
Published as a conference paper at ICLR 2023

DEP-RL: EMBODIED EXPLORATION FOR
REINFORCEMENT LEARNING IN
OVERACTUATED AND MUSCULOSKELETAL SYSTEMS

Pierre Schumacher1,2 Daniel F.B. Haeufle2,3 Dieter Büchler1 Syn Schmitt3 Georg Martius1
1Max Planck Institute for Intelligent Systems, Tübingen, Germany
2Hertie-Institute for Clinical Brain Research, Tübingen, Germany
3Institute for Modelling and Simulation of Biomechanical Systems, Stuttgart, Germany

ABSTRACT

Muscle-actuated organisms are capable of learning an unparalleled diversity of
dexterous movements despite their vast amount of muscles. Reinforcement learn-
ing (RL) on large musculoskeletal models, however, has not been able to show
similar performance. We conjecture that ineffective exploration in large overactu-
ated action spaces is a key problem. This is supported by our finding that common
exploration noise strategies are inadequate in synthetic examples of overactuated
systems. We identify differential extrinsic plasticity (DEP), a method from the
domain of self-organization, as being able to induce state-space covering explo-
ration within seconds of interaction. By integrating DEP into RL, we achieve fast
learning of reaching and locomotion in musculoskeletal systems, outperforming
current approaches in all considered tasks in sample efficiency and robustness.1

a ∈ R2...600 a ∈ R6...600 a ∈ R50 a ∈ R52 a ∈ R120 a ∈ R18 a ∈ R18

Figure 1: We achieve robust control on a series of overactuated environments. Left to right:
torquearm, arm26, humanreacher, ostrich-foraging, ostrich-run, human-run, human-hop

1 INTRODUCTION

It is remarkable how biological organisms effectively learn to achieve robust and adaptive behavior
despite their largely overactuated setting—with many more muscles than degrees of freedom. As
Reinforcement Learning (RL) is arguably a biological strategy (Niv, 2009), it could be a valuable
tool to understand how such behavior can be achieved, however, the performance of current RL
algorithms has been severely lacking so far (Song et al., 2021).
One pertinent issue since the conception of RL is how to efficiently explore the state space (Sutton &
Barto, 2018). Techniques like ϵ-greedy or zero-mean uncorrelated Gaussian noise have dominated
most applications due to their simplicity and effectiveness. While some work has focused on
exploration based on temporally correlated noise (Uhlenbeck & Ornstein, 1930; Pinneri et al., 2020),
learning tasks from scratch which require correlation across actions have seen much less attention.
We therefore investigate different exploration noise paradigms on systems with largely overactuated
action spaces.
The problem we aim to solve is the generation of motion through numerous redundant muscles. The
natural antagonistic actuator arrangement requires a correlated stimulation of agonist and antagonist
muscles to avoid canceling of forces and to enable substantial motion. Additionally, torques generated
by short muscle twitches are often not sufficient to induce adequate motions on the joint level due to

1See https://sites.google.com/view/dep-rl for videos and code.

1

https://sites.google.com/view/dep-rl

Published as a conference paper at ICLR 2023

chemical low-pass filter properties (Rockenfeller et al., 2015). Lastly, the sheer number of muscles
in complex architectures (humans have more than 600 skeletal muscles) constitutes a combinatorial
explosion unseen in most RL tasks. Altogether, these properties render sparse reward tasks extremely
difficult and create local optima in weakly constrained tasks with dense rewards (Song et al., 2021).

Consequently, many applications of RL to musculoskeletal systems have only been tractable under
substantial simplifications. Most studies investigate low-dimensional systems (Tahami et al., 2014;
Crowder et al., 2021) or simplify the control problem by only considering a few muscles (Joos et al.,
2020; Fischer et al., 2021). Others, first extract muscle synergies (Diamond & Holland, 2014), a
concept closely related to motion primitives, or learn a torque-stimulation mapping (Luo et al., 2021)
before deploying RL methods. In contrast to those works, we propose a novel method to learn
control of high-dimensional and largely overactuated systems on the muscle stimulation level. Most
importantly, we avoid simplifications that reduce the effective number of actions or facilitate the
learning problem, such as shaped reward functions or learning from demonstrations.

In this setting, we study selected exploration noise techniques and identify differential extrinsic
plasticity (DEP) (Der & Martius, 2015) to be capable of producing effective exploration for muscle-
driven systems. While originally introduced in the domain of self-organization, we show that DEP
creates strongly correlated stimulation patterns tuned to the particular embodiment of the system
at hand. It is able to recruit muscle groups effecting large joint-space motions in only seconds
of interaction and with minimal prior knowledge. In contrast to other approaches which employ
explicit information about the particular muscle geometry at hand, e.g. knowledge about structural
control layers or hand-designed correlation matrices (Driess et al., 2018; Walter et al., 2021), we only
introduce prior information on which muscle length is contracted by which control signal in the form
of an identity matrix. We first empirically demonstrate DEP’s properties in comparison to popular
exploration noise processes before we integrate it into RL methods. The resulting DEP-RL controller
is able to outperform current approaches on unsolved reaching (Fischer et al., 2021) and running
tasks (Barbera et al., 2021) involving up to 120 muscles.

Contribution (1) We show that overactuated systems require noise correlated across actions for
effective exploration. (2) We identify the DEP (Der & Martius, 2015) controller, known from the
field of self-organizing behavior, to generate more effective exploration than other commonly used
noise processes. This holds for a synthetic overactuated system and for muscle-driven control—our
application area of interest. (3) We introduce repeatedly alternating between the RL policy and DEP
within an episode as an efficient learning strategy. (4) We demonstrate that DEP-RL is more robust in
three locomotion tasks under out-of-distribution (OOD) perturbations.

To our knowledge, we are the first to control the 7 degrees of freedom (DoF) human arm model (Saul
et al., 2015) with RL on a muscle stimulation level—that is with 50 individually controllable muscle
actuators. We also achieve the highest ever measured top speed on the simulated ostrich (Barbera
et al., 2021) with 120 muscles using RL without reward shaping, curriculum learning, or expert
demonstrations.

2 RELATED WORKS

Muscle control with RL Many works that apply RL to muscular control tasks investigate low-
dimensional setups (Tieck et al., 2018; Tahami et al., 2014; Crowder et al., 2021) or manually group
muscles (Joos et al., 2020) to simplify learning. Fischer et al. (2021) use the same 7 DoF arm as
we do, but simplify control by directly specifying joint torques a ∈ R7 and only add activation
dynamics and motor noise. Most complex architectures are either controlled by trajectory optimization
approaches (Al Borno et al., 2020) or make use of motion capture data (Lee et al., 2019). Barbera et al.
(2021) also only achieved a realistic gait with the use of demonstrations from real ostriches; learning
from scratch resulted in a slow policy moving in small jumps. Some studies achieved motions on real
muscular robots(Driess et al., 2018; Buchler et al., 2016), but were limited to simple morphologies
and small numbers of muscles.

NeurIPS challenges Multiple challenges on musculoskeletal control (Kidziński et al., 2018; Kidziński
et al., 2019; Song et al., 2021) using OpenSim (Delp et al., 2007) have been held. The top-ten
submissions from Kidziński et al. (2018) resorted to complex ensemble architectures and made use
of parameter- or OU-noise. High-scoring solutions in (Kidziński et al., 2019) were commonly using
explicit reward shaping, demonstrations, or complex training curricula with selected checkpoints,

2

Published as a conference paper at ICLR 2023

all of which required extensive hand-crafting. In contrast, our RL agent uses a standard two-layer
architecture, no curriculum, no reward shaping, and no demonstrations.
Large action spaces Some studies (Farquhar et al., 2020; Synnaeve et al., 2019) tackle large action
spaces by growing them iteratively from smaller versions. This would, however, require a priori
knowledge of which muscle groups correspond to each other—which DEP learns by itself. Tavakoli
et al. (2021) present a hypergraph-based architecture that scales in principle to continuous action
spaces. Again, as it is not clear which muscles should be grouped, the number of possible hypergraphs
is intractable. Other works (Dulac-Arnold et al., 2016; Wang et al., 2016) deal with large virtual
action spaces, but only for discrete actions. Finally, studies on action priors(Biza et al., 2021; Singh
et al., 2021) learn initially from expert data to bootstrap policy learning. Our method scales to large
continuous action spaces and does not require demonstrations.
Action space reduction with muscles Several works use architectures reducing the control dimen-
sionality before deploying RL methods. Luo et al. (2021) learn a muscle-coordination network that
maps desired joint torques to muscle excitations to act on PD controllers. Jiang et al. (2019) establish a
correction network that imposes output limits on torque actuators, enabling them to reproduce muscle
behavior. However, these methods require specific data collection strategies and prior knowledge
on joint ranges, forces or desired behaviors, before applying RL. While they simplify learning and
enable large-scale control, our approach is simpler in execution, does not require knowledge about the
specific muscular architecture and works with simulators of varying detail, including elastic tendons.
Some works use PCA or other techniques to extract synergies and learn on them (Al Borno et al.,
2020; Zhao et al., 2022), but they either require human data or expert demonstrations. Our approach
can readily be applied to a large range of systems with only minimal tuning.

3 BACKGROUND

Reinforcement learning We consider discounted episodic Markov Decision Processes (MDP)
M = (S,A, r, p, p0, γ), where A is the action space, S the state space, r : S × A → R is the
reward function, p(s′|s, a) the transition probability, p0(s) the initial state distribution and γ is the
discount factor. The objective is to learn a policy π(a|s) that maximizes the expected discounted
return J = Eπ

∑
t γ

trt, where rt are observed when rolling out π. For goal-reaching tasks, we define
a goal space G with r(s, a, g) being 0 when s reached the goal g and -1 everywhere else. The policy
is then also conditioned on the goal πg(a|s, g) following Schaul et al. (2015).

Muscle modeling In all our MuJoCo experiments, we use the MuJoCo internal muscle model,
which approximates muscle characteristics in a simplified way that is computationally efficient but
still reproduces many significant muscle properties. One limitation consists in the non-elasticity of
the tendon. This reduces computation time immensely, but also renders the task fully observable, as
muscle length feedback now uniquely maps to the joint configuration. Experiments with a planar
humanoid were conducted in HyFyDy (Geijtenbeek, 2019; 2021), a fast biomechanics simulator that
contains elastic tendons and achieves similar accuracy to the widely used OpenSim software. See
Suppl. A.4 for details on the MuJoCo muscle model.

Limitations of uncorrelated noise in (vastly) overactuated systems The defining property of an
overactuated system is that the number of actuators exceeds the number of degrees of freedom. Let us
consider a hypothetical 1 DoF system, where we replace the single actuator with maximum force FM

by n actuators, each contributing maximally with force FM/n. The force for a particular actuator
is then Fi = (FM/n) fi, with fi ∈ [−1, 1], while the total force is F =

∑n
i Fi =

∑n
i F̂i/n. We

define F̂i = FM fi to make the dependence on n clear. What happens if we apply random noise to
such a system? The variance of the resulting torque is:

Var

(
n∑

i=1

F̂i

n

)
=

1

n2

n∑
i=1

Var
(
F̂i

)
+

1

n2

∑
i ̸=j

Cov(F̂i, F̂j). (1)

For i.i.d. noise with fixed variance Var(F̂i) = σ2, as typically used in RL, the first term decreases
with 1/n and the second term is zero. Thus, for large n the effective variance will approach zero. The
logical solution would be to increase the variance of each actuator, but as no realistic actuator can
output an arbitrarily large force, the maximum achievable variance is bounded. Clearly, a vanishing
effective variance cannot result in adequate exploration. For correlated noise, the second term in

3

Published as a conference paper at ICLR 2023

Eq. 1 has n2 − n terms and decays with 1 − 1/n, so it can avoid vanishing and might be used to
increase the effective variance.

4 METHODS

4.1 DIFFERENTIAL EXTRINSIC PLASTICITY (DEP)

Hebbian learning (HL) rules are widely adopted in neuroscience. They change the strength of a
connection between neurons proportional to their mutual activity. However, when applied in a control
network that connects sensors to actuators, all activity is generated by the network itself and thus
the effect of the environment is largely ignored. In contrast, differential extrinsic plasticity (DEP), a
learning rule capable of self-organizing complex systems and generating coherent behaviors (Der &
Martius, 2015), takes the environment into the loop. Consider a controller:

at = tanh(κCst + ht), (2)

with the action at ∈ Rm, the state st ∈ Rn, a learned control matrix C ∈ Rm×n, a time-dependent
bias ht ∈ Rn and an amplification constant κ ∈ R. The DEP state is only constituted of sensors
related to the actuators, in contrast to the more general RL state. We only consider the initialization
Cij = 0. To be able to react to the environment, an update rule is required for the control matrix C. A
Hebbian rule proposes Ċij ∝ ai,t sj,t, while a differential Hebbian rule might be Ċij ∝ ȧi,t ṡj,t. The
differential rule changes C according to changes in the sensors and actions, but there is no connection
to the consequences of actions, as only information of the current time step is used.

DEP proposes several changes: (1) There is a causal connection to the future time step Ċ ∝
f(ṡt)ṡ

⊤
t−∆t, where f(ṡt) = at−∆t is an inverse prediction model and ∆t controls the time scale of

learned behaviors. (2) A normalization scheme for C adjusts relative magnitudes to retain strong
activity in all regions of the state space C̃ij = Cij/(||Cij ||i+ ϵ), with ϵ ≪ 1. (3) The time-dependent
bias term ḣt ∝ −at prevents overly strong actions from keeping the system at the joint limits with
ṡt = 0. This learning rule becomes τĊ = f(ṡt)ṡ

⊤
t−∆t − C: the first term drives changes while the

second one is a first-order decay term. The factor τ tunes the time scale of changing the controller
parameters C. The normalization rescales C at each time step. The velocities of any variable ẋt are
approximated by ẋt = xt − xt−1.

The inverse prediction model f relates observed changes in s to corresponding changes in actions
a that could have led to those changes. In the case where each actuator directly influences one
sensor through the consequences of its action, the simple identity model can be used, similar to prior
work (Der & Martius, 2015; Pinneri & Martius, 2018): f(ṡt) := ṡt. This yields the rule:

τĊ = ṡtṡ
⊤
t−∆t − C. (3)

As a direct consequence, the update of C is driven by the velocity correlation matrix of the
current and the previous state. This means that velocity correlations between state-dimensions
that happen across time, for instance, due to physical coupling, are amplified by strengthening of
corresponding connections between states and actions in Eq. 2. The choice of f implicitly embeds
knowledge of which sensor is connected to which actuator and is assuming an approximately linear
relationship. This knowledge is easily available for technical actuators. In muscle-driven systems,
such a relationship holds for sensors measuring muscle length with f(ṡt) := −ṡt, as muscles contract
with increasing excitations. If there are more sensors per actuator, f can either be a rectangular matrix
or a more complex model that links proprioceptive sensors to actuators.

Pinneri & Martius (2018) has shown that in low-dimensional systems DEP can converge to different
stationary behaviors. Which behavior is reached is highly sensitive to small perturbations. We observe
that with high-dimensional and chaotic environments, the stochasticity injected by the randomization
after episode resets is sufficient to prevent a behavioral deprivation. In practice, we use DEP in
combination with an RL policy, such that the interplay will force DEP out of specific limit cycles,
similar to the interventions of the human operator in Martius et al. (2016). Intuitively, DEP is able to
quickly coerce a system into highly correlated motions by “chaining together what changes together”.
More details can be found in Suppl. B.3 and in Der & Martius (2015), while Suppl. C.7 contains an
application of DEP to a simple 1D-system elucidating the principal mechanism.

4

Published as a conference paper at ICLR 2023

4.2 INTEGRATING DEP AS EXPLORATION IN REINFORCEMENT LEARNING (DEP-RL)

Integrating the rapidly changing policy of DEP into RL algorithms requires some considerations.
DEP is an independent network and follows its own gradient-free update rule, which cannot be
easily integrated into gradient-based RL training. Summing actions of DEP and the RL policy,
as with conventional exploration noise, leads in our experience to chaotic behavior, hindering
learning (Suppl. C.2). Therefore, we consider a different strategy: The DEP policy is taking over
control completely for a certain time interval, similar to intra-episode exploration (Pislar et al., 2022);
RL policy π and exploration policy Eq. 2 are alternating in controlling the system. While we tested
many different integrations (Suppl. B.3 and C.2), we here use the following components:

Intra-episode exploration DEP and RL alternate within each episode according to a stochastic
switching procedure. After each policy sampling, DEP takes over with probability pswitch. Actions
are then computed using DEP for a fixed time horizon HDEP, before we alternate back to the policy.
In this way, the policy may already approach a goal before DEP creates unsupervised exploration.

Initial exploration As DEP is creating exploration that excites the system into various modes, we
suggest running an unsupervised pre-training phase with exclusive DEP control. The data collected
during this phase is used to pre-fill the buffer for bootstrapping the learning progress in off-policy RL.

5 EXPERIMENTS

We first conduct synthetic experiments that investigate the exploration capabilities of colored
noise (Timmer & König, 1995; Pinneri et al., 2020) (see Suppl. A.2 and A.3), Ornstein-Uhlenbeck
(OU) noise (Uhlenbeck & Ornstein, 1930), and DEP by measuring state-space coverage in torque- and
muscle-variants of a synthetically overactuated planar arm. OU-noise, in particular, was a common
choice in previous muscular control challenges (Song et al., 2021; Kidziński et al., 2018; Kidziński
et al., 2019). Afterwards, DEP-RL is applied to the same setup to assure that the previous findings are
relevant for learning. Finally, we apply DEP-RL to challenging reaching and locomotion tasks, among
which humanreacher and ostrich-run have not been solved with adequate performance so far. Even
though DEP-RL could be combined with any off-policy RL algorithm, we choose MPO (Abdolmaleki
et al., 2018) as our learning algorithm and will refer to the integration as DEP-MPO from now on.
See Suppl. B.1 for details. We use 10 random seeds for each experiment if not stated otherwise.

5.1 ENVIRONMENTS

Ostrich-run and -foraging are taken from Barbera et al. (2021), while all of its variants and all other
tasks, including specifications of state spaces and reward functions, are constructed by us from
existing geometrical models. We use SCONE (Geijtenbeek, 2019; 2021) for the bipedal human tasks
and MuJoCo (Ikkala & Hämäläinen, 2022; Todorov et al., 2012) for the arm-reaching tasks. See
Suppl. B.2 for details.

torquearm A 2-DoF planar arm that moves in a 2D plane and is actuated by 2 torque generators.
arm26 torquearm driven by 6 muscles. The agent has to reach random goals with sparse rewards.
humanreacher A 7-DoF arm that moves in full 3D. It is actuated by 50 muscles. The agent has to
reach goals that randomly appear in front of it at “face”-height. The reward function is sparse.
ostrich-run A bipedal ostrich needs to run as fast as possible in a horizontal line and is only provided
a weakly-constraining reward in form of the velocity of its center of mass, projected onto the x-axis.
Only provided with this generic reward and without motion capture data, a learning agent is prone to
local optima. The bird possesses 120 individually controllable muscles and moves in full 3D.
ostrich-foraging An ostrich neck and head actuated by 52 muscles need to reach randomly appearing
goals with the beak. We changed the reward from the original environment to be sparse.
ostrich-stepdown Variant of ostrich-run which involves a single step several meters from the start.
The height is adjustable and the position of the step randomly varies with ∆x ∼ N (∆x|0, 0.2). The
task is successful if the ostrich manages to run for ≈ 10 meters past the step. The reward is sparse.
ostrich-slopetrotter The ostrich runs across a series of half-sloped steps. Conventional steps would
disadvantage gaits with small foot clearance, while the half-slope allows most gaits to move up the
step without getting stuck. The task reward is the achieved distance, given at the end.
human-run An 18-muscle planar human runs in a straight line as fast as possible. The reward is the
COM-velocity. The model is the same as in the NeurIPS challenge (Kidziński et al., 2018).

5

Published as a conference paper at ICLR 2023

human-hop The reward equals 1 if the human’s COM-height exceeds 1.08 m, otherwise it is 0.
human-stepdown The human runs across slopes before encountering a step of varying height.
human-hopstacle The human has to jump across two slanted planes and a large drop without falling.

We observed a critical bug in ostrich-run which we fixed for our experiments. This explains the
differing results for the baseline from Barbera et al. (2021) in Sec. 5.4. See Suppl. B.2 for details.

5.2 EXPLORATION WITH OVERACTUATED SYSTEMS

Primarily, we are interested in efficient control of muscle-driven systems. These systems exhibit a
large degree of action redundancy—in addition to a myriad of nonlinear characteristics. Thus, we
create an artificial setup allowing us to study exploration of overactuated systems in isolation.

2
ac

tio
ns

60
0

ac
tio

ns

White OU DEP

ha
nd

-y

hand-x

ha
nd

-y

hand-x hand-x

(a) torquearm trajectories

White Pink Red OU DEP

2 12 30 60 600

of actions

0.0

0.2

0.4

0.6

st
at

e
co

ve
ra

ge

(b) torquearm state coverage

6 12 30 60 600

of actions

0.05

0.10

0.15

0.20

0.25

st
at

e
co

ve
ra

ge

(c) arm26 state coverage
Figure 2: Only DEP reaches adequate state-space coverage for all considered action spaces.
(a) Hand trajectories are collected during 50 episodes of 1000 iterations (∆t = 10 ms) of pure
exploration with different noise strategies. We show hand trajectories for the original action space
a ∈ R2 (top) and the expanded action space a ∈ R600 (bottom). (b) Endeffector-space coverage for
torquearm. (c) Endeffector-space coverage for arm26.

Overactuated torque-driven system In the default case, the robot (Fig. 1: torquearm) can be
controlled by specifying desired joint torques a ∈ R2. We now artificially introduce an action space
multiplier n, such that the control input grows to 2n. To apply this new control vector to the original
system, we average the actions into the original dimensionality, keeping maximal torques identical:

ak =
1

n

n∑
j=1

âj+n(k−1), (4)

where âj is the inflated action and k ∈ [1, 2] for our system. We emphasize that we not only have
more actions but also capture important characteristics of an overactuated system, the redundancy.
As predicted in Sec. 3, we observe that redundant actuators decrease the effective exploration when
using uncorrelated Gaussian (white) noise (compare 2 vs. 600 actions in Fig. 2 (a, b)). Also, for
correlated pink and red colored noise or OU-noise, the exploration decays with an increasing number
of actions. Only DEP covers the full endeffector space for all setups. See Suppl. A.1 for details on
the used coverage metric and Suppl. C.1 for more visualizations.

Overactuated muscle-driven system Consider now a system with individually controlled muscle
actuators (Fig. 1: arm26). This architecture is already overactuated as multiple muscles are connected
to each joint, the two biarticular muscles (green) even span two joints at the same time. In addition,
we apply Eq. 4 to create virtual redundant action spaces. In Figure 2 (c), we see that most noise
processes perform even worse than in the previous example, even though the number of actions is
identical. Only DEP again reaches full endeffector-space coverage for any investigated number of
actions. These results suggest that the heterogeneous redundant structure and activation dynamics of
muscle-actuators require exploration strategies correlated across time and across actions to induce
meaningful endeffector-space coverage, which DEP can generate.
We emphasize that all noise strategies for experiments in Sec. 5.2 were individually optimized to
produce maximum sample-entropy for each system and for each action space, while DEP was tuned
only once to maximize the joint-space entropy of the humanreacher environment. We additionally
observe that all strategies consequently produce outputs close to the boundaries of the action space,
known as bang-bang control, maximizing the variance of the resulting joint torque (Sec. 3).

6

Published as a conference paper at ICLR 2023

RL with muscles While the previous results demonstrate that the exploration issue is significant,
it is imperative to demonstrate the effect in a learning scenario. We therefore train an RL agent for
differently sized action spaces and compare its performance to our DEP-MPO. Figure 3 shows that
the performance of the MPO agent strongly decreases with the number of available actions, while the
DEP-MPO agent performs well even with 600 available actions, which is the approximate number of
muscles in the human body. DEP-MPO strongly benefits from the improved exploration of DEP. We
repeated the experiment with sparse rewards and HER in Suppl. C.6, the results are almost identical.

6 actions 30 actions 600 actions

0.0 0.5 1.0

steps ×107

0.0

0.5

1.0

su
cc

es
s

ra
te

DEP-MPO
MPO

0.0 0.5 1.0

steps ×107

0.0 0.5 1.0

steps ×107

arm26 - virtual

6 12 30 60 600

of actions

0.0

0.5

1.0

cu
m

ul
.s

uc
ce

ss
ra

te

Figure 3: DEP-MPO outperforms MPO in sparse point-reaching for arm26 with all virtual
action spaces. Left: Learning performance decays with a growing number of actions for MPO,
DEP-MPO is largely unaffected. Right: Training-averaged success rates for different action spaces.

5.3 SPARSE REWARD TASKS WITH UP TO 52 ACTUATORS

We now apply our algorithm to realistic control scenarios with large numbers of muscles. As many
sparse reward goal-reaching tasks are considered in this section, we choose Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017; Crowder et al., 2021) as a natural baseline. Generally,
DEP-MPO performs much better than vanilla MPO (Fig. 4). For the more challenging environments,
the combination of DEP with HER yields the best results.
DEP-MPO also solves the human-hop task, which is not goal-conditioned. As the reward is only
given for exceeding a threshold COM-height, MPO never encounters a non-zero reward.
To the best of our knowledge, we are the first to control the 7-DoF human arm with RL on a muscle
stimulation level—that is with 50 individually controllable muscle actuators. In contrast, (Fischer
et al., 2021) only added activation dynamics and motor noise to 7 torque-controlled joints a ∈ R7.

DEP-MPO MPO DEP-HER-MPO HER-MPO

0.0 2.5 5.0

steps ×106

0.0

0.5

1.0

su
cc

es
s

ra
te

0.0 0.5 1.0 1.5

steps ×107

0 1 2

steps ×107

0.00 0.25 0.50 0.75 1.00

steps ×107

0

2

4

6

re
tu

rn

×102

(a) arm26 (b) ostrich-foraging (c) humanreacher (d) human-hop

Figure 4: Training performance for all sparse tasks. (a) DEP-MPO and DEP-HER-MPO quickly
solve the task. (b) While DEP-HER-MPO performs on par with HER-MPO, DEP-MPO allows the
agent to solve the task in contrast to MPO. (c) DEP-MPO achieves better data-efficiency over MPO,
while the best agent is DEP-HER-MPO. We conjecture that HER enables more effective use of the
unsupervised data. (d) DEP-MPO finds sparse rewards even in the absence of goal-conditioning,
which makes the application of HER infeasible. MPO does not encounter any non-zero reward.

5.4 APPLICATION TO BIPEDAL LOCOMOTION

While the results above show that DEP-RL performs well on several reaching tasks where a complete
state-space coverage is desirable, it is unclear how it handles locomotion. Useful running gaits only
occupy a minuscule volume in the behavioral space and unstructured exploration leads to the agent
falling down very often. To test this, we apply DEP-RL to challenging locomotion tasks involving an
18-muscle human and a 120-muscle bipedal ostrich. As Barbera et al. (2021) also attempted to train

7

Published as a conference paper at ICLR 2023

a running gait from scratch, we choose their implementation of TD4 as a baseline for ostrich-run,
while we provide MPO and DEP-MPO agents. See Suppl. C.4 for additional baselines.

High velocity running When applying DEP-MPO to the human-run task (Fig. 5, left), we observe
similar initial learning between MPO and DEP-MPO. At ≈ 106 steps, DEP-MPO policies suddenly
increase in performance after a plateau. This coincides with the switch to an alternating gait, which is
faster than an asymmetric gait. At the end of training, 5 out of 5 random seeds achieve an alternating
gait with symmetric leg extensions, while MPO only achieves this for 1 out of 5 seeds (Fig. 5, right).
In ostrich-run, we observe faster initial learning for DEP-MPO (Fig. 6, left). There is, however, a
drop in performance after which the results equalize with MPO. Looking at the best rollout of the
10 evaluation episodes for each point in the curve (Fig. 6), we observe that some DEP-MPO trials
perform much better than the average. If we consequently record the velocity of the fastest policy
checkpoint from all runs for each method, we observe that DEP-MPO achieves the largest ever
measured top speed (Fig. 7, right). The DEP-MPO policy is also characterized by overall stronger leg
extension and symmetric alternation of feet positions. See Suppl. C.5 for visualizations.
In contrast, extensive hyperparameter tuning did not lead to better asymptotic performance for MPO
(Suppl. B.6), nor did other exploration noise types (Suppl. C.4).

0 1 2

steps ×107

0

2000

re
tu

rn

mean rollout

0 1 2

steps ×107

best rollout

DEP-MPO
MPO

left foot right foot
−0.5

0.0

0.5

av
g.

re
la

tiv
e

x
(m

) DEP-MPO

left foot right foot

MPO

Figure 5: DEP improves performance in the presence of local optima, as seen in human-run.
Left: DEP-MPO initially performs identically to MPO, before a sudden increase in performance can
be observed for all trials. Right: The final gaits learned by DEP-MPO possess high symmetry, as
measured by the averaged relative pelvis-deviation of the feet. Only 1 out of 5 random seeds for
MPO achieves an alternating gait, which coincides with larger velocities and task returns.

mean rollout best rollout

0.0 0.5 1.0

steps ×108

0

2000

4000

6000

re
tu

rn

0.0 0.5 1.0

steps ×108

mean rollout top speed

DEP-MPO MPO TD4

label

0

2000

4000

6000

8000

m
ax

re
tu

rn

**

DEP-MPO MPO TD4

sample

0.0

2.5

5.0

7.5

10.0

m
ax

ve
lo

ci
ty

(m
/s

)

Figure 6: Learning curves and maximal returns for ostrich-run. Left: TD4 learns fast at first,
but only achieves a suboptimal “hopping” gait. DEP-MPO outperforms the final MPO performance
initially, but decays during late training. Even though the returns seem close, DEP-MPO achieves
the fastest ever recorded top speed on the ostrich. Top speeds are averaged over 50 test episodes,
using the fastest checkpoint for each method, marked by diamond markers. Statistical significance
is marked with (**) for p < 0.01 and (***) for p < 0.001 using a student t-test. TD4 return is
significantly lower than both other strategies (***, not shown for clarity of the figure).

Robustness against perturbations To investigate the obtained policies, we evaluate their robustness
to out-of-distribution (OOD) variations in the environment. The policies are trained on a flat ground
(Sec. 5.4) and then frozen, which we call in-distribution (ID). Afterwards, various OOD perturbations
in the form of a large step of varying heights, a series of sloped steps or two inclined planes are
introduced and the performance is measured to probe the robustness of the learned policies.
DEP-MPO yields the most robust controller against stepdown and sloped-step perturbations for all
considered tasks (Fig. 7). As MPO is unable to achieve a good behavior without DEP for human-

8

Published as a conference paper at ICLR 2023

Table 1: Training averaged performance metrics for the considered tasks. (S) marks success rates for
reaching tasks, while (R) marks returns for all other tasks. Tasks for which HER is not applicable are
marked with n.a. We perform student-t tests between the best DEP-augmented policy and the best
non-DEP policy with significance levels: (*): p < 0.05; (**): p < 0.01; (***): p < 0.001

.
DEP-MPO DEP-HER-MPO MPO HER-MPO

arm26 (S) 0.95± 0.01 (***) 0.93± 0.01 a0.62± 0.23 0.85± 0.09
ostrich-foraging (S) 0.42± 0.09 0.90± 0.03 (***) a0.00± 0.01 0.88± 0.03
humanreacher (S) 0.72± 0.16 0.82± 0.12 (*) a0.50± 0.23 0.65± 0.24
human-hop (R) 472± 85 (***) n.a. a0± 0 n.a.
ostrich-run (R) 4432± 702 (**) n.a. 4064± 732 n.a.
human-run (R) 1601± 320 n.a. 1395± 325 n.a.

hopstacle, we compare the performance of DEP-MPO with (OOD) and without (ID) perturbations.
Interestingly, DEP-MPO is very robust, except for one random seed. This policy learned not to hop,
but to move one of its legs above its shoulders, increasing its COM-height. Although hard to achieve,
this behavior is sensitive to perturbations. Final policy checkpoints are used for all experiments.

st
ep

do
w

n
sl

op
et

ro
tte

r

5 10 15 20 25

step height (cm)

0.0

0.5

1.0

su
cc

es
s

ra
te

DEP-MPO MPO TD4
0

20

40

m
ax

di
st

an
ce

(m
)

st
ep

do
w

n
ho

ps
ta

cl
e

5 10 15 20 25

step height (cm)

0.00

0.25

0.50

0.75

su
cc

es
s

ra
te

0 1 2 3 4

random seed

0.0

0.5

1.0

1.5

su
cc

es
s

ra
te

ID
OOD

Figure 7: DEP-MPO is the most robust against all considered perturbations. Ostrich: DEP-MPO
performs best under stepdown perturbations for varying step heights. The starting distance of the
step was randomly varied. For the slopetrotter task, the average achieved distance is largest for
DEP-MPO, although with considerable variability. Human: DEP-MPO also performs better for
stepdown perturbations. For human-hopstacle, 4 out of 5 seeds of DEP-MPO achieve robust hopping.
The remaining seed found a non-hopping solution achieving good returns that is not robust.

To our knowledge, we are the first to produce a robust running gait of this speed with RL applied to a
system with 120 muscles, and we achieve this without reward shaping, curriculum learning or expert
demonstrations. Without demonstrations, Barbera et al. (2021) only achieved a “hopping” behavior.

6 CONCLUSION

We have shown that common exploration noise strategies perform inadequately on overactuated sys-
tems using synthetic examples. We identified DEP, a controller from the domain of self-organization,
of being able to induce state-space covering exploration in this scenario. We then proposed a way
to integrate DEP into RL to apply DEP-RL to unsolved reaching (Fischer et al., 2021) and locomo-
tion (Barbera et al., 2021) tasks. Even though we do not use motion capture data or training curricula,
we were able to outperform all baselines. With this, we provide ample evidence that exploration is a
key issue in the application of RL to muscular control tasks.
Despite the promising results, there are several limitations to the present work. The muscle simulation
in MuJoCo is simplified compared to OpenSim and other software. While we provided results in
the more biomechanically realistic simulator HyFyDy, the resulting motions are not consistent with
human motor control yet. In order for the community to benefit from the present study, further work
integrating natural cost terms or other incentives for natural motion is required. Additionally, the
integration of DEP and RL, while performing very well in the investigated tasks, might not be feasible
for every application. Thus, a more principled coupling between the DEP mechanism and an RL
policy is an interesting future direction.

9

Published as a conference paper at ICLR 2023

7 REPRODUCIBILITY STATEMENT

We provide extensive experimental details in Suppl. B.1, descriptions of all the used environments in
Suppl. B.2 and all used hyperparameters together with optimization graphs in Suppl. B.6. The used RL
algorithms are available from the TonicRL package (Pardo, 2020). The ostrich environment (Barbera,
2022) and the human-run environments are publicly available. The latter was simulated using a
default model in SCONE (Geijtenbeek, 2019), an open-source biomechanics simulation software.
We employed a recent version which includes a Python API, available at: https://github.
com/tgeijten/scone-core. Additionally, we made use of the commercial SCONE plug-in
HyFyDy (Geijtenbeek, 2021), which uses the same muscle and contact model as vanilla SCONE, but
is significantly faster. We further include all environments and variations as well as the used learning
algorithms in the submitted source code. All remaining environments are simulated in MuJoCo,
which is freely available. A curated code repository will be published. We also mention hardware
requirements in Suppl. B.5.

8 ACKNOWLEDGEMENTS

The authors thank Daniel Höglinger for help in prior work, Andrii Zadaianchuck, Arash Tavakoli
and Sebastian Blaes for helpful discussions and Marin Vlastelica, Marco Bagatella and Pavel Kolev
for their help reviewing the manuscript. A special thanks goes to Thomas Geijtenbeek for providing
the scone Python interface. The authors thank the International Max Planck Research School for
Intelligent Systems (IMPRS-IS) for supporting Pierre Schumacher. Georg Martius is a member of the
Machine Learning Cluster of Excellence, EXC number 2064/1 – Project number 390727645. This
work was supported by the Cyber Valley Research Fund (CyVy-RF-2020-11 to DH and GM). We
acknowledge the support from the German Federal Ministry of Education and Research (BMBF)
through the Tübingen AI Center (FKZ: 01IS18039B)

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=S1ANxQW0b.

Mazen Al Borno, Jennifer L. Hicks, and Scott L. Delp. The effects of motor modularity on per-
formance, learning and generalizability in upper-extremity reaching: A computational analysis.
Journal of The Royal Society Interface, 17(167):20200011, 2020. doi: 10.1098/rsif.2020.0011.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
453fadbd8a1a3af50a9df4df899537b5-Paper.pdf.

Vittorio La Barbera. OstrichRL, 2022. URL https://github.com/vittorione94/
ostrichrl.

Vittorio La Barbera, Fabio Pardo, Yuval Tassa, Monica Daley, Christopher Richards, Petar Kormushev,
and John Hutchinson. OstrichRL: A musculoskeletal ostrich simulation to study bio-mechanical
locomotion. In Deep RL Workshop NeurIPS 2021, 2021. URL https://openreview.net/
forum?id=7KzszSyQP0D.

Ondrej Biza, Dian Wang, Robert Platt, Jan-Willem van de Meent, and Lawson L.S. Wong. Action
priors for large action spaces in robotics. In Proceedings of the 20th International Conference
on Autonomous Agents and MultiAgent Systems, AAMAS ’21, pp. 205–213, Richland, SC, 2021.
International Foundation for Autonomous Agents and Multiagent Systems. ISBN 9781450383073.

Dieter Buchler, Heiko Ott, and Jan Peters. A lightweight robotic arm with pneumatic muscles for
robot learning. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pp.
4086–4092. IEEE, 2016. ISBN 978-1-4673-8026-3. doi: 10.1109/ICRA.2016.7487599.

10

https://github.com/tgeijten/scone-core
https://github.com/tgeijten/scone-core
https://openreview.net/forum?id=S1ANxQW0b
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://github.com/vittorione94/ostrichrl
https://github.com/vittorione94/ostrichrl
https://openreview.net/forum?id=7KzszSyQP0D
https://openreview.net/forum?id=7KzszSyQP0D

Published as a conference paper at ICLR 2023

Douglas C. Crowder, Jessica Abreu, and Robert F. Kirsch. Hindsight Experience Replay Improves
Reinforcement Learning for Control of a MIMO Musculoskeletal Model of the Human Arm.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, pp. 1016–1025, 2021. doi:
10.1109/TNSRE.2021.3081056.

Scott L. Delp, Frank C. Anderson, Allison S. Arnold, Peter Loan, Ayman Habib, Chand T. John,
Eran Guendelman, and Darryl G. Thelen. Opensim: Open-source software to create and an-
alyze dynamic simulations of movement. IEEE Trans. Biomed. Engineering, 54(11):1940–
1950, 2007. URL http://dblp.uni-trier.de/db/journals/tbe/tbe54.html#
DelpAALHJGT07.

Ralf Der and Georg Martius. Novel plasticity rule can explain the development of sensorimotor
intelligence. Proceedings of the National Academy of Sciences, 112(45):E6224–E6232, 2015. doi:
10.1073/pnas.1508400112. URL https://www.pnas.org/doi/abs/10.1073/pnas.
1508400112.

A. Diamond and O. E. Holland. Reaching control of a full-torso, modelled musculoskeletal robot
using muscle synergies emergent under reinforcement learning. Bioinspiration & Biomimetics, pp.
016015, 2014. doi: 10.1088/1748-3182/9/1/016015.

Danny Driess, Heiko Zimmermann, Simon Wolfen, Dan Suissa, Daniel Haeufle, Daniel Hennes,
Marc Toussaint, and Syn Schmitt. Learning to Control Redundant Musculoskeletal Systems with
Neural Networks and SQP: Exploiting Muscle Properties. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pp. 6461–6468. IEEE, 2018. ISBN 978-1-5386-3081-5. doi:
10.1109/ICRA.2018.8463160.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan
Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep Reinforcement
Learning in Large Discrete Action Spaces, 2016. URL http://arxiv.org/abs/1512.
07679.

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, and Gabriel
Synnaeve. Growing action spaces. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 3040–3051. PMLR, 7 2020. URL https://proceedings.mlr.
press/v119/farquhar20a.html.

Florian Fischer, Miroslav Bachinski, Markus Klar, Arthur Fleig, and Jörg Müller. Reinforcement
learning control of a biomechanical model of the upper extremity. Scientific Reports, 11(1):14445,
Jul 2021. ISSN 2045-2322. doi: 10.1038/s41598-021-93760-1. URL https://doi.org/10.
1038/s41598-021-93760-1.

Thomas Geijtenbeek. Scone: Open source software for predictive simulation of biological motion.
Journal of Open Source Software, 4(38):1421, 2019. doi: 10.21105/joss.01421. URL https:
//doi.org/10.21105/joss.01421.

Thomas Geijtenbeek. The Hyfydy simulation software, 11 2021. URL https://hyfydy.com.
https://hyfydy.com.

Elena Glassman and Russ Tedrake. A quadratic regulator-based heuristic for rapidly exploring state
space. In 2010 IEEE International Conference on Robotics and Automation, pp. 5021–5028, 2010.
doi: 10.1109/ROBOT.2010.5509718.

D F B Haeufle, M Günther, A Bayer, and * Schmitt, S. Hill-type muscle model with serial damping
and eccentric force-velocity relation. Journal of Biomechanics, pp. 1531–6, 2014. doi: 10.1016/j.
jbiomech.2014.02.009.

Jakob Hollenstein, Auddy Sayantan, Matteo Saveriano, Erwan Renaudo, and Justus Piater. How
do Offline Measures for Exploration in Reinforcement Learning behave? In Knowledge Based
Reinforcement Learning Workshop at IJCAI-PRICAI 2020, Yokohama, Japan , 1 2021. URL
https://iis.uibk.ac.at/public/papers/Hollenstein-2020-KBRL.pdf.

11

http://dblp.uni-trier.de/db/journals/tbe/tbe54.html#DelpAALHJGT07
http://dblp.uni-trier.de/db/journals/tbe/tbe54.html#DelpAALHJGT07
https://www.pnas.org/doi/abs/10.1073/pnas.1508400112
https://www.pnas.org/doi/abs/10.1073/pnas.1508400112
http://arxiv.org/abs/1512.07679
http://arxiv.org/abs/1512.07679
https://proceedings.mlr.press/v119/farquhar20a.html
https://proceedings.mlr.press/v119/farquhar20a.html
https://doi.org/10.1038/s41598-021-93760-1
https://doi.org/10.1038/s41598-021-93760-1
https://doi.org/10.21105/joss.01421
https://doi.org/10.21105/joss.01421
https://hyfydy.com
https://hyfydy.com
https://iis.uibk.ac.at/public/papers/Hollenstein-2020-KBRL.pdf

Published as a conference paper at ICLR 2023

Aleksi Ikkala and Perttu Hämäläinen. Converting biomechanical models from opensim to mujoco.
In Diego Torricelli, Metin Akay, and Jose L. Pons (eds.), Converging Clinical and Engineering
Research on Neurorehabilitation IV, pp. 277–281, Cham, 2022. Springer International Publishing.
ISBN 978-3-030-70316-5.

Yifeng Jiang, Tom Van Wouwe, Friedl De Groote, and C. Karen Liu. Synthesis of biologically realistic
human motion using joint torque actuation. ACM Trans. Graph., 38(4), jul 2019. ISSN 0730-0301.
doi: 10.1145/3306346.3322966. URL https://doi.org/10.1145/3306346.3322966.

Emanuel Joos, Fabien Péan, and Orcun Goksel. Reinforcement learning of musculoskeletal control
from functional simulations. In Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana
Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, and Leo Joskowicz (eds.), Medical
Image Computing and Computer Assisted Intervention – MICCAI 2020, pp. 135–145, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-59716-0.

Łukasz Kidziński, Sharada Prasanna Mohanty, Carmichael F. Ong, Zhewei Huang, Shuchang Zhou,
Anton Pechenko, Adam Stelmaszczyk, Piotr Jarosik, Mikhail Pavlov, Sergey Kolesnikov, Sergey
Plis, Zhibo Chen, Zhizheng Zhang, Jiale Chen, Jun Shi, Zhuobin Zheng, Chun Yuan, Zhihui
Lin, Henryk Michalewski, Piotr Milos, Blazej Osinski, Andrew Melnik, Malte Schilling, Helge
Ritter, Sean F. Carroll, Jennifer Hicks, Sergey Levine, Marcel Salathé, and Scott Delp. Learning
to run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal
environments. In Sergio Escalera and Markus Weimer (eds.), The NIPS ’17 Competition: Building
Intelligent Systems, pp. 121–153, Cham, 2018. Springer International Publishing. ISBN 978-3-
319-94042-7.

Łukasz Kidziński, Carmichael Ong, Sharada Prasanna Mohanty, Jennifer Hicks, Sean F. Carroll,
Bo Zhou, Hongsheng Zeng, Fan Wang, Rongzhong Lian, Hao Tian, Wojciech Jaśkowski, Garrett
Andersen, Odd Rune Lykkebø, Nihat Engin Toklu, Pranav Shyam, Rupesh Kumar Srivastava,
Sergey Kolesnikov, Oleksii Hrinchuk, Anton Pechenko, Mattias Ljungström, Zhen Wang, Xu Hu,
Zehong Hu, Minghui Qiu, Jun Huang, Aleksei Shpilman, Ivan Sosin, Oleg Svidchenko, Aleksandra
Malysheva, Daniel Kudenko, Lance Rane, Aditya Bhatt, Zhengfei Wang, Penghui Qi, Zeyang
Yu, Peng Peng, Quan Yuan, Wenxin Li, Yunsheng Tian, Ruihan Yang, Pingchuan Ma, Shauharda
Khadka, Somdeb Majumdar, Zach Dwiel, Yinyin Liu, Evren Tumer, Jeremy Watson, Marcel
Salathé, Sergey Levine, and Scott Delp. Artificial Intelligence for Prosthetics - challenge solutions.
2019.

Dinant A. Kistemaker, A. J. K. Van Soest, J. D. Wong, I. Kurtzer, and P. L. Gribble. Control of
position and movement is simplified by combined muscle spindle and Golgi tendon organ feedback.
Journal of Neurophysiology, pp. 1126–1139, 2013. doi: 10.1152/jn.00751.2012.

Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. Scalable muscle-actuated human
simulation and control. ACM Transactions on Graphics, pp. 1–13, 2019. doi: 10.1145/3306346.
3322972.

Shuzhen Luo, Ghaith Androwis, Sergei Adamovich, Erick Nunez, Hao Su, and Xianlian Zhou.
Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal
model via deep reinforcement learning, 2021. URL https://doi.org/10.21203/rs.3.
rs-1212542/v1.

Georg Martius, Rafael Hostettler, Alois Knoll, and Ralf Der. Compliant control for soft robots:
Emergent behavior of a tendon driven anthropomorphic arm. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 767–773, 2016. doi: 10.1109/IROS.
2016.7759138.

Andrew William Moore. Efficient memory-based learning for robot control. Technical report,
University of Cambridge, 1990.

Yael Niv. Reinforcement learning in the brain. Journal of Mathematical Psychology, pp. 139–154,
2009. doi: 10.1016/j.jmp.2008.12.005.

Fabio Pardo. Tonic: A deep reinforcement learning library for fast prototyping and benchmarking.
https://github.com/fabiopardo/tonic, 2020.

12

https://doi.org/10.1145/3306346.3322966
https://doi.org/10.21203/rs.3.rs-1212542/v1
https://doi.org/10.21203/rs.3.rs-1212542/v1
https://github.com/fabiopardo/tonic

Published as a conference paper at ICLR 2023

Cristina Pinneri and Georg Martius. Systematic self-exploration of behaviors for robots in a dynamical
systems framework. In Proc. Artificial Life XI, pp. 319–326. MIT Press, Cambridge, MA, 2018.
doi: 10.1162/isal_a_00062. URL https://www.mitpressjournals.org/doi/abs/
10.1162/isal_a_00062.

Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan Achterhold, Joerg Stueckler, Michal
Rolinek, and Georg Martius. Sample-efficient cross-entropy method for real-time planning. In
Conference on Robot Learning (CoRL) 2020, 2020. URL https://corlconf.github.io/
corl2020/paper_217/.

Miruna Pislar, David Szepesvari, Georg Ostrovski, Diana L Borsa, and Tom Schaul. When should
agents explore? In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=dEwfxt14bca.

Christopher T. Richards and Enrico A. Eberhard. In vitro virtual reality: an anatomically explicit mus-
culoskeletal simulation powered by in vitro muscle using closed-loop tissue–software interaction.
Journal of Experimental Biology, 223(10), 05 2020. ISSN 0022-0949. doi: 10.1242/jeb.210054.
URL https://doi.org/10.1242/jeb.210054. jeb210054.

Robert Rockenfeller, Michael Günther, Syn Schmitt, and * Götz, Thomas. Comparative sensitivity
analysis of muscle activation dynamics. Computational and Mathematical Methods in Medicine,
pp. 1–16, 2015. doi: 10.1155/2015/585409.

Jonas Rubenson, Denham B. Heliams, David G. Lloyd, and Paul A. Fournier. Gait selection in
the ostrich: Mechanical and metabolic characteristics of walking and running with and without
an aerial phase. Proceedings of the Royal Society of London. Series B: Biological Sciences, pp.
1091–1099, 2004. doi: 10.1098/rspb.2004.2702.

Katherine R. Saul, Xiao Hu, Craig M. Goehler, Meghan E. Vidt, Melissa Daly, Anca Velisar, and
Wendy M. Murray. Benchmarking of dynamic simulation predictions in two software platforms
using an upper limb musculoskeletal model. Computer Methods in Biomechanics and Biomedical
Engineering, pp. 1445–1458, 2015. doi: 10.1080/10255842.2014.916698.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 1312–1320, Lille,
France, 7 2015. PMLR. URL https://proceedings.mlr.press/v37/schaul15.
html.

T Siebert and * Rode, C. Computational modeling of muscle biomechanics. In Zhongmin Jin
(ed.), Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System,
pp. 173–204. Woodhead Publishing, Elsevier, 1 edition, 2014. ISBN 978-0-85709-661-6. doi:
10.1533/9780857096739.2.173.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Parrot:
Data-driven behavioral priors for reinforcement learning. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=Ysuv-WOFeKR.

Seungmoon Song, Łukasz Kidziński, Xue Bin Peng, Carmichael Ong, Jennifer Hicks, Sergey
Levine, Christopher G. Atkeson, and Scott L. Delp. Deep reinforcement learning for modeling
human locomotion control in neuromechanical simulation. Journal of NeuroEngineering and
Rehabilitation, 18(1):126, Aug 2021. ISSN 1743-0003. doi: 10.1186/s12984-021-00919-y. URL
https://doi.org/10.1186/s12984-021-00919-y.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, 2018. ISBN 0-262-03924-9.

Gabriel Synnaeve, Jonas Gehring, Zeming Lin, Daniel Haziza, Nicolas Usunier, Danielle Rothermel,
Vegard Mella, Da Ju, Nicolas Carion, Laura Gustafson, and Daniel Gant. Growing Up Together:
Structured Exploration for Large Action Spaces. 2019. URL https://openreview.net/
forum?id=HylZ5grKvB.

13

https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_00062
https://www.mitpressjournals.org/doi/abs/10.1162/isal_a_00062
https://corlconf.github.io/corl2020/paper_217/
https://corlconf.github.io/corl2020/paper_217/
https://openreview.net/forum?id=dEwfxt14bca
https://openreview.net/forum?id=dEwfxt14bca
https://doi.org/10.1242/jeb.210054
https://proceedings.mlr.press/v37/schaul15.html
https://proceedings.mlr.press/v37/schaul15.html
https://openreview.net/forum?id=Ysuv-WOFeKR
https://doi.org/10.1186/s12984-021-00919-y
https://openreview.net/forum?id=HylZ5grKvB
https://openreview.net/forum?id=HylZ5grKvB

Published as a conference paper at ICLR 2023

Ehsan Tahami, Amir Jafari, and Ali Fallah. Learning to Control the Three-Link Musculoskeletal Arm
Using Actor-Critic Reinforcement Learning Algorithm during Reaching Movement. Biomedical
Engineering: Applications, Basis and Communications, pp. 1450064, 2014. doi: 10.4015/
S1016237214500641.

Arash Tavakoli, Mehdi Fatemi, and Petar Kormushev. Learning to represent action values as a
hypergraph on the action vertices. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=Xv_s64FiXTv.

Juan Camilo Vasquez Tieck, Marin Vlastelica Pogančić, Jacques Kaiser, Arne Roennau, Marc-Oliver
Gewaltig, and Rüdiger Dillmann. Learning continuous muscle control for a multi-joint arm by
extending proximal policy optimization with a liquid state machine. In Věra Kůrková, Yannis
Manolopoulos, Barbara Hammer, Lazaros Iliadis, and Ilias Maglogiannis (eds.), Artificial Neural
Networks and Machine Learning – ICANN 2018, pp. 211–221, Cham, 2018. Springer International
Publishing. ISBN 978-3-030-01418-6.

J. Timmer and M. König. On generating power law noise. A&A, 300:707–710, 1995.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Phys. Rev., 36:823–841,
9 1930. doi: 10.1103/PhysRev.36.823. URL https://link.aps.org/doi/10.1103/
PhysRev.36.823.

J.M. Wakeling, C. Tijs, N. Konow, and * A.A. Biewener. Modeling muscle function using experi-
mentally determined subject-specific muscle properties. Journal of Biomechanics, pp. 110242,
2021. doi: 10.1016/j.jbiomech.2021.110242.

Johannes R. Walter, Michael Günther, Daniel F. B. Haeufle, and Syn Schmitt. A geometry- and
muscle-based control architecture for synthesising biological movement. Biological Cybernetics,
pp. 7–37, 2021. doi: 10.1007/s00422-020-00856-4.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learning. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume 48, ICML’16,
pp. 1995–2003. JMLR.org, 2016.

Kunkun Zhao, Haiying Wen, Zhisheng Zhang, Manfredo Atzori, Henning Müller, Zhongqu Xie,
and Alessandro Scano. Evaluation of Methods for the Extraction of Spatial Muscle Synergies.
Frontiers in Neuroscience, 16, 2022. ISSN 1662-453X. URL https://www.frontiersin.
org/articles/10.3389/fnins.2022.732156.

14

https://openreview.net/forum?id=Xv_s64FiXTv
https://link.aps.org/doi/10.1103/PhysRev.36.823
https://link.aps.org/doi/10.1103/PhysRev.36.823
https://www.frontiersin.org/articles/10.3389/fnins.2022.732156
https://www.frontiersin.org/articles/10.3389/fnins.2022.732156

Published as a conference paper at ICLR 2023

Supplementary Material
Videos of the observed exploration patterns and learned policies are available here2. A curated code
repository will be published upon acceptance.

A THEORETICAL BACKGROUND

A.1 STATE-SPACE COVERAGE

Following (Glassman & Tedrake, 2010; Hollenstein et al., 2021), a possible measure for joint-
space coverage in low-dimensional spaces can be obtained by projecting all recorded joint values
qk1 , q

k
2 , ..., q

k
T with k ∈ {1, 2} into a discrete grid. For minimum and maximum joint values a and b,

and a grid of size N2, let there be a discretized vector of values xk = a+k∆x, with ∆x = (b−a)/N
and k ∈ {1, ..., N − 1}. We can then compute a matrix Sij such that:

Sij =

{
1, if ∃t such that xi < q0t < xi+1 and xj < q1t < xj+1

0, otherwise
(5)

The coverage is then given by:

S̃ =

∑
i,j Sij

N2
, (6)

which is the number of visited grid points divided by the total grid size. In practice, the metric will
not reach 100% as the arm cannot reach every point in space due to its geometry.

A.2 ORNSTEIN-UHLENBECK NOISE

The OU-process (Uhlenbeck & Ornstein, 1930) is a stochastic process that produces temporally
correlated signals. It is defined by:

xt+1 = xt + θ(µ− xt)∆t+ σ ωt, (7)

where ωt ∼ N (·|0, 1) is a noise term sampled from a standard Gaussian distribution that drives the
process, θ controls the strength of the drift term, σ the strength of the stochastic term and µ is the
mean. For our experiments, we set x0 = µ = 0 s.t. θ and σ remain as tunable parameters. In practice,
actions computed by the OU-process might exceed the allowed range a ∈ [−1, 1] for large σ; actions
are subsequently clipped to the minimum and maximum values.

A.3 COLORED NOISE

The color of random noise is defined by the frequency dependency of its power spectral density (PSD):

PSD(f) ∝ 1

fβ
, (8)

where β is the frequency exponent of the power-law, sometimes colloquially referred to as the color of
the noise. For uncorrelated, or white, noise β = 0 and the PSD is constant. In general, larger values
of β lead to noise signals with slower frequency contributions. While colors such as white (β = 0),
pink (β = 1) and red (β = 2) were investigated in Sec. 5.2, we allowed any value β ≥ 0 for the
optimization in Sec. C.4. In practice, we use an identical implementation of colored noise to (Pinneri
et al., 2020), which is based on an efficient Fourier transformation. The tuneable parameters are
the color of the noise β ≥ 0 and a scaling parameter σ ≥ 0 which is multiplied by the noise values.
Actions exceeding the allowed ranges are clipped, identical to the previous section.

A.4 MUSCLE MODELING

The force production in biological muscles is quite complex and state-dependent (Wakeling et al.,
2021; Siebert & Rode, 2014; Haeufle et al., 2014). In contrast to most robotic actuators, the force
depends non-linearly on muscle length, velocity, and stimulation. The muscle also has low-pass
filter characteristics, making the control problem hard for classical approaches—in addition to the
typical redundancy of having more muscles than DoF. While these properties are all reproduced in the

2https://sites.google.com/view/dep-rl

15

https://sites.google.com/view/dep-rl

Published as a conference paper at ICLR 2023

MuJoCo internal muscle model, which has been used for other muscle-based studies (Barbera et al.,
2021; Fischer et al., 2021; Ikkala & Hämäläinen, 2022; Richards & Eberhard, 2020), MuJoCo uses
certain simplifications. It employs phenomenological force-length and force-velocity relationships
which are modeled as simple functions. An additional choice, is that the tendon that connects muscles
and bones is inelastic. While in more realistic systems the tendon length might vary independently of
the muscle length, in MuJoCo we have:

ltotal = lmuscle + ltendon︸ ︷︷ ︸
constant

, (9)

where lmuscle is the length of the muscle fiber and ltendon the length of the tendon. Knowledge of the
muscle fiber lengths lmuscle consequently allows the unique determination of ltotal and to infer the
current joint configuration. While this choice is sensible considering the immense data requirements
of RL, it simplifies the control problem compared to realistic biological agents which must infer
ltotal from other proprioceptive signals, which certain studies suggest to be possible in biological
systems (Kistemaker et al., 2013).
We also point out that the chemical muscle activation dynamics in MuJoCo induce a low-pass filter
on the applied control signals, such that temporally uncorrelated actions might not cause significant
motion. The muscle activity am(t) is governed by the dynamics equation:

ȧm(t) =
a(t)− am(t)

τ(am(t), a(t))
, (10)

where a is the action as computed by the RL policy and τ is an action and activity dependent time
scale, given by:

τ(am(t), a(t)) =

{
τact(0.5 + 1.5 am(t)) if a(t) > am(t)

τdeact/(0.5 + 1.5 am(t)) if a(t) ≤ am(t)
. (11)

The constants τact and τdeact are set to 0.01 and 0.04 by default, such that activity increases faster
than it decreases.
See Barbera et al. (2021) and the MuJoCo documentation for more details on the muscle model and
its parametrization.
Real biological systems also suffer significant delays for sensors and actuators, as well as being
restricted to certain input modalities. These constraints are currently not modeled in MuJoCo.

B EXPERIMENTAL DETAILS

B.1 GENERAL DETAILS

For the state coverage measures (Fig. 11 and 12), we recorded 50 episodes of 1000 iterations each.
The environment was reset after every episode. The state coverage metric was computed over 5
episodes at a time, after which we reset the internal state of DEP.
All experiments involving training (Fig. 3, 4 and 6) were averaged over 10 random seeds. Each point
in the learning curves corresponds to 10 evaluation episodes without exploration that were recorded
at regular intervals during training.
For the maximum speed measurements, the fastest checkpoint out of all runs in Fig. 6 was chosen for
each method. We then executed 50 test episodes without exploration and recorded the fasted velocity
within each episode.
For the robustness evaluations, the last training checkpoint of each run in Fig. 6 is chosen, as
the robustness of the policies generally increases with training time in our experiments. We then
record 100 episodes each with ostrich-stepdown and ostrich-slopetrotter perturbations, without any
exploration. For the former, a binary success is recorded if the ostrich is able to pass the step and run
for 10 additional meters afterwards. For the latter, we record the average traveled distance, as a large
number of obstacles prevents most rollouts from successfully running past all of them.
For the gait visualizations (Fig. 15 and 16), the same policies as for the speed measurements are used,
as they exhibit the most natural gaits. We then record a single episode and visualize the last 5 seconds
to ensure a converged pattern.

16

Published as a conference paper at ICLR 2023

B.2 ENVIRONMENTS

All tasks except OstrichRL (Barbera et al., 2021) and the human environments Geijtenbeek (2019;
2021) were constructed from existing geometrical models in MuJoCo (Ikkala & Hämäläinen, 2022;
Todorov et al., 2012) from which we created RL environments. We additionally created variants of
ostrich-run involving perturbations, i.e. ostrich-stepdown, and ostrich-slopetrotter.

torquearm A 2-DoF arm that moves in a 2D plane and is actuated by 2 torque generators. It is not
used for RL, but as a comparative tool. Its geometry is identical to arm26, but different joint positions
are reachable as it is not restricted by the geometry of the muscles. We manually restrict the joint
ranges to qit ∈ [−120, 120] (degrees) to prevent self-collisions.

arm26 A 2-DoF planar arm driven by 6 muscles. The model was adapted from the original one
in (Todorov et al., 2012), we modified the maximum muscle forces and shifted the gravity such that
the arm fully extends (“down” on Fig. 1). The agent has to reach goals that are 5 cm in radius. They
randomly appear in the upper right corner in a 35 cm by 15 cm rectangular area. The arm motion is
restricted compared to torquearm by the passive stretch of the muscle fiber. The reward is given by:

r(s, s′) =

{
10, if d(s) < 0.05

−1, otherwise,
(12)

where d(s) is the Euclidean distance between the hand position and the goal. The episode terminates
if the goal is reached, i.e. d(s) < 0.05. The negative reward incentivizes the agent to reach the goal
as quickly as possible. Exploration in this task is difficult not only because of the overactuation, but
also because the activation dynamics of the muscles require temporal correlation for effective state
coverage. An episode lasts for 300 iterations, with ∆t = 10 ms.

humanreacher A 7-DoF arm that moves in full 3D. It is actuated by 50 muscles. The agent has to
reach goals of 4 cm that randomly appear in front of it at “face”-height in a 15 cm by 30 cm by 25 cm
rectangular volume. The reward function and termination condition are identical to arm26, except for
the goal radius. In addition to the issues detailed in the previous paragraph, singular muscles are not
strong enough to effect every joint motion. For example, pulling the arm above the shoulder requires
several muscles to be stimulated at the same time, while opposing, antagonistic, muscles should
not be active. The muscular geometry is also strongly asymmetric. An exploration strategy has to
compute the right correlation across connected muscle groups, and across time, for each motion. The
joint limits and the bone geometry create cul-de-sac states, e.g. at some point the agent might not
be able to extend the elbow further to reach a goal, it has to move back and change the pose. The
initial pose of the arm is fully extended and points downwards. We randomly vary the joint pose
by qiinit +N (0, 0.01) and each joint velocity by q̇iinit +N (0, 0.03) after each episode reset. This
helps the RL agent and HER to make progress on the task as it causes the arm to slightly self-explore.
As DEP is fully deterministic, it also prevents it from generating the same control signals during
each episode in the initial unsupervised exploration phase. An episode lasts for 300 iterations, with
∆t = 10 ms.

ostrich-foraging This task is unchanged from (Barbera et al., 2021), except for the rewards which
we modified to be sparse, identical to arm26. The termination condition is also identical. An
ostrich neck and head actuated by 52 muscles need to reach randomly appearing goals with the
beak. The goals appear in a uniform sphere around the beak, but only goals with goal-beak distances
d(s) ∈ [0.6, 0.8] are allowed. The goals have a radius of 5 cm. The initial pose is an upright neck
position (see Fig. 1), but following the original task (Barbera et al., 2021) the pose is not randomized
after episode resets, the last pose of the previous episode is simply kept as the first pose of the new
episode. It is thus very unlikely for an agent with inadequate exploration to ever encounter a single
goal. The neck itself is very flexible and offers almost no easily reachable cul-de-sac states, which
we conjecture to explain the good performance of HER-MPO in Fig. 4. An episode lasts for 400
iterations, with ∆t = 25 ms.

ostrich-run The bipedal ostrich, from (Barbera et al., 2021), needs to run as fast as possible in
a horizontal line and is only provided a weakly-constraining reward in form of its velocity. Only
provided with this generic reward and without motion capture data, a learning agent is prone to local

17

Published as a conference paper at ICLR 2023

optima. The bird possesses 120 individually controllable muscles and moves in full 3D without any
external constraints. The reward is given by:

r(s, s′) = vCOM
x (s), (13)

where vCOM
x (s) is the velocity of the center of mass projected to the x-axis. An ideal policy will

consequently run in a perfectly straight line as fast as possible. The episode terminates if the head of
the ostrich is below 0.9 m, the pelvis is below 0.6 m or the torso angle exceeds −0.8 < θtorso(s) <
0.8 (radians). The leg positions are slightly randomized at the end of each episode, which lasts for a
maximum horizon of 1000 iterations with ∆t = 25 ms.
We point out that the author’s implementation of ostrich-run (Barbera, 2022) has set a default stiffness
to all joints in the simulation. While this generally ensures the stability of the model, that only
applies to joints that connect different parts of the system. In this case, the stiffness was also set for
the root joints of the ostrich, essentially creating a spring that weakly pulls it back to the starting
position. As the absolute x-position is withheld from the agent to create a periodic state input, the
non-observability of the spring force destabilizes learning. We therefore explicitly set the stiffness of
all root positional and rotational joints to 0. This explains why our TD4 baseline reaches significantly
higher scores than in the work by (Barbera et al., 2021). Our measured maximum return for TD4 lies
at ≈ 4044, while the reported returns without the change did not seem to exceed 2000.

ostrich-stepdown A step is added to the original ostrich-run task. The height of the step is
adjustable and its position randomly varies with ∆x ∼ N (·|0, 0.2). The ostrich is initially on top of
the step and has to run across the drop in height without falling over. The task is successful if the
ostrich manages to run for ≈ 10 meters past the step. The episode is terminated if the x-position
exceeds 10 m, the torso angle exceeds −0.8 < θtorso(s) < 0.8 rad, the head is below 0.5 m or
the head is below the pelvis height. We relaxed the termination conditions to allow for suboptimal
configurations that are used to bring the ostrich back into a running pose.

Figure 8: Sloped step for
ostrich-slopetrotter.

ostrich-slopetrotter A series of half-sloped steps is added to the orig-
inal ostrich-run task. The obstacles are sloped on the incoming side
while there is a perpendicular drop similar to a conventional step on the
outgoing side. Rectangular stairs would disadvantage gaits with small
foot clearance, while the half-slope allows most gaits to move up the step
without getting stuck. There are seven obstacles spaced at 5 m intervals
in total. The episode terminates if the x-position exceeds 50 m, the re-
maining termination conditions are identical to ostrich-stepdown. The
obstacles are wide enough to prevent slightly diagonal running gaits from
simply avoiding the obstacles. The task reward is the achieved distance,
given at the end.

human-run This task uses the planar human model from the NeurIPS
competition (Kidziński et al., 2018) simulated in HyFyDy instead of OpenSim. HyFyDy uses the
same muscle and contact models as OpenSim, but is significantly faster. The model has 18 leg
muscles and no arms. The task reward is the COM-velocity in x-direction, identical to the ostrich.
The episode length is 1000. The initial position is slightly randomized from a standing position. The
episode terminates if the COM-height falls below 0.5 m.

human-hop In this task, the reward of human-run is changed to be sparse. The agent receives a
reward of 1 if its COM-height exceeds 1.08 m and 0 otherwise. Periodic hopping will maximize this
reward. The task is particularly challenging as there is no goal-conditioning to improve exploration
in early training. The agent has to figure out a single hop from scratch. The initial state is slightly
randomized from a squatting position.

human-stepdown The human-run task is modified by including a parcours of varying slope with a
large drop at the end. We record a success if the agent is able to navigate the entire parcours without
falling to the ground.

human-hopstacle The human-hop task is modified by including two inclined slopes. The task is
marked as a success if the agent is able to periodically hop for 1000 time steps without falling to the

18

Published as a conference paper at ICLR 2023

Table 2: Number of joints, state and action dimensions for all considered tasks. The ostrich-run
variants ostrich-stepdown and ostrich-slopetrotter share identical state and action spaces, as the
policies are not retrained. The planar reaching tasks torquearm and arm26 are used with virtual
action spaces. For a given action multiplier n, we also multiply all muscle-related state data by n, i.e.
muscle lengths, velocities, forces and activity.

torquearm arm26 humanreacher ostrich-foraging ostrich-run human-run
of joints 2 2 21 36 56 9

action dimension 2...600 6...600 50 52 120 18
state dimension 16 34 248 289 596 194
episode length 300 300 300 400 1000 1000

time step 10 ms 10 ms 10 ms 25 ms 25 ms 10 ms

ground. Due to the arrangement of the slopes, the agent will either hop inside the funnel, or jump out
to the sides, where it will experience a steep drop.

Additional information regarding state and action sizes are summarized in Table 2. The observations
are summarized in Table 3.

B.3 DEP IMPLEMENTATION

We use a window of the recent history to adapt the DEP controller during learning. DEP requires
as input 1 proprioceptive sensor per actuator. We use joint angles for the torque-driven example in
Fig. 11, while all muscle-driven tasks use the sum of muscle lengths and muscle forces, normalized
with recorded data to lie in [−1, 1]:

sDEP = l̃muscle + c f̃muscle, (14)

where lmuscle is the length of the muscle fibre, fmuscle the force acting on it and c is a scaling constant.
Note that sDEP ∈ Rm and a ∈ Rn with m = n. Even though the rest of the state information is
discarded, DEP computes action patterns that achieve correlated sensor changes. When alternating
between DEP and the policy in DEP-RL, we also feed the current input to DEP and perform training
updates. We observed performance benefits in locomotion tasks as DEP’s output is strongly influenced
by the recent gait dynamics induced by the policy. DEP is implemented to compute a batch of actions
for a batch of parallel environments such that there is a separate history-dependent controller for each

Table 3: State information for all environments. The variants ostrich-stepdown and ostrich-
slopetrotter use identical observations to ostrich-run. This allows the evaluation of the robustness of
the trained policies against OOD perturbations.

environment observations
torquearm joint positions, joint velocities, actuator positions, actuator velocities, actuator

forces, goal position, hand position
arm26 joint positions, joint velocities, muscle lengths, muscle velocities, muscle

forces, muscle activity, goal position, hand position
arm750 joint positions, joint velocities, muscle lengths, muscle velocities, muscle

forces, muscle activity, goal position, hand position
ostrich-foraging joint positions, joint velocities, muscle activity, muscle forces, muscle lengths,

muscle velocities, beak position, goal position, the vector from beak position
to the goal position

ostrich-run head height, pelvis height, feet height, joint positions (without x), joint
velocities, muscle activity, muscle forces, muscle lengths, muscle velocities,
COM-x-velocity

human-run joint positions (without x), joint velocities, muscle lengths, muscle velocities,
muscle forces, muscle activity, y-position of all bodies, orientation of all
bodies, angular velocity of all bodies, linear velocity of all bodies, COM-x-
velocity, torso angle, COM-y-position

19

Published as a conference paper at ICLR 2023

Table 4: DEP hyperparameters for the learned policies. The test episode value signifies that an
episode without DEP is recorded every N episodes. The value for arm-reaching was so large that
it was effectively never used. The force scale value is used to scale the force input and the muscle
length input.

(a) Arm-reaching settings.

Parameter Value
DEP κ 1000

τ 80
buffer size 600
bias rate 0.00002
s4avg 6
time dist (∆t) 60

integration pswitch 0.01
HDEP 20
test episode n.a.
force scale 0.0003

(b) Ostrich settings.

Parameter Value
DEP κ 20

τ 8
buffer size 90
bias rate 0.03
s4avg 1
time dist (∆t) 5

integration pswitch 0.0004
HDEP 4
test episode 3
force scale 0.0003

(c) Human-run settings.

Parameter Value
DEP κ 1896

τ 26
buffer size 200
bias rate 0.004154
s4avg 0
time dist (∆t) 4

integration pswitch 0.01
HDEP 10
test episode n.a.
force scale 0.000054749

(d) Human-hop settings.

Parameter Value
DEP κ 1288

τ 35
buffer size 200
bias rate 0.0926
s4avg 0
time dist (∆t) 6

integration pswitch 0.005
HDEP 30
test episode n.a.
force scale 0.000547

environment. As the control matrix is very small, e.g. C ∈ R120×120 even in ostrich-run, the most
computationally intensive environment, this can be done with minimal overhead.

B.4 RL IMPLEMENTATION

Our RL algorithms are implemented with a slightly modified version of TonicRL (Pardo, 2020).

B.5 HARDWARE

Training of each DEP-MPO agent for ostrich-run, the most computationally intensive environment,
was executed on an NVIDIA V100 GPU and 20 CPU cores. Training for 108 iterations requires about
48 hours in real-time. Note that in general, we do train for 30 iterations for every 1000 environment
interactions, which speeds up training with regard to the reported learning steps. See Sec. B.6 for
details.

B.6 HYPERPARAMETERS

We first detail the optimization choices made in the main part, before we give the specific hyperpa-
rameters that were chosen.

Optimization for ostrich-run We performed extensive hyperparameter optimization for the ostrich-
run task with baseline MPO, but could not achieve a better final performance than default MPO
parameters. The best performing set is identical in performance to the best run with default parameters

20

Published as a conference paper at ICLR 2023

Table 5: RL parameters for MPO and TD4. The TD4 parameters are identical to (Barbera et al.,
2021). Non-reported values are left to their default setting in TonicRL (Pardo, 2020).

(a) MPO settings.

Parameter Value
buffer size 1e6
batch size 256
steps before batches 3e5
steps between batches 1000
number of batches 30
n-step return 3
n parallel 20
n sequential 10

(b) TD4 settings.

Parameter Value
buffer size 1e6
batch size 100
steps before batches 5e4
steps between batches 50
number of batches 50
n-step return 1
learning rate 1e-4
TD3 action noise scale 0.25
n parallel 15
n sequential 8
exploration OU
Action noise scale 0.25
Warm up random steps 1e4

Table 6: Baseline parameters. For HER, 80% of the time a relabelled transition is added in addition
to the original one.

(a) OU-noise settings.

Parameter Value
humanreacher θ-drift 0.004

σ-scale 0.02

ostrich-run θ-drift 0.1
σ-scale 0.07

(b) Colored noise settings.

Parameter Value
humanreacher β-color 0.04

σ-scale 0.1

ostrich-run β-color 0.008
σ-scale 0.3

(c) Hindsight experience replay settings.

Parameter Value
strategy final
% hindsight 80

21

Published as a conference paper at ICLR 2023

0 5000

return

0

25

50

75

fr
eq

ue
nc

y

iteration 1

0 5000

return

0

20

40

60

iteration 5

0 5000

return

0

20

40

iteration 7

0 5000

return

0

10

20

30

iteration 9

1 2 3 4 5 6 7 8 9

iteration

4000

5000

6000

re
tu

rn

best set

Figure 9: Hyperparameter optimization for ostrich-run. We performed 9 iterations of meta-
optimization for MPO with 100 sets of parameters in each round, for a total of 900 different
combinations. The final best set did not outperform the best run with the default parameters of MPO.
The rightmost figure shows the best performing set for each iteration. The best return achieved over
10 evaluation episodes by MPO with default parameters out of 10 seeds is shown with a dashed black
line.

in Fig. 6. In total, we computed 9 iterations of meta-optimization with 100 different sets of parameters
in each round. The evolution of the performance histograms is shown in Fig. 9.

Exploration experiments For the experiments in Sec. 5.2, all noise strategies, with the exception
of DEP, were tuned in a grid search to maximize the end effector state space coverage for each task
and for each action space separately. DEP was tuned once to maximize a sample joint-pace entropy
measure of the humanreacher task; its hyperparameters were then kept constant for all arm-reaching
tasks in all sections of our study.

DEP-RL We identify three groups of tunable parameters for DEP-RL: the RL agent parameters (Ta-
ble 5), the DEP parameters (Table 4), and the parameters controlling the integration of DEP and
the policy. We initially optimized only for the parameters of DEP and the integration. When we
afterwards ran an optimization procedure for all sets of parameters at the same time, we could not
outperform our previous results. A pure MPO parameter search did also not yield better performance,
such that we kept the parameters of MPO identical to the default parameters in the TonicRL library,
except for minor changes regarding parallelization and batch sizes. The DEP parameters for DEP-RL
in the reaching tasks were kept identical to the previous paragraph, while we heuristically chose the
integration parameters. We, therefore, had 1 set of values for all arm-reaching tasks in the entire
study. The DEP and the integration parameters for ostrich-run were optimized for performance, we
kept them identical for ostrich-foraging.

Baselines The additional baselines for humanreacher and ostrich-run, see Suppl. C.4, were tuned
individually for each task to maximize performance. TD4 is used with identical parameters to (Barbera
et al., 2021). The values are detailed in Table 6.

22

Published as a conference paper at ICLR 2023

ostrich-run humanreacher
mean rollout best rollout

M
PO ini

t

ini
t-f

orc
e
av

g

av
g-f

orc
ede

t

de
t-f

orc
e
sto

ch

sto
ch

-fo
rce

sto
ch

-fo
rce

-no
ba

ck
0

1000

2000

3000

4000

5000
cu

m
ul

.r
et

ur
n

M
PO ini

t

ini
t-f

orc
e
av

g

av
g-f

orc
ede

t

de
t-f

orc
e
sto

ch

sto
ch

-fo
rce

sto
ch

-fo
rce

-no
ba

ck

mean rollout best rollout

M
PO ini

t

ini
t-f

orc
e
av

g

av
g-f

orc
ede

t

de
t-f

orc
e
sto

ch

sto
ch

-fo
rce

sto
ch

-fo
rce

-no
ba

ck
0

2000

4000

6000

m
ax

im
um

re
tu

rn

M
PO ini

t

ini
t-f

orc
e
av

g

av
g-f

orc
ede

t

de
t-f

orc
e
sto

ch

sto
ch

-fo
rce

sto
ch

-fo
rce

-no
ba

ck

mean rollout best rollout

M
PO ini

t

ini
t-f

orc
e
av

g

av
g-f

orc
ede

t

de
t-f

orc
e
sto

ch

sto
ch

-fo
rce

sto
ch

-fo
rce

-no
ba

ck
0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
.s

uc
ce

ss
ra

te

M
PO ini

t

ini
t-f

orc
e
av

g

av
g-f

orc
ede

t

de
t-f

orc
e
sto

ch

sto
ch

-fo
rce

sto
ch

-fo
rce

-no
ba

ck

mean rollout best rollout

M
PO ini

t

ini
t-f

orc
e
av

g

av
g-f

orc
ede

t

de
t-f

orc
e
sto

ch

sto
ch

-fo
rce

sto
ch

-fo
rce

-no
ba

ck
0.0

0.2

0.4

0.6

0.8

1.0

m
ax

su
cc

es
s

ra
te

M
PO ini

t

ini
t-f

orc
e
av

g

av
g-f

orc
ede

t

de
t-f

orc
e
sto

ch

sto
ch

-fo
rce

sto
ch

-fo
rce

-no
ba

ck

Figure 10: Ablation experiments for DEP-RL. The stoch-force-variant (bold) was used for all
experiments in the main part. All ablations were trained for 5× 107 iterations and averaged over 10
random seeds.

C ADDITIONAL EXPERIMENTS

C.1 STATE-COVERAGE

We show additional visualizations of the trajectories generated by different noise processes on
torquearm and arm26 in Fig. 11 and Fig. 12 respectively.

2
ac

tio
ns

60
0

ac
tio

ns

White Pink Red OU DEP

ha
nd

-y

hand-x

ha
nd

-y

hand-x hand-x hand-x hand-x

White Pink Red OU DEP

2 12 30 60 600

of actions

0.0

0.2

0.4

0.6

st
at

e
co

ve
ra

ge

Figure 11: Only DEP reaches adequate state-space coverage for all considered action spaces
in torquearm. Hand trajectories collected during 50 episodes of 1000 iterations (∆t = 10 ms) of
pure exploration with different noise strategies. Left: Hand trajectories for the original action space
a ∈ R2 (top) and expanded action space a ∈ R600 (bottom). Right: Endeffector-space coverage.

C.2 ABLATIONS

We experiment with several implementations of DEP-RL and show cumulative and maximum
performances for a selection of them in Fig. 10. The ablations are:

init DEP is only used for initial unsupervised exploration. The collected data is used to pre-fill the
replay buffer. This component is active in all other ablations.
avg DEP actions and policy actions are combined in a weighted average. The DEP weight is much
smaller than the policy weight.
det DEP and the policy control the system in alternation. They are deterministically switched s.t.
DEP acts for HDEP iterations and the RL policy for HRL iterations. The current state is used to train
and adapt the DEP agent, even if the RL action is used for the environment. DEP actions are also
added to the replay buffer of the RL agent.

23

Published as a conference paper at ICLR 2023

2
ac

tio
ns

60
0

ac
tio

ns

White Pink Red OU DEP

ha
nd

-y

hand-x

ha
nd

-y

hand-x hand-x hand-x hand-x

White Pink Red OU DEP

6 12 30 60 600

of actions

0.05

0.10

0.15

0.20

0.25

st
at

e
co

ve
ra

ge

Figure 12: Only DEP reaches adequate state coverage for all considered action spaces in arm26.
Hand trajectories collected during 50 episodes of 1000 iterations (∆t = 10 ms) of pure exploration
with different noise strategies. Left: Hand trajectories for the original action space a ∈ R6 (top) and
expanded action space a ∈ R600 (bottom). Right: endeffector-space coverage.

stoch Identical to the previous ablation, but the alternation is stochastic s.t. there is a probablitiy
pswitch that DEP takes over for HDEP iterations.

We additionally introduce force-variants of all these ablations where the state input of DEP is not
only composed of the muscle lengths, but also the forces acting on the muscles. We observed that
this causes DEP to seek out states that produce more force variations, which are generally interesting
for locomotion. Lengths and forces are normalized from recorded data and then added together with
a certain weighting, in order to not change the number of input dimensions of DEP.
Lastly, we show the performance for a noback-variant, where DEP is not learning in the background
while the RL agent is taking over control. Even though the init-variant achieves a fast gait for
locomotion, we chose the stoch-force-variant for all the results in the main section, as it achieves
good performance on all tasks. All ablations were averaged over ten random seeds.

C.3 ACTION CORRELATION MATRIX

We recorded action patterns generated from different noise strategies applied to ostrich-run. Even
though we only recorded 50 s of data, and DEP was learning from scratch, strong correlations and
anti-correlations across muscle groups can be observed in Fig. 13. We deactivate episode terminations
in order to observe the full bandwidth of motion generated by DEP. For this particular task, the ostrich
was lying on the ground while moving the legs back and forth in an alternating pattern. Uniform,
colored and OU noise are unable to produce significant correlations across actions.

C.4 ADDITIONAL BASELINES

We combine MPO with colored (β-MPO) and OU-noise (OU-MPO) by summing them to the action
computed by the baseline MPO policy. We then apply these new algorithms to humanreacher
and ostrich-run, as they constitute challenging reaching and locomotion tasks. We also tested an
implementation of DEP-TD4 on ostrich-run. The base agents were identical for all baselines, while
the OU and the colored noise were optimized to achieve the best performance, see Suppl. B.6. It can
be seen in Fig. 14 (left) that DEP-MPO achieves the largest returns in ostrich-run, while OU-MPO
intermittently outperforms vanilla MPO. Similarly, OU-MPO and β-MPO perform better than MPO
in the humanreacher task, as seen in Fig. 14 (right), but DEP-MPO achieves the best performance.

C.5 OSTRICH GAIT VISUALIZATION

We show the achieved foot movements and footstep patterns of the ostrich for the different algorithms
in Fig. 15. The leg deviation is strongest for DEP-MPO, while it also achieves the most regular
foot pattern. This suggests that DEP improves exploration, as it allows for policies that utilize the
embodiment of the agent to a greater extent, while also achieving larger running velocities. MPO
manages less leg extension, while the TD4 gait is irregular and asymmetric. The step lengths of
≈ 1m achieved by DEP-MPO are also quite close to real ostriches (Rubenson et al., 2004), while
MPO and TD4 only achieve small step lengths of ≈ 0.5m and ≈ 0.3m respectively. We provide
additional visualizations of the relative x and z trajectories of the feet during locomotion for each
algorithm in Fig. 16.

24

Published as a conference paper at ICLR 2023

1 60 121

muscle i

1

60

m
us

cl
e

j
DEP

1 60 121

muscle i

uniform noise

1 60 121

muscle i

colored noise

1 60 121

muscle i

OU noise

−1

0

1

Figure 13: Action correlation matrix for different exploration strategies. We recorded 50 s of data
(1000 transitions) from ostrich-run and computed the correlation matrix from the action trajectories.
Note that even though DEP was initialized with Cij = 0, strong correlation and anti-correlation
patterns can be observed for antagonistically opposed muscle groups. Colored and OU noise do
not exhibit strong correlations across actions, as they are designed to produce temporally correlated
signals.

ostrich-run
mean rollout best rollout

0 2 4

steps ×107

0

2000

4000

6000

re
tu

rn

0 2 4

steps ×107

humanreacher
mean rollout

0 1 2

steps ×107

0.00

0.25

0.50

0.75

1.00

su
cc

es
s

ra
te

mean rollout best rollout

DEP-M
PO

M
PO

DEP-T
D4

TD4

OU-M
PO

β-
M

PO

0

2000

4000

6000

m
ax

re
tu

rn

DEP-M
PO

M
PO

DEP-T
D4

TD4

OU-M
PO

β-
M

PO

mean rollout

DEP-M
PO

M
PO

OU-M
PO

β-
M

PO

0.0

0.2

0.4

0.6

0.8

cu
m

ul
.s

uc
ce

ss
ra

te

Figure 14: Left: Additional baselines for ostrich-run. We provide OU and β-MPO agents by
summing them to the action computed by MPO as with regular exploration noise. Right: Identical
baselines for humanreacher. OU and colored noise processes were optimized for the present tasks,
while the base MPO agent was identical for all experiments in this figure.

25

Published as a conference paper at ICLR 2023

DEP-MPO MPO TD4

20 21 22 23 24 25

time (s)

−0.5

0.0

0.5

re
l.

fo
ot

-x
(m

)

20 21 22 23 24 25

time (s)
20 21 22 23 24 25

time (s)

LF
RF
LF
RF

LF
RF
LF
RF

20 21 22 23 24 25

time (s)

LF
RF
LF
RF

Figure 15: DEP-MPO achieves the most widespread and symmetric gait. Left: The relative
sagital foot position w.r.t. the torso visualizes the leg extension during locomotion. DEP-MPO creates
a symmetric gait with ≈ 1m step length. For MPO the step length is much shorter. TD4 has a
completely shifted gait, the left foot is often in front of the right foot. Right: Foot contact pattern
for all gaits. The shaded areas mark the time during which the respective foot (LF: left foot or RF:
right foot) is in contact with the ground. Visualized are the last 5 seconds of an evaluation episode to
ensure a converged pattern.

−1 0

foot - x (m)

0.0

0.5

1.0

fo
ot

-z
(m

)

−1 0

foot - x (m)
−1 0

foot - x (m)

Figure 16: Foot gait patterns for ostrich-run during the final 5 s of an episode. While DEP-MPO
portrays a slight asymmetry in the z-direction, MPO and TD4 are noticeably less symmetric.

C.6 ADDITIONAL EVALUATION WITH DENSE AND SPARSE REWARDS IN LARGE VIRTUAL
ACTION SPACES

We present in Fig. 17 the results for experiments with virtual action spaces, as shown in Fig. 3,
but here in addition with HER and for the case of sparse and dense rewards. For dense rewards
(top), an increasing number of actions requires more environment steps for vanilla MPO to solve
the task, while the performance collapses for 600 actions. DEP-MPO reaches good performance for
each considered action space. MPO performs similarly in the sparse task, albeit a larger variation
across runs can be observed. While HER elicits faster learning, it still requires significantly more
environment steps for 6 and 120 actions than DEP-MPO and does not achieve good performance for
600 actions. DEP-MPO and HER-DEP-MPO quickly solve all tasks.

C.7 DESCRIPTION OF A ONE-DIMENSIONAL SYSTEM

In this section, we give an outline of how DEP works in a theoretical scenario. We will first describe
a simplified DEP rule and detail how its dynamics might excite the mountain car system (Moore,
1990) to cover the state. We will then apply the simplified rule on the mountain car environment and
present the results, see Fig. 19.

Mountain car The original DEP controller is described by:

at = tanh(Cst + ht), (15)

with the state st ∈ Rn, a time-dependent bias ht ∈ Rm, the action at ∈ Rm and the learned control
matrix C ∈ Rm×n. The update rule is now defined as:

τĊ = f(ṡt)s
⊤
t−1 − C, (16)

where f(·) : Rm → Rn is an inverse model, relating future changes in the state to the change in
action that caused them. First, we state the assumptions for this section:

1. We do not consider the normalization scheme for C.

26

Published as a conference paper at ICLR 2023

DEP-MPO MPO DEP-HER-MPO HER-MPO

de
ns

e
sp

ar
se

−600

−400

−200

0

re
tu

rn

6 actions

−600

−400

−200

0
120 actions

−600

−400

−200

0
600 actions

0.0 0.5 1.0

steps ×107

0.0

0.5

1.0

su
cc

es
s

ra
te

0.0 0.5 1.0

steps ×107

0.0

0.5

1.0

0.0 0.5 1.0

steps ×107

0.0

0.5

1.0

Figure 17: DEP-MPO outperforms MPO in sparse and dense reward point-reaching for arm26
with all virtual action spaces. Top: Learning performance for dense rewards. DEP-MPO strongly
outperforms MPO, no significant movement learning could be detected for MPO with 600 actions.
Bottom: Success rates for sparse reward reaching. While HER seems to increase the performance of
the MPO baseline in most cases, the success rate only increases marginally for 600 actions, even after
almost 1.5× 107 steps. DEP-MPO solves all tasks with or without the addition of HER.

2. We choose f(ṡt) = ṡt

3. A bias is not considered ht = 0

4. The nonlinearity is approximated by the first term of a Taylor expansion tanh(x) ≈ x.
5. We consider C to instantaneously fulfill the update rule, without considering update dynam-

ics.

Combining all the assumptions, we obtain:

C = ṡtṡ
⊤
t−1. (17)

We will now consider a simple system with 1 sensor: the continuous action mountain car.
The original environment defines the RL state sRL

t = (xt, ẋt). From this we extract the sensor
information for DEP st = xt, with s ∈ R. In this 1-sensor formulation, the velocity correlation
matrix in Eq. 17 is a scalar, as there is only 1 sensor. Consequently, also the C matrix is scalar. The
resulting control equation is:

at = Cst = ṡtṡt−1st. (18)

Let us assume an initial state of the car slightly to the right side of the valley, as in Fig. 18, with a
positive initial velocity. States s > 0 are positions to the right of the valley bottom, while s < 0 to
the left. The initial velocity will cause the car to move up the mountain. After some time, the velocity
correlation will be ṡtṡt−1 > 0 with s > 0, leading to Cst = at > 0. Logically, the car then starts
pushing to the right, reinforcing the movement pattern and trying to increase its velocity. However,
the task is set up such that the force is insufficient to directly go up the mountain. It will thus change
the movement direction at some point and reverse due to gravity.

After changing direction, ṡtṡt−1 will reverse sign as the previous velocity still points to the right,
while the current velocity points to the left. Thus, ṡtṡt−1 < 0 with s > 0, and Cst = at < 0. The
car will consequently try to push into the negative direction, accelerating downwards. If the past
sensor derivative ṡt−1 is defined as only one time step away, this trend will immediately reverse and
the car will decelerate.
If, however, ṡt is chosen to be not one time step apart from ṡt−1, but ∆t ∈ N steps, then it will take
several time steps until the sign reversal of ṡtṡt−∆t happens. In this intermittent regime, ṡtṡt−∆t < 0
with s > 0, and Cst = at < 0, pushing the car to the left, until the velocity correlation changes sign
again.

If ∆t is appropriately chosen, however, by the time the reversal happens, the car will have moved
into the negative state region s < 0. In this new region, ṡtṡt−∆t > 0 with s < 0, and Cst = at < 0,
which pushes the car further to the left and up the mountain, until the phenomenon repeats.

27

Published as a conference paper at ICLR 2023

Figure 18: Continuous-action mountain car environment. To solve the task, the car must be brought
to the top of the right hill. However, the motor is too weak for a direct approach. The solution involves
pushing the car from left to right and vice-versa with the correct frequency to gather momentum and
climb up the mountain.

We offer simulation results of the described dynamics in Fig. 19. For this simulated example, we
consider again the nonlinearity of tanh (Eq. 15), as it allows us to multiply C by a large constant
and still satisfy the action limits of the environment. This is a necessary step as we omitted the
normalization scheme for C. We thus consider C = tanh(κṡtṡt−∆t), with κ ≫ 1.
To demonstrate the influence of ∆t, we plot the results for two examples (Fig. 19). For ∆t = 27, the
system trajectory at time step ≈ 95 shows a reversal point. Before this reversal point, the position s
is positive and so is the correlation ṡtṡt−∆t, which leads to positive actions. Due to gravity and the
weak motor, however, the car starts to move into the opposite direction. As there was a velocity sign
change, we have ṡtṡt−∆t < 0 while the position st is still positive, which yields a negative action:
The car is accelerating downwards and builds up momentum, which, after a few repetitions, allows it
to explore the environment.
The values of ∆t for this example were chosen to yield good visualization. We observe full exploration
of the mountain car system for ∆t ∈ {5, ..., 28}.
This might seem like an overly simplified example, but it shows how DEP can increase the variance in
a sensor value, even if a large number of actuators is associated to it. Empirical evidence additionally
demonstrates that in high-dimensional systems, if all other DEP components are considered, DEP
becomes less sensitive to the exact system dynamics and parameter specifications, generalizing easily
to muscle-driven systems with over 120 muscles. Note that as the mountain car task contains an
harmonic potential well, ubiquitous in many physical systems, the analysis might hold for a wide
range of models, even considering elastic muscles with nonlinear spring elements.

C.8 SENSITIVITY TO CHANGES IN pswitch

We performed an ablation study over the parameter pswitch, that controls the probability of switching
from the RL policy to the DEP controller. Figure 20 shows that the training averaged success rates
for DEP-MPO are much less sensitive to this hyperparameter for the humanreacher task than the
average returns for ostrich-run. We conjecture that locomotion is inherently more unstable and that
higher DEP probabilities cause the agent to fall down often, which hurts learning performance.

28

Published as a conference paper at ICLR 2023

∆t = 27 ∆t = 50 random actions

0

1

s

−0.05

0.00

0.05

ṡ

−0.001

0.000

0.001

ṡ t
ṡ t
−

∆
t

0 20 40 60 80 100 120 140 160

time steps

−1

0

1

ac
tio

n

Figure 19: A simplified DEP rule in the mountain car environment (Moore, 1990). The red line
marks the position threshold at which the task is solved. The black lines mark the zero point. Negative
values of ṡtṡt−∆t mark intermittent regimes where the controller output reverses, eventually bringing
the system into coherent motion. For ∆t = 27, the reversal of ṡtṡt−∆t happens on a time scale that
is able to excite the system, while the setting ∆t = 50 is not able to induce sufficient exploration.
The random actions are drawn from a standard Gaussian N (0, 1). We do not show the proposed
actions for the Gaussian to keep the figure readable. The position s for the setting ∆t = 27 clearly
oscillates with larger and larger amplitudes over time, increasing the effective variance of the sensor
value. These two values of ∆t were chosen to yield good visualizations, we observe full exploration
of the mountain car system for values ∆t ∈ {5, ..., 28}.

DEP-MPO MPO

10−3 10−2

pswitch

0.00

0.25

0.50

0.75

1.00

cu
m

ul
.s

uc
ce

ss
ra

te

humanreacher

10−4 10−3

pswitch

3000

3500

4000

4500

5000

av
g.

re
tu

rn

ostrich-run

Figure 20: Ablation over the DEP probability with DEP-MPO for two tasks. Left: Humanreacher
performance is overall robust for different settings of pswitch, while the benefit of DEP disappears for
very small values. Right: Ostrich-run is more sensitive to the parameter, as locomotion is generally
more unstable. Large DEP probabilities cause the agent to fall down very often. The horizontal line
marks the average MPO performance without DEP. All values are averaged over 5 seeds. Note the
log-axis.

29

	Introduction
	Related works
	Background
	Methods
	Differential extrinsic plasticity (DEP)
	Integrating DEP as exploration in reinforcement learning (DEP-RL)

	Experiments
	Environments
	Exploration with overactuated systems
	Sparse reward tasks with up to 52 actuators
	Application to bipedal locomotion

	Conclusion
	Reproducibility statement
	Acknowledgements
	Theoretical background
	State-space coverage
	Ornstein-Uhlenbeck noise
	Colored noise
	Muscle modeling

	Experimental details
	General details
	Environments
	DEP implementation
	RL implementation
	Hardware
	Hyperparameters

	Additional Experiments
	State-Coverage
	Ablations
	Action correlation matrix
	Additional baselines
	Ostrich gait visualization
	Additional evaluation with dense and sparse rewards in large virtual action spaces
	Description of a one-dimensional system
	Sensitivity to DEP probability

