
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NATURAL LANGUAGE ACTOR-CRITIC:
POLICY ITERATION IN NATURAL LANGUAGE SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM) agents—LLMs that dynamically interact with an
environment over long horizons—have become an increasingly important area of
research, enabling automation in complex tasks involving tool-use, web brows-
ing, and dialogue with people. In the absence of expert demonstrations, training
LLM agents has relied on policy gradient methods that optimize LLM policies
with respect to an (often sparse) reward function. However, in long-horizon tasks
with sparse rewards, learning from trajectory-level rewards can be noisy, leading
to training that is unstable and has high sample complexity. Furthermore, policy
improvement hinges on discovering better actions through exploration, which can
be difficult when actions lie in natural language space. In this paper, we propose
Natural Language Actor-Critic (NLAC), a novel actor-critic algorithm that trains
LLM policies using a generative LLM critic that produces natural language rather
than scalar values. This approach leverages the inherent strengths of LLMs to pro-
vide a richer and more actionable training signal; particularly, in tasks with large,
open-ended action spaces, natural language explanations for why an action is sub-
optimal can be immensely useful for LLM policies to reason how to improve their
actions, without relying on random exploration. Furthermore, our approach can
be trained off-policy without policy gradients, offering a more data-efficient and
stable alternative to existing on-policy methods. We present results on a mixture
of reasoning, web browsing, and tool-use with dialogue tasks, demonstrating that
NLAC shows promise in outperforming existing training approaches and offers a
more scalable and stable training paradigm for LLM agents.

1 INTRODUCTION

While LLMs excel at natural language tasks like question-answering (Pyatkin et al., 2022) and
problem-solving (Hendrycks et al., 2021; Jimenez et al., 2024), which can be solved with a single
response, LLM agent tasks require multi-turn interactions. Specifically, LLM agent tasks require
the model to act within an environment, by taking actions sequentially and observing their results,
ultimately to accomplish some long-term goal. Such tasks include autonomous reasoning (OpenAI,
2025), tool-use (Nakano et al., 2022), and dialogue with users (Hong et al., 2023; Yu et al., 2023).
These tasks require agents to dynamically plan and intelligently respond to environmental stimuli,
which base, pretrained LLMs struggle to do without additional training (Bachmann & Nagarajan,
2024). To train effective LLM agents, we will need algorithms that can fine-tune LLMs to pursue
temporally extended goals in the context of multi-turn, long-horizon interactions.

Currently, LLM agents are trained with a variety of methods, often combining supervised fine-
tuning (SFT) with reinforcement learning (RL) (Rafailov et al., 2023; Carta et al., 2023; Wang et al.,
2025). For complex agentic tasks where labeled expert data is expensive to collect, such as ones
involving interaction with real users, the prevailing training methods focus on policy optimization
using algorithms such as Proximal Policy Optimization (PPO) (Schulman et al., 2017) or Group
Relative Policy Optimization (GRPO) (Shao et al., 2024). The LLM agents are trained to generate
environment actions accompanied by high-level reasoning to explain their decision-making (Yao
et al., 2022; Wei et al., 2023). These methods are designed to teach an LLM to reason about the
problem, plan over appropriate actions, and learn from the environment observations.

However, relying solely on policy gradient algorithms to train LLM agents presents significant prob-
lems. First, these algorithms are notoriously data-inefficient because they are on-policy, meaning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

they require sampling new trajectories from the current policy at every training step. Second, and
perhaps more importantly, gradients rely on an often sparse, scalar reward as their only training
signal, which can be a weak and unstable signal for learning robust, generalizable strategies over
long-horizon tasks. In traditional RL, actor-critic methods were developed to address these limita-
tions (Haarnoja et al., 2018). Actor-critic algorithms combine the policy-based learning of an actor
with the value-based learning of a critic. The actor learns a policy to select actions, while the critic
estimates the value of those actions. This paradigm can provide a more stable training signal, as the
critic’s value predictions offer a richer training signal than a sparse reward.

Figure 1: We propose learning state-action
values in language space to better leverage
LLMs’ capability to process and reason in
natural language. This improves the ability
to discover better actions during RL training.

While standard actor-critic could be applied to train
LLM agents (Chebotar et al., 2023; Zhou et al.,
2024b), we believe such methods do not effec-
tively leverage the text-based reasoning capabilities
of pretrained LLMs. Specifically, policy optimiza-
tion using scalar values requires the policy to dis-
cover actions of high value through random explo-
ration. If values were instead in natural language
space, an LLM policy could understand how to im-
prove its decision-making, reducing the reliance on
random chance to uncover better actions. We hy-
pothesize that this will greatly improve sample ef-
ficiency for complex, long horizon tasks involving
LLM agents. Figure 1 illustrates how values that are
natural language provide much richer feedback that
LLM agents can use for policy improvement.

In this paper, we propose Natural Language Actor-
Critic (NLAC), a novel algorithm for training LLM
agents that importantly trains a natural language
critic that generates textual evaluations of actions,
and uses such evaluations for policy improve-
ment. While prior methods exist that train state-
action models that also generate language evalua-
tions (Feng et al., 2025; Hong et al., 2025), ours is, to our knowledge, the first approach proposed for
and scalable to general LLM agent tasks. Our key algorithmic contribution is a novel recurrent objec-
tive that acts as a Bellman update in natural language space. We propose using the natural language
critic in an instance of policy iteration in natural language space, where the critic is jointly trained
with a policy, and its evaluations directly inform how to perform policy improvement. We evaluate
our approach on a range of LLM agent tasks, ranging from reasoning, tool-use, and dialogue. Our
empirical results demonstrate substantial improvement over prior approaches to learn LLM agents,
showing our algorithm is an appealing alternative to prevailing on-policy training methods.

2 RELATED WORK

LLM agents. LLM agents can be used to tackle a variety of complex real-world tasks, including
dialogue (Hong et al., 2023; Yu et al., 2023), tool-use (Nakano et al., 2022; Schick et al., 2023),
and embodied decision-making (Wang et al., 2023). The primary challenge in the design of effec-
tive LLM agents is enabling LLMs, which traditionally excel at generating single-step responses,
to interact sequentially with an environment to accomplish a long-term objective. ReAct prompting
is a popular method to leverage chain-of-thought reasoning of LLMs for long-horizon planning, by
instructing LLMs to explicitly articulate their high-level plans (Yao et al., 2022). More recent ap-
proaches have explored the capability of LLM agents to self-correct their initial attempts at planning
using more sophisticated prompting techniques (Shinn et al., 2023; Madaan et al., 2023; Zhou et al.,
2024a). For example, Reflexion prompting adds a step of self-reflection on top of ReAct to allow
LLM agents to refine their initial reasoning after some environment feedback (Shinn et al., 2023).
However, self-correction methods rely the ability to “backtrack,” or undo previous actions, whereas
we measure the capability of LLM agents with one chance to solve a task.

Process reward models. One of the primary challenges in learning LLM agents is the reliance
on a single, sparse reward for long-horizon interactions. This makes credit assignment, or distin-
guishing between good and bad actions in a long rollout, difficult. Process reward models (PRMs)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

aim to address this, particularly by providing action-level feedback using either human annotations
(Lightman et al., 2023), or an estimated value function in the absence of human intervention (Wang
et al., 2024; Setlur et al., 2025). Our learned natural language critic can be considered an instance
of an PRM, but unlike traditional PRMs that provide scalar feedback over actions, our critic outputs
feedback in language space. We believe such feedback is more useful for LLM policies that can
understand and articulate their decisions in natural language.

Reinforcement learning for LLM agents. More recently, multiple works have attempted to explic-
itly fine-tune LLMs as agents using RL (Carta et al., 2024; Zhou et al., 2024b). The primary way this
was done was naively adapting traditional RL fine-tuning used to align LLM responses to multi-turn
tasks with environment interaction (Stiennon et al., 2020; Ouyang et al., 2022; Ramamurthy et al.,
2023). These methods used PPO (Schulman et al., 2017) to finetune LLMs using the environment
reward. However, traditional policy optimization for long-horizon tasks exacerbates the instabilities
of RL training, particularly due to reliance on exploration and proper credit assignment. In this
work, we hypothesize that training in natural language over scalar space improves stability and sam-
ple efficiency, particularly in better leveraging the capabilities of LLMs to understand and articulate
thoughts in natural language. The closest work to ours that does this is NLRL (Feng et al., 2025),
which also proposes learning value functions that output text. However, in NLRL, these values
are obtained by sampling a large number of Monte Carlo rollouts on-policy and aggregating them
in-context. We believe sampling many rollouts on-policy just to compute a single training target
is intractable for complex tasks. Our method circumvents this drawback by training the critic as a
generative model that probabilistically generates rollouts using a novel Bellman backup in language
space. Using our method, training targets can be computed using a single off-policy sample.

3 PRELIMINARIES

Markov decision processes. We adopt the formalism of a Markov decision process (MDP) given by
M = (S,A, P, r, ρ, γ), where S is the state space,A is the action space, P is the transition function,
r is the reward function, ρ is the initial state distribution, and γ is the discount factor. When action
a ∈ A is executed at state s ∈ S, the next state is sampled s′ ∼ P (·|s, a), and the agent receives
reward r with mean r(s, a) ∈ R.

LLM agents in MDPs. Tasks considered by LLM agents can be defined under the MDP formalism
as follows. Here, the state and action space are finite-length sequences of tokens in vocabulary V ,
or S,A ⊆ V∗, where V∗ denotes all finite sequences comprised of tokens in vocabulary V . We
also define the space of environment observations O ⊂ V∗; those could consist of results of API
calls in tool-use applications, or responses by other interlocutors in dialogue. The agent corresponds
to a policy π that starts by observing a task description along with any initial observations s1 =
(q, o0). At timestep t, the agent state st of the MDP consists of the history of interaction thus far
st = (q, a1, o1, . . . , at−1, ot) consisting of agent actions and environment observations. Finally,
LLM agent tasks typically assume sparse rewards, where a deterministic reward r(sT) ∈ [0, 1] is
observed only at terminal state sT .

ReAct prompting. LLM agents are commonly implemented using ReAct prompting to better lever-
age the base reasoning capabilities of LLMs Yao et al. (2022). ReAct prompting instructs LLM
agents to output actions at ∼ π(·|st) that are actually composite, consisting of a thought athtt where
the agent performs a reasoning step, followed by the actual environment action aenvt . For exam-
ple, in dialogue, the thought could be the high-level strategy or plan the agent aims to execute,
whereas the environment action is the actual utterance by the agent. Then, the transition function
appends to st the environment action aenvt as well as any new observations by the environment ot+1,
to form the next state st+1. Note that the thought does not affect the transition dynamics, namely
P (·|st, at) = P (·|st, aenvt).

Reinforcement learning. The objective of RL is to find a policy π that maximizes the expected dis-
counted return J(π) = Eτ∼pπ

[∑T−1
t=0 γtr(st, at)

]
in an MDP, where τ = (s0, a0, s1, a1, . . . , sT)

and pπ(τ) = ρ(s0)
∏T−1

t=0 π(at|st)P (st+1|st, at). Standard policy gradient approaches directly
train policy π using the gradient of ∇πJ(π), while more sophisticated algorithms such as PPO and
GRPO additionally clip the updates to improve stability (Schulman et al., 2017; Shao et al., 2024).
Actor-critic algorithms additionally learn a state-action value function, or Q-function, defined as

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Qπ(st, at) = E(s,a)t+1:∞∼pπ

[∑T−1
t′=t γ

t′−tr(st′ , at′)
]
. Such Q-functions are learned by regressing

to their Bellman backup:

BQπ(st, at) = r(st, at) + Est+1,at+1∼Pπ [Qπ(st+1, at+1)] ,

where Pπ(s′, a′|s, a) = P (s′|s, a)π(a′|s′). Then, an improved policy π′ can be derived using the
Q-function via greedy or maximum-entropy optimization π′(at|st) ∝ exp(Qπ(st, at)).

4 NATURAL LANGUAGE ACTOR-CRITIC

In this section, we present Natural Language Actor-Critic (NLAC), our new method for training
LLM agents that adopts the actor-critic paradigm. Unlike traditional methods that rely on simple
policy gradients, NLAC leverages a natural language critic that outputs textual critiques of actions to
provide a rich, interpretable, and more stable training signal. Our framework is inspired by classical
actor-critic methods where each step consists of (1) policy evaluation, where a critic is trained to
assess actions by a policy, and (2) policy improvement, where the policy is updated based off of
evaluations by the critic, but is adapted to leverage the implicit reasoning capabilities of LLMs over
text space. In our approach, both the LLM policy and the natural language critic are instantiated by
the same underlying LLM, with their distinct functionalities realized through different prompts. We
go over both components in detail below.

4.1 POLICY EVALUATION

In traditional actor-critic approaches, a critic is trained to estimate scalar state-action values, or
Q-values, typically denoted as Qπ(s, a) ∈ R, which represents the expected return by policy π
from state s after taking action a. While learning such Q-values can be similarly done with LLM
critics, LLMs are better suited to process and generate natural language over scalars. Therefore, we
believe evaluation that is in natural language space leverages prior text-based reasoning capabilities
of LLMs, and thus will largely improve sample efficiency. Hence, our natural language critic is an
LLM that generates textual critiques, denoted as Qπ

L(s, a) ∈ V∗, that not only comments on how
good an action is, but also explains why.

Predicting the future using language. The key addition that is not captured by scalar Q-values is
an explanation of why a particular action is optimal or not. As we will discuss later, this information
is ultimately incredibly valuable for LLM policies to understand how to refine their actions during
policy improvement, avoiding the reliance on random exploration to discover better actions. We
believe that the key for a critic to derive these explanations is the prediction and analysis of future
outcomes. In order to do so, we must train our natural language critic to additionally act as a
successor function, defined as follows:

Definition 4.1. A language successor model Mπ for policy π takes a state st and action at as input,
and probabilistically generates a textual description of rollout (s, a)t+1:T , or what will happen to
policy π in the future, and reward r(sT). We denote by Mπ(· | st, at) the distribution from which
such descriptions are sampled.
Our language successor model shares similarities with successor features (Barreto et al., 2017) in
that both can predict a distribution over future rollouts, and—as we show later—be trained using
temporal difference learning. The main difference lies in that traditional successor features are used
to compute Q-values via a linear product, whereas ours is used to generate state-action values in
natural language via output by an LLM.

One naive way to train our language successor model for long-horizon prediction is to collect Monte
Carlo rollouts (s, a)t+1:T . However, such an approach requires on-policy samples, which would sac-
rifice sample efficiency, so we instead aim for an off-policy algorithm. Hence, to train our language
successor model, we draw inspiration from distributional value learning (Bellemare et al., 2017),
which introduces a distributional Bellman backup to train a distribution over returns rather than just
their scalar expectation. Notably, the distributional Bellman backup used one-step samples of the
future and thus could be computed off-policy. Similarly, we propose a language Bellman backup
BL that bears some semblance to the distributional Bellman backup, but makes key adaptations to
account for samples that are textual descriptions of rollouts rather than scalar returns.

Definition 4.2. A language Bellman backup BL takes a language successor model Mπ , along with
state st and action at as input, and computes distribution BL Mπ(·|st, at) such that the probability

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

of description dt ∈ V∗ is given by:

BL Mπ(dt | st, at) = Pr [dt = B(r(st, at), st+1, at+1, dt+1)] , (1)
st+1, at+1 ∼ Pπ(· | st, at) , dt+1 ∼Mπ(· | st+1, at+1) ,

where B is a function that combines immediate next state and action st+1, at+1 with description
dt+1 of rollout (s, a)t+2:T into one description of the concatenated rollout (s, a)t+1:T .
Beyond simple concatenation, the B function will “discount” the future rollout description from Mπ

in the concatenated rollout so the immediate next state is given more emphasis in the description.

Then, we can train our language successor model Mπ by minimizing the divergence between distri-
butions Mπ(·|st, at) and target distributions created by the language Bellman backup:

Mπ = argmin
M

E(st,atst+1)∼D [Df (M(· | st, at) || BL M(· | st, at))] . (2)

Note that our training objective is an instance of temporal-difference learning and thus does not
require on-policy Monte Carlo trajectories.

Generating critiques. Finally, the natural language critic should analyze all possible futures in
order to evaluate how good an action is in expectation, then explain its reasoning by referencing
possible future outcomes. To perform this evaluation, we define the following:

Definition 4.3. A language evaluator E takes as input state st and action at, along with a sequence
of descriptions of possible rollouts (s, a)t+1:T and their rewards r(sT), and outputs a textual cri-
tique that comments on whether at was optimal, with justification using possible future outcomes.

Then, we can approximate natural language value Qπ
L(st, at) as:

Qπ
L(st, at) ≈ E(st, at, d

(1)
t , . . . , d

(k)
t) , d

(i)
t ∼Mπ(· | st, at) , ∀ i ∈ [k] . (3)

Note that E essentially aggregates and summarizes multiple descriptions of different rollouts that
are all fit in-context, which LLMs have demonstrated a priori efficacy in without additional train-
ing (Feng et al., 2025). This means that the only training required to perform evaluation of policy π
in language space is learning the language successor model Mπ .

4.2 POLICY IMPROVEMENT

Thus far, we showed how to train the natural language critic to evaluate a fixed policy π. We
now show how an improved policy can be learned using textual critiques Qπ

L(s, a) obtained by
a critic using Equation 3. Naturally, such policy is a greedy policy where a ∼ π(·|s) satisfies
a = argmaxa′ Qπ

L(s, a
′). Note that we assume the following:

Assumption 4.1. For any policy π, the set {Qπ
L(s, a

′)}a′∈A computed using Equation 3 for any
state s forms a totally-ordered set with binary relation ≥.

We believe that this is not a strong assumption, as each critique Qπ
L(s, a) can be mapped to a scalar

that quantifies its sentiment, which can be used to compare with other critiques. Then, Qπ
L(s, a

′) ≥
Qπ

L(s, a) if the underlying sentiment of the text in Qπ
L(s, a

′) is more positive.

However, computing the greedy policy is intractable for LLM agent tasks, where the action spaces
A ⊆ V∗ are combinatorial in the token vocabulary, making it impossible to enumerate all possible
actions to find the optimal one. While prior works have proposed sampling a subset of actions and
reweighting (Li et al., 2024), we find empirically that for tractable sample sizes, this approach does
not sufficiently explore the space of possible actions.

Our approach sidesteps this issue by leveraging the descriptive power of the natural language values
using a self-refinement paradigm. Our insight is that the natural language value Qπ

L(s, a) not only
comments on how good an action is, but also contains intuition on how a suboptimal action can be
improved. Hence, a policy that is an LLM with strong base reasoning capabilities can process this
evaluation and understand how to refine its initial action.

To this end, we define a refinement policy πr that takes an action at ∼ π(·|st) by the base policy,
and generates a refined action art ∼ πr(·|st, at, Qπ

L(st, at)) that is better according to the natural
language critic, i.e., Qπ

L(st, a
r
t) ≥ Qπ

L(st, at). As with the policy and critic, the refinement policy

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

can use the same underlying LLM but with a different prompt. Note that refinement can also be
performed iteratively by maintaining and appending to a history of all previous action attempts and
their evaluations

art ∼ πr(· | st, a1t , Qπ
L(s, a

1
t), . . . a

m
t , Qπ

L(st, a
m
t)) ,

where we can control for a parameter m that denotes number of rounds of refinement. As m→∞,
we expect the refined action art to be the greedily optimal one art = argmaxa Q

π
L(st, a).

Finally, we propose a policy improvement objective from π to π′ that projects the refinement policy
back to the base policy, similar to the policy updates in SAC (Haarnoja et al., 2018). However,
rather than parameterizing a target policy using the learned values, which requires enumeration over
actions and is intractable in our setting, we let the target policy be the refinement policy:

π′ = argmax
π

Est∼D
[
Df

(
π(· | st) || πr(· | st, a1t , . . . , Qπ

L(s, a
m
t))

)]
. (4)

In practice, we found that a single round of refinement m = 1 was sufficient. Again, this objective
does not require any on-policy rollouts, and can therefore be trained off-policy.

5 PRACTICAL IMPLEMENTATION

In this section, we describe how both the critic and policy are trained in practice. We defer specific
details such as exact prompts used to Appendix A. Though our method involves many different com-
ponents such as a language successor model and evaluator, we can leverage the general capabilities
of LLMs to reason over and generate language to reuse one model to implement all the described
components. Hence, our algorithm only involves training one LLM M with parameter θ. For a
prompt p ∈ V∗, we denote byMθ(p) the distribution over responses by the LLM given the prompt.

5.1 TRAINING COMPONENTS

Policy. Many prior works have parameterized policies as LLMs. One of the greatest advantages of
doing so is the ability to leverage the strong reasoning capabilities of LLMs from chain-of-thought
prompting Wei et al. (2023); Yao et al. (2022). By choosing a proper prompt preact, an LLM policy
can be instructed to describe their underlying thoughts for choosing a particular action in addition
to generating the action itself at ∼Mθ(preact(st)).

Language successor model. LLMs have demonstrated efficacy at predicting realistic future rollouts
in a variety of environments (Lin et al., 2024). These futures are generated by simply processing the
state-action in a prediction prompt ppred that also instructs the LLM to summarize rollouts into con-
cise textual descriptions, then sampling from the LLM output Mθ(· | st, at) =Mθ(ppred(st, at)).

Language Bellman backup. The backup BL also outputs a distribution over descriptions of roll-
outs, but uses one-step samples of next state along with a “bootstrapped” description of rollout
generated by Mθ. We give the LLM instruction ptpred to predict a “target” future by combining the
immediate next state with the bootstrapped future description into one description, discounting the
future description as necessary by placing more emphasis on the immediate next state.

PLMθ(· | st, at) =Mθ(ptpred(rt, st+1, dt+1)) , dt+1 ∼Mθ(ppred(st+1)) .

Note that we do not explicitly sample at+1 from the policy, but implicitly via the language successor
model that is conditioned on the policy.

Language evaluator. The evaluations by E, which ultimately become the outputs of the natural
language critic that estimate Qθ

L(st, at) can similarly be derived by fitting multiple generated futures
d
(1)
t , . . . d

(k)
t in-context within an evaluation prompt peval that asks the LLM to aggregate the futures

and summarize into an overall description of how good the action is, as

Qθ
L(st, at) = Eθ(st, at, d

(1)
t , . . . , d

(k)
t) ∼Mθ(peval(d

(1)
t , . . . , d

(k)
t)) .

Refinement policy. Finally, the refinement policy πr can also be obtained by an LLM instructed to
refine its latest action given an evaluation similar to prior self-refinement approaches (Madaan et al.,
2023). The refined action is obtained via prompt prefine as art ∼Mθ(prefine(st, a

1
t , . . . , Q

θ
L(st, a

m
t))).

5.2 TRAINING ALGORITHM

Formally, the parameters θ are trained using two objectives for policy evaluation and improvement.
For policy evaluation, for a transition (st, at, st+1), the natural language critic is trained using cross

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

entropy component of the objective:

L1(st, at, rt, st+1) = DKL (BLMθ̄(· | st, at) ||Mθ(· | st, at)) , (5)

where θ̄ are reference parameters that are an exponentially moving average of the trained parameters,
in order to prevent generative collapse (Shumailov et al., 2024). We choose the reverse direction of
KL-divergence to capture the full diversity over possible futures. Then, for policy improvement, we
train the policy on the log-likelihood loss:

L2(st) = − log πθ(a
r
t | st) , at∼πθ(· | st) , art ∼πr

θ(· | st, at, Qθ
L(st, at)) . (6)

This objective can be interpretted as distillation, but using generations by the refinement policy
rather a teacher policy that is a separate model.

Algorithm 1 Natural Language Actor-Critic (NLAC)

1: Initialize θ, θ̄ from pretrained model.
2: for each iteration do
3: for each environment step do
4: Sample at ∼ πθ(· | st), st+1 ∼ P (· | st, at)
5: Add to replay buffer D ← D ∪ {(st, at, rt, st+1)}
6: end for
7: for each training sample do
8: θ ← θ − λ1∇θL1(st, at, rt, st+1)
9: θ ← θ − λ2∇θL2(st)

10: θ̄ ← τθ + (1− τ)θ̄
11: end for
12: end for

We show pseudocode for NLAC in
Algorithm 1. In practice, we found
it helpful to implement D as a pri-
oritized replay buffer weighted by
L1(st, at, st+1) with sampling pa-
rameter α (Schaul et al., 2016). This
is because in many tasks, though a
base LLM policy may achieve low re-
ward in a large proportion of rollouts,
many actions in these unsuccessful
rollouts are still optimal. Therefore,
to improve learning efficiency, we
prioritize training on samples where
the agent is likely to take a subop-
timal action, using critic loss as a
proxy for the likelihood.

6 EXPERIMENTS

To demonstrate the effectiveness of NLAC, we evaluate our method on a variety of LLM agent
tasks: mathematical reasoning (Hendrycks et al., 2021), strategic dialogue (Pu, 2023), and customer
service using mixed dialogue and tool-use (Yao et al., 2024). Though mathematical reasoning does
not involve interaction with an environment, it is currently the most popular benchmark to evaluate
different RL fine-tuning algorithms.

6.1 TASK DESCRIPTIONS

Mathematical reasoning. We evaluate on mathematical problem-solving using the MATH dataset
(Hendrycks et al., 2021), which consists of different competition math problems of varying level of
difficulty. A score of 1 is achieved if the agent solves the problem and outputs an answer that is
correct and properly formatted. We evaluate on a subset of 500 problems from the test dataset of the
highest difficulty level, which we call MATH500-Hard. The remaining 12, 000 problems are used
as the training set for RL fine-tuning.

Dialogue game. We use the popular game of 20 Questions (20Q) as a representative strategic
dialogue task, where the LLM agent acts as the guesser to uncover the hidden word by an oracle.
20Q was chosen because it was non-adversarial (so we can evaluate against a fixed LLM as the
oracle), and requires the LLM agent to generate a cohesive sequence of actions over multiple steps.
Though many implementations exist (Srivastava et al., 2023; Abdulhai et al., 2023), we follow the
one by Pu (2023) where the set of hidden words can be any in a set of 1, 823 objects from the
THINGS dataset (Hebart et al., 2019). A reward of 1 is achieved if the guesser correctly identifies
the hidden object within 20 turns, or questions, where correctness if determined by using the oracle
LLM as a judge. We use GPT4.1 (OpenAI et al., 2024) as the oracle. We construct a training set of
1, 000 objects and a test set of 500 different objects through random sampling.

Customer service. We consider τ -bench as a representative LLM agent task that requires a mixture
of dialogue and tool-use to solve (Yao et al., 2024). The LLM agent must act as a customer service
representative in various scenarios such as modifying items in an user’s order, and follow a rigid set
of policy guidelines. At every step, the LLM agent can either communicate with the user, or make
an API call that interacts with a backend database. At the end, the agent receives a score of 1 if the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

MATH500-Hard 20Q τ -Bench

Paradigm Method Accuracy Winrate Retail Airline

Prompting GPT4.1 ReAct (Yao et al., 2022) 95.1 30.2 0.44 0.32

Fine-tuning
Qwen2.5-7B-Instruct

RFT 52.5 12.6 0.21 0.13
PPO (Schulman et al., 2017) 52.3 17.2 0.28 0.14
GRPO (Shao et al., 2024) 49.8 18.4 0.24 0.11
SAC (ablation) 48.2 9.8 0.18 0.11
NLAC (ours) 60.2 26.0 0.42 0.22

Fine-tuning
QwQ-32B

RFT 72.5 22.0 0.35 0.29
PPO (Schulman et al., 2017) 71.4 24.0 0.47 0.41
GRPO (Shao et al., 2024) 70.8 25.6 0.48 0.39
SAC (ablation) 64.7 13.2 0.31 0.21
NLAC (ours) 72.7 32.1 0.59 0.45

Table 1: Performance on evaluation set of each benchmark. To make comparisons fair, each of the
fine-tuning methods train for 30, 720 gradient steps. Across the board, NLAC outperforms other RL
methods for both small- and medium-sized LLMs, and even beats frontier models on long-horizon
tasks. Note that because mathematical reasoning is a single-step task, we have to adapt the language
generative model to only predict reward.

database entries match ground-truth values, and the agent did not violate any policy guidelines via
their actions. Users are simulated using a GPT4.1 (OpenAI et al., 2024) model prompted with both
an initial request (such as modifying or cancelling an order) as well an identity that can be verified
using the database. There are two categories of scenarios: (1) in retail, the LLM agent must modify
pending orders of items, return or exchange delivered orders, or update user information, and (2) in
airline, the LLM agent must book, modify, or cancel flight reservations. To test generalization, we
compile a training dataset of 2, 500 user scenarios in the retail category, and evaluate on a test set
of 500 different retail scenarios, as well as 500 airline scenarios. Note that none of the methods are
trained on any airline scenarios.

6.2 RESULTS

We compare NLAC with k = 1 and m = 1 against both prompting and fine-tuning baselines. We
found those settings of hyperparameters was sufficient to achieve good performance, though more
stochastic environments may warrant higher k. For baselines that involve fine-tuning, we consider
two LLMs: Qwen2.5-7B-Instruct (Yang et al., 2024), and QwQ-32B (Team, 2025), which is also
trained on reasoning traces. We choose these two LLMs to measure the effect of increasing size
and pre-training on reasoning traces on the performance of the RL methods. Our baselines can be
categorized into the following (training details can be found in Appendix A.4):

Prompting. We perform ReAct prompting (Yao et al., 2022) of a state-of-the-art frontier model
GPT4.1 (OpenAI et al., 2024). Because such models do not expose weights for RL fine-tuning, we
rely on the zero-shot capabilities of the LLM without any additional training on the tasks.

Rejection fine-tuning. We perform rejection fine-tuning (RFT) where at every iteration, the base
LLM policy collects a set of on-policy rollouts. We append only the successful rollouts to a buffer,
then train the LLM using SFT on samples from the buffer.

RL fine-tuning. The most standard way to perform RL fine-tuning is to train the LLM to optimize
score using a policy gradient algorithm on on-policy rollouts. We consider both PPO (Schulman
et al., 2017) and GRPO (Shao et al., 2024) as the algorithm, the difference being that PPO addition-
ally learns a token-level value function on Monte-Carlo rollouts as a baseline to stabilize reward,
whereas GRPO computes the average reward across 4 different rollouts.

Ablations. We consider an ablation of our approach that is soft actor-critic (SAC) training. Instead
of performing policy iteration in language space, SAC simply learns scalar values via a token-level
Q-function using traditional Bellman backups, and then performs policy extraction by fitting the
policy to the maximum-entropy policy using the learned Q-function (Haarnoja et al., 2018).

The results of our evaluation are presented in Table 1. We see that for both LLM models, NLAC
outperforms other fine-tuning approaches, and even prompting of a significantly stronger LLM, par-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Sample timestep on τ -bench where a base LLM agent fails by modifying the database
(which can only be done once according to the guidelines) when more exchanges are likely needed.
The natural language critic correctly identifies why the action is suboptimal, and explains it in lan-
guage so that the same LLM can process the critique and correct its action.

ticularly on long-horizon tasks. The only task where NLAC matches other methods is mathematical
reasoning, which is a single-step task, in which NLAC reduces to performing self-refinement using
a generative reward model (Madaan et al., 2023); this is because in single-step tasks, our natural lan-
guage critic is only trained to predict reward. Meanwhile, on tasks requiring multi-step interaction,
which our method is tailored for, NLAC greatly outperforms all baselines, achieving a 30% improve-
ment in 20Q and τ -retail over standard RL fine-tuning. Surprisingly, our ablation SAC performed
worst; this can be attributed to the fact that token-level Q-values are difficult to estimate precisely,
so directly fitting the policy to these Q-values can hurt performance. NLAC circumvents this issue
because Q-values in natural language can be used more flexibly by LLMs policies for improvement.

In Figure 2, we qualitatively show how NLAC improves the base LLM policy. One of the most
common failure modes of LLM agents in τ -bench is partial resolution of complex requests, espe-
cially when the agent must also follow complicated dynamics and rules. In the example, the agent is
told that the user wants to make “a couple of exchanges,” but according to policy guidelines, modi-
fications to the database can only be done via one tool-call per rollout. Therefore, the agent should
not make a tool-call to exchange the first item, but instead collect all items to be exchanged into a
single call in the future. This kind of error would be difficult to correct with just a scalar reward
as feedback. However, the critique by our natural language critic identifies exactly which policy
guideline would be violated, allowing for the LLM agent to easily understand and correct the error.

7 DISCUSSION

In this paper, we propose NLAC, a new actor-critic algorithm for training LLM agents where the
state-action values are in natural language space. These natural language values not only comment
on the optimality of an action, as scalar Q-values do, but also articulate why by predicting and ana-
lyzing future outcomes. The key innovation we propose to enable this is a novel language Bellman
backup that trains a natural language critic to generate possible future rollouts using only one-step
samples obtained off-policy. Then, an LLM policy can be improved by processing and understand-
ing evaluations by the critic to correct its own suboptimal actions. This procedure improves one of
the main challenges of RL fine-tuning for complex tasks—reliance on random exploration to un-
cover better actions–and signficantly improves sample efficiency. Empirically, we show that NLAC
greatly outperforms other prompting and fine-tuning baselines on long-horizon tasks involving dia-
logue and tool-use. As future work, we aim to see if our approach can be combined with traditional
RL policy optimization by extracting a generative scalar value from our critiques. Another interest-
ing direction for future work is investigating whether a theoretical connection can be made between
our language Bellman backup and learning successor features.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

In our work, we evaluate on existing public benchmarks for mathematical reasoning, whose datasets
can be found online. We also describe in detail the implementation of our method in both Section 5
and Appendix A, including exact prompts used and hyperparameter configurations during training,
so the reader can reimplement our method from scratch. Furthermore, for the camera-ready submis-
sion, we plan to open-source the code we used to conduct our empirical evaluations.

REFERENCES

Marwa Abdulhai, Isadora White, Charlie Snell, Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu,
and Sergey Levine. Lmrl gym: Benchmarks for multi-turn reinforcement learning with language
models, 2023.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction, 2024.

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in Neural
Information Processing Systems, 2017.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 449–458. JMLR. org, 2017.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning, 2023.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning, 2024. URL https://arxiv.org/abs/2302.02662.

Yevgen Chebotar, Quan Vuong, Alex Irpan, Karol Hausman, Fei Xia, Yao Lu, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, Keerthana Gopalakrishnan, Julian Ibarz, Ofir Nachum,
Sumedh Sontakke, Grecia Salazar, Huong T Tran, Jodilyn Peralta, Clayton Tan, Deeksha Manju-
nath, Jaspiar Singht, Brianna Zitkovich, Tomas Jackson, Kanishka Rao, Chelsea Finn, and Sergey
Levine. Q-transformer: Scalable offline reinforcement learning via autoregressive q-functions. In
7th Annual Conference on Robot Learning, 2023.

Xidong Feng, Bo Liu, Yan Song, Haotian Fu, Ziyu Wan, Girish A. Koushik, Zhiyuan Hu, Mengyue
Yang, Ying Wen, and Jun Wang. Natural language reinforcement learning, 2025. URL https:
//arxiv.org/abs/2411.14251.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Martin N. Hebart, Adam H. Dickter, Alexis Kidder, Wing Y. Kwok, Anna Corriveau, Charlotte
Van Wicklin, and Chris I. Baker. Things: A database of 1,854 object concepts and more than
26,000 naturalistic object images. PLOS ONE, 2019. URL https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0223792.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Joey Hong, Sergey Levine, and Anca Dragan. Zero-shot goal-directed dialogue via rl on imagined
conversations, 2023.

Joey Hong, Anca Dragan, and Sergey Levine. Planning without search: Refining frontier llms with
offline goal-conditioned rl, 2025. URL https://arxiv.org/abs/2505.18098.

10

https://arxiv.org/abs/2302.02662
https://arxiv.org/abs/2411.14251
https://arxiv.org/abs/2411.14251
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223792
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223792
https://arxiv.org/abs/2505.18098

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=VTF8yNQM66.

Kenneth Li, Samy Jelassi, Hugh Zhang, Sham M. Kakade, Martin Wattenberg, and David Brand-
fonbrener. Q-probe: A lightweight approach to reward maximization for language models. In
Proceedings of the 41st International Conference on Machine Learning, 2024.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
Learning to model the world with language, 2024. URL https://arxiv.org/abs/2308.01399.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback, 2022.

OpenAI. Introducing deep research. https://openai.com/index/
introducing-deep-research/, 2025.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,

11

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2308.01399
https://arxiv.org/abs/2303.17651
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

Evan Pu. Llm self-play on 20 questions. https://evanthebouncy.medium.com/
llm-self-play-on-20-questions-dee7a8c63377, 2023.

Valentina Pyatkin, Jena D. Hwang, Vivek Srikumar, Ximing Lu, Liwei Jiang, Yejin Choi, and Chan-
dra Bhagavatula. Reinforced clarification question generation with defeasibility rewards for dis-
ambiguating social and moral situations, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2023.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy op-
timization. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=8aHzds2uUyB.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay, 2016.
URL https://arxiv.org/abs/1511.05952.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools, 2023. URL https://arxiv.org/abs/2302.04761.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. In International Conference on Learning Representations
(ICLR), 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

12

https://arxiv.org/abs/2303.08774
https://evanthebouncy.medium.com/llm-self-play-on-20-questions-dee7a8c63377
https://evanthebouncy.medium.com/llm-self-play-on-20-questions-dee7a8c63377
https://openreview.net/forum?id=8aHzds2uUyB
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2402.03300

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
Ai models collapse when trained on recursively generated data. Nature, 631:755–759, 2024. doi:
10.1038/s41586-024-07566-y.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W.
Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain,
Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, An-
ders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew Dai, An-
drew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh
Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabas-
sum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Her-
rick, Avia Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph,
Bartłomiej Bojanowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin
Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron
Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramı́rez, Chandan Singh,
Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites,
Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera,
Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Gar-
rette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy,
Daniel Moseguı́ González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito,
Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, De-
nis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta
Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Eka-
terina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Eliza-
beth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem,
Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Ev-
genii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martı́nez-Plumed, Francesca Happé,
Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán
Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-
López, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh
Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schütze, Hiromu Yakura, Hong-
ming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson
Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B. Simon, James Koppel,
James Zheng, James Zou, Jan Kocoń, Jana Thompson, Janelle Wingfield, Jared Kaplan, Jarema
Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova,
Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Ji-
acheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis,
Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph
Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua,
Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja
Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chia-
fullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo
Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency,
Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colón,
Luke Metz, Lütfi Kerem Şenel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Fa-
rooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria
Jose Ramı́rez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast,
Matthew L. Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova, Melody
Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy,
Michael Starritt, Michael Strube, Michał Swedrowski, Michele Bevilacqua, Michihiro Yasunaga,
Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Tiwari, Mohit Bansal,
Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan A.
Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron,
Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar,

13

https://arxiv.org/abs/2303.11366

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar El-
baghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung,
Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Pe-
ter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush Patil, Pouya Pezeshkpour,
Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer
Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm Garg, Richard Barnes, Rif A.
Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Ro-
man Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov,
Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Moham-
mad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R.
Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghaz-
arian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schus-
ter, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar
Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upad-
hyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy,
Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene,
Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Pi-
antadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal
Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Des-
bordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick,
Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar
Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Rau-
nak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William
Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran
Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman
Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang
Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and
Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the capabilities of lan-
guage models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL https:
//qwenlm.github.io/blog/qwq-32b/.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv: Arxiv-2305.16291, 2023.

Hanlin Wang, Jian Wang, Chak Tou Leong, and Wenjie Li. Steca: Step-level trajectory calibration
for llm agent learning, 2025. URL https://arxiv.org/abs/2502.14276.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024.
URL https://arxiv.org/abs/2312.08935.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

14

https://openreview.net/forum?id=uyTL5Bvosj
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2502.14276
https://arxiv.org/abs/2312.08935

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/2406.
12045.

Xiao Yu, Maximillian Chen, and Zhou Yu. Prompt-based monte-carlo tree search for goal-oriented
dialogue policy planning, 2023. URL https://arxiv.org/abs/2305.13660.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. In Proceedings of the
41st International Conference on Machine Learning (ICML), 2024a.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl, 2024b. URL https://arxiv.org/abs/2402.19446.

15

https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2305.13660
https://arxiv.org/abs/2402.19446

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS

In this section, we provide details of implementation of NLAC across the various benchmarks we
evaluate. Details include the prompts used to mimic the different components of our algorithm, as
well as hyperparameters configured during RL training.

Recall from Section 5 that our algorithm consists of the following novel components:

(1) language successor model: probabilistically generates a text prediction of what will hap-
pen to policy π after taking an action.

(2) language Bellman backup: uses one-step sample of the immediate next state to also prob-
abilistically generate a target text prediction of the future after taking an action.

(3) language evaluator: processes textual futures to generate a critique of an action, com-
menting on optimality and an explanation why by referencing potential future outcomes.

(4) refinement policy: uses the critique of an action to propose an improved action.

In practice, since number of futures is k = 1 in our experiments, we combine the successor model
and evaluator into one generation by the language critic.

A.1 LANGUAGE CRITIC IMPLEMENTATION

The language critic is implemented by prompting the base LLM with instruction peval(st, at). In
the τ -bench benchmark, this is done by appending the following prompt to the history of messages
comprising st and at:

Evaluate your last action, first predicting one possible future and then comment on whether or
not your action was optimal, and if not, how it can be improved. Output should be exactly in the
format:

Future:
<Predict one possible scenario of what will happen next, up to whether or not you succeed at
the long-term task. Be concise and keep to a few sentences at most.>
Optimality:
<”Yes” or ”No”. If ”No”, explain how it can be improved in one sentence using the predicted
future to justify your explanation.>

Do not generate anything after the evaluation.

For a single-step task such as mathematical reasoning, the appended prompt is instead:

For your attempted solution, please perform the following evaluation and output the result
exactly in the format:

Correctness:
<”Yes or No”. If ”No”, identify where any errors occurred. Remember the solution could be
incorrect simply because the answer is not formatted correctly with the answer in the format
\boxed{answer}.>

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.2 LANGUAGE BELLMAN BACKUP IMPLEMENTATION

The language Bellman backup is also implemented by prompting the base LLM with instruction
peval(st, at, st+1). This is done by first appending the following prompt to the history of messages
comprising st and at to get a bootstrapped future prediction:

The response to your latest action is (could be a tool API output or text utterance from the
customer):
{next observation}
From this state, describe one possible scenario of what will happen next, up to whether or not
you succeed at the long-term task. Be concise and keep to a few sentences at most.

Then, the target evaluation is obtained by appending the following prompt afterwards

Evaluate your latest action. Remember your output should be in exactly the following format:
Future:
<Combine the observed response to your latest action with the predicted future from there, up
to whether or not you succeed at the long-term task.>
Optimality:
<”Yes” or ”No”. If ”No”, explain how it can be improved in one sentence using the predicted
future to justify your explanation.>

Notes:
1. Do not call tools in the evaluation. They will be **ignored**.
2. If the action is optimal, just say ”Yes” after the ”Optimality:” tag and do not explain why.
3. Do not generate anything after the evaluation.

Another important detail when training reasoning models (that output chain-of-thought thinking by
default before every generation) is that its chain-of-thought output will reference the next state st.
This makes it an unsuitable training target because it references information not provided to the
critic. Hence, we add an additional postprocessing step to generate a corrected chain-of-though
thinking that removes references to such ground-truth information:

In the above evaluation, the chain-of-thought thinking between <think>and <\think>tags likely
referenced the response to your action and future, or the final score if provided.

Fix the chain-of-thought thinking so that it does not refer to those quantities as a reference, but
rather infers them. So instead of saying an event will happen in the future, or that the final score
is 0, say that you believe it will happen.

Your corrected chain-of-thought should be similar to the original in style and prose, but simply
remove references to future or the final score as ground-truth information, and instead reason
about how you might be able to infer future events from only the observations thus far, up to your
latest action. Your output should be in to format: <corrected think>Revised chain-of-thought
thinking goes here...<\corrected think>

It is important that you enclose the corrected chain-of-thought thinking between
<corrected think>and <\corrected think>tags, as your response will get automatically
parsed by a computer. The part after the chain-of-thought thinking should be the evaluation
exactly in the format described earlier.

There should be exactly one <corrected think>...<\corrected think>block in your response. Do
not include any <think>or <\think>tags within this block. Do not generate anything after the
<\corrected think>tag.

Then, we extract the corrected chain-of-thought thinking from the output and co-opt the original
chain-of-thought-thinking in the target evaluation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.3 REFINEMENT POLICY IMPLEMENTATION

The refinement policy is implemented by appending an additional prompt after Qπ
L(st, at) that is

the output of the language critic:

Use the evaluation of the latest action to assess whether the latest action was optimal, and
generate a revised action that fixes any problems with the latest action (can simply copy latest
action if it is optimal). Output should be exactly in the format:

Thought:
<A single line of reasoning to process the context and inform the decision making. Do not
include extra lines.>
Action:
{”name”: <Name of action>, ”arguments”: <Arguments to the action in json format>}

Note that you are outputting an action that will replace the latest one. Do not output an action
that is meant to come afterwards.

Do not reference the previous action or its evaluation.

Again, for LLM policies that are reasoning models, we must correct the chain-of-thought thinking
that will likely reference the critique (which is not seen by the base policy). We append the following
postprocessing prompt afterwards:

In the above revised action, the chain-of-thought thinking likely used the previous action and its
evaluation to guide your thinking.

I want you to fix the chain-of-thought thinking so that it does not use the previous action and its
evaluation as reference, but rather infers those quantites. So instead of referring to an action
and its evaluation, say that if this action was chosen, then you believe the following evaluation
would happen.

Your revised chain-of-thought should be similar to the original in style and prose, but motivate
the revised action directly from just the last observed tool or customer response, as if the revised
action were your first attempt. Your output should be in to format: <corrected think>Revised
chain-of-thought thinking goes here...<\corrected think>
It is important that you enclose the corrected chain-of-thought thinking between
<corrected think>and <\corrected think>tags, as your response will get automatically parsed
by a computer. The part after the chain-of-thought thinking should be the evaluation exactly in
the format described earlier.
There should be exactly one <corrected think>...<\corrected think>block in your response. Do
not include any <think>or <\think>tags within this block. Do not generate anything after the
<\corrected think>tag.

Like before, we parse the corrected chain-of-thought thinking and replace the original thinking in
the output of the refinement policy.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.4 TRAINING DETAILS

Our fine-tuning baselines were implemented using the Volcano Engine Reinforcement Learning
(verl) library (Sheng et al., 2024). We train on 8 H20 GPU nodes, resulting in 64 GPUs total, for a
total of 30, 720 gradient steps. Training took < 48 hours for each benchmark. We used the following
hyperparameter configuration for each benchmark, after some minimal amount of tuning:

Hyperparameter Setting

Maximum prompt length 8192
Maximum response length 24576
Batch size 1024
Number of iterations 30
Target network update τ 0.005
Prioritized replay buffer α 0.1
Optimizer AdamW
Learning rate 5e-6

19

	Introduction
	Related Work
	Preliminaries
	Natural Language Actor-Critic
	Policy Evaluation
	Policy Improvement

	Practical Implementation
	Training Components
	Training Algorithm

	Experiments
	Task Descriptions
	Results

	Discussion
	Reproducibility Statement
	Implementation Details
	Language Critic Implementation
	Language Bellman Backup Implementation
	Refinement Policy Implementation
	Training Details

