
What Causes a Disparate Impact in a Quantized Model?

Abhimanyu Bellam
Computer Science

North Carolina State University

Jung-Eun Kim∗

Computer Science
North Carolina State University

Abstract

Post Training Quantization (PTQ) is widely adopted due to its high compression
capacity and speed with minimal impact on accuracy. However, we observed that
disparate impacts are exacerbated by quantization, especially for minority groups.
Our analysis explains that in the course of quantization, the changes in weights and
activations cause cascaded impacts in the network, resulting in logits with lower
variance, increased loss, and compromised group accuracies. We extend our study
to verify the influence of these impacts on group gradient norms and eigenvalues
of the Hessian matrix, providing insights into the state of the network from an
optimization point of view.

1 Introduction

With the onset of edge devices running deep neural networks for various tasks ranging across several
domains, the demand for faster computation and model lightness has become more pronounced.
To aid this, compression methods such as pruning [5] and quantization [8] have taken the lead,
producing little to no loss of accuracy with considerable memory and speed gains. Notably, [11]
demonstrated that quantization outperforms pruning-based strategies when similar model sizes and
resource footprints are considered. Furthermore, quantization is prominent for Large Language
Models (LLMs) due to their large parameter sizes and requirement for reduced energy consumption
[10, 4, 2]. Nevertheless, these methods do not account for the possible disparate impact they cause,
and have been shown to have adverse effects on minority groups and exacerbate the shortcomings of
their dense, counterpart model [14, 7].

(a) Accuracy for different precisions on UTKFace.

(b) The impact flow of quantization.

Figure 1: Group accuracy changes & impact flow.

We observed that quantization can exacerbate
disparity of a model, especially for the minor-
ity group (Fig. 1a). The leftmost chart is pre-
quantization. As the precision is reduced, the
disparity is exacerbated further. When the model
is quantized to int2, the disparity is extreme.
In this work, we identify the factors impacting
the disparity and optimization state via forward
and backward passes.

Post Training Quantization (PTQ) modifies the
weights of the network while setting several
weights to absolute zeros, thereby, inducing
sparsity, which together brings in disparate im-
pacts of a model. Consequently, the logits suf-
fer from a reduction in variance, similar to us-
ing high temperature scaling, while undergoing
magnitude changes that lead to misclassifica-
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tions. These factors finally alter the softmax probabilities and skew their distributions closer to the
decision boundary towards low confidence regions, causing higher loss and group disparity. Also,
PTQ shifts the model to a worse position in the optimization space, with larger gradient norms and
eigenvalues of the Hessian matrix for minority classes, implying a potential for further optimization.

2 Problem Formulation

Consider a classification task involving a dataset D with M input samples X =
{x1, x2, · · · , xi, · · · , xM} and corresponding classes Y = {y1, y2, · · · , yi, · · · , yM} where yi ∈ G
groups (classes). The objective is to learn a classifier fθ with parameters θ ∈ RK , where K is
the number of parameters in the network. The risk function obtained by using cross-entropy as
the loss function to measure the discrepancy between the predicted and actual labels under em-
pirical risk minimization (ERM) [15] is: L(θ;D) = − 1

M

∑M
i=1

∑G
g=1 yig · log(pθ(xi))g, where

pθ(xi) = σ(fθ(xi)) and σ(zg) =
ezg∑
j ezj

. The best solution to this optimization problem is given by,

θo = argmin
θ

L(θ;D). Note that this definition pertains to an uncompressed model. Subsequently,

let θq be the weights of a quantized network such that θq = T (θo), where T is a quantization function
and q is the number of bits used to represent the weights of the network. For example, if the network
was quantized to use 8-bit representations, the network parameters are denoted by θ8. Let θ̃q denote
the dequantized weights obtained by scaling θq to floating point numbers, θ̃q = S.θq , where S is the
set of scaling factors. As a result, the risk functions for the original and compressed models are given
by L(θo;Dg) and L(θ̃q;Dg), respectively.

3 Factors Impacting Fairness

The impact of quantization occurs through multiple stages, as shown in Fig. 1b. During the forward
pass, the effect of the changes in weights propagates throughout the network and leads to changes
in logits, whose behavior is reflected in the softmax probabilities and, therefore, the loss. To better
understand and visualize the effects of higher loss on the network weights, we use backpropagation
without actually updating the weights, motivated by the second order Taylor Series expansion of the
loss function at point xc, L(x) = L(xc) +∇L(xc) · (x− xc) +

1
2 (x− xc)

TH(x− xc). Here, ∇L

represents the gradient G. Now, for every group and precision, we study the gradient norm ||GL
g || and

the largest eigenvalue of the hessian matrix λmax(H
L
g ) for the loss function L. The gradient norm

helps us understand how far away the solution is from a better state in the solution space. Whereas,
eigenvalues of the Hessian matrix provide crucial information about the steepness in the loss surface.
Quoting from [14], the maximum of the eigenvalues indicates how well the solution can separate the
groups. [9, 12] support that top eigenvalues aid in understanding the loss landscape.

Changes in Weights The root cause of the impact flow of quantization is the change in weights
of the network. The absolute difference in the weights is measured as, AD =

∑K
k=1 |θ̃q,k − θo,k|.

However, the impact does not only include the absolute difference, but also involves the fraction
of “zero” weights induced by quantization. While the former quantifies how much the weights
have deviated from the original values, the latter is indicative of the loss of information due to
sparsity, measured by 1

K

∑K
k=1 I(θ.,k = 0). Here, I denotes the indicator function, θ. ∈ {θo, θq}.

The absolute difference is controlled by the reduction in the precision of the weights. For example,

(a) Changes in weights (b) Weight Distributions

Figure 2: The first piece of the impact flow: changes in weights

2



θ4 has 28 lesser bits to represent the weights in comparison to θ32, which persists even after scaling
by S. Whereas, sparsity increases when the weights are pushed to the ‘0 bin’ during quantization
which continues to remain as 0s even after scaling. While achieving higher compression, this effect
is similar to (unstructured weight) magnitude pruning [6, 18, 3], where some of the weights of the
network are changed to 0.

Fig. 2a illustrates an increase in both absolute difference in weights and sparsity as precision reduces.
On the other hand, Fig. 2b shows the weight distribution of θ̃q for different precisions, indicating a
distribution shift towards the center with reducing precision. Clearly, reducing the precision increases
the sparsity of the network, therefore, making it more like a pruned network (by weight magnitude).

(a) Cosine Distance between logits. Darker shade
implies higher distance.

(b) Decrease in precision leads to variance drop in logits

Figure 3: Logits analysis

The Effect on Logits and Probabilities We
study the change in numerical values using
cosine distance, defined as, CD(A,B) =
1 − A·B

∥A∥·∥B∥ , where A and B are two vec-
tors of equal length. Let the average cosine
distance between fθ̃q and fθo across the sam-
ples of a group be, Average cosine distance =
1
|G|

∑|G|
i CD(fθ̃q (xi), fθo(xi)). Fig. 3a shows

that the angle between different quantization lev-
els is largest for the minority class Others and
the least for the majority class White. CD cap-
tures the changes that occur in the logits due to
quantization. Note that we are not able to show
θ2 and θ3 as they produce null vector logits for
some images which makes cosine distance in-
applicable. The variance in the logits or soft-
max probabilities indicates how well the model
has learned to differentiate between the groups.
The mean variance among logits within each group, represented as, Mean variance of logits =
1
|G|

∑|G|
i Var(fθ(xi)), decreases with decreasing precision, as observed in Figure 3b. Notably, the

group White exhibits the highest variance, while the Others group demonstrates the least variance.
This reduction indicates that the separability of groups worsened due to quantization.

(a) Reduced variance in logits has a persistent presence
in softmax probabilities

(b) The probability distribution of the distance to
decision boundary (softmax probability).

Figure 4: The effect on Softmax probabilities

At lower precisions, there is a substantial de-
crease in variance across all groups, with the
Others group being affected the most, as il-
lustrated in Fig. 4a. This reduced variance is
analogous to the output-softening nature of the
high-temperature scaling, which softens the log-
its of the network. Further, the disruption in
the softmax probability distribution links to the
inability of the precision to capture the origi-
nal model’s behavior. The softmax probability
can be viewed as a Distance To the Decision
Boundary (DTDB). We define DTDBi,g as
the softmax probability obtained for each sam-
ple i belonging to group g, and that is plotted
in Fig. 4b. If DTDBi,g > DTDBi,g′ , then
group g is farther away from the decision bound-
ary than g′, which implies an easier classifica-
tion. Fig. 4b shows a strong leftward shift of
distribution for Others unlike White, indicat-
ing that reduced precision induces uncertainty
in the model for minority classes.

Contribution to Loss and Accuracy The reduced variance in softmax probabilities, together with
the changed values, adversely affect the loss and accuracy of the model as depicted in Fig. 5.
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Figure 5: Higher group loss for
Others after PTQ

The per-group loss is highest for Others and least for White.
In addition, it is reflected as a direct impact on the accuracy
of the model, as observed in Fig. 1a. These circumstances
indicate a clear, unfavorable movement of the model in the
optimization space for all the classes, due to quantization, with
the most affected being Others. To better understand this
degraded position, we backpropagate the loss and observe how
the gradient norm and Hessian are affected.

Observing Unfairness through Gradient norms The gra-
dient norm provides insight into the convergence of the op-
timization problem, indicating the proximity of the solution in the optimization space to a local
minima [17]. We find the group gradient norm for a quantized network using the gradients ob-
tained by passing the test set (without weight updates) and evaluating the ℓ2 norm, given by,

G(θ̃q;Dg) =

√∑K
k=1

(
∂L(θ̃q ;Dg)

∂θ̃q,k

)2

. This measure also signifies the extent of gradient updates

necessary for the model to improve its prediction. Consider the situation when D is passed as a single
batch for gradient updates. Initially, the averaged gradients are dominated by classes with a higher
number of samples. This effect persists even when there are mini batches, although lower in impact.
Therefore, the gradients are also controlled by the class distributions and batch size. In addition, the
initial gradients are heavily dependent on the initialization of θ. However, the effects of batch size (if
moderate) and initialization dampen as the network trains further. We therefore look at the effects of
per group sample counts of the test set on the gradient norm. Fig. 6a shows an inverse trend between
the gradient norm and group sizes for θ4. Notice the huge disparity between the gradient norm of
White and Others. It further reflects an inverse trend with the accuracy of the model in Fig. 6b.

Reflection of unfairness on the Hessian λmax(H
l
g) helps explain the steepness of the loss surface

at that point in the solution space for a particular group. Fig. 6c shows that λmax and accuracy
move in opposite directions, indicating a larger λmax for the minority group. This implies that
the steepness is the highest for Others, and a corresponding update to the weight would cause
a higher reduction in the loss as compared to any other group. To capture the average of the
highest softmax prediction probabilities across the groups, we define, Avg. prediction prob.(APP ) =
1
|G|

∑|G|
i max(σ(fθ(xi))) We also observe in Fig. 6c that the average prediction probability is lowest

for the group with the highest λmax and vice versa. Fig 6d shows gradient norm and λmax moving
toward the same direction, indicating that quantization induces a combined effect on them.

(a) Gradient norm vs.
group size

(b) Gradient norm vs.
accuracy

(c) λmax is inverse to
accuracy and APP

(d) λmax aligns with the
gradient norm

Figure 6: Trends of gradient norm and λmax against group size (normalized) and accuracy (θ̃4)

4 Conclusion

The disparate impact caused by PTQ is explained by an impact flow that passes across stages in the
forward pass, whose effects can be visualized as a shift of the model to a sub-optimal state in the
optimization landscape, using gradient norms and eigenvalues of the Hessian matrix. Future work
will explore the effect of example difficulty and propose solutions to mitigate the disparity.
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A Appendix

Setup For the investigations presented in this paper, we use per tensor uniform post-training
quantization (PTQ) [13] for weights, based on the implementation in [1] for integer quantization. In
particular, for fp16 experiments, we used half-precision computation from the PyTorch library. Note
that the integer weights are scaled to floating points during inference. The following experiments are
on UTKFace dataset [16] with the task of classifying the ethnicity using a ResNet18 architecture,
where the weights are quantized to 16, 8, 4, and 2 bits. The original network’s precision is 32 bits.
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