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ABSTRACT

The degree-corrected block model (DCBM), latent space model (LSM), and β-
model are all popular network models. We combine their modeling ideas and
propose the logit-DCBM as a new model. Similar as the β-model and LSM, the
logit-DCBM contains nonlinear factors, where fitting the parameters is a chal-
lenging open problem. We resolve this problem by introducing a cancellation
trick. We also propose R-SCORE as a recursive community detection algorithm,
where in each iteration, we first use the idea above to update our parameter estima-
tion, and then use the results to remove the nonlinear factors in the logit-DCBM
so the renormalized model approximately satisfies a low-rank model, just like the
DCBM. Our numerical study suggests that R-SCORE significantly improves over
existing spectral approaches in many cases. Also, theoretically, we show that the
Hamming error rate of R-SCORE is faster than that of SCORE in a specific sparse
region, and is at least as fast outside this region.

1 INTRODUCTION

Community detection is a problem of major interest in network analysis (e.g., see (Goldenberg
et al., 2010), a survey paper). Consider an undirected network with n nodes and K communities
C1, C2, . . . , CK (a community is a group of nodes with similar behaviors). Let A ∈ Rn,n be the
adjacency matrix, whereAij = 1 if and only if there is an edge between node i and j, 1 ≤ i ̸= j ≤ n.
Conventionally, we do not count self edges, so Aij = 0 if i = j. As in many works on community
detection (e.g., Chen et al. (2018); Zhao et al. (2012); Yuan et al. (2022a)), we assume that each
node belongs to exactly one of the K communities. For each 1 ≤ i ≤ n, we encode the community
label of node i by a K-dimensional vector πi (which is unknown to us) such that

πi = ek if and only if node i ∈ Ck (ek: k-th standard Euclidean basis vector of RK). (1)

The goal of community detection is to use (A,K) to cluster all n nodes intoK communities/groups.

The degree-corrected block model (DCBM) (Karrer & Newman, 2011) is a popular network model.
Suppose we use a free parameter θi > 0 to model the degree heterogeneity of node i, 1 ≤ i ≤ n.
For a non-negative matrix P ∈ RK,K , DCBM assumes that the upper triangular entries of A are
independent Bernoulli variables satisfying

P(Aij = 1) = θiθjπ
′
iPπj ⇐⇒ log(P(Aij = 1)) = log(θi) + log(θj) + π′

iQπj , (2)

whereQ is aK×K matrix such thatQ = log(P ) entry-wise. When all θi are equal, DCBM reduces
to the well-known Stochastic Block Model (SBM) (Holland et al., 1983). Note that as 0 ≤ P(Aij =
1) ≤ 1, so implicitly, DCBM has imposed a set of constraints on its parameters:

log(θi) + log(θj) + π′
iQπj ≤ 0, 1 ≤ i, j ≤ n. (3)

These constraints make an already complicated setting even more complicated, so we desire to
remove them if possible. Also, if the matrix Q is positive definite, then Q = U ′U for a matrix
U ∈ RK,K . In this special case, we can rewrite (2) as

log(P(Aij = 1)) = log(θi) + log(θj) + z′izj , where zi = Uπi, 1 ≤ i ≤ n. (4)
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The latent space model (LSM) (Hoff, 2005) and the β-model (Chatterjee et al., 2011) are also pop-
ular network models. Denote the logit function by logit(x) = log(x/[1 − x]), 0 < x < 1. In a
representative form, for so-called latent positions z1, . . . , zn ∈ RK , the LSM assumes

logit(P(Aij = 1)) = log(θi) + log(θj) + z′izj . (5)

Compared (5) with (4), the only difference is the log-link is replaced by the logit-link, so at least in
the special case where Q is positive definite, two models are similar. Also, if we drop the z′izj term
on the RHS, then (5) reduces to the β model (where we only have one community, i.e., K = 1).

However, despite the similarity, to many statisticians, (5) is highly preferred. The main reason is
that, for binary data, the model recommended by textbooks is the logistic regression model (e.g.,
(Hastie et al., 2009, Section 4.4) and Dobson & Barnett (2018)), where the logit-link function was
argued to be the most natural. Additionally, some popular Python packages, such as scikit-learn,
frequently use the logit-link function. In fact, in the LSM case, since logit(P(Aij = 1)) can take
any values in (−∞,∞), we do not have the constraints (see (3)) as the DCBM case.

To combine the modeling ideas of all three models, we propose the logit-DCBM, where we assume

logit(P(Aij = 1)) = log(θi) + log(θj) + π′
iQπj , with Q = log(P ) entrywise as above. (6)

Since we use the logit-link function, we do not need the constraints (3) as in the DCBM case. Also,
we can view (6) as an extension of (2). Moreover, since we do not require Q to be positive definite
in (6), so (6) also extends (5) to a broader setting. Last, 6) reduces to the β-model if we let Q = 0.

In summary, we propose the logit-DCBM as a nonlinear variant of DCBM so hopefully it is more
broadly acceptable, especially for researchers with a strong preferences in nonlinear network models
(such as the LSM) and in using logistic regression type model for binary data.

We now rewrite the logit-DCBM in the matrix form. Note that under the model, P(Aij = 1) =
Nij · θiθjπ′

iPπj , where Nij = [1 + θiθjπ
′
iPπj ]

−1 is a nonlinear term. Let N = (Nij), Θ =
diag(θ1, . . . , θn) ∈ Rn,n and Π = [π1, . . . , πn]

′. For any matrix Ω ∈ Rn,n, let diag(Ω) ∈ Rn,n

be the diagonal matrix where the k-th diagonal entry is Ωkk. Let W ∈ Rn,n be the matrix where
Wij = Aij − E[Aij ] if i ̸= j and Wij = 0 otherwise. Let ◦ denote the Hadamard (or entry-wise)
product (Horn & Johnson, 1985). Under the logit-DCBM model (6),

A = Ω− diag(Ω) +W, with Ω = N ◦ Ω̃ and Ω̃ = ΘΠPΠ′Θ. (7)

Note that rank(Ω̃) = K, but due to the matrix of nonlinear factors N , rank(Ω) may be much larger
than K. For this reason, (7) is not a low-rank model in general.

Remark 1. Since Nij ≈ 1 when θiθjπ′
iPπj ≈ 0, one may think that the DCBM and logit-DCBM

are close to each other. This is not true. First, θiθjπ′
iPπj are not necessarily small for all i, j.

Second, even if Ω̃ and N ◦ Ω̃ are close in each entry, their spectra and norms can be very different.

Literature review and our contribution. The logit-DCBM (and all other models mentioned above)
are so-called latent variable models, where Π is the matrix of latent variables. For latent variable
models, the EM algorithm (e.g., Dempster et al. (1977)) is a well-known approach. However, EM
algorithm is computationally expensive, lacks of theoretical guarantee for high dimensional setting
as we have here, and does not perform well when the networks are sparse. For network data, pe-
nalization approach is popular, and in the DCBM setting, there are many interesting works (e.g.,
Chen et al. (2018); Zhao et al. (2012)). However, since the DCBM is a latent variable model with
many unknown parameters, these methods usually involve a non-convex optimization, where a good
initialization is crucial. Also, penalization approaches are usually computationally relatively slow
and hard to analyze. We can extend these approaches to LSM (Ma & Yuan, 2020) and logit-DCBM,
but due to the nonlinearity in LSM and logit-DCBM, these issues persist.

For these reasons, spectral approaches for network data are especially appealing. Compared with
EM algorithm and penalization approaches, spectral approaches are conceptually simpler, computa-
tional faster, and also easier (at least for the DCBM) to analyze. In the classical spectral approach,
we cluster by applying k-means to the n rows of the matrix Ξ̂ = [ξ̂1, . . . , ξ̂K ], where ξ̂k is the k-th
eigenvector of A. However, due to frequently observed phenomenon of severe degree heterogeneity
in network data, such an approach frequently performs poorly. To fix the problem, (Jin, 2015) pro-
posed SCORE as a new spectral approach. In the DCBM setting, SCORE was shown to have fast
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convergence rates (e.g., Jin (2015); Jin et al. (2021b)). Also, in a survey paper (Ke & Jin, 2023),
SCORE was compared with many algorithms on many real networks, where it was shown to be
competitive in real data performances.

Motivated by these, we wish to extend SCORE to our setting. The challenge is, the success of
SCORE critically depends on the fact that the DCBM is a low-rank model, but unfortunately, the
logit-DCBM is not a low-rank model (see above).

We adapt SCORE to our setting by proposing the Recursive-SCORE (R-SCORE): we initialize by
a possibly crude estimate for Π (denoted for Π̂), and then use A and Π̂ to estimate N (denoted
by N̂ ). We then update A by A ⊘ N̂ (⊘ denotes the entry-wise division) and repeat the above
process for a number of times. The main idea here is that, if N̂ ≈ N , then A ⊘ N̂ ≈ A ⊘ N =

Ω̃− diag(Ω̃) +W ⊘N , where the RHS is a low-rank model (recall that rank(Ω̃) = K).

The challenge is, how to estimate N is a difficult problem, even if Π is known. In fact, when Π is
known, we can restrict the network to each of the K communities, where within each community,
the logit-DCBM reduces to the β-model (which is a symmetrical version of the p1 model (Holland
& Leinhardt, 1981)). How to estimateN in the β-model is a well-known open problem, as explained
in the survey paper (Goldenberg et al., 2010) (see also Rinaldo et al. (2010)): “A major problem with
the p1 and related models, recognized by Holland and Leinhardt, is the lack of standard asymptotics,
..., we have no consistency in results for the maximum likelihood estimates”.

We tackle this with a cancellation trick. Construct two types of cycles. For each type, the expected
cycle count is a big sum of many terms, where due to the matrix of nonlinear factors N , we can not
derive a simple expression. Fortunately, in the ratio of the two big sums, the nonlinear factors in
one big sum cancel with those in the other, and the ratio has a simple and closed-form expression.

Therefore, if Π is known, then the idea gives rises to a simple and convenient way to estimate N .
Note that this also solves the open problem for the β-model aforementioned. In our case, Π is
unknown, but we can first obtain a possibly crude estimate Π̂, and then use Π̂ and the idea above to
obtain an estimate N̂ for N . We can then repeat the two steps as in the R-SCORE.

Remark 2. As many recent procedures rely on a low-rank network model, the above idea is not only
useful for adapting SCORE to our setting, but is also helpful in adapting other ideas (e.g., those on
global testing (Jin et al., 2021a) and on estimating K (Jin et al., 2023)) to our setting.

It remains to analyze SCORE and R-SCORE for the logit-DCBM model. Note that while the Ham-
ming clustering error of SCORE was analyzed before (e.g., Jin (2015); Jin et al. (2021b)), but the
focus were on the simpler DCBM model, where the analysis critically depends on that the DCBM is
a low-rank model. Unfortunately, the logit-DCBM is not a low-rank model, so it is unclear how to
extend the results in Jin (2015); Jin et al. (2021b) to our setting. Note also that R-SCORE is a new
algorithm, and has never been analyzed before.

For any community detection procedures, we measure the performance by the Hamming clustering
error. In the logit-DCBM model, we can always write

A = Ω̃ + (N − 1n1
′
n) ◦ Ω̃− diag(Ω) +W, where Ω̃ is a low-rank matrix,

and (N − 1n1
′
n) ◦ Ω̃ can be viewed as a non-linear perturbation of Ω̃. We show that the Hamming

error rate of SCORE is upper bounded by

C[λ1(Ω̃) + ∥(N − 1n1
′
n) ◦ Ω̃∥]/λ2K(Ω̃).

This is the first time we derive a bound for the Hamming clustering error of SCORE for a nonlin-
ear network model. Compared with existing works on DCBM (e.g., Jin et al. (2021a; 2023)), the
analysis is quite different.

The Hamming error of R-SCORE is much harder to analyze, for many reasons. First, R-SCORE is
a recursive algorithm, where the next step depends on the pervious one. Second, N̂ (the estimate for
N ) is a complicated nonlinear function of A, which depends not only on the clustering errors in the
previous step, but also on the cycle count step aforementioned (where the analysis is non-standard).

Fortunately, we manage to derive an upper bound for the Hamming error rate of R-SCORE. To save
space, we consider a special case here, leaving more general cases to Section 3.1. Consider the
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special case where for all 1 ≤ i ≤ n, c0n−β ≤ θi ≤ c1n
−β , where β ∈ (0, 1/2) and c1 > c0 > 0

are constants. In this case, the Hamming error rates of SCORE are R-SCORE are upper bounded by
Cn−a0(β) and n−a1(β), respectively, where

a0(β) = min{(1− 2β), 4β}, a1(β) = min{(1− 2β), 6β}, and a1(β) > a0(β) when β < 1/6.

Therefore, when 0 < β < 1/6, the rate of R-SCORE is faster than that of SCORE, and two rates
are the same when 1/6 < β < 1/2 (the interesting range of β is 0 < β < 1/2; when β > 1/2, the
signal-noise ratio is so low that no procedure could succeed).

We have the following contributions: (a) propose the logit-DCBM as an extension of the LSM,
β-model, and DCBM, and as a more appealing network model, (b) introduce a cancellation trick
and use it to solve an open problem for the β-model, as well as for an open problem for the logit-
DCBM in the idealized case where Π is known, and (c) propose R-SCORE as recursive approach
to community detection with the logit-DCBM, (d) for the first time, we derive upper bounds for the
Hamming error rates of SCORE and R-SOCRE for the logit-DCBM (which is a nonlinear network
model), and (e) show that the rate of R-SCORE is faster than that of SCORE in a specific sparse
region, and is at least as fast outside the region.

In summary, we propose the logit-DCBM as a nonlinear variant of DCBM, so it will be more broadly
accepted. The nonlinear factors make the logit-DCBM harder to fit, but with a cancellation trick,
we can successfully convert the model back to DCBM approximately, so we can continue to enjoy
all nice properties the DCBM has. We also propose R-SCORE as a fast spectral approach where the
error rate is faster than that of applying SCORE directly to the logit-DCBM.

Content and notation. Section 2 introduces the cancellation trick. Section 3 introduces the R-
SCORE algorithm and theoretical analysis. Section 4 contains some numerical study. Section 5
discusses connections to other problems. In this paper, ◦ and ⊘ denote the entry-wise product and
division, respectively. For 1 ≤ k ≤ K, we use ek to denote the k-th standard basis vector of RK .
For any n ≥ 2, In denotes the n × n identity matrix and 1n ∈ Rn denotes the vector of all ones.
For any two sequence of non-negative numbers {an} and {bn}, we write an ≫ bn if bn/an = o(1)
(similar for an ≪ bn), and we write an ≍ bn if c0bn ≤ an ≤ c1bn for some constants c1 > c0 > 0.
We use C to stand for a generic constant, which may vary from one occasion to another.

2 AN IDEA FOR CANCELLING NONLINEAR TERMS IN BIG SUMS

We introduce the cancellation trick by considering two seemingly new problems. Although it seems
a digression from our original purposes, the two problems are interesting in their own right, and
provide the foundation for the refitting step of R-SCORE below. Consider the first problem. Suppose
we have a matrix A ∈ Rn1,n2 with independent Bernoulli entries, where Ωij = P(Aij = 1) =
x0Nijθiθj , x0 > 0, θi > 0, with Nij = [1 + x0θiθj ]

−1. Here, θi are known but x0 is not, and the
interest is to estimate x0. We may estimate x0 by the maximum likelihood estimate (MLE), but it
does not have a closed form and may be computationally slow, so we desire a new approach.

Lemma 2.1 We have (I) = x0(II), where (I) =
∑

i,j Ωij and (II) =
∑

i,j θiθj(1− Ωij).

Proof. As (I) = x0
∑

i,j Nijθiθj and (II) =
∑

i,j Nijθiθj , the claim follows. □

The key is, due to the non-linear terms Nij , it is hard to derive a closed-form formula for (I) or
(II), but by our careful design, the ratio of (I)/(II) has a very simple form. Now, to estimate
x0, let ψ(1)

n =
∑n1

i=1

∑n2

j=1Aij and ψ(2)
n =

∑n1

i=1

∑n2

j=1 θiθj(1 − Aij). By Lemma 2.1, x0 =

E[ψ(1)
n ]/E[ψ(2)

n ], so a convenient estimate for x0 is (note: the computational cost is O(n1n2)):

x̂0 = ψ(1)
n /ψ(2)

n = [

n1∑
i=1

n2∑
j=1

Aij ]/[

n1∑
i=1

n2∑
j=1

θiθj(1−Aij)]. (8)

Consider the second problem. Suppose we have a network adjacency matrix A ∈ Rn1,n2 satisfying
the β-model. That is, the upper triangle of A are independent Bernoulli satisfying Ωij ≡ P(Aij =
1) = Nijθiθj where Nij = [1 + θiθj ]

−1, 1 ≤ i ̸= j ≤ n1. The parameters θi > 0 are unknown and
the interest is to estimate them. Due to the nonlinear termsNij , the problem remains a difficult open
problem in the literature, where classical approaches such as the MLE face grand challenges (e.g.,
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Goldenberg et al. (2010); Karwa & Slavković (2016); Rinaldo et al. (2010)). We propose a new
approach, motivated by the following lemma. For any 1 ≤ i ≤ n1, let Si = {1, 2, . . . , n1} \ {i}.

Lemma 2.2 Fix an odd number m ≥ 3. We have (dist below stands for distinct)∑
i2,...,im∈Si1

(dist) Ωi1i2(1− Ωi2i3) . . .Ωim−2im−1
(1− Ωim−1im)Ωimi1∑

i2,...,im∈Si1 (dist)
(1− Ωi1i2)Ωi2i3 . . . (1− Ωim−2im−1)Ωim−1im(1− Ωimi1)

= θ2i1 . (9)

Proof. Note that

Ωi1i2(1− Ωi2i3) . . .Ωim−2im−1
(1− Ωim−1im)Ωimi1 = Ni1i2Ni2i3 . . . Nimi1θ

2
i1θi2 . . . θim

(1− Ωi1i2)Ωi2i3 . . . (1− Ωim−2im−1)Ωim−1im(1− Ωimi1) = Ni1i2Ni2i3 . . . Nimi1θi2 . . . θim .

Comparing the RHS, the only difference is the term θ2i . Since on both the numerator and denomina-
tor of (9), the sum is only over i2, i3, . . . , im with i1 being fixed, the claim follows. □

Similarly, due to the non-linear terms Nij , it is hard to derive a closed-form formula for both the
numerator and denominator of (9), but by our design, the ratio in (9) has a very simple form. Let
ϕ
(1)
n,m(i1) =

∑
i2,...,im∈Si1

(dist)Ai1i2(1−Ai2i3) . . . Aim−2im−1(1−Aim−1im)Aimi1 and ϕ(2)n,m(i1) =∑
i2,...,im∈Sk,i1

(dist)(1−Ai1i2)Ai2i3 . . . (1−Aim−2im−1
)Aim−1im(1−Aimi1). By Lemma 2.2,

E[ϕ(1)n,m(i1)]

E[ϕ(2)n,m(i1)]
=

∑
i2,...,im∈Si1

Ωi1i2(1− Ωi2i3) . . .Ωim−2im−1(1− Ωim−1im)Ωimi1∑
i2,...,im∈Si1

(1− Ωi1i2)Ωi2i3 . . . (1− Ωim−2im−1
)Ωim−1im(1− Ωimi1)

= θ2i1 .

Therefore, a reasonable estimator for θi1 is θ̂i1 =

√
ϕ
(1)
n,m(ii)/ϕ

(2)
n,m(i1). This solves the open

problem aforementioned (see also Section 3). Especially, we may take m = 3 and estimate θi by

θ̂i =

√
ϕ
(1)
n,3(i)/ϕ

(2)
n,3(i) =

√ ∑
j,k∈Si,j ̸=k Aij(1−Ajk)Aki∑

j,k∈Si,j ̸=k(1−Aij)Ajk(1−Aki)
. (10)

Alternatively, we may use a larger m, but the numerical performance is similar, while the analysis
is much longer. For each fixed m, the computational cost is O(n2d) (e.g., Jin et al. (2021a)), where
d is the maximum node degree.

Remark 3. Lemma 2.2 is readily extendable. For example, if there are positive functions g and h
such that g(Ωij) = θiθjπ

′
iPπjh(Ωij) for all i, j, then similarly∑

i2,...,im∈Si1
(dist) g(Ωi1i2)h(Ωi2i3) . . . g(Ωim−2im−1

)h(Ωim−1im)g(Ωimi1)∑
i2,...,im∈Si1

(dist) h(Ωi1i2)g(Ωi2i3) . . . h(Ωim−2im−1
)g(Ωim−1im)h(Ωimi1)

) = θ2i1 .

In summary, the two problems above (especially the second one) are difficult. In these problems,
the quantities of interest are hidden in some big sums. Due to the nonlinear factor Nij , it is hard
to derive a closed-form formula for such big sums. However, if we can carefully construct two big
sums, then we can cancel the nonlinear terms Nij by considering the ratio of the two big sums, and
derive a closed-form formula for the quantity of interest. Such a cancellation trick gives rises to a
convenient approach to solving the two problems above, and is readily extendable to many other
settings (e.g., analysis of the p1 model for directed networks Holland & Leinhardt (1981), analysis
of tensor and hyper-graphs Yuan et al. (2022b)).

Below in Section 3, we introduce R-SCORE as a recursive algorithm, where the ideas above play
a key role in the refitting steps of R-SCORE. For space reasons, we defer the analysis of the above
idea (i.e., x̂0 and θ̂i) to the supplement; see Sections C.2-C.3 of the supplement for details.

3 COMMUNITY DETECTION BY R-SCORE FOR THE LOGIT-DCBM

We propose Recursive-SCORE (R-SCORE) for community detection, where the key is to use the
ideas above in the refitting step; see Algorithm (1). The number of iteration is not critical, so we
set M = 10 (R-SCORE typically converges in very few iterations). In each iteration, R-SCORE
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consists a community detection step by SCORE (the SCORE step) and a refitting step. We choose
SCORE for it is fast, competitive in real data analysis, and with fast error rates (e.g., Jin (2015); Jin
et al. (2021b)), but we can also view our algorithm as a generic algorithm, where we can replace the
SCORE by any other community detection approaches that are provably effective for DCBM.

We now discuss the SCORE step and refitting step of Algorithm 1 in detail. Consider the SCORE
step (Jin, 2015) first. In this step, for an input matrix A or A ⊘ N̂ , let ξ̂1, . . . , ξ̂K be the first K
eigenvectors, and let R̂ = [ξ̂2/ξ̂1, . . . , ξ̂K/ξ̂1], where ξ/η denotes the vector of entry-wise ratios.
We cluster by applying the k-means to the n rows of R̂, and let π̂i be the estimated community label
of node i. Let Π̂ = [π̂1, . . . , π̂n]

′. Note that π̂i takes values in e1, e2, . . . , eK (ek: k-th standard
basis vector of RK).

Algorithm 1 The Recursive SCORE (R-SCORE)

Input: A and K. Initialize with an estimate Π̂ by SCORE. For m = 1, 2, . . . ,M ,

• Refitting. Update N̂ using A, Π̂ in the most recent step, and the refitting step below.
• SCORE. Update Π̂ by applying SCORE to A⊘ N̂ with the most recent N̂ .

Output: Π̂ = [π̂1, . . . , π̂n]
′.

Consider the refitting step. Let Π̂ = [π̂1, . . . , π̂n]
′ be the estimated Π in the current iteration. Recall

that even in the idealized case of Π̂ = Π, refitting (i.e., how to estimate N ) is a difficult and open
problem. We tackle this with the idea in Section 2. In detail, let Ck = {1 ≤ i ≤ n : π̂i = ek} be the
k-th estimated community, 1 ≤ k ≤ K, and let Ŝk,i = Ĉk \ {i}. By Lemma 2.2 and especially (10),
we propose to estimate θi by

θ̂i =
√
(

∑
j ̸=k∈Ŝk,i

Aij(1−Ajk)Aki)/(
∑

j ̸=k∈Ŝk,i

(1−Aij)Ajk(1−Aki)), if i ∈ Ĉk. (11)

This corresponds to the case ofm = 3 of our idea in Section 2, but we can also use a largerm. Also,
inspired by Lemma 2.1, we can estimate the matrix P by

P̂kℓ = [
∑
i∈Ĉk

∑
j∈Ĉℓ

Aij ]/[
∑
i∈Ĉk

∑
j∈Ĉℓ

θ̂iθ̂j(1−Aij)], 1 ≤ k, ℓ ≤ K. (12)

To appreciate the idea, consider the sub-matrix of A by restricting the rows and columns to Ĉk and
Ĉℓ. In the idealized case where θ̂i = θi and Ĉk = Ck, 1 ≤ i ≤ n, 1 ≤ k ≤ K, the mean of the
sub-matrix satisfies the condition of Lemma 2.1 of Section 2. This gives rises to the estimates above.
Finally, we update our estimate of N by letting N̂ij = (1 + θ̂iθ̂jP̂kℓ)

−1 if i ∈ Ĉk and j ∈ Ĉℓ.
Note that by the discussion in Section 2, the computational cost of the refitting step is no more than
O(n2d), where d is the maximum node degree. As a result, the computational cost of R-SCORE is
no more than O(n2d).

Remark 4. One may want to replace the refitting step by a simpler step, but how to do so remains
unclear. Recall that even when Π is known, how to estimate (Θ, P ) is a challenging problem (e.g.,
Goldenberg et al. (2010); Karwa & Slavković (2016); Rinaldo et al. (2010)).

3.1 THEORETICAL RESULTS

For any community detection procedure, let Π̂ be the resultant estimate for Π, where each row of Π̂
takes values in {e1, e2, . . . , eK}. We measure the performance by the Hamming error rate:

rn(Π̂) =
1

n
min
P

n∑
i=1

1{π̂i ̸= Pπi}, where P is any permutation in {1, 2, . . . ,K}.

Let Π̂score and Π̂rscore be the Π̂ for applying SCORE and R-SCORE to the adjacency matrix A.

Note that under the logit-DCBM model,

A = Ω−diag(Ω)+W, where Ω = N ◦ Ω̃, Ω̃ = ΘΠPΠ′Θ and P has unit diagonal entries. (13)
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The last item is a well-known identifiability condition (Jin et al., 2023). Since in most real networks,
K is relatively small, so we suppose that K is fixed (this is only for technical simplicity and can be
relaxed). Let nk be the number of nodes in the k-th community, 1 ≤ k ≤ K. We assume

min
k

{nk} ≥ c0n, for some constant 0 < c0 ≤ 1/K. (14)

This is a frequently used and mild balance condition among the K communities (e.g., Jin (2015);
Jin et al. (2021a)). Also, we assume that there exists constants c2 ≥ c1 > 0 such that

θ̄ → 0, and c1θ̄ ≤ θi ≤ c2θ̄ for all 1 ≤ i ≤ n, where θ̄ =
∑n

i=1 θi/n. (15)

This condition is also only for technical reasons, and can be largely relaxed. Furthermore, we assume
there exists an constant c3 > 0, such that

√
nθ̄ · |λmin(P )| ≥ c3 log(n), λmin(P ): smallest eigenvalue of P in magnitude. (16)

In the special case where A satisfies a DCBM, Ω = Ω̃, and SCORE was analyzed before (e.g.,
Jin (2015); Jin et al. (2021b)), where it is known that the signal-noise ratio (SNR) is given by
|λK(Ω̃)|/λ1/21 (Ω̃) (|λK(Ω̃)| and λ1/21 (Ω̃) represent the signal and noise level respectively). In order
for the Hamming error rate of SCORE tends to 0, it is necessary that the SNR → ∞. Condition
(16) is necessary for otherwise the SNR may tend to 0. Also, here λmin(P ) measures community
dissimilarity. In the special case of P = b1K1K + (1 − b)IK , 0 < b < 1, λmin(P ) = 1 − b.
Therefore, if λmin(P ) → 0, then b → 1, and all K communities are very similar. Condition (16)
defines a class of weak signal settings where the problem of community detection is challenging.
Lastly, consider PΠ′Θ2Π. Let η be the first right eigenvector of PΠ′Θ2Π, we assume that η is a
positive vector and

λ1(PΠ
′Θ2Π)− |λ2(PΠ′Θ2Π)| ≥ c4λ1(PΠ

′Θ2Π), max
i
η(i)/min

i
η(i) ≤ c (17)

This condition is necessary to guarantee that the first eigenvector is well-separated from the others
and the SCORE normalization by the first eigenvector is well-defined, since the reciprocal of each
entry of the first eigenvector cannot blow up. It is a mild condition by Perron’s theorem on non-
negative matrices. Similar condition can be found in Jin et al. (2023).

Note that while SCORE was analyzed before for the DCBM, it was not analyzed for the logit-
DCBM, where the analysis is expected to be much harder. In the logit-DCBM, we have Ω =

Ω̃+ (N − 11′) ◦ Ω̃. To avoid that the nonlinearity completely ruins the low-rank structure, we need

∥(N − 1n1
′
n) ◦ Ω̃)∥/|λK(Ω̃)| → 0; (18)

Recall that SNR = |λK(Ω̃)|/λ1/21 (Ω̃). The following theorem is proved in the supplement.

Theorem 3.1 Let Π̂score be the resultant estimate for Π when we apply SCORE directly to A and
suppose (14)-(17) and (18) hold. With probability 1− o(n−3),

rn(Π̂
score) ≤ C[∥(N − 1n1

′
n) ◦ Ω̃∥2 + λ1(Ω̃)]/λ

2
K(Ω̃).

In the special case where A satisfies the DCBM, N = 1n1
′
n, and rn(Π̂score) ≤ Cλ1(Ω̃)/λ

2
K(Ω̃).

Next, we consider R-SCORE. Since R-SCORE is a recursive algorithm, it is useful to present a

result that is applicable in general cases. Consider an estimate for Ω̃ in the form of ̂̃Ω = Θ̂Π̂P̂ Π̂′Θ̂.

By our construction, N̂ij = 1/(1 +
̂̃
Ωij). Suppose that with probability 1− o(n−3),

∥P̂ − P∥max ≪ min{1, |λmin(P )|θ̄−1}, ∥Π̂−Π∥(
√
n |λmin(P )|)−1θ̄ → 0, (19)

and

∥(N ⊘ N̂ − 1n1
′
n) ◦ Ω̃∥ = o(|λK(Ω̃)|), ∥(N ⊘ N̂ − 1n1

′
n)∥F = o(λ1(Ω̃)) . (20)

The following lemma is proved in the supplement.

Lemma 3.1 Suppose (14)-(17) hold. Let Π̂ be the result of applying SCORE to A ⊘ N̂ where
(19)-(20) and θ̂i < Cθ̄ hold. With probability 1− o(n−3),

rn(Π̂) ≤
C[∥(N ⊘ N̂ − 1n1

′
n) ◦ Ω̃∥2 + τ2n + λ1(Ω̃)]

λ2K(Ω̃)
,where τn =

√
nθ̄3[

√
n∥P̂ − P∥max + ∥Π̂−Π∥].
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We now show that (19)-(20) hold in many settings. Our numerical study shows that R-SCORE
typically converges in just one iteration, so for convenience in analysis, we consider R-SCORE
with one iteration from now on in this section. Write for short δn = max{∥(N − 1n1

′
n) ◦

Ω̃∥2, λ1(Ω̃)}/λ2K(Ω̃). Theorem 3.2 is proved in the supplement.

Theorem 3.2 Suppose (14)-(17) hold and δn/min{θ̄2, θ̄|λmin(P )|, |λmin(P )|2/θ̄2} → 0. Let
Π̂rscore be the estimate for Π by applying R-SCORE to A, and let (Θ̂, P̂ , Ω̂, N̂) be the correspond-
ing estimates for (Θ, P,Ω, N) in the refitting step of R-SCORE. We have that (19)-(20) hold and
that with probability 1− o(n−3),

rn(Π̂
rscore) ≤ C

λ2K(Ω̃)

(
λ1(Ω̃) + nθ̄4 log(n) + n2θ̄2δ2n + n2θ̄6δn

)
.

Corollary 3.1 Suppose (14)-(17) hold, |λmin(P )| ≥ C for a constant C > 0, and nθ̄4 → ∞.
Let Π̂score and Π̂rscore be the estimates for Π by applying SCORE and R-SCORE to the adjacency
matrix A, respectively. With probability 1− o(n−3),

rn(Π̂
score) ≤ C

( 1

nθ̄2
+ θ̄4

)
, rn(Π̂

rscore) ≤ C
( 1

nθ̄2
+ θ̄6 +

log(n)

n

)
.

With a more careful analysis, we conjecture that the condition of nθ̄4 can be removed, and the rate
of R-SCORE is at least as fast as that of SCORE in the whole range of interest (note that the proof
of Theorem 3.2 and Corollary 3.1 is already hard and relatively long). If we calibrate θ̄ = n−β for a
constant β > 0, then in order for the SNR → ∞ (e.g., see (18)), we must have 0 < β < 1/2. In this
range, rn(Πscore) ≤ Cn−a0(β) and rn(Πrscore) ≤ Cn−a1(β), where

a0(β) =

{
4β, 0 < β ≤ 1/6,
1− 2β, 1/6 < β < 1/2,

a1(β) =

{
6β, 0 < β ≤ 1/8,
(1− 2β), 1/8 < β ≤ 1/6,
(1− 2β), 1/6 < β < 1/2.

;

see Figure 1. Therefore, when 0 < β < 1/6, the Hamming error rate of R-SCORE is faster than
that of SCORE. When β > 1/6, such a conclusion may also be true, as the current bound may
be conservative: the Hamming error rate for R-SCORE depends on a complicated data dependent
matrix N̂ , and the error bound can hopefully be improved with more careful analysis.

Remark 5. The proof of Theorem 3.2 and Corollary 3.1 is hard, for N̂ has a complicated form:

recall that N̂ij = 1/(1 +
̂̃
Ωij) and ̂̃

Ω = Θ̂Π̂P̂ Π̂′Θ̂, where Π̂ is the SCORE estimate for Π, and
(Θ̂, P̂ ) are constructed using Π̂, A, and a cancellation trick. Note that even when Π is known, how
to estimate (Θ, P ) is a nontrivial problem and we resolve it with a cancellation trick.

0 1/8 1/6 1/4 1/2

2/3

1

3/4

a0(β)

a1(β)

β

a(β)

Figure 1: Comparison of error rates (x-axis: β. y-axis: a0(β) (blue) and a1(β) (red)) .

4 SIMULATION RESULTS

We compare R-SCORE with SCORE and a non-convex penalization MLE-based approach by (Ma
et al., 2020), which we refer to as npMLE. We compare with npMLE for (Ma et al., 2020) deals with

8
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the LSM and is probably the closest related work to our paper. Our study contains 3 experiments. In
Experiment 1, we compare R-SCORE with SCORE (which is viewed as a benchmark). In Exper-
iment 2, we study how the error rates of R-SCORE and npMLE change across different iterations
(both algorithms are recursive). In Experiment 3, we compare the errors of R-SCORE and npMLE.

Experiment 1. R-SCORE vs. SCORE. The networks are simulated as follows: fixing (n,K), we first
simulate an n×n matrix Ω as in the logit-DCBM model as follows. Let P = β1K1K +(1− β)IK
and Π = [π1, π2, . . . , πn]

′, where πi = ek for n0 = n/K different i (recall that ek is the k-th
Euclidean basis vector of RK). Moreover, fixing a parameter bn > 0, we generate θ as follows.
We first draw θ01, θ

0
2, . . . , θ

0
n i.i.d. from a fixed distribution F (·), and then renormalize θ0 to get

θi = bn · θi/∥θ∥ for 1 ≤ i ≤ n. Finally, we let Ω̃ = ΘΠPΠ′Θ and Ωij = Ω̃ij/(1 + Ω̃ij),
1 ≤ i, j ≤ n. Once we have such a matrix Ω, we use it to generate a binary adjacency matrix A.

In such settings, approximately, the Signal-to-Noise ratio (SNR) is bn(1 − β) (e.g., see Jin et al.
(2021a)). It is desirable to choose settings that the SNR is neither too large or too small. Con-
sider four settings (A), (B), (C) and (D). In Setting (A), we fix (n,K) = (2400, 3) and F =
Uniform(0.01, 2). We choose bn = 60 and β = 23/30 (and this way, SNR = 14). In Setting
(B), we fix (n,K) = (2500, 5) and F = Uniform(0.1, 0.8). We choose bn = 70 and β = 0.65 (and
so SNR = 24.5). In Setting (C), we fix (n,K) = (2400, 3) and F = Pareto(10, 1). To avoid ex-
tremely severe degree heterogeneity, we truncate each θ0i at 200. We choose bn = 70 and β = 0.55
(and this way, SNR = 31.5). In Setting (D), we fix (n,K) = (2500, 5) and F = Pareto(10, 1)
with truncation at 100. We choose bn = 50 and β = 0.55 (and so SNR = 22.5).

The results are in Figure 2, where the x-axis is the # of iterations m, and the y-axis is the corre-
sponding error rate by R-SCORE (green dashed line: error rate for R-SCORE with m = 0, same as
that of applying SCORE directly to the adjacency matrix A). In all settings above, the performance
of directly applying SCORE (m = 0) is unsatisfactory. The improvements achieved by R-SCORE
are significant, with substantially reduced error rates. This suggests that (a) the R-SCORE is suc-
cessful as we expect, and (b) the iteration algorithm typically converges in very few iterations. Based
on the numerical results, we believe that the refitting procedure steps in R-SCORE are effective: by
re-normalization, they reduce the logit-DCBM model approximately to a low-rank model.

Experiment 2. Error rates of R-SCORE and npMLE in different iterations. Fix (n,K) = (5400, 6).
Let Π be generated similarly to Experiment 1 except that πi = ek for nk different i. Let P =[
P1 P2

P2 P1

]
, where P1 = 0.5β11K/21K/2 + (1 − 0.5β1)IK/2 and P2 = 0.5(β1 + β2)1K/21K/2.

We generate θi in the same manner as in Experiment 1 and similarly construct Ω̃ and Ω to gen-
erate a binary adjacency matrix A. In this experiment, we choose (n1, n2, · · · , nK) = 200 ·
(5, 1.5, 6, 3, 7.5, 4), F = Uniform(0.01, 2), bn = 80, and (β1, β2) = (0.9, 0.6). Under this set-
ting, the SNR is given by bn|λmin(P )| = 28. For each m = 1, 2, . . . , 1000, we apply R-SCORE
and npMLE with m iterations (SCORE is also included for comparison, which is the same as R-
SCORE with m = 0). The result is in Figure 3 (left). We observed that (a) R-SCORE converges
much more rapidly than the npMLE, and (b) the error rates of R-SCORE is significantly lower than
that of SCORE, and is slightly lower than that of npMLE.
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Figure 2: The error rates of R-SCORE for different m (# of iterations). See Experiment 1 for
setting details. SCORE is also included for comparision as a benchmark, which corresponding to
R-SCORE with m = 0 (x-axis: m; y-axis: error rate).

9



Published as a conference paper at ICLR 2025

Experiment 3. R-SCORE vs. npMLE. Consider the same setting as in Experiment 2, but we let β2
vary: we set bn = 30 and let β2 range from 0.58 to 0.7 with a step size 0.02 (other parameters remain
the same). The SNR of the simulated network hinges on the smallest eigenvalue of P , which in turn
hinges on β2. The results (based on 20 repetitions) are in Figure 3 (right), which suggest that R-
SCORE steadily outperforms npMLE for β2 in the entire range. Also, R-SCORE is much faster than
npMLE. In each repetition, it takes R-SCORE only 6 seconds, whereas it takes the npMLE more
than 300 seconds (more than 50 times longer). This shows that R-SCORE not only is significantly
faster than npMLE, but may also outperform the npMLE in many network settings.
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Figure 3: Left panel: The error rates by R-SCORE and npMLE for different m (# of iterations).
See Experiment 2 (x-axis: log10(m), y-axis: error rates). SCORE is also included for comparison,
which corresponds to R-SCORE with m = 0. Right panel: The error rates by R-SCORE and
npMLE for different β2. See Experiment 3 for setting details (x-axis: β2; y-axis: error rate).

5 DISCUSSION

In this paper, we have made a three-fold contribution to the area of network community detection.
First, we propose the logit-DCBM as a new network model. We argue that the logit-DCBM is more
reasonable than the popular DCBM, but also poses a challenge. Second, to overcome the challenge,
we propose a trick that can effectively cancel the effect of the nonlinear factors of the logit-DCBM
model in some statistics (especially the ratio of two cycle-counts). Last, we propose R-SCORE as
a new algorithm for community detection, and show that it can significantly improve over existing
spectral approaches including the SCORE. Our idea is generalizable to many other settings. For
example, the p1 model by Holland and Leinhardt Holland & Leinhardt (1981) is one of the most
popular models for directed networks with 1 community. Following the idea here, we can generalize
it to a model with multiple communities, and extend R-SCORE for community detection with the
new model. Also for example, the cancellation trick can be extended to many other settings (e.g.,
analysis of the p1 model for directed networks Holland & Leinhardt (1981), text analysis Ke et al.
(2023), tensor analysis Yuan et al. (2022b)) where the data matrix A satisfies E[A] = N ◦ Ω̃ for a
simple low-rank matrix Ω̃ and a matrix N consisting nonlinear factors. Given that nonlinear models
become increasingly more important in statistics and machine learning, the trick (and its extended
form) may find increasingly more uses in many applications in the near future.

The cancellation trick is especially useful. In machine learning, we have many nonlinear latent
variable models spreading in many areas (e.g., cancer clustering (Jin & Wang, 2016), text analysis
(Ke & Wang, 2024), and empirical finance). Due to the nonlinearity, how to analyze such models is
a challenging problem. In this paper, we propose an interesting cancellation trick using which we
can effectively remove the nonlinear factor in some latent variable models. For space reasons, we
only showcase this trick with a network setting, but the idea is extendable to other nonlinear latent
space models. For this reason, our work may spark new research in many different directions in
machine learning.

REFERENCES

Sourav Chatterjee, Persi Diaconis, and Allan Sly. Random graphs with a given degree sequence.
Ann. Appl. Probab., pp. 1400–1435, 2011.

10



Published as a conference paper at ICLR 2025

Yudong Chen, Xiaodong Li, and Jiaming Xu. Convexified modularity maximization for degree-
corrected stochastic block models. The Annals of Statistics, 46(4):1573 – 1602, 2018.

Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood from incomplete data via the
em algorithm. J. Roy. Statist. Soc. B, 39(1):1–22, 1977.

Annette J Dobson and Adrian G Barnett. An introduction to generalized linear models. Chapman
and Hall/CRC, 2018.

Anna Goldenberg, Alice Zheng, Stephen Fienberg, and Edoardo Airoldi. A survey of statistical
network models. Foundations and Trends in Machine Learning, 2(2):129–233, 2010.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning.
Springer, 2nd edition, 2009.

Peter Hoff. Bilinear mixed-effects models for dyadic data. J. Amer. Statist. Assoc., 100(469):286–
295, 2005.

Paul W. Holland and Samuel Leinhardt. An exponential family of probability distributions for
directed graphs. J. Amer. Statist. Assoc., 76(373):33–50, 1981. doi: 10.1080/01621459.1981.
10477598. URL https://www.tandfonline.com/doi/abs/10.1080/01621459.
1981.10477598.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Roger Horn and Charles Johnson. Matrix Analysis. Cambridge University Press, 1985.

Jiashun Jin. Fast community detection by score. Ann. Statist., 43(1):57–89, 2015.

Jiashun Jin and Wanjie Wang. Influential features pca for high dimensional clustering. Ann. Statist.,
44(6):2323–2359, 2016.

Jiashun Jin, Zheng Tracy Ke, and Shengming Luo. Optimal adaptivity of signed-polygon statistics
for network testing. Ann. Statist., 49(6):3408–3433, 2021a. doi: 10.1214/21-AOS2089. URL
https://doi.org/10.1214/21-AOS2089.

Jiashun Jin, Zheng Tracy Ke, and Shengming Luo. Improvements on score, especially for weak
signals. Sankhya A, pp. 1–36, 2021b.

Jiashun Jin, Zheng Tracy Ke, Shengming Luo, and Minzhe Wang. Optimal estimation of the num-
ber of network communities. J. Amer. Statist. Assoc., 118(543):2101–2116, 2023. doi: 10.
1080/01621459.2022.2035736. URL https://doi.org/10.1080/01621459.2022.
2035736.

Brian Karrer and Mark Newman. Stochastic blockmodels and community structure in networks.
Phys. Rev. E, 83(1):016107, 2011.
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