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ABSTRACT

Neural encoding of artificial neural networks (ANNs) aligns the computational
representations of ANNs with brain responses, providing profound insights into
the neural basis underpinning information processing in the human brain. Cur-
rent neural encoding studies primarily employ linear encoding models for inter-
pretability, despite the prevalence of nonlinear neural responses. This leads to a
growing interest in developing nonlinear encoding models that retain interpretabil-
ity. To address this problem, we propose LinBridge, a learnable and flexible
framework based on Jacobian analysis for interpreting nonlinear encoding mod-
els. LinBridge posits that the nonlinear mapping between ANN representations
and neural responses can be factorized into a linear inherent component that ap-
proximates the complex nonlinear relationship, and a mapping bias that captures
sample-selective nonlinearity. The Jacobian matrix, which reflects output change
rates relative to input, enables the analysis of sample-selective mapping in nonlin-
ear models. LinBridge employs a self-supervised learning strategy to extract both
the linear inherent component and nonlinear mapping biases from the Jacobian
matrices of the test set, allowing it to adapt effectively to various nonlinear encod-
ing models. We validate the LinBridge framework in the scenario of neural visual
encoding, using computational visual representations from CLIP-ViT to predict
brain activity recorded via functional magnetic resonance imaging (fMRI). Our
experimental results demonstrate that: 1) the linear inherent component extracted
by LinBridge accurately reflects the complex mappings of nonlinear neural en-
coding models; 2) the sample-selective mapping bias elucidates the variability of
nonlinearity across different levels of the visual processing hierarchy. This study
not only introduces a novel tool for interpreting nonlinear neural encoding models
but also provides novel evidence regarding the distribution of hierarchical nonlin-
earity within the visual cortex.

1 INTRODUCTION

In recent years, aligning the computational representation of artificial neural networks (ANNs) with
brain activity through neural encoding models significantly advances our understanding of the neural
basis underlying information processing in the human brain. Previous research primarily employs
linear encoding models due to their interpretability (Naselaris et al., 2011a; Yamins & Dicarlo,
2016). However, the prevalence of nonlinear neural processes is well recognized (Naselaris et al.,
2011b; Wang et al., 2023; Tang et al., 2024; Jain & Huth, 2018), which may limit the ability of linear
models to fully capture the complex dynamics of brain activity. This limitation not only undermines
the predictive performance of linear encoding models but also restricts their capacity to effectively
interpret neural activity.

With the rapid advancement of deep neural networks, nonlinear encoding models are increasingly
utilized (Zhang et al., 2019; Li et al., 2022; Cui et al., 2020; 2021). These models incorporate activa-
tion functions or other nonlinear structures, allowing them to better capture the brain’s responses to
complex stimuli and leading to improved predictive performance compared to linear models (Zhang
et al., 2019; Li et al., 2022; Cui et al., 2020; 2021). However, as illustrated in Figure 1, nonlinear
encoding models exhibit sample-specific characteristics, resulting in unstable structures that com-
plicate the interpretation of underlying relationships.
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Figure 1: Comparison of linear and nonlinear encoding models. In linear encoding models, the
mapping relationship between the feature space and brain activity space is invariant across input
samples. On the contrary, nonlinear encoding models exhibit sample-specific characteristics, result-
ing in an unstable structure that complicates the interpretation of the underlying relationships.

In this study, we propose LinBridge, a learnable and flexible framework based on Jacobian analysis
for interpreting nonlinear encoding models. The Jacobian matrix, which quantifies the output change
rates relative to input, enables the analysis of sample-selective mapping in nonlinear models (Gale &
Nikaido, 1965). LinBridge posits that the nonlinear mapping between the computational representa-
tions and neural responses can be factorized into two components: a linear inherent component that
approximates the complex nonlinear dynamics, and a mapping bias that captures sample-selective
nonlinearities. However, this factorization presents a dilemma: the sample-selective nonlinearities
introduce substantial variability in the Jacobian matrices across different input-output pairs, compli-
cating the extraction of consistent and interpretable mapping structures within nonlinear encoding
models.

To address this challenge, we propose a self-supervised learning strategy based on contrastive learn-
ing, which has demonstrated superior capabilities in differentiating shared and distinctive attributes
through paired-sample analysis (Oord et al., 2018; Schneider et al., 2023). Within the contrastive
learning framework, LinBridge maximizes shared linear component within the Jacobian matrices
while minimizing the influence of nonlinear features (nonlinear mapping biases) on those shared
components, leading to an effective delineation of the linear inherent component and the nonlin-
ear mapping biases. In addition, this self-supervised learning strategy allows LinBridge to adapt
effectively to various nonlinear encoding models. Furthermore, LinBridge incorporates a low-
dimensional embedding module that facilitates dimensionality reduction while preserving the in-
trinsic structure of the feature space, providing a more intuitive tool for analyzing the brain’s linear
and nonlinear responses to external stimuli. The contributions of this work are summarized as fol-
lows:

• We introduce LinBridge, a flexible framework designed to extract both the linear inherent
component and the nonlinear mapping biases from nonlinear encoding models. This frame-
work enables an interpretable analysis of the nonlinear mappings between computational
representations and brain responses.

• The linear inherent component extracted by LinBridge exhibits activation patterns highly
consistent with the original nonlinear encoding model, suggesting that the complex map-
pings in nonlinear neural encoding models can be effectively captured.

• We apply LinBridge to a neural encoding exploration of vision transformer models and re-
veal the variability in nonlinearity across different levels of the visual processing hierarchy.

2 BACKGROUND AND RELATED WORKS

2.1 LINEAR NEURAL ENCODING MODELS

Due to their simplicity and interpretability, linear neural encoding models are widely applied across
various domains to disentangle the neural basis underpinning information processing in the brain,
including vision (Yamins et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014; Güçlü & van Gerven,
2015; Eickenberg et al., 2017; Zhuang et al., 2021), audition (Zhou et al., 2023; Li et al., 2023;
MILLET et al., 2022; Tuckute et al., 2023; Vaidya et al., 2022), and language (Liu et al., 2023;
Caucheteux & King, 2022; Goldstein et al., 2022; Jain & Huth, 2018; Schrimpf et al., 2021; Ab-
dou, 2022). However, the inherent nonlinear dynamics of neural activity limit the predictive power
and interpretability of linear models, particularly when addressing more complex cognitive func-
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tions. This limitation is especially pronounced in higher-order cortical areas, which often involve
complex and dynamic interactions, suggesting that their underlying neural mechanisms may not be
adequately captured by linear representations (Naselaris et al., 2011b).

2.2 NONLINEAR NEURAL ENCODING MODELS

Nonlinear encoding models emerge as a solution to the limitations of linear models by incorporat-
ing nonlinear structures that more effectively capture the complex patterns of brain activity. These
approaches demonstrate superior predictive performance compared to linear models (Zhang et al.,
2019; Li et al., 2022; Cui et al., 2020; 2021). However, the opaque nature of nonlinear encoding
models presents significant challenges in understanding the mapping between the computational
representations and brain responses. To address this challenge, most existing methods adopt the
framework proposed by (Tank et al., 2021), leveraging various time-series prediction models to en-
hance the interpretability of these learned black-box mappings (Khanna & Tan, 2019; Bussmann
et al., 2021; Suryadi et al., 2023). In particular, the Jacobian matrix has been employed to elucidate
the local mapping relationships in artificial neural networks (ANNs) (Zhou et al., 2024; Suryadi
et al., 2023). Nonetheless, nonlinear models often exhibit sample-specific mappings, leading to
substantial variability in the Jacobian matrices across different input-output pairs. This variabil-
ity complicates the extraction of consistent and interpretable mapping structures within nonlinear
encoding models.

3 METHODS

3.1 DATASET AND PREPROCESSING

We use the Natural Scenes Dataset (NSD) (Allen et al., 2021) in this study. The NSD dataset
contains fMRI data from eight subjects passively viewing 73,000 color natural scene images over 40
hours. These images are cropped from the MS-COCO dataset (Lin et al., 2014), with each image
displayed for three seconds and repeated three times across 30 to 40 scanning sessions, resulting in a
total of 22,000 to 30,000 experimental trials. The fMRI data in the NSD are acquired using a whole-
brain gradient-echo EPI (echo-planar imaging) sequence at 7T, with a resolution of 1.8 mm and a
repetition time of 1.6 seconds. Single-trial beta maps are estimated using a customized general linear
model and released alongside the raw fMRI data (Wang et al., 2022; Tang et al., 2024). Similar to
previous studies (Wang et al., 2022; Tang et al., 2024), these beta maps are normalized (zero mean
and unit variance) within each run and averaged across image repetitions to be used as functional
brain activity measures. In our experiments, each image and its corresponding beta map are treated
as a single sample. We divide the dataset into training, validation, and testing sets in a ratio of 8:1:1
(8000:1000:1000 samples). Notably, subjects 1, 2, 5, and 7 complete the full experimental protocol,
and thus, their fMRI data are utilized in our experiments. In the experiments on neural encoding of
vision transformer models, we use the pre-trained CLIP-ViT (Radford et al., 2021)1 image encoder
to derive the computational representation of the visual image stimuli.

3.2 ENCODING MODEL

The general encoding model can be formulated as follows:

ŷ = f(x) (1)

where x denotes the feature space of external stimuli, ŷ is the brain activity space, and f(·) denotes
the encoding function. Specifically, the computational representation of visual images spans the
feature space, and the normalized beta maps serve as the brain activity space. To validate LinBridge,
we construct both linear and nonlinear models in simplified form. Each model consists of two fully
connected layers, with the nonlinear model additionally incorporating a ReLU activation function.
Further details regarding the encoding models are provided in A.1. The mean squared error (MSE)
(Huang et al., 2017) is used as the loss function in the encoding model.

1https://huggingface.co/openai/clip-vit-base-patch32.
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3.3 COMPUTATION OF THE JACOBIAN MATRIX

The Jacobian matrix captures the local linear mapping between feature space and neural responses.
It reflects the sensitivity of the neural encoder to variations in the input. Upon completion of model
training, we fix the parameters of the encoding model and input the test set data to obtain the cor-
responding predictions. Given the k-th sample xk ∈ Rd in the test set and the prediction of the
nonlinear neural encoder ŷk = f(xk) ∈ Rp, the Jacobian matrix JMk can be calculated by taking
the derivative of the model’s output with respect to its input as follows:

JMk =

(
∂ŷk
∂xk

)T

=


∂ŷk,1

∂xk,1
· · · ∂ŷk,p

∂xk,1

...
. . .

...
∂ŷk,1

∂xk,d
· · · ∂ŷk,p

∂xk,d

 ∈ Rd×1×p (2)

We denote the collection of Jacobian matrices of all testing samples as JM ∈ Rd×N×p, where
d = 512 is the dimensionality of the representation, N = 1000 is the sample size of the test set, and
p is the number of voxels.

3.4 LINBRIDGE

LinBridge leverages Jacobian matrices (JM) to quantify the complex mapping relationships in non-
linear encoding models. It extracts the linear inherent component (JMinherent), which captures con-
sistent, interpretable mapping structure invariant to input samples, and the nonlinear mapping biases
(∆JM) that reflect the unique nonlinear behaviors associated with distinct inputs.

3.4.1 EXTRACTION OF THE LINEAR INHERENT COMPONENT

Similar to the dimensionality reduction architecture introduced in CEBRA (Schneider et al., 2023)2,
LinBridge employs a multi-layer convolutional neural network (CNN) to refine the input Jacobian
matrices. Specifically, LinBridge progressively compresses the sample dimension of the Jacobian
matrix using the CNN, enabling the extraction of the linear inherent component (JMinherent ∈
Rd×1×p) that captures the linear mapping between the input representations of the nonlinear neural
encoding model and the corresponding voxel activations in the brain. This approach provides a more
structured interpretation of neural activity.

3.4.2 NONLINEAR MAPPING BIASES ∆JM

We directly subtract JMinherent from JM to obtain the nonlinear mapping biases ∆JM. This opera-
tion ensures that both the linear inherent component and the nonlinear mapping biases retain within
the original space of JM. Therefore, the computation of ∆JM follows:

∆JM = JM− JMinherent ∈ Rd×N×p (3)

3.4.3 LOW-DIMENSIONAL EMBEDDING

LinBridge incorporates a low-dimensional embedding module that linearly reduces the dimensions
of JMinherent, JM, and ∆JM to a more compact representation. This linear dimensionality reduc-
tion effectively preserves the relative spatial distances of JMinherent JM, and ∆JM in the latent
space. On the one hand, lower dimensional features increase the effectiveness of contrastive learn-
ing, on the other hand, it reduces computational cost. Specifically, we use a fully connected (FC)
layer to project each matrix into a low-dimensional space.

JMdown
inherent = FCDownsample(JMinherent) ∈ R1×p (4)

JMdown = FCDownsample(JM) ∈ RN×p (5)

∆JMdown = FCDownsample(∆JM) ∈ RN×p (6)

In the equations above, the superscript “down” in JMdown
inherent, JM

down, and ∆JMdown indicates the
dimensionality-reduced representations. Generally, they are the result of applying FC module to the
original JMinherent, JM, and ∆JM, reducing them to a more compact, low-dimensional space.

2https://github.com/AdaptiveMotorControlLab/CEBRA.
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Figure 2: Nonlinear Encoding Model and the LinBridge Framework. (a) Image representation ex-
traction and the general neural encoding model structure; (b) LinBridge framework, which includes
the computation of JM, the extraction of JMinherent based on CNN module, the calculation of
∆JM, and the implementation of a low-dimensional embedding module.

3.4.4 LOSS FUNCTION

The low-dimensional embeddings (JMdown
inherent, JM

down, and ∆JMdown) of these matrices are uti-
lized for contrastive learning. Essentially, JMinherent represents the shared linear components of
JM in the latent space. The objective of the contrastive learning framework is to maximize the
alignment of these components while minimizing the influence of the unique nonlinear characteris-
tics represented by ∆JM. Consequently, it seeks to maximize the distinctiveness of JMinherent in
relation to ∆JM. To this end, LinBridge employs the InfoNCE loss function (Oord et al., 2018;
Schneider et al., 2023)3. Contrastive learning maximizes the similarity between the reference sam-
ple and positive samples (JMdown

inherent and JMdown), while concurrently minimizing the similarity
between the reference sample and negative samples (JMdown

inherent and ∆JMdown). Thus, the InfoNCE
loss function in this study is formulated as follows:

LInfoNCE = − 1

N

N∑
i=1

log
exp(sim(JMdown

inherent,JM
down
i )/τ)

exp(sim(JMdown
inherent,JM

down
i )/τ) +

∑N
j=1 exp(sim(JMdown

inherent,∆JMdown
j )/τ)

(7)
where sim(·, ·) denotes the similarity metric (e.g., cosine similarity), and τ is the temperature pa-
rameter. Additionally, we introduce L1-regularization to prevent overfitting of ∆JM:

LReg = λ
∑

|∆JM| (8)

where λ = 0.01 is the regularization coefficient. The final loss function is as follows:

Ltotal = LInfoNCE + LReg (9)

In summary, the structural block diagram is shown in Figure 2. LinBridge utilizes a Jacobian matrix-
driven strategy, enabling its application to any neural encoding model.

3.5 EVALUATION METRICS

We use the coefficient of determination (R2) to evaluate the predictive performance of the neural
encoding models on the test set. To assess the statistical significance of the predictions, we follow

3https://github.com/RElbers/info-nce-pytorch.
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Figure 3: Comparison of R2 between linear and nonlinear encoding models, showing predictions
significantly above chance levels (P < 0.05, FDR corrected). (a) R2 in the linear encoding model;
(b) R2 in the nonlinear encoding model; (c) The histograms of R2 in the whole brain, the primary
visual cortex (PVC), the secondary visual cortex (SVC), and the tertiary visual cortex (TVC). Results
for other subjects are provided in A.3.

the method described in (Wang et al., 2023), conduct 200 bootstrapped resampling iterations on the
test set and calculating FDR-corrected P -value thresholds for various performance metrics (Wang
et al., 2023; Subramaniam et al., 2024).

4 RESULTS

4.1 PREDICTION OF VISUAL CORTEX WITH NONLINEAR ENCODERS

We compare the predictive performance of the linear and nonlinear encoding models. Figure 3
shows the R2 values for both models for Subject 2 (all results reported in the main text are exempli-
fied using Subject 2 unless otherwise stated). The results demonstrate that the nonlinear encoding
model activates a broader range of brain regions compared to the linear model (24,490 voxels vs.
16,084 voxels), particularly in the visual cortex. Figure 3 (c) further illustrates that the nonlinear
encoding model achieves significantly higher R2 values across various visual areas, including the
primary visual cortex (PVC: V1), secondary visual cortex (SVC: V2, V3, V4), and tertiary visual
cortex (TVC: EBA, PPA, RSC, OPA, FFA-1, FFA-2). Notably, 9.30% of the voxels in the nonlinear
encoding model exhibit relatively good predictive performance (R2 > 0.05), in contrast to 6.65%
in the linear model. These results suggest that the nonlinear encoding model outperforms the linear
one.

4.2 LINEAR INHERENT COMPONENT: LINEAR INTERPRETATIONS OF NONLINEAR
MAPPINGS

Figure 4 (a) illustrates the stability of the linear inherent component extracted by LinBridge. We
calculate the Pearson correlation coefficients between the linear inherent component obtained at
various batch sizes (batchsize ∈ [16,32,64,128,256,512]) and the linear inherent component
obtained at a batch size of 1000, that is, the entire test set. The training strategies are detailed in A.2.
This analysis is repeated for 200 times to obtain means and standard deviations. As shown in Figure
4 (a), the inherent structure extracted by LinBridge is highly stable across all evaluated batch size,
as evidenced by Pearson coefficients approaching 1. This high stability suggests that LinBridge can
accurately capture the relationship carried by the encoding model even with small batch sizes.

The linear inherent component extracted by LinBridge closely aligns with the activation patterns in
the nonlinear encoding model (Figures 3 (b) and 4 (b)). Additionally, we compare the R2 values
of the nonlinear encoding model and the linear inherent component extracted by LinBridge across

6
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Figure 4: Comparison of the linear inherent component extracted by LinBridge to the brain acti-
vation predicted by the nonlinear encoding model. (a) The stability of the extracted linear inherent
component across different batch sizes. (b) Activation patterns of the linear inherent component
extracted by LinBridge. (c) Comparison of the distribution of R2 values between the linear inherent
component extracted by LinBridge and the original nonlinear encoding models in the whole brain,
PVC, SVC and TVC. Results for other subjects can be found in A.4.

the whole brain, PVC, SVC, and TVC (Figure 4 (c)). The R2 values in the two conditions ex-
hibit high correlations, with Pearson correlation coefficients of 0.9972, 0.9949, 0.9937, and 0.9984
at the whole brain level, and in PVC, SVC, and TVC, respectively. The linear inherent compo-
nent achieves comparable or even superior performance in specific brain regions. All these results
demonstrate that the linear inherent component extracted by LinBridge can accurately capture the
complex relationship represented by the nonlinear encoding model.

4.3 NONLINEAR ENCODING IN VISUAL CORTEX

The variations of ∆JM regarding to various samples are valuable to characterize the nonlinearity
of voxel-wise encoding model, and hence the visual cortex.

However, the high dimension of ∆JM complicates the quantification of its variations among sam-
ples. In this context, the low-dimensional embedding ∆JMdown derived from LinBridge provides
a novel perspective for depicting the nonlinearity of the visual cortex. To this end, we incorporate
linear fitting (Allen et al., 2021; Cohen, 1997; Hlinka et al., 2011) to assess how ∆JM varies with
different samples. Specifically, for each selected voxel, we first generate a sample index array and
then extract the corresponding response values from ∆JMdown. We subsequently calculate the coef-
ficients of a first-degree polynomial through polynomial fitting, with these coefficients representing
the linear response weights of the voxel across different categories. It is hypothesized that a voxel
responses to external stimuli linearly if the corresponding ∆JMdown is invariant to different sam-
ples (i.e., the absolute value of the first derivative approaches 0). Conversely, the voxel is deemed
nonlinear. Thus, we employ the absolute value of the first derivative (AFD) as a metric to evaluate
the nonlinearity of a voxel.

We first perform dimensionality reduction for the Clip-Vit features of all the 73,000 stimulus images
using t-SNE (Van der Maaten & Hinton, 2008). We then reorder the image samples in descending
order according to their 1D-representation resulting from t-SNE. Figures 14-16 in A.5 show the
sorted image samples, demonstrating an obvious transition from ”simple” to ”complex”, as well as
that the samples with similar semantics cluster together. This distribution pattern remains consistent
across subjects.
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Figure 5 (a) illustrates ∆JMdown in the test samples for two voxels, in which the x-axis is the
sorted image index according to their 1-D t-SNE representation in descending order. The left and
right panels correspond to the voxels with the highest and lowest AFD values, respectively. In
the left panel, the low-dimensional embedding of ∆JMdown varies sharply with the sorted image
samples, and the high AFD value indicates strong nonlinearity. Conversely, in the right panel, the
low-dimensional embedding of ∆JMdown is invariant to image samples, evidencing strong linearity
of the voxel.

Figure 5 (b) shows the histograms of AFDs in PVC, SVC, and TVC. The number of voxels with
relatively higher AFDs increases significantly from PVC to TVC. This observation may suggest
a progressive nonlinearity within the hierarchy of visual cortex. Our findings closely align with
previous research. For example, the primary visual cortex predominantly processes relatively simple
visual features (Wang et al., 2023; Glasser et al., 2016; Huff et al., 2018), and consequently exhibits
lower nonlinear encoding. In contrast, the middle and higher visual cortices manage more complex
visual scenes (Wang et al., 2023; Glasser et al., 2016), such as spatial relationships and object
recognition, exhibiting stronger nonlinear components in their neural activity.

Figure 5 (c) visualizes the nonlinearity measured by AFDs for significantly activated voxels across
the whole brain. The PVC and SVC display more linear characteristics, whereas the TVC exhibits
remarkable nonlinearity, further reinforcing the notion of hierarchical distribution of nonlinearity in
the visual cortex. The probability density distribution of the AFDs in Figure 5 (d) indicates that the
TVC demonstrates a higher probability of higher AFDs.

Further analysis reveals that, beyond the visual cortex, other brain regions associated with higher
cognitive processing also exhibit nonlinearity (Figure 5 (c)), For instance, the temporoparietal-
occipital junction (TPOJ) and prefrontal areas. The TPOJ, recognized as a key region for multimodal
information integration (Wang et al., 2023; Glasser et al., 2016), exemplifies the complexity of non-
linear processing and hierarchical information transmission in the brain. In parallel, the nonlinearity
of the prefrontal cortex suggests that during higher cognitive tasks, such as decision-making and
reasoning, the brain appears to rely on complex nonlinear mechanisms.

Figure 5: Distribution of nonlinear visual encoding in the brain. (a) The left and right images
show voxel fitting results for the highest and lowest evaluation metrics, respectively; (b) Histogram
comparison of evaluation metrics for significantly activated voxels in PVC, SVC, and TVC; (c)
Visualization of evaluation metrics for significantly activated voxels across the whole brain; (d)
Comparison of probability density functions for evaluation metrics of significantly activated voxels
in PVC, SVC, and TVC. Results for other subjects can be found in A.6.
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5 CONCLUSIONS, LIMITATIONS, AND PROSPECTS

In this study, we introduce LinBridge, a novel framework aimed at interpreting nonlinear neural
encoding models through Jacobian analysis. We hypothesize that the intricate nonlinear mappings
between ANN representations and neural responses can be decomposed into a linear inherent com-
ponent and a sample-selective mapping bias. LinBridge effectively bridges the interpretability and
nonlinearity divide, advancing our understanding of neural encoding and serving as a valuable tool
for future investigations into complex neural computations across various brain regions.

The present study acknowledges several limitations. First, we validate LinBridge by using a simple
nonlinear encoding model. In the future, it is interesting to conduct further validation studies using
more advanced nonlinear encoding models. Second, while the Jacobian matrix elucidates the map-
ping relationships between samples and corresponding outputs, its computation remains resource-
intensive when applied to large datasets. Given that pre-trained encoding models inherently contain
gradient information, the incorporation of low-rank matrix decomposition for efficient computation
of mapping relationships between samples represents a promising avenue for future work. Third, al-
though our study focuses on the visual cortex, it is interesting to apply LinBridge to neural encoding
models in other modalities such as acoustic, linguistic, and multimodal information.
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A APPENDIX

A.1 NONLINEAR ENCODER AND LINEAR ENCODER

Figure 6: Structural comparison between nonlinear and linear encoding models.

To investigate the relationship between visual feature representations and brain responses, two ANN
encoding models are constructed: a linear encoding model (Linear encoder) and a nonlinear encod-
ing model (Nonlinear encoder).

Nonlinear Encoding Model

ŷnonlinear = W2σ(W1x+ b1) + b2 (10)

where x denotes the input representations, and W1, b1 and W2, b2 are the weights and biases of
the first and second layers, respectively. σ denotes the ReLU activation function, which introduces
nonlinearity to enhance the model’s expressiveness.

Linear Encoding Model

ŷlinear = W2(W1x+ b1) + b2 (11)

This model omits the ReLU activation function, allowing only linear transformations and serving
to investigate the performance of linear encoding. In this study, the bias terms b1 and b2 are both
set to False. Their structural comparison is illustrated in Figure 6. Meanwhile, the detailed code
implementations of their models are presented in Algorithms 1 and 2, respectively.

Training Strategy

The training process of the encoding model utilizes the Adam optimizer (Zhang, 2018) for parame-
ter optimization. To prevent overfitting, early stopping is employed, ceasing training if the validation
loss fails to improve over 8 consecutive epochs. Additionally, the model parameters that demonstrate
the optimal performance on the validation set are recorded and preserved.

Algorithm 1 Nonlinear encoding model
class NonLinear ANN encoder(nn.Module):

def init (self, input dim=512, out dim=p, hidden dim=2048):
super(NonLinear ANN encoder, self). init ()
self.encoder = nn.Sequential(

nn.Linear(input dim, hidden dim, bias=False),
nn.ReLU(),
nn.Linear(hidden dim, output dim, bias=False)

def forward(self, x):
return self.encoder(x)
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Algorithm 2 Linear encoding model
class Linear ANN encoder(nn.Module):

def init (self, input dim=512, out dim=p, hidden dim=2048):
super(Linear ANN encoder, self). init ()
self.encoder = nn.Sequential(

nn.Linear(input dim, hidden dim, bias=False),
nn.Linear(hidden dim, output dim, bias=False)

def forward(self, x):
return self.encoder(x)

A.2 TRAINING STRATEGIES OF LINBRIDGE UNDER DIFFERENT BATCHSIZES

Here we demonstrate how LinBridge is trained with different batchsizes. Specifically, we provide
the code implementation for LinBridge under various batchsize settings. Meanwhile, the detailed
code implementations are presented in Algorithms 3. The code demonstrates how LinBridge is
trained with different batchsizes, ranging from 16 to large 512 batchsizes.

Algorithm 3 Training strategies of LinBridge under different batchsizes
JM = torch.load(project dir) ▷ Load Jacobian matrix data
batchsize set = [16, 32, 64, 128, 256, 512] ▷ Set of batchsizes
for batchsize in batchsize set do

dataset = TensorDataset(JM)
dataloader = DataLoader(dataset, batch size=batchsize, shuffle=True, drop last=True)
info nce loss = InfoNCE(negative mode=’unpaired’)
optimizer = optim.AdamW([’params’: LinBridge model.parameters()], lr=1e-3)
for epoch in 128 do

for JM batch in dataloader do
optimizer.zero grad()
JM inherent, delta JM, JM inherent down, JM down, delta JM down

= LinBridge model(JM batch)
loss = (info nce loss(JM inherent down.repeat(JM batch.shape[1], 1),

JM down, delta JM down)
+ 0.01 * torch.sum(torch.abs(delta JM)))

loss.backward()
optimizer.step()

end for
end for

end for
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A.3 COMPARISON OF R2 BETWEEN LINEAR AND NONLINEAR ENCODING MODELS IN
OTHER SUBJECTS

Figure 7: Comparison of R2 between linear and nonlinear encoding models in Subject 1.

Figure 8: Comparison of R2 between linear and nonlinear encoding models in Subject 1.
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Figure 9: Comparison of R2 between linear and nonlinear encoding models in Subject 1.

A.4 COMPARISON OF THE LINEAR INHERENT COMPONENT EXTRACTED BY LINBRIDGE
WITH BRAIN ACTIVATION OF THE NONLINEAR ENCODING MODEL IN OTHER SUBJECTS

Figure 10: Comparison of the linear inherent component extracted by LinBridge with the brain
activation of the nonlinear encoding model in Subject 1.
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Figure 11: Comparison of the linear inherent component extracted by LinBridge with the brain
activation of the nonlinear encoding model in Subject 5.

Figure 12: Comparison of the linear inherent component extracted by LinBridge with the brain
activation of the nonlinear encoding model in Subject 7.
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A.5 DISPLAY OF TEST IMAGES AFTER PROGRESSIVE SORTING

Figure 13: The images of the test set for Subject 2 after progressive sorting. Each image corresponds
sequentially from top to bottom and left to right to the positions 1-1000 in the ”Sorted Sample Order”
of Figure 5 (a). From this, it can be observed that there is a certain pattern present in the progressively
sorted test images.
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Figure 14: Display of test images for Subject 1 after progressive sorting.
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Figure 15: Display of test images for Subject 5 after progressive sorting.
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Figure 16: Display of test images for Subject 7 after progressive sorting.
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A.6 DISTRIBUTION OF NONLINEAR ENCODING IN THE BRAIN IN OTHER SUBJECTS

Figure 17: Distribution of nonlinear encoding in the Brain of Subject 1.

Figure 18: Distribution of nonlinear encoding in the Brain of Subject 5.
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Figure 19: Distribution of nonlinear encoding in the Brain of Subject 7.
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