵ

τ
+ ρ2m

δ2τ
+ ρ22m

δ2τ
] ≤ C2[O(max(ϵ, ρ2))]λ2 . (20)

Therefore, we have

P[ȳnew = h∗(x), ȳ is accepted] ≥ 1 −C2[O(max(ϵ, ρ2))]λ2 −P[ax ≠ {y∗, ȳ}]. (21)

B.2 PROOFS OF LEMMA 1 AND COROLLARY 1

We first prove Lemma 1. Lemma 1 uses the similar proof skill of Theorem 3 of (Zheng et al., 2020).
We extend it into multi-label classification.

Proof 2 For the case (1),

P[ȳnew ≠ h∗(x), ȳ is flipped] = P
⎡⎢⎢⎢⎢⎣
ȳnew ≠ h∗(x),

ˆ̄Sf
ȳ(x)

ˆ̄Sf
y∗(x)

< δ̂
⎤⎥⎥⎥⎥⎦

(22)

= P
⎡⎢⎢⎢⎢⎣
ȳnew = y∗ ≠ h∗(x) = ȳ,

ˆ̄Sf
ȳ(x)

ˆ̄Sf
y∗(x)

< δ̂
⎤⎥⎥⎥⎥⎦
+P
⎡⎢⎢⎢⎢⎣
ȳnew = y∗ ≠ h∗(x) = ax ≠ ȳ,

ˆ̄Sf
ȳ(x)

ˆ̄Sf
y∗(x)

< δ̂
⎤⎥⎥⎥⎥⎦
(23)

≤ P
⎡⎢⎢⎢⎢⎣
h∗(x) = ȳ,

ˆ̄Sf
ȳ(x)

ˆ̄Sf
y∗(x)

< δ̂
⎤⎥⎥⎥⎥⎦
+P
⎡⎢⎢⎢⎢⎣
ȳnew = y∗ ≠ h∗(x) = ax ≠ ȳ,

ˆ̄Sf
ȳ(x)

ˆ̄Sf
y∗(x)

< δ̂
⎤⎥⎥⎥⎥⎦

(24)

≤ P
⎡⎢⎢⎢⎢⎣
h∗(x) = ȳ,

ˆ̄Sf
ȳ(x)

ˆ̄Sf
y∗(x)

< δ̂
⎤⎥⎥⎥⎥⎦
+P[ax ≠ {y∗, ȳ}]. (25)
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For the first term, we have

P

⎡⎢⎢⎢⎢⎣
h∗(x) = ȳ,

ˆ̄Sf
ȳ(x)

ˆ̄Sf
y∗(x)

< δ̂
⎤⎥⎥⎥⎥⎦
= P [Sf

ȳ(x) > S
f
bx
(x), ˆ̄Sf

ȳ(x) < δ̂ ˆ̄S
f
y∗(x)] (26)

≤ P [Sf
ȳ(x) > S

f
bx
(x), S̄f

ȳ(x) < δ̂ ˆ̄S
f
y∗(x) + ϵ] (27)

= P
⎡⎢⎢⎢⎢⎣
Sf
ȳ(x) > S

f
bx
(x), ∑

lj∈ȳ
TjjP(lj ∣x) + ∑

lj∈ȳ
∑
i≠j

TijP(li∣x) < δ̂ ˆ̄Sf
y∗(x) + ϵ

⎤⎥⎥⎥⎥⎦
(28)

≤ P
⎡⎢⎢⎢⎢⎣
Sf
ȳ(x) > S

f
bx
(x), Sf

ȳ(x) <
δ ˆ̄Sf

y∗(x) −∑lj∈ȳ∑i≠j TijP(li∣x)
τ

+ ϵ + ρ1
τ

⎤⎥⎥⎥⎥⎦
. (29)

If δ =min [
τSf

bx
+∑lj∈ȳ∑i≠j TijP(li∣x)

ˆ̄Sf

y∗
], we have

P

⎡⎢⎢⎢⎢⎣
h∗(x) = ȳ,

ˆ̄Sf
ȳ(x)

ˆ̄Sf
y∗(x)

< δ
⎤⎥⎥⎥⎥⎦
≤ P [Sf

bx
< Sf

ȳ(x) < S
f
bx
+ ϵ + ρ1

τ
] = C1[O(max(ϵ, ρ1))]λ1 .

(30)
Therefore,

P[ȳnew = h∗(x), ȳ is flipped] ≥ 1 −C1[max(ϵ, ρ1)]λ1 −P[ax ≠ {y∗, ȳ}]. (31)
The case (2) shares the similar proof with the case (1). Specifically,

P[ȳnew ≠ h∗(x), ȳ is accepted] = P
⎡⎢⎢⎢⎢⎣
ȳnew ≠ h∗(x),

ˆ̄Sf
ȳ(x)

ˆ̄Sf
y∗(x)

≥ δ̂
⎤⎥⎥⎥⎥⎦

(32)

≤ P [Sf
y∗(x) > S

f
bx
(x), ˆ̄Sf

y∗ ≤
ˆ̄Sf
ȳ(x)/δ̂] +P[ax ≠ {y∗, ȳ}] (33)

For the first term, we have

P [Sf
y∗(x) > S

f
bx
(x), ˆ̄Sf

y∗ ≤
ˆ̄Sf
ȳ(x)/δ̂] (34)

≤ P
⎡⎢⎢⎢⎢⎣
Sf
bx
(x) < Sf

y∗(x) ≤
ˆ̄Sf
ȳ(x)/δ̂ −∑lj∈y∗ ∑i≠j TijP(li∣x)

τ
+ ϵ

τ

⎤⎥⎥⎥⎥⎦
(35)

≤ P
⎡⎢⎢⎢⎢⎣
Sf
bx
(x) < Sf

y∗(x) ≤
ˆ̄Sf
ȳ(x)/(δ − ρ2) −∑lj∈y∗ ∑i≠j TijP(li∣x)

τ
+ ϵ

τ

⎤⎥⎥⎥⎥⎦
(36)

= P

⎡⎢⎢⎢⎢⎢⎢⎣

0 < Sf
y∗(x) − S

f
bx
(x) <

ˆ̄Sf
ȳ(x)/δ −∑lj∈y∗ ∑i≠j TijP(li∣x)

τ
− Sf

bx
(x) + ϵ

τ
+

ρ2
ˆ̄Sf
ȳ(x)

δ(δ−ρ2)

τ

⎤⎥⎥⎥⎥⎥⎥⎦
(37)

If δ =max [
ˆ̄Sf
ȳ(x)

τSf
bx
(x)+∑lj∈y∗ ∑i≠j TijP(li∣x)

], we have

P [Sf
y∗(x) > S

f
bx
(x), ˆ̄Sf

y∗ ≤
ˆ̄Sf
ȳ(x)/δ̂] (38)

≤ P

⎡⎢⎢⎢⎢⎢⎢⎣

0 < Sf
y∗(x) − S

f
bx
(x) ≤ ϵ

τ
+

ρ2
ˆ̄Sf
ȳ(x)

δ(δ−ρ2)

τ

⎤⎥⎥⎥⎥⎥⎥⎦

(39)

≤ P
⎡⎢⎢⎢⎢⎣
0 ≤ Sf

y∗(x) − S
f
bx
(x) ≤ ϵ

τ
+
ρ2

ˆ̄Sf
ȳ(x)
δ2τ

+
ρ2O(ρ2) ˆ̄Sf

ȳ(x)
δ2τ

⎤⎥⎥⎥⎥⎦
(40)

≤ P [0 ≤ Sf
y∗(x) − S

f
bx
(x) ≤ ϵ

τ
+ ρ2m

δ2τ
+ ρ22m

δ2τ
] . (41)
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Here, since ϵ ≤ t0δ
2τ−ρ2m−ρ2

2m

δ2
, we have ϵ

τ
+ ρ2m

δ2τ
+ ρ2

2m

δ2τ
≤ t0. Therefore,

P[ȳnew = h∗(x), ȳ is accepted] ≥ 1 −C1[O(max(ϵ, ρ2))] −P[ax ≠ {y∗, ȳ}]. (42)

The proof of Lemma 1 is completed. Combining Lemma 1 and Theorem 1, Corollary 1 can be
achieved.

C RELATED LITERATURE

C.1 PROCEDURE OF ADDGCN

ADDGCN is the preparation technology of our CCMLN. We detail ADDGCN (Ye et al., 2020) as
follows.

SAM. Given an example (x,y), we feed x into a deep network and obtain its corresponding feature
map x′. SAM first calculates label-specific activation maps M = [m1, . . . ,mq] by using class-
activation-mapping (Zhou et al., 2016). Then, M is used to convert the feature map x′ into the
content-aware class-label representations C = [c1, . . . ,cq]. Let [q] = {1, . . . , q}. Mathematically,
for k ∈ [q], we have ck = m⊺

kx
′. That is, ck selectively aggregate features related to its specific

class label k.

GCNM. With the content-aware class-label representations C achieved by SAM, GCNM is intro-
duced to adaptively transform their coherent correlation for multi-label classification. Specifically,
GCNM consists of two parts: a static GCN and a dynamic GCN. The representations C are taken
by GCNM as input node features and sequentially fed into the static GCN and dynamic GCN.

The single layer of the static GCN is defined as H = LReLU(AsCWs), where As denotes the
correlation matrix shared for all instances, Ws denotes state-update weights, and LReLU(⋅) denotes
the LeakyReLU activation function (Xu et al., 2015). Besides, As and Ws are randomly initialized
and learned by gradient decent during training. The dynamic GCN transforms H. Its correlation
matrix Ad is constructed dynamically dependent on input features H. Namely, each examples have
different Ad. Formally, the output of the dynamic GCN is formulated as Z = LReLU(AdHWd),
where Wd are state-update weights. Later, we use Ad(x) to denote the correlation matrix of x,
where Ad(x)jk = P̂(lk ∣lj ,x) for any j, k ∈ [q].
Classification and Loss. The label-specific activation map M = [m1, . . . ,mq] and final cate-
gory representation Z = [z1, . . . ,zq] are employed simultaneously for multi-label classification.
Specifically, we use global spatial pooling on M to obtain a score vector sm = [sm1 , . . . , smq ]. Be-
sides, each category representation Z is put into a binary classifier to obtain another score vector
sz = [sz1, . . . , szq]. We simply average two score vectors to predict more reliable results. The
aggregated score vector is denoted as s = [s1, . . . , sq] = [(sm1 + sz1)/2, . . . , (smq + szq)/2]. The
Sigmoid activation function σ(⋅) is then used on s for probabilistic interpretation. That is to say,
σ(s) = [σ(s1), . . . , σ(sq)] = [P̂(l1∣x), . . . , P̂(lq ∣x)]. The binary cross-entropy loss is exploited for
the updates of all weights, i.e., L = ∑li∈y log(σ(si)).

Given a multi-label example (x, ȳ), for the two dependences Ŝf and Ŝl, based on σ(s) and Ad(x)
achieved by learning with multiple noisy labels, they can be estimated as

ˆ̄Sf
z(x) = ∑

{Ȳ =z,li∈z}
P̂(li∣x) and ˆ̄Sl

z(x) ∶= ∑
{Ȳ =z,li,lj∈z}

1

2
[P̂(lj ∣li,x) + P̂(li∣lj ,x)] . (43)

C.2 RELATED LITERATURE ON MULTI-CLASS CLASSIFICATION WITH NOISY LABELS

Multi-class classification with noisy labels can date back to three decades ago (Angluin & Laird,
1988), and keeps vibrant in recent years (Han et al., 2018). There is a large body of recent works
that include but do not limit to the estimation of the noise transition matrix (Patrini et al., 2017;
Hendrycks et al., 2018; Shu et al., 2020; Xia et al., 2019; Zhu et al., 2021; Liu, 2022; Zhang et al.,
2021d;b), confident sample selection (Wei et al., 2020; Yao et al., 2020; 2021; Wu et al., 2020;
Huang et al., 2019; Mirzasoleiman et al., 2020; Song et al., 2019; Northcutt et al., 2017), robust
loss function design (Ma et al., 2020; Zhou et al., 2021; Menon et al., 2019; Feng et al., 2021),
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implicit/explicit regularization (Hu et al., 2020; Lukasik et al., 2020; Ma et al., 2018; Li et al.,
2021a; Jiang et al., 2020), and the integration of diverse techniques (Nguyen et al., 2020; Li et al.,
2020; Liu et al., 2020b; Ortego et al., 2021). We refer readers to (Song et al., 2022; Han et al., 2018)
for comprehensive review on multi-class classification with noisy labels.

In addition, the methods belonging to label correction have attracted much attention in multi-class
classification with noisy labels (Tanaka et al., 2018; Zheng et al., 2020; Zhang et al., 2021c). Gen-
erally speaking, this kind of methods relies the prediction of a classifier trained on the noisy dataset,
which recalibrates labels to the mislabeled data. Benefiting from the memorization effect of deep
networks (Arpit et al., 2017), the prediction is a good indicator to determine the clean label of mis-
labeled data. The dataset after label correction is then less noisy, which brings better generalization.
However, few label-correction methods are investigated for multi-label classification with noisy la-
bels, which is much more challenging than multi-class classification with noisy labels (Liu et al.,
2021).

C.3 RELATED LITERATURE ON MULTI-LABEL CLASSIFICATION WITH CLEAN & NOISY
LABELS

We briefly review works on multi-label classification with clean labels. If there is no confusion,
we directly state multi-label classification. Multi-label classification has been studied for many
years (Zhang & Zhou, 2013; Liu et al., 2017; Zhang & Wu, 2014; Li et al., 2016; Chheda et al.,
2021; Xie & Huang, 2021a). In consideration of the increasing needs of todays big data, lots of
methods based on deep learning are proposed (Zhu & Wu, 2021; Ridnik et al., 2021; Gao & Zhou,
2021; Zhao et al., 2021; Yazici et al., 2020; Chen et al., 2020; Zhu et al., 2017; Wang et al., 2016; Wei
et al., 2015; Guo et al., 2019; Chen et al., 2019a). In addition to the above works, some works (Chen
et al., 2019b; Ye et al., 2020) claim that the label dependence can be used to enhance the learning
of the instance-label dependence. They exploit graph convolutional networks to capture the -label
dependence and inject the captured information into multi-label classification, following promising
classification performance. Recently, imperfect training data make us consider the side-effect of
noisy labels in multi-label classification. Till now, there are relatively few methods specifically
targeting this realistic problem. More advanced methods need to be excavated.

Normally, these methods perform an overall model adjustment to combat noisy labels. However,
these methods highly rely on additional information except for provided training data with noisy
labels. For example, partial methods (Hu et al., 2019; Veit et al., 2017; Vahdat, 2017; Pene et al.,
2021) learn an overall transition between noisy and clean labels to handle noisy labels, where a small
dataset with clean labels is relied to guide the transition learning. Partial methods (Zhao & Gomes,
2021) introduce overall semantics-based regularization on training data to relieve the model’s overfit-
ting to noisy labels, where semantic label embeddings are injected with large-scale predefined word
embeddings (Pennington et al., 2014; Devlin et al., 2018). Although the additional information is
helpful, in many actual scenarios, it is luxurious or not feasible at all. Without the additional infor-
mation, these methods become weak in multi-label classification with noisy labels (Zhao & Gomes,
2021), which greatly limits their practical applications (Liu et al., 2021).

C.4 SETTING DIFFERENCE BETWEEN MULTI-LABEL CLASSIFICATION WITH NOISY LABELS
AND PARTIAL MULTI-LABEL LEARNING

It should be noted that the problem settings of multi-label classification with noisy labels and partial
multi-label learning (Xie & Huang, 2021b; Kundu & Tighe, 2020) are different. Partial multi-label
learning deals with the problem where each instance is assigned with a candidate label set, which
contains multiple relevant labels and some irrelevant labels. The size of the candidate label set is
usually much smaller than the size of label space. We need to detect the relevant labels for training.
However, for our problem, there is no small candidate label set for reference, where we can only
observe the whole label space. Intuitively, the methods in partial multi-label learning could be
applied to multi-label classification with noisy labels. That is, we can identify some clean labels
from noisy labels for training. However, this paradigm is inefficient, since only fractional labels are
considered. Additionally, it is rather hard to accurately determine the number of identified labels for
each instance.
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D SUPPLEMENTARY EXPERIMENTAL SETTINGS

D.1 THE DETAILS OF BASELINES

In the main paper, we consider three types of baselines in experiments. Here, we detail the baselines.

1. Type-I baselines are designed for multi-label classification without considering noisy labels,
which include

• CSRA (Zhu & Wu, 2021) proposes a simple and effective residual attention for multi-label learn-
ing. CSRA generates class-specific features for different labels by using spatial attention scores,
and then combines them with the class-agnostic average pooling features.

• ADDGCN (Ye et al., 2020) proposes to exploit a semantic attention module and a GCN module for
multi-label classification. As we discussed in Section 2, ADDGCN is the preparation technology
of our CCMLN.

2. Type-I baselines are designed for multi-class classification with noisy labels, which include

• APL (Ma et al., 2020) combines two mutually reinforcing robust loss functions. For this base-
line, we employ its combination of normalized BCE and MAE for comparison. The trade-off
hyperparameter for the combinations of NBCE and MAE is set to 1.

• CDR (Xia et al., 2021) handles multi-class noisy labels using network pruning. A parameter
judgment criteria is proposed to distinguish the critical/non-critical parameters for memorizing
clean labels. The non-critical ones are forbidden to update, which mitigates the overfitting to
mislabeled data.

• JOINT (Tanaka et al., 2018) shares a similar philosophy compared with our method, i.e., label
correction. It uses a joint optimization framework to handle noisy labels. The pseudo labels are
generated dynamically by using the network’s prediction to improve robustness. Meanwhile, reg-
ularizations about the class prior and entropy of prediction probabilities are used. In experiments,
we utilize the hard-label version of JOINT (Tanaka et al., 2018).

3. Type-III baselines are designed for multi-label classification with noisy labels, which include:

• WSIC (Hu et al., 2019) consists of a clean net and a residual net. The aim is to learn a mapping
from feature space to clean label space and a residual mapping from feature space to the residual
between clean labels and noisy labels respectively. For fair comparison with our method, we only
provide noisy training examples to WSIC.

• CCMN (Xie & Huang, 2022) establishes unbiased estimators with error bounds for solving the
problem of multi-label learning with noisy labels, and further prove that the estimators are consis-
tent with commonly used multi-label loss functions under some conditions.

4. The simple baseline that trains deep models on multi-label noisy datasets directly:

• BCE (Zhang & Zhou, 2013) uses the binary cross-entropy loss to train deep models in noisy
datasets, without considering the side-effect of mislabeled data for generalization.

D.2 THE DETAILS OF THE LABEL TRANSITION MATRIX

In this paper, we consider both symmetric and pairflip cases for the generation of noisy labels.
Specifically, if the overall noise rate is ϱ, the label transition matrix for symmetric cases are defined
as

Sym. ϱ: T ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ϱ ϱ
q−1 . . . ϱ

q−1
ϱ

q−1
ϱ

q−1 1 − ϱ ϱ
q−1 . . . ϱ

q−1
⋮ ⋱ ⋮
ϱ

q−1 . . . ϱ
q−1 1 − ϱ ϱ

q−1
ϱ

q−1
ϱ

q−1 . . . ϱ
q−1 1 − ϱ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦q×q

. (44)
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The label transition matrix for pariflip cases are defined as

Pair. ϱ: T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ϱ ϱ . . . 0 0
0 1 − ϱ ϱ . . . 0
⋮ ⋱ ⋮
0 . . . 0 1 − ϱ ϱ
ϱ 0 . . . 0 1 − ϱ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦q×q

. (45)

E SUPPLEMENTARY EXPERIMENTAL RESULTS

Metrics Methods / Noise Sym. 30% Sym. 40% Sym. 50% Pair. 20% Pair. 30% Pair. 40%

mAP ↑

BCE 82.01±0.61 80.50±0.62 76.80±0.31 80.97±0.24 75.95±1.12 65.54±2.67
CSRA 83.15±0.08 80.39±1.17 77.93±2.73 82.36±0.35 76.02±1.58 65.38±1.61
ADDGCN 81.70±0.96 80.29±0.44 74.22±2.86 80.33±1.50 74.92±2.64 63.11±1.80
APL 82.13±1.44 79.92±0.63 76.68±2.47 82.20±0.09 76.02±1.80 66.92±2.09
CDR 82.35±1.17 78.33±1.04 77.01±1.61 81.00±0.20 76.37±1.04 66.21±2.35
JOINT 82.12±0.55 81.00±0.39 76.84±1.12 81.33±0.60 76.77±0.55 66.50±1.86
WSIC 82.17±0.19 78.14±1.06 77.25±0.90 81.06±1.06 75.22±1.37 65.88±2.80
CCMN 81.80±0.73 80.20±1.10 76.77±1.73 82.27±0.41 76.03±1.39 66.93±2.03
CCMLN† 82.40±0.17 81.19±1.22 78.04±0.29 82.30±0.61 76.40±1.82 67.61±2.12

OF1 ↑

BCE 70.97±0.65 62.99±0.75 55.43±1.80 75.95±0.77 71.26±0.88 63.33±2.74
CSRA 73.52±1.06 65.21±0.93 52.84±2.11 78.02±0.92 72.66±1.75 62.77±3.06
ADDGCN 71.11±1.16 63.05±1.84 48.62±2.31 74.29±1.72 67.83±0.98 59.12±2.73
APL 71.10±0.50 61.44±0.88 51.77±2.84 74.50±1.29 68.04±1.98 63.30±1.60
CDR 71.65±1.63 63.06±1.50 54.83±2.26 76.88±2.16 72.06±1.90 62.89±3.17
JOINT 74.08±1.12 70.22±2.31 65.27±2.66 77.82±1.01 72.56±0.71 65.82±1.73
WSIC 71.05±0.16 63.86±1.00 52.88±2.27 76.05±1.10 70.39±1.16 60.88±1.37
CCMN 72.33±0.18 65.44±1.26 57.29±1.10 77.19±0.11 72.04±0.50 62.05±1.18
CCMLN† 76.33±0.19 74.83±1.29 72.11±3.06 78.05±0.13 73.88±1.90 66.32±0.30

CF1 ↑

BCE 68.33±0.92 59.63±1.29 49.77±2.81 73.17±1.46 66.82±2.96 57.19±2.32
CSRA 70.59±1.26 62.33±1.60 48.15±2.90 75.06±0.77 68.72±1.63 56.25±3.28
ADDGCN 67.83±0.64 59.75±1.06 46.72±3.50 71.33±0.65 64.02±0.65 55.82±4.91
APL 67.33±1.85 59.11±2.02 47.86±3.13 74.80±0.77 66.92±2.84 57.02±1.90
CDR 68.03±1.62 60.02±1.17 48.94±2.65 73.77±1.04 67.06±1.84 57.38±2.10
JOINT 71.17±0.29 66.11±1.59 57.93±1.82 75.25±0.73 70.01±1.99 56.28±2.19
WSIC 68.11±0.52 60.39±1.14 46.25±4.74 74.02±1.26 67.09±2.84 55.76±3.66
CCMN 68.58±0.44 64.82±2.17 54.82±1.06 74.15±0.92 67.79±2.33 58.06±2.37
CCMLN† 73.11±0.91 72.08±1.16 68.31±0.77 76.00±0.71 71.07±1.95 61.52±2.28

Table 7: Comparisons with advanced methods on noisy Pascal-VOC 2007. The mean and standard
deviation of the best results (%) during training are presented.

In the main paper, we report results based on the performance of the last epoch during training, as did
in (Han et al., 2018; Wang et al., 2018; Wei et al., 2020; Li et al., 2020). Here, to make comparison
more comprehensive, we report results on noisy Pascal-VOC 2007 based on the best performance
achieved during training. The results are provided in Table 7. Due to the memorization effect of
deep networks (Arpit et al., 2017), the networks would first memorize clean training data and then
noisy training data. Therefore, in the early training, all methods could achieve good performance.
We compared CCMLN with other advanced methods. Specifically, for mAP, although CCMLN does
not always achieve the best results like the results in the main paper, the results are still competitive.
For OF1 and CF1, CCMLN outperforms the other methods consistently.

It is worth mentioning that, the results in Table 1 are much lower than the results in Table 7 in some
cases. The experimental phenomenon means that one method severely overfits training data with
incorrect labels as training progresses, which is pessimistic. Therefore, we should strive to design
more robust methods to address the problem of multi-label classification with noisy labels. In this
paper, we try and give a potential method, which outperforms baselines clearly. More efforts are
expected to be put in by the community.
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