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ABSTRACT

In this study, we introduce ExXBEHRT, an extended version of BEHRT (BERT ap-
plied to electronic health record data) and applied various algorithms to interpret
its results. While BEHRT only considers diagnoses and patient age, we extend
the feature space to several multi-modal records, namely demographics, clinical
characteristics, vital signs, smoking status, diagnoses, procedures, medications
and lab tests by applying a novel method to unify the frequencies and temporal di-
mensions of the different features. We show that additional features significantly
improve model performance for various down-stream tasks in different diseases.
To ensure robustness, we interpret the model predictions using an adaption of ex-
pected gradients, which has not been applied to transformers with EHR data so
far and provides more granular interpretations than previous approaches such as
feature and token importances. Furthermore, by clustering the models’ represen-
tations of oncology patients, we show that the model has implicit understanding
of the disease and is able to classify patients with same cancer type into different
risk groups. Given the additional features and interpretability, EXBEHRT can help
making informed decisions about disease progressions, diagnoses and risk factors
of various diseases.

1 INTRODUCTION

Over the last decade, electronic health records have become increasingly popular to document a pa-
tient’s treatments, lab results, vital signs, etc. Commonly, a sequence of medical events is referred to
as a patient journey. Given the immense amount of longitudinal data available, there lies tremendous
potential for machine learning to provide novel insights about the recognition of disease patterns,
progression and subgroups as well as treatment planning. Recent studies have adapted transformers
to structured tabular EHR data and demonstrated their superiority in various benchmarks compared
to other similar algorithms (Kalyan et al., 2022)). Although there exists work on unstructured free-
text EHR data (e.g. BioBERT (Lee et al.,[2019)), these models are out of the scope of this study.

2 RELATED WORK

The first adaptation of transformers to structured EHR data, called BEHRT (L1 et al.; 2020), incorpo-
rated diagnosis concepts and age from EHRs and added embeddings for the separation of individual
visits and a positional embedding for the visit number. Other models such as Med-BERT (Rasmy
et al., 2021), CEHR-BERT (Pang et al., |2021) and BRLTM (Meng et al., 2021) added more fea-
tures by concatenating the inputs into one long patient sequence. These approaches are limited in
the amount of data from a single patient they can process and the computational power required in-
creases significantly with each feature added. In addition, there exists a variety of models that either



Published as a conference paper at ICLR 2023

combine the BERT architecture with other machine learning models (Shang et al.| (2019), [Poulain
et al.|(2022), Liet al.|(2021)) or focus only on disease-specific use-cases (Azhir et al.[(2022])), Prakash
et al.| (2021)), Rao et al.|(2022))). These models lack generalizability to other tasks due to their unique
training methodologies and domains.

In this work, we present a novel approach to integrate multimodal features into transformer models
by adding medical concepts separately and vertically instead of chaining all concepts horizontally.
We show that these features are important in various downstream applications such as mortality
prediction, patient subtyping and disease progression prediction.

3 EXBEHRT FOR EHR REPRESENTATION LEARNING

ExBEHRT is an extension of BEHRT where medical concepts are not concatenated into one long
vector, but grouped into separate, learnable embeddings per concept type. In this way, we avoid
exploding input lengths when adding new medical features and give the model the opportunity to
learn which concepts it should focus on. From a clinical perspective, it would also be useful to
separate diagnoses, procedures, drugs, etc., as they have different clinical value for downstream
applications. We take the number of diagnoses in a visit as an indicator of how many “horizontal
slots™ are available for other concepts in that visit (e.g. two for the first visit in figure[T). Therefore,
the maximum length of the patient journey is defined by the number of diagnosis codes of a patient,
regardless of the number of other concepts added to the model. Another advantage of this procedure
is that it can handle different frequencies and small amounts of additional concepts. As shown by
the procedures in figure [T} but carried out in the same way with lab tests, there are three possible
cases of adding a new concept to a visit:

1. The number of procedures is equal to the amount of horizontal slots available in the visit
(visit 1 - two each). The procedures can therefore be represented as a 1D vector.

2. The number of procedures exceeds the amount of slots available in the visit (visit 2 - one
diagnosis, two procedures). Here, the procedures fill up the number of horizontal slots
line by line until there are no more procedures left, resulting in a 2D vector of dimensions

#slots x [%1

3. The number of procedures subceeds the amount of slots available (visit 3 - one diagnosis,
no procedures). The procedures are represented as a 1D vector and then padded to the
amount of horizontal slots available.
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Figure 1: An example of how ExXBEHRT represents a patient with a constant sentence length m.

After reshaping, all procedures and labs of all patients are padded to the same amount of rows n
to enable batch processing. Before passing the inputs to the model, each token is embedded into a
288-dimensional vector and all tokens are summed vertically. Figure|/|in the appendix shows the
final representation of one patient.

3.1 DATA

In this study, we used the Optum® de-identified EHR database. It is derived from healthcare
provider organizations in the United States, which include more than 57 contributing sources and
111,000 sites of care including hospital-based medical services networks comprising academic, pri-
vate, and community hospitals treating more than 106 million patients. Optum® data elements
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also include demographics, medications prescribed and administered, immunizations, allergies, lab
results (including microbiology), vital signs and other observable measurements, clinical and hos-
pitalisation administrative data, and coded diagnoses and procedures. The population in Optum®
EHR is geographically diverse, spanning all 5S0US states. We selected only data points collected
during hospitalisations to ensure data quality and consistency. Each patient must have at least five
visits with valid ICD-9 or ICD-10 diagnosis codes to ensure sufficient temporal context. Consider-
ing these criteria, our final pre-training cohort consisted of 5.4 million individual patients divided
into training (80%), validation (10%) and testing (10%) groups. Table|l|shows the characteristics of
the final cohort.

Table 1: Statistics of the cohort used for pre-training.

Feature Metric

Birth year 1973425, min: 1932, max: 2021
Gender 41.49% male, 58.51% female
Distribution by race 68% Cau., 22% Afr. Am., 1% As., 9% other
No. of diagnosis codes per patient 14£11.1, min: 5, max: 121

No. of visits per patient 9+6.6, min: 5, max: 63

% of patients without labs 14.33%

% of patients without procedures 1.64%

% of patients without BMI 21.74%

% of patients without smoking status  27.11%

% of deceased patients 14.52%

3.2 MODEL TRAINING

ExBEHRT consists of the same model architecture as BEHRT. For pre-training, we applied the
standard MLM procedure described in the original BERT paper (Devlin et al., 2018)) for predicting
masked diagnosis codes using their BertAdam optimizer with cross-entropy loss. All BERT-based
models (ExBEHRT, BEHRT, Med-BER were trained for 40 epochs on one Tesla T4 GPU with
16GB memory, selecting the epoch with the highest micro-averaged MLM precision score on the
validation set. To ensure a fair comparison, we used the same amount of attention layers (6) and
heads (12) as well as embedding dimension (288) for all three BERT-based models. We also pre-
trained a version of EXBEHRT on the additional pre-training objective PLOSE] as introduced by
Med-BERT, which we called ExBEHRT+P.

In a second step, we fine-tuned the models on two prediction tasks: Death of a patient within six
months after the first cancer diagnosis and readmission into hospital within 30 or fewer days after
heart failure. All tokens after the cancer diagnosis/heart failure are not disclosed to the model.
The cohorts for these two tasks were split into 80% training, and 10% each validation and testing
datasets, with each patient present in both cohorts (pre-training and fine-tuning) assigned to the same
split for both tasks. The cohorts consist of 437°902 patients (31.67% deceased within 6 months after
first cancer diagnosis) for Death in 6M and 503’161 patients (28.24% readmitted within 30 days)
for HF readmit. Furthermore, we used the patient representations of EXBEHRT to identify risk
subtypes of cancer patients using unsupervised clustering. For this purpose, we used a combination
of the dimensionality reduction technique UMAP (Mclnnes et al., 2018)) and the clustering algorithm
HDBSCAN (Campello et al., 2013) and applied the clustering to all cancer patients from the pre-
training cohort (260°645).

"We used the public code from both publications and adjusted the models to work with our data struc-
tures: https://github.com/deepmedicine/BEHRT| and https://github.com/ZhiGroup/
Med-BERT

“Binary classification of whether a patient had at least one prolonged length of stay in hospital (> 7 days)
during their journey.


https://github.com/deepmedicine/BEHRT
https://github.com/ZhiGroup/Med-BERT
https://github.com/ZhiGroup/Med-BERT
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4 RESULTS

4.1 EVENT PREDICTION

For each experiment, we selected the model with the best validation precision score and only then
evaluated the performance on the test set. The metrics used for evaluation are the area under the
receiver operating characteristic curve (AUROC), average precision score (APS) as well as the pre-
cision at the 0.5 threshold. In all but one metric in one task, EXBEHRT outperforms BEHRT, Med-
BERT and other conventional algorithms such as Logistic Regression (LR) and XGBoost when
evaluated on this hold-out dataset.

Table 2: Average fine-tuning results of various models and their standard deviations.

Task Metric LR XGB BEHRT Med-BERT  ExBEHRT  ExBEHRT+P

APS 428%00%  455%0.1% 47.7%04%  462+104%  53.1%03%  52.6£03%

Deathin6M ~ AUROC  63.540.0%  66440.1%  66.7+0.6%  653+0.3%  71.5405%  70.940.5%

Precision  73.040.1%  74340.1%  752+402%  74.5+0.1%  78.140.1%  77.940.1%

APS 51.6£00%  455%0.1%  55.5%0.1%  544+102% 59.8£02%  59.6£02%

Deathin 12M  AUROC  66.7+£0.0%  663£0.1%  70.14£02%  68.9403%  743+04%  73.8+0.4%

Precision  704+0.1%  74440.1%  73240.1%  72440.1%  764+01%  763+0.1%

APS 298+£00% 313%01% 199%0.1% 19.8%0.1%  300£1.6%  251%0.1%

HF readmit AUROC  51.940.1%  53.640.1%  51.240.1%  51.040.1%  567+1.7%  56.840.2%

Precision ~ 72.040.0%  72.3+0.1%  81.0+£0.1%  81.0+0.0%  78.7+02%  81.6+0.1%

4.2 INTERPRETABILITY ON EVENT PREDICTION RESULTS

For all interpretability experiments, we used the EXBEHRT model fine-tuned on the task Death in
6M, meaning whether a cancer patient will decease within six months after their first cancer diagno-
sis. We visualize the interpretability for individual patients only, as both interpretability approaches
are example-based and not model-agnostic.

4.2.1 SELF-ATTENTION VISUALIZATION

Analogous to previous work (Li et al.| (2020), [Rasmy et al.| (2021}, Meng et al.[ (2021)), we visu-
alised the attention of the last network layer using BertViz (Vig|(2019)). However, since in all such
models all embeddings are summed before being passed through the network, self-attention has no
way of assigning individual input features to the outcome. Nevertheless, we can draw conclusions
about how the different slots interact with each other and which connections the model considers
important. Figure 2| shows the self-attention of a single patient in the last layer of EXBEHRT. The
left figure shows the attentions of all 12 attention heads in this layer, while the right figure shows the
attention of one head. As expected, the model focuses strongly on the slots within a visit, as these
slots are by definition strongly interconnected. Slot 7 corresponds to the slot in which the patient
was diagnosed with lung cancer. Although the model was not specifically trained on cancer codes,
it pays close attention to this slot, indicating that it has learned some correlation between the cancer
diagnosis and the predicted outcome. Interestingly, slot 7 receives a lot of attention on the first and
second visits, but not on the two previous visits, suggesting that the model is able to learn causality
over long time intervals.

4.2.2 EXPECTED GRADIENTS INTERPRETABILITY

Due to the limitations of self-attention visualization, we explored the technique expected gradients
(Erion et al.l 2020) for deeper understanding of the model. Expected gradients is considered to
be one of the most robust gradient-based feature attribution methods for deep learning models. In
this way, we can infer the importance of individual features and tokens for predictions, which is
not possible with Self-Attention. Since each individual concept (diagnosis code, procedure code,
age, etc.) is mapped to a 288-dimensional embedding before being passed to the model, we first
calculated the expected gradients for each of the 288 positions and then summed the absolute values
to obtain a single gradient value for each input token. In this way, each input token has an associated
gradient that is linked to the output of the model and yields detailed insight into its impact on the
prediction of the model. We visualised the results in three levels of abstraction with increasing levels
of detail in figures 3] ] and [3]
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Figure 2: Left: The self-attention of all 12 attention heads of the last layer of ExXBEHRT. Higher
opacity corresponds to higher attention. Right: The self-attention of one attention head of the last
layer. Slot 7 corresponds to the slot where the cancer was diagnosed.

For figure 3] we summed the expected gradients for each of the input features. This allows us to
assess the different effects of the features on the outcomes for a particular patient. For this patient,
the diagnoses and procedures (treatments & medications) were by far the most important features.
With this visualisation, we can also assess basic biases. For example, gender was not considered an
important characteristic, suggesting that performance would be similar for a person with a different
gender.

Gradient Sum

Diagnosis Age Visit Segment Smoking BMI Gender  Procedure Lab
Feature

Figure 3: The absolute sums of the expected gradients summed by input feature.

For figure[d] we visualised the absolute expected gradients for each of the input features and summed
them at each time slot. In this way, we can assess the importance of the different features over time
to get an idea of where the model is focusing. Interestingly, for the first two visits, the model
placed more emphasis on what kind of medications and treatments the patient received, while for
the last visit (the visit where the patient was diagnosed with blood cancer), it placed more emphasis
on diagnoses and labs. In general, slot 5, where the cancer was diagnosed, was given the most
importance.
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Figure 4: The absolute sums of the expected gradients summed by input feature and time slot. The
dotted lines represent slots with SEP tokens and therefore indicate the next visit.

Figure [5] shows the absolute sums of the gradients of each input token and provides a detailed in-
terpretation of which medical concept had which influence on the prediction of the model. Un-
surprisingly, the cancer code C81 had the greatest influence on the result. However, earlier codes
such as J40 or 71020 also contribute to the model’s prediction, indicating that the model is able to
incorporate information from the entire patient journey into its results.

Diagnosis

cLs 140 SEP M54 SEP 81 R55 Rs9  [EET see

Lab
CHEMISTRY URINALYSIS  HEMATOLOGY SPEC. CHEM.
SPEC. LAB BLOOD GAS -

Procedure
71020 = 81003
94640 - 87077
99283 - 87086

Figure 5: A visualization of the absolute sums of the expected gradients of diagnoses, labs and
procedures on a concept level. Darker colours represent higher values and the SEP tokens indicate
the separation between two visits.

4.3 CANCER PATIENT CLUSTERING

HDBSCAN was able to cluster 90% of all cancer patients into 24 clustersﬂ On average, the most
occurring cancer diagnosis within a cluster was present for 84% of the patients assigned to this
specific cluster and the mean cluster purityﬂ was 85%. Similar concepts (e.g. cancer of female
reproductive organs or different types of leukaemia) lay in areas close to each other, indicating a
spatial logic between the cancer types. In figure[6] we show that with a second pass of HDBSCAN
on a given cluster, we can identify risk subgroups. In all three identified clusters, more than 90% of
the patients actually do have pancreatic cancer and all clusters share similar general characteristics.

However, as shown in the table .3} ExXBEHRT identified a subgroup with a significantly higher
chance of recovering from cancer and a lower probability of dying, although this information was
not provided to the model at any point in tim

3 A visualization of all clusters can be found in ﬁgurein the appendix.

4Cluster purity indicates the fraction of patients with a condition which are assigned to the cluster.

>In the table, % of journey with cancer indicates the ratio of the time between the first and last cancer
diagnosis compared to the duration of the whole recorded patient journey. Cancer-free refers to the percentage
of patients within a cluster, which have records of at least two visits without cancer diagnosis after the last visit
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Figure 6: The three identified patient subclusters with pancreatic cancer visualized with a kernel
density estimate plot for visual clarity.

Table 3: Statistics of the three pancreatic cancer clusters indicating a clear differentiation between
higher risk (grey, blue) and lower risk patients (purple).

Metric Gray Blue Purple
Median age 67 68 68
Median birth year 1950 1947 1944
Median BMI 25 25 26
Average death rate 76.5% 759% 70.0%
% of journey with cancer 27.0% 24.0% 18.3%
Cancer-free 34.0% 369% 62.7%

5 CONCLUSION

In this study, we presented a novel method for adding patient features to BEHRT that significantly
increases the predictive power for multiple downstream tasks in different disease domains. The
novel method of stacking features vertically yielded improvements in hardware requirements and
benchmarks and and facilitates the extension to new concepts in the future. Given the large number
and heterogeneity of patients with which the model has been pre-trained, we are confident that
ExBEHRT will generalise well to new data, patients and tasks. Combined with interpretability,
the model provides more detailed insights into disease trajectories and subtypes of different patients
than previous approaches, and could help clinicians form more detailed assessments of their patients’
health. Furthermore, with a personalised understanding of patient groups, it is possible to identify
unmet needs and improve patient outcomes.

Limitations

Nevertheless, there are some limitations: It is extremely difficult to validate the quality, completeness
and correctness of EHR datasets, as the data is usually processed anonymously and comes from a
variety of heterogeneous, fragmented sources. The sheer nature of EHR data also introduces bias, as
physicians may have an incentive to diagnose additional less relevant conditions, as medical billing
is closely related to the number and type of diagnoses reported.

Future Work

In a potential next step, we would like to verify the results and interpretations of this work with
clinicians to ensure robust and sound predictions as possible given the acquired interpretability. In
addition, we would like to test the generalisability of ExXBEHRT to other clinical use-cases such as
severity prediction and risktyping of other diseases as well as specific cancers.

with a cancer diagnosis. The average death rate comes directly from the EHR database and unfortunately does
not include information on the cause of death.
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A APPENDIX
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Figure 7: A sample input of ExXBEHRT. Each of the concepts (diagnosis, procedure, lab, age, BMI,
smoking status, gender, segment, visit) has its own embedding, where each of the tokens is mapped
to a 288-dimensional vector, which is learned during model training. After embedding, all concepts
are summed vertically element-wise to create a single 288 x m dimensional vector as input for the
model. The parameters n and & are set before training and fixed for each patient to ensure coherent

batch processing.
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Figure 8: The unsupervised cluster assignments from HDBSCAN, visualized with a 2-dimensional
UMAP projection. The grey points are patients not assigned to any cluster (10%). The labels indicate
the most frequent diagnosis code of each cluster. Besides cluster 10, all label are neoplasms. On
average, the most occurring cancer diagnosis within a cluster was present for 84% of the patients
assigned to this cluster. The clusters are clearly separated spatially, indicating a distinct separation

of the different cancer types and their representations within the model.
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