
Discovering Research Hypotheses in Social
Science using Knowledge Graph Embeddings

Rosaline de Haan1, Ilaria Tiddi2, and Wouter Beek1

1 Triply, Amsterdam, The Netherlands
{rosaline.de.haan,wouter}@triply.cc

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
i.tiddi@vu.nl

Abstract. In an era of ever-increasing scientific publications available,
scientists struggle to keep pace with the literature, interpret research re-
sults and identify new research hypotheses to falsify. This is particularly
in fields such as the social sciences, where automated support for scientific
discovery is still widely unavailable and unimplemented. In this work, we
introduce an automated system that supports social scientists in identi-
fying new research hypotheses. With the idea that knowledge graphs help
modeling domain-specific information, and that machine learning can be
used to identify the most relevant facts therein, we frame the problem
of hypothesis discovery as a link prediction task, where the ComplEx
model is used to predict new relationships between entities of a knowl-
edge graph representing scientific papers and their experimental details.
The final output consists in fully formulated hypotheses including the
newly discovered triples (hypothesis statement), along with supporting
statements from the knowledge graph (hypothesis evidence and hypoth-
esis history). A quantitative and qualitative evaluation is carried using
experts in the field. Encouraging results show that a simple combination
of machine learning and knowledge graph methods can serve as a basis
for automated scientific discovery.

Keywords: Scientific Discovery · Knowledge Graphs · Link Prediction
· Social Science

1 Introduction

Scientific research usually starts with asking a question, followed by doing back-
ground research, and then formulating a testable hypothesis. Doing background
research to properly substantiate a hypothesis can be a difficult and time-
consuming task for scientists. It is estimated that over 3 million scientific ar-
ticles are published annually, a number that keeps growing of 4% each year [25].
The fast rate at which new publications appear, as well as the inefficient way
in which scientific information is communicated (e.g. PDF documents), calls for
more efficient data analysis and synthesis, in a way that scientists formulating
new research hypotheses can be supported rather than overloaded.

The task of significantly speeding up the steps in the scientific process is
generally called automated scientific discovery [15]. The latest years have seen
Artificial Intelligence approaches for automated scientific discovery in various
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scientific fields, either relying on symbolic knowledge representation or machine-
driven methods. Knowledge graphs such as the Gene Ontology1 and the ontol-
ogy collection of the Open Biological and Biomedical Ontology Foundry2 have
been used to encode domain-specific information, such as representing biolog-
ical systems from the molecular to the organism level. Machine Learning and
particularly link prediction methods, that help predicting which missing edges
in a graph are most likely to exist, have also been used, e.g. to support medical
scientists by showing them new associations between drugs and diseases [15, 19].

There is currently not much automated support for social scientists when it
comes to getting new insights from scientific information. This is partly due to
the more qualitative and uncertain nature of social science data, making it hard
to represent, and consequently less machine-interpretable [3]. One effort in this
direction is the COoperation DAtabank (CODA), where an international team
of social scientists published a structured, open-access repository of research on
human cooperation using social dilemmas. The dataset represents about 3,000
research publications with their experimental settings, variables of observation,
and quantitative results. Given the large amount of structured information avail-
able, and the success of predictive methods seen in other disciplines, it is natural
to think that a hybrid method could be designed, to automatically suggest social
scientists new hypotheses to be tested.

Here, we study the problem of automatic hypothesis discovery in the field
of social sciences. We propose to frame the problem as a link prediction task,
and particularly to exploit the structured representation of the domain to learn
research hypotheses in the form of unseen triples over a knowledge graph de-
scribing research papers and their experimental settings. Using the knowledge
graph embeddings learnt with the ComplEx model, we predict the likelihood of
new possible relationships between entities, consisting in the variables studied
social science research. These relationships are then used to provide the experts
with new research hypotheses structured in a statement (the newly predicted as-
sociations), evidence and history (both triples existing in the graph). We quan-
titatively and qualitatively assess this approach using experts in the field, which
help us evaluating the accuracy and meaningfulness of the discovered hypothe-
ses. Our main contributions can be summarised as follows: (i) we show how a
thorough structured representation of scientific knowledge can help supporting
the automatic discovery of research hypotheses; (ii) we present a preliminary ap-
proach combining knowledge graph data and machine learning to help experts
in formulating new research hypotheses; (iii) we show how our method can be
applied in the field of social science.

2 Related Work

Our work relates to three areas, namely (i) existing methods for representing and
mining scientific knowledge, (ii) approaches for automated hypothesis discovery
in science and (iii) knowledge graph embedding methods and applications.
1 http://geneontology.org/
2 http://www.obofoundry.org/
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Representing and Mining Scientific Knowledge. Several methods have been de-
veloped to represent scientific knowledge and foster interoperability and repro-
ducibility. Micro- and nanopublications [4, 8] have been introduced in the last
decade as standardised formats for the publication of minimal scientific claims,
i.e. minipublications. Such models allow to describe evidence and nuanced sci-
entific assertions expressing a relationship between two predicates (e.g. a gene
relates to a disease), together with provenance information describing both the
methods used to derive the assertion and publication metadata. The DISK hy-
pothesis ontology [7] was introduced to capture the evolution of research hy-
potheses in the neuroscience field, including the provenance and revisions. More
precisely, a DISK hypothesis consists of structured assertions (hypothesis state-
ment), some numerical confidence level (hypothesis qualifier), the information of
the analysis that were carried out (hypothesis evidence), and prior hypotheses
revised to generate the current one (hypothesis history). In the field of medical
science, the different elements to be included in a hypothesis can be described
with the PICO ontology3, describing Patients, the Condition or disease of inter-
est and its alternative (Intervention), and the Outcome of the study.

Repositories for storing scientific publications at large scale in the form of
knowledge graphs include both domain-specific initiatives (e.g. the AI-KG [5] for
Computer Science and the Cooperation Databank [22] for the social sciences),
and domain-independent projects such as the Open Research Knowledge Graph
(ORKG) project4. These initiatives focus on representing research outputs in
terms of their content, i.e. describing approach, evaluation methods, results etc.,
rather than publication context such as year, authors and publication venues.
This type of novel representations allows to automatise not only the search for
new research, but also to compare it at large scale.

Some work has focused on developing systems that aid with mining claims in
the existing literature. The AKminer (Academic Knowledge Miner) system [9]
was introduced to automatically mine useful concepts and relationships from
scientific literature and visually present them in the form of a knowledge graph.
Similarly, [17] uses text-mining to automatically extract claims and contribu-
tions from scientific literature and enrich them through entity linking methods.
Supervised distant learning was used by [14, 24] to extract PICO sentences from
clinical trial reports and support evidence-based medicine.

Machine-supported Hypothesis Discovery. Automated hypothesis discovery us-
ing intelligent systems has been interest of study for a long time. Earliest work
include the ARROWSMITH discovery support system [21] to help scientists
in finding complementary literature for their studies and formulate a testable
hypothesis based on the two sets, and the work of [1], which used various ma-
chine learning techniques to discover patterns, co-occurrences and correlations
in biological data. These approaches inspired the work of [20], which relies on
a scientific text collection to discover hypotheses, via Medical Subject Headings
(MeSH)-term based text-mining.

3 https://linkeddata.cochrane.org/pico-ontology
4 https://www.orkg.org/orkg/
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Biomedical literature was also used by [10] to develop a link discovery method
based on classification, where concepts are learnt and used as a basis for hy-
pothesis generation. An Inductive Matrix Completion method was presented
by [12], where the discovered gene-disease associations where supported by dif-
ferent types of evidence learnt as latent factors. The Knowledge Integration
Toolkit (KnIT) [11] used methods such matrix factorization and graph diffu-
sion to reason over a network of scientific publications in the biomedical field
to generate new and testable hypotheses. The work of [15] shows how scientific
insights can be generated using machine support also in the field of astronomy
and geosciences. Their model allows to create multiple variants of hypothesised
phenomena and their corresponding physical properties; these are matched in
the existing empirical data, and scientists can both refine them and use them
to justify a stated research hypothesis. The DISK ontology was also used in the
field of neuroscience for automated hypothesis assessment [6].

Knowledge Graph Embeddings for Link Prediction. Machine learning methods
for knowledge graph completion (or link prediction) use inductive techniques,
mostly based on knowledge graph embeddings or rule/axiom mining, to locally
and logically predict the likelihood of certain link between two nodes to exist [13].
Currently, the tensor decomposition ComplEx method [23] has proven to be
the most stable in terms of performance and scalability [2]. Link prediction
methods have been previously used for hypothesis discovery. Authors of [16] first
create a knowledge graph from biomedical data and then convert it to a lower
dimensional space using graph embeddings. The learnt embeddings are then
used to train a recurrent neural network model to predict new drug therapies
against diseases. A similar approach is the one of [19] to generate hypotheses
on re-purposing drugs for rare diseases; the method relies on graph embeddings
learnt over a large knowledge graph including information from the literature of
pharmacology, genetics and pathology.

3 Background and Motivating Scenario

The COoperation DAtabank Knowledge Graph. The COoperation DAtabank
consists in ∼3,000 studies from the social and behavioural sciences published in
3 languages and annotated with more than 300 cooperation-related features, in-
cluding characteristics of the sample participating in the study (e.g. sample size,
average age of sample, percentage of males, country of participants), character-
istics of the experimental paradigm (structure of the social dilemma, incentives,
repeated trial data), and quantitative results of the experiment (e.g. mean levels
of cooperation, variance in cooperation, and effect sizes). The dataset was de-
signed to be fully compliant with the F.A.I.R. principles, and has been published
as an openly available knowledge graph5 to allow domain experts to perform their
analyses in minutes, instead of many months of painstaking work [22].

Before continuing with the knowledge graph structure, we need to familiarise
the reader with the basic concepts of experimental science. Studies using this

5 http://data.cooperationdatabank.org/
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methodology may observe a relation between two (one independent, one de-
pendent) variables, which can be quantified as an effect size (representing the
quantitative result). The goal of the single experiments carried within in a study
is to test whether the dependent variable (DV) changes for when modifying the
value of the Independent Variable (IV), which indicates there is a relationship
between the two variables. In the case of the Databank, one could imagine an
experiment aimed at studying the impact (effect size) of a person’s social values
(independent variable) over her willingness to cooperate (dependent variable).
With this in mind, the CODA knowledge graph includes publications consisting
of a cdo:Paper class that links to an arbitrary set of cdo:Study, i.e. experiments
performed in different settings and with different goals. Additional metadata
about the paper such as publication date, authors etc. are included as properties
of a cdo:DOI class. Each cdo:Study links to one or more conditions tested, repre-
sented by the class cdo:Observation, that are in turn modelled as comparisons
of one or two different cdo:Treatment.

Fig. 1. Example of an observation comparing prosocial vs. proself behaviour.

In a practical example, Figure 1 shows the paper :CHI00001 including the study
:CHI00001 1, which in turns reports the observation :CHI00001 1.1.1.2.d com-
paring treatment :CHI00001 1.1.1 and :CHI00001 1.1.2 (we call them T1 and T2
for simplicity). Treatments consist in the experimental settings that the exper-
imenter modifies with the goal of testing how and if the cooperation between
participants of a game varies significantly. In our example, the experimenter ma-
nipulated the property cdp:svoType which, recalling what stated above, consists
then in the independent variable observed. This is confirmed by the fact that
T1 and T2 have a different value for the property (:prosocial and :proself

respectively). Similar to cdp:svoType, any RDF property whose domain is the
class cdo:Treatment is organised in a domain-specific taxonomy of independent
variables, representing information relative to cooperation in social dilemmas.
Finally, in order to represent how and how much the cooperation varies during
an observation/experiment, we use the class cdo:DependentVariable for the DV
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and the datatype property cdp:esEstimate for the effect size measurement, e.g.
CHI00001 1.1.1.2.d measures the DV :contributions and its effect size has a
value of 0.776. The positive effect size reported by the experimental observation
means that T1 scored higher on cooperation than T2, indicating that partici-
pants with a pro-social value orientation showed a more cooperative behaviour
than participants who had a pro-self value orientation.

Challenge and Proposed Solution. In the scenario above, it is natural to see
how the CODA knowledge graph intrinsically represents research hypotheses
that were tested in the human cooperation literature. In other words, one can
consider each cdo:Observation subgraph as a research hypothesis that aims at
testing whether there exists a relation between the cdo:IndependentVariable and
cdo:DependentVariable. The effect size value of each observation then tells us
the strength of such relation, identified by the experiment performed to validate
the hypothesis. The question we ask is therefore whether it is possible to learn
new, plausible observations starting for the representations recorded in CODA
and, more in general, how to support domain experts in producing new research
hypotheses through a more automated method. While such methods have been
widely presented in the biomedical field, applications facilitating automated sup-
port for the social scientists have yet to be implemented. The solution we propose
is to frame the problem of learning research hypotheses as a link prediction task,
where we exploit the existing cdo:Observation subgraph structures to learn new
unseen triples involving a cdo:IndependentVariable and cdo:DependentVariable.
Our assumption is that entities and relationships neighbouring the predicted
links could help completing the new research hypotheses. Following similar ap-
proaches in the biomedical field, we train a knowledge graph embedding model
to predict the likelihood of a new possible association between an IV and a DV,
and develop a system that suggests new possible research hypotheses including
both triples existing in CODA and new predicted triples according to a pre-
defined structure. We then quantitatively and qualitatively assess the accuracy
and meaningfulness of the discovered hypotheses in a user-study based on the
domain expertise of social scientists from the field.

4 Approach

The proposed approach includes three steps: a pre-processing phase for data
selection and generation of the model input (Section 4.1), a learning phase in-
cluding parameter tuning, model training, and link prediction (Section 4.2), and
a last phase for the automated generation of hypotheses (Section 4.3).

4.1 Pre-processing

The first step is to choose the right amount of CODA information to retrieve,
and create an input for the embedding model to be able to predict new triples.

6 CODA contains two types of effect size measures, i.e. the correlation coefficient ρ and
the standardized mean difference d, which can be easily converted to one another.
For simplicity, we will only refer to Cohen’s d values from now on.
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Observation Selection. First, we define a set of criteria to select the CODA
observations, namely:

1. instances of the class cdo:Observation;
2. observations reporting using Cohen’s d as effect size measure;
3. observations comparing two treatments;
4. observations linking to an instance of a cdo:DependentVariable.

The SPARQL query used to get the observations can be found online7, and
results in 4,721 observations, the study, paper and DOI that reported them, the
effect size with confidence levels, the experimental design, and sample size and
standard deviation per treatment pair.

A further refinement is performed by analysing the independent variables
of each observation. We identify the properties-values for which the two treat-
ments compared by an observation differ on, e.g. cdp:svoType/:prosocial vs.
cdp:svoType/:proself in the example of the previous section. To prevent noise
and reduce complexity, we dropped observations that had no differing predicates
(errors attributed to the large sparsity of the data and to human annotation),
or that might differ for more than one property. This left 2,444 observations to
train the model, coming from 632 papers and 858 studies, and including 128
unique IVs and 2 unique DVs.

Data Permutation. Since KG embedding methods are generally not capable
of learning continuous variables, we learn effect sizes as categorical instead of
continuous information. This is also motivated by the fact that Cohen’s d is in
fact a measure that can be interpreted categorically [18]. To this end, we created
a new RDF property cdp:esType and a set of 5 instances of the class cdo:ESType

that a cdo:Observation might point to, representing the 5 bins mapping the
continuous effect size values to Cohen’s categories8. Table 1 shows the ranges for
each bin/instance, and their respective effect size types.

Table 1. Effect size ranges, their interpretation and the respective instance created.

Effect size range Intepretation Instance

-infinity, -0.5 large/medium negative correlation :largeMediumNegativeES

-0.5, -0.2 small negative correlation :smallNegativeES

-0.2, 0.2 no correlation :nullFinding

0.2, 0.5 small positive correlation :smallPositiveES

0.5, infinity large/medium positive correlation :largeMediumPositiveES

As also explained in Section 3, an effect size is an indication of the size of the
correlation between an independent and a dependent variable, measured based
on the different IV values that two treatments take during an experimentation.

7 https://data.cooperationdatabank.org/coda/-/queries/

link-prediction-selection-query
8 Due to the relatively small sets, medium and large effects were grouped together.
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This means that, in order to predict a new correlation between IV and DV,
one would have to predict multiple triples, i.e. at least one per treatment (and
their respective IV values). In order to simplify the task, we summarise the
factor that influences the effect size into a single node, by considering IV values
pairs as single hypotheses. We therefore combine all possible values for a given
IV property into pairs, assigning a hypothesis number to each pair, and create
a new node that is linked to the original T1/T2 values through the property
cdp:hypothesis. The new nodes, shown e.g. in Table 2, are then used for the
hypothesis generation. For continuous properties reporting many different values
in the object position, four different ranges were automatically created to prevent
the generation of an excessive amount of hypotheses. Similarly, pairs with the
same IV values in a different order were considered as the same hypothesis
(e.g. T1=proself/T2=prosocial and T1=prosocial/T2=proself were both linked
to :SVOtypeH2), but the effect size node of the observation was switched (positive
to negative, or vice versa) to maintain the direction of the correlation coherent.

Table 2. Hypothesis nodes based on combinations of IV values for T1 and T2.

IV T1 value T2 value Hypothesis Node

SVO type individualist prosocial :SVOtype H1

SVO type prosocial proself :SVOtype H2

SVO type individualist altruist :SVOtype H3

We then link the created hypothesis nodes to the dependent variable nodes us-
ing three new predicates, related to the type of correlation that is observed:
cdp:hasPositiveEffectOn, cdp:hasNoEffectOn, cdp:hasNegativeEffectOn. These
properties are based on the statistical significance of the observation, computed
using the 95% confidence interval for the effect size. A confidence interval mea-
sures the imprecision of the computed effect size in an experiment. When the
interval does not include 0, it can be inferred that the association is statistically
significant (p < 0.05). In other words, the confidence interval tells us how trust-
worthy is the observation we are analysing, in terms of effect size, population
estimate, and direction of the effect. Depending on the confidence interval, we use
:hasNoEffectOn if the effect size is not significant, while :hasNegativeEffectOn

and :hasPositiveEffectOn are used with observations indicating a significant
negative and positive correlation between IV and DV, respectively. When no
confidence interval was given in the data, we derive the direction of the corre-
lation using the rule of thumb as reported of [18]: observations with an effect
size below −0.2 got a negative effect property, observations that reported effect
sizes above 0.2 got a positive effect property, and observations with an effect
size between -0.2 and 0.2 got a no effect property. This led us to a total of 751
positive effect triples, 1,017 no effect triples and 676 negative effect triples.

Dataset Creation. The last step of the pre-processing task consists in the conver-
sion into learnable subgraphs, i.e. sets of triples. To do this, we use part of the
information already in the data, namely observation ID, the independent and
dependent variables, the IV values for the two treatments, and combine them
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with the computed effect size type, the hypothesis number, and relationship to
the dependent variable. A construct query9 was used to generate subgraphs as
depicted in Figure 2 for 2,444 observations. This led to a dataset of 29,339 triples,
that served as input for the link prediction model.

Fig. 2. New graph for the observation CHI00001 1.1.1.2.d used as input for the link
prediction task. In red, the nodes and edges created. In bold, the link to be predicted.

4.2 Learning and Predicting Triples

Training and Testing. We use the created dataset to learn a model predict-
ing unseen triples to be used in new hypotheses. Strictly speaking, the predic-
tion consists in identifying triples including a hypothesis number, an effect size
predicate and a dependent variable, e.g. 〈:SVOtype H2 cdp:hasPositiveEffectOn

:contributions〉. To do this, all triples reporting a negative or a positive effect
were gathered. We decided not to make predictions for the no-effect triples, as
experts might be less interested in non-interesting relations between variables to
frame their hypotheses. Investigating this for future work could be interesting.
From the total 1,427 effect triples, the 243 unique hypotheses in subject posi-
tion, the 2 unique predicates and the 2 unique dependent variables in object
position were used to learn how to generate new combinations. This yielded to
243 ∗ 2 ∗ 2 = 972 total triples, of which 412 were already in the dataset and
marked as “seen”, while the other 560 were denoted as “unseen”.

We then used the ComplEx model to learn the likelihood of each triple. We
first split the dataset into a training set of 24,539 triples, a test set of 2,400
triples, and a validation set of 2,400 triples. A corruption strategy is then used
to generate negative statements. Parameter tuning was finally performed to ex-
plore impact on the model performance, cfr. Table 3 for the final configuration.

9 https://data.cooperationdatabank.org/coda/-/queries/

Rosaline-Construct-Link-Prediction
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Standard metrics such as mean reciprocal rank, hits@N and mean rank were
used to evaluate the trained model.

Table 3. Final parameter configuration.

Parameter Value

batches count 555
epochs 100
k (dimensionality) 200
eta (# neg. samples generated per each pos.) 15
loss multiclass nll
embedding model params {‘negative corruption entities’: ‘all’}
LP regulariser params {‘p’:1, ‘lambda’:1e-5}
Xavier initialiser params {‘uniform’: False}
Adam optimizer params {‘lr’: 0.0005}

Link Prediction. The learnt model was used to compute ranks and scores for
unseen triples. Ranks indicate the position at which the test set triple was found
when performing link prediction, while scores are the returned raw scores gen-
erated by the model. Probabilities of unseen triples are also calculated by cali-
brating the model. We set a positive base rate of 0.5 (50%) to indicate the ratio
between positive vs. negative triples. After calibration, a probability for each
unseen triple was predicted. We then obtained their ranks, score and probabili-
ties for the 560 unseen triples, to be later used during the hypotheses generation
step. A sample of these is in Table 4 below.

Table 4. Prediction example of unseen triples.

Statement Rank Score Prob.

:iteratedStrategy H6 cdp:hasPositiveEffectOn :cooperation 1 7.38 0.98
:iteratedStrategy H9 cdp:hasPositiveEffectOn :cooperation 2 7.32 0.98
... ... ... ...
:uncertaintyTarget H1 cdp:hasPositiveEffectOn :cooperation 3816 0.10 0.19
:exitOption H1 cdp:hasNegativeEffectOn :contributions 4659 −0.03 0.17

4.3 Hypotheses Generation

The final step is to automatically generate human-interpretable hypotheses,
based on the unseen triples predicted by the model. Each statement from Ta-
ble 4 was converted into a readable text using a prefixed structure following the
DISK ontology. A hypothesis statement was created by disassembling the triples
into respectively the independent variable (the predicted subject), the type of
effect (the predicted predicate) and dependent variable (the predicted object).
The hypothesis evidence was created by querying the CODA knowledge graph
for labels of both IVs and DVs, and by converting the effect type property into
decapitalised words with spacing. We also retrieve the description of both the IV
class and the relevant IV values. The hypothesis history was built by retrieving
the DOIs of papers that studied that combination of IV values. An example of
a generated hypothesis is shown below.
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Hypothesis Statement
Partner’s group membership has negative effect on contributions

Hypothesis Evidence
Dependent Variable (DV): https://data.cooperationdatabank.org/id/

dependentvariable/contributions

Independent Variable (IV): https://data.cooperationdatabank.org/

vocab/prop/targetMembership

Whether the participant is interacting with a partner identified as ingroup,
outgroup, or stranger.

The IV values to compare in the treatments (T1, T2) are :
Treatment IV value Description

T1 ingroup Partner(s) is a member of the participant’s group
T2 ingroup and

outgroup
When an experimental treatment explicitly pro-
vides information that a partner or group belongs
to both an ingroup and an outgroup

Hypothesis History
http://dx.doi.org/10.1016/j.joep.2013.06.005

http://dx.doi.org/10.1177/0146167205282149

http://dx.doi.org/10.1016/j.ijintrel.2011.02.017

Implementation. The current approach was implemented using Python 3.7.7.
The ComplEx model was implemented using the Ampligraph10 library. All the
code and results can be found on GitHub11. The queries were made using the
SPARQL API service of the CODA knowledge graph, hosted by TriplyDB12.

5 Evaluation

We first quantitatively and qualitatively evaluate the model performance through
known metrics and inspection of the independent variable embeddings. We then
evaluate the generated hypotheses through domain experts.

5.1 Model Performance

We used three different types of metrics as indication of how well the model was
capable of predicting the triples in the test set: mean reciprocal rank (MRR),
hits@N, and mean rank (MR). Reciprocal rank measures the correctness of a

ranked triple, and mean RR is defined as MRR = 1
|Q|

∑|Q|
i=1

1
ranki

, where Q

is the number of triples and ranki the rank of the ith triple predicted by the
model. Hits@N indicates how many triples are ranked in the top N positions when
ranked against corruptions, i.e.: Hits@N = 1

|Q|
∑

(s,p,o)∈Q ind(rank(s, p, o) ≤ N)

where Q is the triples in the test set, (s, p, o) is a triple ∈ Q, and ind(·) is an

10 https://github.com/Accenture/AmpliGraph
11 https://github.com/roosyay/CoDa_Hypotheses
12 https://coda.triply.cc/
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indicator function returning 1 if the positive triple is in the top N triples, 0
otherwise. We use three values for N , namely 1, 3 and 10. Finally, the MR score
is the sum of the true ranks divided by the total amount of ranks, defined as

MR = 1
|Q|

∑|Q|
i=1 rank(s,p,o)i . Note that the MR score is not robust to outliers,

and is therefore only taken into account together with the other metrics. An
overview of the model performance can be found in Table 5. Overall, these scores
indicate a reasonable model performance but some room for improvement. Our
approach only includes one type of model and one dataset, hence a more extended
assessment should be considered in the future.

Table 5. Model performance evaluation metrics.

MRR Hits@10 Hits@3 Hits@1 MR

0.68 0.75 0.69 0.64 279.91

5.2 Qualitative Analysis

To get insight into how the model effectively learnt the data, we created a vi-
sualisation of the main independent variables (see Figure 3). To do this, the
400-dimensional embeddings of 128 unique independent variables were retrieved
from the trained model and transformed into an array of (128, 400). We used a
UMAP reduction to reduce the 400 dimensions to 2 only, allowing then to display
the embeddings in a 2-dimensional space. In order to find the optimal number of
clusters in this space, we used an elbow method measuring the Within-Cluster
Sums of Squares (WCSS) without finding any significant distinction. We there-
fore used a silhouette analysis, revealing that 23 clusters was the best balance
between the number of clusters and a relatively high silhouette score (silhouette
score=0.49). Clusters were obtained using scikit-learn’s KMeans (K=23) and the
visualisation was obtained using the Matplotlib package.

As shown in Figure 3, most clusters are groups of variables that are rdfs:sub-

ClassOf the same class. For example, in clusters 3, 11 and 15, all the variables re-
lated to respectively punishment, emotion and leadership are clustered together.
Clusters such as 2 and 13 seem to have less cohesion, as no overarching topics
can be found that group IVs together. This can be due by a larger variety of the
studies that analysed these IV, and potentially a lack of more data. Both clusters
also include variables related to reward, showing that studies with reward-related
IV are more heterogeneous and were not grouped together.

5.3 Domain Expert Evaluation

In order to qualitatively evaluate the generated hypotheses, 5 domain experts
from the CODA team were asked to fill out a user-study. A Google form was
created where the experts, after receiving information about the background
and the goal of the study, were shown the 10 most likely and 10 most unlikely
hypotheses predicted by the model. The 20 hypotheses were shown in a random
order using the structure presented in Section 4.3. The experts were asked to
indicate which 10 hypotheses they considered likely, and which 10 unlikely. A
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Fig. 3. Independent variables grouped in 23 clusters. Please cfr. Visualisation.ipynb on
Github for better quality.

final part for remarks was also included.
Table 6 shows how the experts rated the likelihood of the hypotheses. These

can be easily read as “[Hypothesis Statement] when comparing [T1 value] vs.
[T2 value]”, e.g. “SVO type has negative effect on cooperation when comparing
a group of individualists vs. a group of competitors”. Two hypotheses including
miscellaneous IV values did not make sense according to the experts and were
omitted. Overall, the majority of the experts rated 12 out of 18 hypotheses as
the model did, while only 6 hypotheses were rated opposite of the model. Out
of 5 experts, 2 rated more than 9 hypotheses the same as the model, which
is higher than chance level, while the other 3 experts scored exactly on chance
level. No experts scored below chance level. It should be noted that some experts
took more time to fill the evaluation form, as they provided more details in the
open-ended questions, and some variety could be seen in how experts rated the
hypotheses. We relate this to the complexity of social science data, causing dif-
ferent perspectives to reach different conclusions. Looking at the overall average
however, the experts rated 10 hypotheses the same as the model did. This shows
that the model output is not random, and that similarities between the expert
opinions and the model were found. More in general, we consider our results
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encouraging enough to confirm the idea that a link prediction-based approach is
a valuable method to predict hypotheses over structured data.

Table 6. Expert evaluation. #L and #UL refer to the number of experts scoring a
hypothesis as likely and unlikely, respectively. Pred. indicates the model prediction.

Hypothesis Statement T1 value T2 value #L #UL Pred.
1 MPCR has positive effect on con-

tributions
(−0.401, 0.3) (0.3, 0.5) 3 2 likely

2 partner’s group membership has
negative effect on contributions

ingroup ingroup and out-
group

0 5 likely

3 intergroup competition has posi-
tive effect on contributions

individual group intergroup competi-
tion

4 1 likely

4 anonymity manipulation has
positive effect on cooperation

high low 3 2 likely

5 time pressure has negative effect
on contributions

time-pressure time delay 2 3 likely

6 SVO type has negative effect on
cooperation

individualist competitor 3 2 likely

7 ethnicity (us) has positive effect
on cooperation

white black or african
american

1 4 likely

8 iterated strategy has positive ef-
fect on cooperation

predominantly
cooperative

other 4 1 likely

9 nationality has negative effect on
contributions

JPN AUS 3 2 unlikely

10 exit option has negative effect on
contributions

0 1 2 3 unlikely

11 exit option has positive effect on
contributions

0 1 1 4 unlikely

12 emotion has negative effect on
cooperation

neutral disappointment 2 3 unlikely

13 emotion has positive effect on co-
operation

neutral disappointment 2 3 unlikely

14 preference for conditional coop-
eration has negative effect on co-
operation

freeriders hump-shaped con-
tributors

4 1 unlikely

15 uncertainty target has positive
effect on cooperation

loss threshold 4 1 unlikely

16 iterated strategy has positive ef-
fect on contributions

tit-for-tat tit-for-tat+1 1 4 unlikely

17 preference for conditional coop-
eration has positive effect on co-
operation

freeriders hump-shaped-
contributors

1 4 unlikely

18 uncertainty target has negative
effect on cooperation

loss threshold 0 5 unlikely

6 Conclusions
We have introduced an approach to automatically support domain experts to
identify new research hypotheses. The approach is based on a link prediction
task over a knowledge graph in the social science domain, where new edges be-
tween nodes are predicted in order to create fully formulated hypotheses in the
form of a hypothesis statement, a hypothesis evidence and a hypothesis history.
The quantitative and qualitative evaluation carried using experts in the field
has shown encouraging results, namely that a simple combination of machine
learning and knowledge graphs methods can support designing more complex
systems for the automated scientific discovery.

Improvements of our approach could be made as future work, namely by op-
timising the data modelling and the machine learning approach for social science
data. Such type of data has in fact an uncertain nature, and missing information
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can create an inner bias in the model and have implications for the results. Solu-
tions to cope with such bias should be investigated. As mentioned, the approach
should be also tested on datasets of different domains to see how it could perform.
Some information from the data was lost due to binning continuous variables
(including effect size values), and the learning task could be improved on this
aspect. An end-to-end task could be envisioned to learn the subgraphs directly,
instead of pre-processing them and reducing the task to predicting one link be-
tween two entities. Finally, our model generally predicted only links with the
highest probabilities based on statistical frequency learnt from the data struc-
ture. An interesting avenue would be to investigate what makes an hypothesis
interesting other than popularity, and how to learn them.
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