Under review as a conference paper at ICLR 2026

NATURAL LANGUAGE ACTOR-CRITIC:
SCALABLE OFF-POLICY LEARNING IN LANGUAGE SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM) agents—LLMs that dynamically interact with an
environment over long horizons—have become an increasingly important area of
research, enabling automation in complex tasks involving tool-use, web brows-
ing, and dialogue with people. In the absence of expert demonstrations, training
LLM agents has relied on policy gradient methods that optimize LLM policies
with respect to an (often sparse) reward function. However, in long-horizon tasks
with sparse rewards, learning from trajectory-level rewards can be noisy, leading
to training that is unstable and has high sample complexity. Furthermore, policy
improvement hinges on discovering better actions through exploration, which can
be difficult when actions lie in natural language space. In this paper, we propose
Natural Language Actor-Critic (NLAC), a novel actor-critic algorithm that trains
LLM policies using a generative LLM critic that produces natural language rather
than scalar values. This approach leverages the inherent strengths of LLMs to pro-
vide a richer and more actionable training signal; particularly, in tasks with large,
open-ended action spaces, natural language explanations for why an action is sub-
optimal can be immensely useful for LLM policies to reason how to improve their
actions, without relying on random exploration. Furthermore, our approach can
be trained off-policy without policy gradients, offering a more data-efficient and
stable alternative to existing on-policy methods. We present results on a mixture
of reasoning, web browsing, and tool-use with dialogue tasks, demonstrating that
NLAC shows promise in outperforming existing training approaches and offers a
more scalable and stable training paradigm for LLM agents.

1 INTRODUCTION

While LLMs excel at natural language tasks like question-answering (Pyatkin et all [2022) and
problem-solving (Hendrycks et al., [2021; [Jimenez et al, |2024), which can be solved with a single
response, LLM agent tasks require multi-turn interactions. Specifically, LLM agent tasks require
the model to act within an environment, by taking actions sequentially and observing their results,
ultimately to accomplish some long-term goal. Such tasks include autonomous reasoning (OpenAl,
2023)), tool-use (Nakano et al., 2022), and dialogue with users (Hong et al., 2023; |Yu et al., [2023)).
These tasks require agents to dynamically plan and intelligently respond to environmental stimuli,
which base, pretrained LLMs struggle to do without additional training (Bachmann & Nagarajan,
2024])). To train effective LLM agents, we will need algorithms that can fine-tune LLMs to pursue
temporally extended goals in the context of multi-turn, long-horizon interactions.

Currently, LLM agents are trained with a variety of methods, often combining supervised fine-tuning
(SFT) with reinforcement learning (RL) (Rafailov et al.,|2023}; |Carta et al.,2023; Wang et al.| |2025)).
For complex agentic tasks where labeled expert data is expensive to collect, such as ones involving
interaction with real users, the prevailing training methods focus on policy optimization using al-
gorithms such as Proximal Policy Optimization (PPO) (Schulman et al., 2017) or Group Relative
Policy Optimization (GRPO) (Shao et al.| 2024). The LLM agents are trained to generate envi-
ronment actions accompanied by high-level reasoning to explain their decision-making (Yao et al.,
2022; Wei et al., |2023). These methods are designed to teach an LLM to reason about the prob-
lem, plan over appropriate actions, and learn from the environment observations. However, prior
attempts of using RL to train LLM agents present significant problems. First, these algorithms are
notoriously data-inefficient because they are on-policy, meaning they require sampling new trajec-

Under review as a conference paper at ICLR 2026

tories from the current policy at every training step. Second, and perhaps more importantly, they
rely on an often sparse, scalar reward as their only training signal, which can be a weak and unstable
signal for learning robust, generalizable strategies over long-horizon tasks.

In this work, we propose a new actor-critic algorithm (Haarnoja et al., [2018)) to train LLM agents,
where a critic (which estimates the value of actions) is jointly learned with a policy, both using off-
policy data. In contrast to traditional actor-critic to train LLM agents (Chebotar et al., 2023} [Zhou
et al.| 2024b)), we believe training a critic that outputs textual evaluations more effectively leverages
the text-based reasoning capabilities of pretrained LLMs. Specifically, policy optimization using
scalar values requires the policy to discover actions of high value through random exploration. If
values were instead in natural language space, an LLM policy could understand how to improve its
decision-making, reducing the reliance on random chance to uncover better actions.

Prior methods exist that train critics to generate language evaluations (Feng et al.,|2025;|[Hong et al.,
2025). Notably, |[Feng et al.[(2025) propose Natural Language Reinforcement Learning (NLRL)
as a framework for learning policies and critics in language space. Our work aims to address key
limitations in NLRL to make policy iteration in language space scalable to all LLM agent tasks.
Specifically, NLRL relies on enumerating over both environment transitions, as well as potential
actions, and aggregating them using in-context learning. We believe such training is impractical for
tasks with complex dynamics or action spaces (such as dialogue), as enumerating over all possibili-
ties and fitting them in-context is infeasible with limited time and memory. Our algorithm falls under
the paradigm introduced by NLRL, but proposes novel objectives to train the critic and improve the
policy that scales to learning general LLM agents.

In this paper, we propose Natural Language Actor-Critic (NLAC), a novel algorithm for training
LLM agents, where a natural language critic is jointly trained with a policy, and its evaluations
directly inform how to perform policy improvement. Theoretically, we are able to connect the
learned representations of our critic to successor features (Barreto et al.,|2017), allowing us to prove
convergence to the optimal policy. Empirically, we evaluate our approach on a range of LLM agent
tasks, ranging from reasoning, tool-use, and dialogue. Our empirical results demonstrate substantial
improvement over prior approaches to learn LLM agents, showing our algorithm is an appealing
alternative to prevailing on-policy training methods.

2 RELATED WORK

LLM agents. LLM agents can be used to tackle a variety of complex real-world tasks, including
dialogue (Hong et al., 2023; [Yu et al.} 2023), tool-use (Nakano et al.l 2022; Schick et al.| [2023)),
and embodied decision-making (Wang et al.| 2023)). The primary challenge in the design of effec-
tive LLM agents is enabling LLMs, which traditionally excel at generating single-step responses,
to interact sequentially with an environment to accomplish a long-term objective. ReAct prompting
is a popular method to leverage chain-of-thought reasoning of LLMs for long-horizon planning, by
instructing LLMs to explicitly articulate their high-level plans (Yao et al., [2022)). More recent ap-
proaches have explored the capability of LLM agents to self-correct their initial attempts at planning
using more sophisticated prompting techniques (Shinn et al.; 2023} Madaan et al., 2023}, Zhou et al.,
2024a)). For example, Reflexion prompting adds a step of self-reflection on top of ReAct to allow
LLM agents to refine their initial reasoning after some environment feedback (Shinn et al., [2023)).
However, self-correction methods rely the ability to “backtrack,” or undo previous actions, whereas
we measure the capability of LLM agents with one chance to solve a task.

Process reward models. One of the primary challenges in learning LLM agents is the reliance
on a single, sparse reward for long-horizon interactions. This makes credit assignment, or distin-
guishing between good and bad actions in a long rollout, difficult. Process reward models (PRMs)
aim to address this, particularly by providing action-level feedback using either human annotations
(Lightman et al.l 2023)), or an estimated value function in the absence of human intervention (Wang
et al., [2024; |Setlur et al.| |2025). Our learned natural language critic can be considered an instance
of an PRM, but unlike traditional PRMs that provide scalar feedback over actions, our critic outputs
feedback in language space. We believe such feedback is more useful for LLM policies that can
understand and articulate their decisions in natural language.

Reinforcement learning for LLLM agents. More recently, multiple works have attempted to explic-
itly fine-tune LLMs as agents using RL (Carta et al., 2024} Zhou et al.,[2024b)). The primary way this
was done was naively adapting traditional RL fine-tuning used to align LLM responses to multi-turn

Under review as a conference paper at ICLR 2026

tasks with environment interaction (Stiennon et al., 20205 |Ouyang et al.| [2022; Ramamurthy et al.,
2023). These methods used PPO (Schulman et al.| [2017) to finetune LLMs using the environment
reward. However, traditional policy optimization for long-horizon tasks exacerbates the instabilities
of RL training, particularly due to reliance on exploration and proper credit assignment. In this
work, we hypothesize that training in natural language over scalar space improves stability and sam-
ple efficiency, particularly in better leveraging the capabilities of LLMs to understand and articulate
thoughts in natural language. The closest work to ours that does this is NLRL (Feng et al.| [2025),
which also proposes learning value functions that output text. However, in NLRL, these values are
obtained via repeated sampling of on-policy trajectories and aggregating them in-context. In addi-
tion, policy improvement is achieved by enumerating over possible actions and their evaluations.
We believe such enumeration and aggregation in-context is intractable for tasks with complex dy-
namics and large action spaces. Our method circumvents these drawbacks by training the critic to
probabilistically generate textual rollouts via a novel language Bellman backup, and treating policy
improvement as iterative refinement.

3 PRELIMINARIES

Markov decision processes. We adopt the formalism of a Markov decision process (MDP) given by
M = (S,A,P,r p,7v), where S is the state space, A is the action space, P is the transition function,
r is the reward function, p is the initial state distribution, and ~ is the discount factor. When action
a € Ais executed at state s € S, the next state is sampled s’ ~ P(:|s,a), and the agent receives
reward r with mean r(s,a) € R.

LLM agents in MDPs. Tasks considered by LLM agents can be defined under the MDP formalism
as follows. Here, the state and action space are finite-length sequences of tokens in vocabulary V),
or S, A C V*, where V* denotes all finite sequences comprised of tokens in vocabulary V. We also
define the space of environment observations O C V*; those could consist of results of API calls
in tool-use applications, or responses by other interlocutors in dialogue. The agent corresponds to a
policy 7 that starts by observing a task description along with any initial observations s; = (g, 0p).
At timestep ¢, the agent state s; of the MDP consists of the history of interaction thus far s; =
(¢,a1,01,...,at-1,0¢) consisting of agent actions and environment observations.

ReAct prompting. LLM agents are commonly implemented using ReAct prompting to better lever-
age the base reasoning capabilities of LLMs (Yao et al.| [2022). ReAct prompting instructs LLM
agents to output actions a; ~ 7(-|s;) that are actually composite, consisting of a thought a"* where
the agent performs a reasoning step, followed by the actual environment action a;"’. For exam-
ple, in dialogue, the thought could be the high-level strategy or plan the agent aims to execute,
whereas the environment action is the actual utterance by the agent. Then, the transition function
appends to s; the environment action a;"’ as well as any new observations by the environment 0441,
to form the next state s;;. Note that the thought does not affect the transition dynamics, namely

P(-[s¢,a¢) = P(:[se, af™).

Reinforcement learning. The objective of RL is to find a policy 7 that maximizes the expected dis-
counted return J(7) = E . pr [EtT:_Ol yir(ss, at)} in an MDP, where 7 = (sq, ag, 81,1, - - -, ST)
and p™ (1) = p(so) HZ:Ol m(at|s:)P(s¢+1]8¢, ar). Standard policy gradient approaches directly
train policy 7 using the gradient of V. J(7), while more sophisticated algorithms such as PPO and

GRPO additionally clip the updates to improve stability (Schulman et al.,|2017;|Shao et al., [2024).
Actor-critic algorithms additionally learn a state-action value function, or Q-function, defined as

’

Q™ (5¢,0t) = E(s.0), 11,00 mpr [ZZ;; VT (s, at/)] Such Q-functions are learned by regressing
to their Bellman backup:

BQW(SM at) = T’(St, at) + E5t+1,at+1~PW [Qﬂ(st-‘rla at+1)])
where P™(s',a’|s,a) = P(s'|s,a)m(a’|s"). Then, an improved policy 7’ can be derived using the
Q-function via greedy or maximum-entropy optimization 7/ (a¢|s;) o exp(Q™ (s¢, at)).
4 NATURAL LANGUAGE ACTOR-CRITIC

In this section, we present Natural Language Actor-Critic (NLAC), our new method for training
LLM agents that adopts the actor-critic paradigm. Unlike traditional methods that rely on simple
policy gradients, NLAC leverages a natural language critic that outputs textual critiques of actions

Under review as a conference paper at ICLR 2026

Policy Improvement |
state s state s
O [We are playing 20 questions! You are playing as the | ‘% We are playing 20 questions! You are playing as the |
role of a guesser. Give a short question to ask next... role of a guesser. Give a short question to ask next.

dialogue I dialogue |
€2 [Isita plant? Is it a plant?
8 [Yes I 8 [Yes I
action a
[Isitatree? I |
=

e
Successor Model Is ita tree?

_ 0
=y | I Language I
Evaluator
The user responds with 'Yes,' allowing the agent I |
to focus on properties such as geographic
Language location or leaf type. The agent will be able to
separate the object from common trees and ot
Successor Model arrive at the correct answer. I language state-action value I

o
€2 Optimality: No. Rather than linear search over plant
| * | types, the guesser should aim to divide the plant |

kingdom more broadly.

The agent will determine if the plant is a herb or |
vegetable, or a flower. If the agent figures out

the type quickly, then the agent can focus on
finding defining characteristics and identify the |

correct plant. Refinement’

Policy

——> Combine

refined action a’
& =
The user responds with 'No,' meaning the agent l €2 | Does it produce flowers? J
must continue search over plant types such as
vegetables or flowers. After finding the type, the
agent can focus on defining characteristics in
order to identify the correct plant.

Figure 1: Overview of NLAC. During policy evaluation, the critic is trained using a language Bellman backup
that operates in textual space. During policy improvement, the policy is distilled from a refinement policy.

to provide a rich, interpretable, and more stable training signal. Our framework is inspired by
classical actor-critic methods where each step consists of (1) policy evaluation, where a critic is
trained to assess actions by a policy, and (2) policy improvement, where the policy is updated using
evaluations by the critic, but is adapted to leverage the implicit reasoning capabilities of LLMs over
text space. In our approach, both the LLM policy and the natural language critic are instantiated by
the same underlying LLM, with their distinct functionalities realized through different prompts. We
go over both components in detail below.

4.1 PoLICcY EVALUATION

In traditional actor-critic approaches, a critic is trained to estimate scalar state-action values, or
Q-values, typically denoted as Q™ (s,a) € R, which represents the expected return by policy 7
from state s after taking action a. While learning such Q-values can be similarly done with LLM
critics, LLMs are better suited to process and generate natural language over scalars. Therefore, we
believe evaluation that is in natural language space leverages prior text-based reasoning capabilities
of LLMs, and thus will largely improve sample efficiency. Hence, our natural language critic is an
LLM that generates textual critiques, denoted as Q7 (s,a) € V*, that not only comments on how
good an action is, but also explains why.

Predicting the future using language. The key addition that is not captured by scalar Q-values is
an explanation of why a particular action is optimal or not. As we will discuss later, this information
is valuable for LLM policies to understand how to refine their actions during policy improvement,
avoiding the reliance on random exploration to discover better actions. We believe that the key for a
critic to derive these explanations is the prediction and analysis of future outcomes. In order to do
s0, we must train our natural language critic to additionally act as a successor function, defined as
follows:

Definition 4.1. A language successor model M™ for policy 7 takes a state s; and action a; as input,
and probabilistically generates a textual description of rollout (s, a)¢y1.1, or what will happen to

Under review as a conference paper at ICLR 2026

policy w in the future, and reward r(st). We denote by M7 (- | s, a;) the distribution from which
such descriptions are sampled.

Our language successor model shares similarities with successor features (Barreto et al.l [2017) in
that both can predict a distribution over future rollouts, and—as we show later—be trained using
temporal difference learning. The main difference lies in that traditional successor features are used
to compute Q-values via a linear product, whereas ours is used to generate state-action values in
natural language via output by an LLM.

To train our language successor model, we draw inspiration from distributional value learn-
ing (Bellemare et al.,|2017), which introduces a distributional Bellman backup to train a distribution
over returns rather than just their scalar expectation. Notably, the distributional Bellman backup
used one-step samples of the future and thus could be computed off-policy. Similarly, we propose
a language Bellman backup B, that bears some semblance to the distributional Bellman backup,
but makes key adaptations to account for samples that are textual descriptions of rollouts rather than
scalar returns.

Definition 4.2. A language Bellman backup B, takes a language successor model M™, along with
state s; and action ay as input, and computes distribution By, M™ (-|s¢, at) such that the probability
of description d, € V* is given by:
B M7 (dy | s¢,a¢) = Pr{d; = B(r(s¢,a0), St41, Geg1,deg1) | Se1s @eq1, deya] , (1)
St+1, A1 ~ PT([se,a1), dppr ~ M7(- | sp41, a841)
where B is a function that combines immediate next state and action syy1,a;11 with description
di+1 of rollout (s, a)yyo.7 into one description of the concatenated rollout (s, a)y1.7-

Beyond simple concatenation, the B function “discounts” the future rollout description from M 7™ in
the concatenated rollout so the immediate next state is given more emphasis in the description.

Then, we can train our language successor model M ™ by minimizing the divergence between distri-
butions M™(+|s;, a;) and target distributions created by the language Bellman backup:

M™ = argn}\}nE(SuatstJrﬂND [Df (M(‘ St’at) || 1573 M(‘ staat))] : 2

Note that our training objective is an instance of temporal-difference learning and thus does not
require on-policy Monte Carlo trajectories.

Generating critiques. Finally, the natural language critic should analyze all possible futures in
order to evaluate how good an action is in expectation, then explain its reasoning by referencing
possible future outcomes. To perform this evaluation, we define the following:

Definition 4.3. A language evaluator E takes as input state s; and action a;, along with a sequence
of descriptions of possible rollouts (s, a)¢11.7 and their rewards r(st), and outputs a textual cri-
tique that comments on whether a; was optimal, with justification using possible future outcomes.

Then, we can approximate natural language value Q7 (s¢, a;) as:

QT (s, a0) ~ E(sy,ap,d, .. ,d™), d ~ M7(- | sp,a0), Vie k], ()

Note that F essentially aggregates and summarizes multiple descriptions of different rollouts that
are all fit in-context, which LLMs have demonstrated a priori efficacy in without additional train-
ing (Feng et al., [2025). This means that the only training required to perform evaluation of policy 7
in language space is learning the language successor model M ™ (see Figure|[I] for illustration).

4.2 PoLICY IMPROVEMENT

Thus far, we showed how to train the natural language critic to evaluate a fixed policy m. We
now show how an improved policy can be learned using textual critiques Q7 (s, a) obtained by
a critic using Equation Naturally, such policy is a greedy policy where a ~ 7(-|s) satisfies
a = arg max, Q7 (s,a’). Note that we assume the following:

Assumption 4.1. For any policy =, the set {Q7(s,a’)}area computed using Equation 3| for any
state s forms a totally-ordered set with binary relation >.

We believe that this is not a strong assumption, as each critique Q7 (s, a) can be mapped to a scalar
that quantifies its sentiment, which can be used to compare with other critiques. Then, Q7 (s, a) >
Q7 (s, a) if the underlying sentiment of the text in Q7 (s, a’) is more positive.

Under review as a conference paper at ICLR 2026

However, computing the greedy policy is intractable for LLM agent tasks, where the action spaces
A C V* are combinatorial in the token vocabulary, making it impossible to enumerate all possible
actions to find the optimal one. While prior works have proposed sampling a subset of actions and
reweighting (Li et al.,[2024), we find empirically that for tractable sample sizes, this approach does
not sufficiently explore the space of possible actions.

Our approach sidesteps this issue by leveraging the descriptive power of the natural language values
using a self-refinement paradigm. Our insight is that the natural language value Q7 (s, a) not only
comments on how good an action is, but also contains intuition on how a suboptimal action can be
improved. Hence, a policy that is an LLM with strong base reasoning capabilities can process this
evaluation and understand how to refine its initial action.

To this end, we define a refinement policy 7" that takes an action a; ~ m(-|s;) by the base policy,
and generates a refined action aj ~ 7" (-|s¢, ar, QT (S¢,a¢)) that is better according to the natural
language critic, i.e., Q7 (s, a}) > QF (s¢, ar). As with the policy and critic, the refinement policy
can use the same underlying LLM but with a different prompt. Note that refinement can also be
performed iteratively by maintaining and appending to a history of all previous action attempts and

their evaluations
ai ~ 7" (- | 5,05, QL(s,ap), - a", QT (s, a7"))

where we can control for a parameter m that denotes number of rounds of refinement. As m — oo,
we expect the refined action a} to be the greedily optimal one a] = arg max, Q7 (s, a).

Finally, we propose a policy improvement objective from 7 to 7’ that projects the refinement policy
back to the base policy, similar to the policy updates in SAC (Haarnoja et al., 2018)). However,
rather than parameterizing a target policy using the learned values, which requires enumeration over
actions and is intractable in our setting, we let the target policy be the refinement policy:

= arng?XEstwp [Dy (w(- | s¢) [| 7" (- | se,a,. .., QL(s,ai™))] - 4)

In practice, we found that a single round of refinement m = 1 was sufficient. Again, this objective
does not require any on-policy rollouts, and can therefore be trained off-policy. This refinement is
visualized in Figure

5 THEORETICAL ANALYSIS

The goal of this section is to show that policy iteration using our proposed NLAC method converges
to the optimal policy. Due to space, we only state our main results and defer full proofs to Ap-
pendix |Al For traditional actor-critic algorithms, this involves showing (1) convergence of learned
Q-values via the Bellman backup, and (2) monotonic improvement of the trained policy. However,
such analysis does not apply because the Q-values we learn are textual rather than scalar.

Instead of analyzing the textual values, we consider the underlying representations that the LLM
decodes in order to generate such values. First, we define ¢(s) € R? as features extracted from any
state s. We assume the following:

Assumption 5.1. The expected reward r(s,a) for any state s and action a can be linearly repre-
sented by the features as r(s,a) = ¢(s) - w for some fixed w € RY.

Next, we define representations ®™(s,a) € R? such that we can write the output of our language
successor model as M7 (-|s,a) = far(®™(s,a)), and similarly Q7 (s, a) = fo(P"(s,a)), for some
functions fys, fo denoting decoding by the LLM. We make the following assumption about the
effect of our proposed language Bellman backup on such representations:

Assumption 5.2. For any state s and action a , the language Bellman backup satisfies

B M™(-|s,a) = fu (¢(s) + VEg arpr @7 (s,a")) .

While this may initially seem like a strong assumption, note that our language Bellman backup is
already instructed to combine the immediate observation with the future description in language
space; the assumption only states that the combination also corresponds to a discounted sum in the
representation space. Using the above two assumptions, our first main result is the following:

Theorem 5.1. Consider policy evaluation via Equation E]and let Q7 be the natural language critic
at convergence. For any state s and action a, there exists monotonic mapping g such that Q™ (s, a) =
9(Q7 (s, a)), where Q™ denotes the true scalar Q-function.

Under review as a conference paper at ICLR 2026

Our main result makes a precise connection between our learned critic and the true Q-function. The
crux of our proof involves showing that our training objective results in a fixed point where &7 (s, a)
are successor features of the underlying MDP (Barreto et al., [2017).

During policy improvement, we update the policy towards a refinement policy 7”. By definition, the
refinement policy is an oracle that for any state s and action a, generates a” such that Qr,(s,a”) >
Q1 (s,a). Combining this with the result of Theorem we arrive at our second main result:

Theorem 5.2. Repeated application of policy evaluation via Equation [2| and policy improvement
via Equation Elfrom a policy my converges to policy m* such that Q™ (s,a) > Q™ (s, a) for any state
s and action a, and other policy .

Hence, we are able to show that under the aforementioned assumptions, our approach NLAC can
provably find the optimal policy for an underlying MDP. Next, we show how to approximately
implement NLAC in a scalable and practical algorithm.

6 PRACTICAL IMPLEMENTATION

In this section, we describe how both the critic and policy are trained in practice. We defer specific
details such as exact prompts used to Appendix[B] Though our method involves many different com-
ponents such as a language successor model and evaluator, we can leverage the general capabilities
of LLMs to reason over and generate language to reuse one model to implement all the described
components. Hence, our algorithm only involves training one LLM M with parameter 6. For a
prompt p € V*, we denote by M (p) the distribution over responses by the LLM.

6.1 TRAINING COMPONENTS

Policy. Many prior works have parameterized policies as LLMs. One of the greatest advantages of
doing so is the ability to leverage the strong reasoning capabilities of LLMs from chain-of-thought
prompting [Wei et al.| (2023); |Yao et al.| (2022). By choosing a proper prompt preact, an LLM policy
can be instructed to describe their underlying thoughts for choosing a particular action in addition
to generating the action itself a; ~ Mg (Preact(St))-

Language successor model. LLMs have demonstrated efficacy at predicting realistic future rollouts
in a variety of environments (Lin et al.| 2024)). These futures are generated by simply processing the
state-action in a prediction prompt ppreq that also instructs the LLM to summarize rollouts into con-
cise textual descriptions, then sampling from the LLM output My (- | s¢,at) = Mg (Pprea(St, at)).

Language Bellman backup. The backup By, also outputs a distribution over descriptions of roll-
outs, but uses one-step samples of next state along with a “bootstrapped” description of rollout
generated by My. We give the LLM instruction pyyeq to predict a “target” future by combining the
immediate next state with the bootstrapped future description into one description, discounting the
future description as necessary by placing more emphasis on the immediate next state.

BrMo(- | s¢,a:) = Mo(Piprea(Ts, St41,di41)) 5 dig1 ~ Mo(Pprea(Se+1)) -
Note that we do not explicitly sample a;4; from the policy, but implicitly via the language successor
model that is conditioned on the policy.
Language evaluator. The evaluations by E, which ultimately become the outputs of the natural
language critic that estimate Q% (8¢, at) can similarly be derived by fitting multiple generated futures

dil), e dik) in-context within an evaluation prompt pey, that asks the LLM to aggregate the futures
and summarize into an overall description of how good the action is, as

Q%(Shat) = E9(5t7at7d£1)a ceey di(Ek)) ~ Me(peval(dgl)a sty dik))) .

Refinement policy. Finally, the refinement policy 7" can also be obtained by an LLM instructed to
refine its latest action given an evaluation similar to prior self-refinement approaches (Madaan et al.|
2023). The refined action is obtained via prompt prefine as @y ~ Mo (Drefine (St, @i, - - ., QY (51, a™))).

6.2 TRAINING ALGORITHM

Formally, the parameters 6 are trained using two objectives for policy evaluation and improvement.
For policy evaluation, for a transition (s, at, St+1), the natural language critic is trained using cross
entropy component of the objective:

E1(8t7at7rt58t+l) = DKL (BLMG_(| St7at> H MG(| Staat))) (5)

Under review as a conference paper at ICLR 2026

where 0 are reference parameters that are an exponentially moving average of the trained parameters,
in order to prevent generative collapse (Shumailov et al.| 2024). We choose the reverse direction of
KL-divergence to capture the full diversity over possible futures. Then, for policy improvement, we
train the policy on the log-likelihood loss:

£2(St7k) = —logﬂ'@(a; | St)7 af,Nﬂ'e(' | 5t)7 QINWQ(' ‘ St,at,Q%(St»at))- (6)

This objective can be interpreted as distillation, but using generations by the refinement policy as
the teacher policy. Note that the loss depends on k via QY (s, a;) given by Equation [3| Note that
by default, our refinement policy relies on the base reasoning capabilities of the pretrained LLM. In
Appendix [B.5] we show results when the refinement policy is explicitly trained.

We show pseudocode for NLAC in
A]gonthm m In practice’ we found Algorithm 1 Natural Language Actor-Critic (NLAC)
it helpful to implement D as a pri-
oritized replay buffer weighted by
L1(st,at, s¢+1) with sampling pa-

1: Initialize 6, § from pretrained model.
2: for each iteration do

rameter o (Schaul et al., 2016). This 431 forszi'lcglzrzlrgng e(nt| S;f)lj g:rl ~ P(-| s¢,a1)

is because in many tasks, though a5, Aqq o replay buffer D « D U {(s¢, ar, 7, 5011)}
base LLM policy may achieve lowre- o o4 for

ward in a large proportion of rollouts, - g0 training sample do

many actions in these unsuccessful ¢ 0 < 0 — \i VoLl (s, ar, e, Ses1)

rollouts are still optimal. Therefore, 00— A\yVols (§t’ k)’ ’

to improve learning efficiency, we .. O 10+ (1-1)0 ’

prioritize training on samples where ;. o4 for
the agent is like.ly to Fa:ke a subop- 12; end for
timal action, using critic loss as a
proxy for the likelihood.

Like other methods that utilize pretrained LLMs, our method is susceptible to catastrophic forget-
ting. We were able to avoid this in our experiments by training in low-data regimes. However, we
discuss effective methods for mitigating catastrophic forgetting in Appendix [B.6

7 EXPERIMENTS

To demonstrate the effectiveness of NLAC, we evaluate our method on a variety of LLM agent
tasks: mathematical reasoning (Hendrycks et al.,2021), strategic dialogue (Pu,[2023)), and customer
service using mixed dialogue and tool-use (Yao et al.l2024). Though mathematical reasoning does
not involve interaction with an environment, it is currently the most popular benchmark to evaluate
different RL fine-tuning algorithms.

7.1 TASK DESCRIPTIONS

Mathematical reasoning. We evaluate on mathematical problem-solving using the MATH dataset
(Hendrycks et al.l 2021)), which consists of different competition math problems of varying level of
difficulty. A score of 1 is achieved if the agent solves the problem and outputs an answer that is
correct and properly formatted. We evaluate on a subset of 500 problems from the test dataset of the
highest difficulty level, which we call MATH500-Hard. The remaining 12, 000 problems are used
as the training set for RL fine-tuning.

Dialogue game. We use the popular game of 20 Questions (20Q) as a representative strategic
dialogue task, where the LLM agent acts as the guesser to uncover the hidden word by an oracle.
20Q was chosen because it was non-adversarial (so we can evaluate against a fixed LLM as the
oracle), and requires the LLM agent to generate a cohesive sequence of actions over multiple steps.
Though many implementations exist (Srivastava et al.,[2023; |/Abdulhai et al.| 2023)), we follow the
one by |Pul (2023) where the set of hidden words can be any in a set of 1,823 objects from the
THINGS dataset (Hebart et al., 2019). A reward of 1 is achieved if the guesser correctly identifies
the hidden object within 20 turns, or questions, where correctness if determined by using the oracle
LLM as a judge. We use GPT4.1 (OpenAl et al.,[2024)) as the oracle. We construct a training set of
1,000 objects and a test set of 500 different objects through random sampling.

Customer service. We consider 7-bench as a representative LLM agent task that requires a mixture
of dialogue and tool-use to solve (Yao et al.,|2024). The LLM agent must act as a customer service

Under review as a conference paper at ICLR 2026

MATHS500-Hard 20Q T-Bench

Paradigm Method Accuracy Winrate Retail Airline
Prompting GPT4.1 ReAct (Yao et al., 2022) 95.1 30.2 0.44 0.32
RFT 52.5 12.6 0.21 0.13
Fine-tunin PPO (Schulman et al.,[2017) 52.3 17.2 0.28 0.14
Qwen2 5-7gB-Instruct GRPO (Shao et al.}[2024) 49.8 18.4 0.24 0.11
) SAC (ablation) 48.2 9.8 0.18 0.11
NLRL (Feng et al.,[2025) 62.4 25.8 0.25 0.16
NLAC (ours) 60.2 26.0 0.42 0.22
RFT 72.5 22.0 0.35 0.29
Fine-tunin PPO (Schulman et al.,[2017) 71.4 24.0 0.47 0.41
QwQ-32Bg GRPO (Shao et al.,[2024) 70.8 25.6 0.48 0.39
SAC (ablation) 64.7 13.2 0.31 0.21
NLRL (Feng et al.,[2025)) 73.5 30.8 0.44 0.31
NLAC (ours) 72.7 32.1 0.59 0.45

Table 1: Performance on evaluation set of each benchmark. To make comparisons fair, each of the fine-tuning
methods train for 30, 720 gradient steps, and we average performance across three independent runs. Across
the board, NLAC outperforms other RL methods for both small- and medium-sized LLMs, and even beats
frontier models on long-horizon tasks. Note that because mathematical reasoning is a single-step task, we have
to adapt the language generative model to only predict reward.

representative in various scenarios such as modifying items in an user’s order, and follow a rigid set
of policy guidelines. At every step, the LLM agent can either communicate with the user, or make
an API call that interacts with a backend database. At the end, the agent receives a score of 1 if the
database entries match ground-truth values, and the agent did not violate any policy guidelines via
their actions. Users are simulated using a GPT4.1 (OpenAl et al., 2024) model prompted with both
an initial request (such as modifying or cancelling an order) as well an identity that can be verified
using the database. There are two categories of scenarios: (1) in retail, the LLM agent must modify
pending orders of items, return or exchange delivered orders, or update user information, and (2) in
airline, the LLM agent must book, modify, or cancel flight reservations. To test generalization, we
compile a training dataset of 2,500 user scenarios in the retail category, and evaluate on a test set
of 500 different retail scenarios, as well as 500 airline scenarios. Note that none of the methods are
trained on any airline scenarios.

7.2 RESULTS

We compare NLAC with £ = 1 and m = 1 against both prompting and fine-tuning baselines. We
found those settings of hyperparameters was sufficient to achieve good performance, though more
stochastic environments may warrant higher k. For baselines that involve fine-tuning, we consider
two LLMs: Qwen2.5-7B-Instruct (Yang et al., 2024), and QwQ-32B (Team, 2025)), which is also
trained on reasoning traces. We choose these two LLMs to measure the effect of increasing size
and pre-training on reasoning traces on the performance of the RL methods. Our baselines can be
categorized into the following (training details can be found in Appendix [B.4):

Prompting. We perform ReAct prompting (Yao et all |2022) of a state-of-the-art frontier model
GPT4.1 (OpenAl et al., |2024). Because such models do not expose weights for RL fine-tuning, we
rely on the zero-shot capabilities of the LLM without any additional training on the tasks.

Rejection fine-tuning. We perform rejection fine-tuning (RFT) where at every iteration, the base
LLM policy collects a set of on-policy rollouts. We append only the successful rollouts to a buffer,
then train the LLM using SFT on samples from the buffer.

RL fine-tuning. The most standard way to perform RL fine-tuning is to train the LLM to optimize
score using a policy gradient algorithm on on-policy rollouts. We consider both PPO (Schulman
et al.,2017) and GRPO (Shao et al.,[2024)) as the algorithm, the difference being that PPO addition-
ally learns a token-level value function on Monte-Carlo rollouts as a baseline to stabilize reward,
whereas GRPO computes the average reward across 8 different rollouts. We found that increasing
the number of rollouts for GRPO only harmed performance.

Under review as a conference paper at ICLR 2026

Ablations. We consider an ablation of our approach that is soft actor-critic (SAC) training. Instead
of performing policy iteration in language space, SAC simply learns scalar values via a token-level
Q-function using traditional Bellman backups, and then performs policy extraction by fitting the
policy to the maximum-entropy policy using the learned Q-function (Haarnoja et al., 2018)). Fi-
nally, we compare against NLRL (Feng et al., [2025)); during training, instead of using the language
Bellman backup to train a successor function and refinement to train the policy, NLRL aggregates
environment transitions in-context with predicted future value, then enumerates multiple actions and
their values, respectively. To keep NLRL tractable, as the state and action space are prohibitively
large, we limit to 8 transitions and actions.

The results of our evaluation are presented in Table [I]
We see that for both LLM models, NLAC outperforms

2 0.50 : : g;éc other fine-tuning approaches, and even prompting of a
b 0 N significantly stronger LLM, particularly on long-horizon
£ 045 S S tasks. The only task where NLAC matches other methods
Z 0.40 : is mathematical reasoning, which is a single-step task,
S o in which NLAC reduces to performing self-refinement
f‘é 0.35 1 using a generative reward model (Madaan et all 2023));

0.30 this is because in single-step tasks, our natural language

o 5 10 Iter1a5tion 2025 30 critic is only trained to predict reward. Meanwhile, on
tasks requiring multi-step interaction, which our method
is tailored for, NLAC greatly outperforms all baselines,
achieving a 30% improvement in 20Q and 7-retail over
standard RL fine-tuning. Furthermore, as shown in Fig-
ure[2] NLAC also requires fewer gradient steps to achieve
maximum performance, illustrating the effectiveness of leveraging text-based reasoning. Surpris-
ingly, ablation SAC performed worst; this can be attributed to the fact that token-level Q-values are
difficult to estimate precisely, so directly fitting the policy to these Q-values can hurt performance.
NLRL performed comparably to NLAC on math and 20Q, though it is important to note that NLRL
effectively sees 8 x more samples during training. However, NLRL performed noticeably worse on
T-bench. Qualitatively, we found that values learned by NLRL were almost always positive, which
made them not helpful for policy improvement; this could be due to a combination of poor model-
ing of environment dynamics due to limited in-context samples, and the implicit bias of instruction
fine-tuned models. Overall, this serves as evidence that NLAC is more suitable to complex tasks.

Figure 2: Learning curves for NLAC and
PPO across three independent runs. NLAC
converges in fewer samples.

We demonstrate qualitative examples of how NLAC improves the base LLM policy in Figure 3| and
Figure] for 20Q and 7-bench, respectively (at Appendix [C]due to space). In 20Q, base LLM agents
often resort to linear search over some specific characteristic of an object, when it is likely more
optimal to further explore over other discriminators. In the example, the critique by our natural
language critic explicitly corrects this linear strategy when it occurs. Meanwhile, in 7-bench, one
of the most common failure modes is partial resolution of complex requests, especially when the
agent must also follow complicated dynamics and rules. In the example, the agent is told that the
user wants to make “a couple of exchanges,” but according to policy guidelines, modifications to
the database can only be done via one tool-call per rollout. Therefore, the agent should not make
a tool-call to exchange the first item, but instead collect all items to be exchanged into a single call
in the future. This kind of error would be difficult to correct with just a scalar reward as feedback.
However, the critique by our natural language critic identifies exactly which policy guideline would
be violated, allowing for the LLM agent to easily understand and correct the error.

8 DISCUSSION

In this paper, we propose NLAC, a new actor-critic algorithm for training LLM agents under the
paradigm of learning values in natural language space. In our work, the natural language values
not only comment on the optimality of an action, but also articulate why by predicting and analyz-
ing future outcomes. The key innovation we propose to enable this is a novel language Bellman
backup that trains language successor function to generate possible future rollouts using only one-
step samples obtained off-policy. Then, an LLM policy can be improved by refining its own subop-
timal actions. This procedure improves one of the main challenges of RL fine-tuning for complex
tasks—reliance on random exploration to uncover better actions—and significantly improves sample
efficiency. Empirically, we show that NLAC greatly outperforms other prompting and fine-tuning

10

Under review as a conference paper at ICLR 2026

baselines on long-horizon tasks involving dialogue and tool-use. As future work, we aim to see if
our approach can be combined with traditional RL policy optimization by extracting a generative
scalar value from our critiques to enable more sophisticated policy improvement strategies.

9 REPRODUCIBILITY STATEMENT

In our work, we evaluate on existing public benchmarks for mathematical reasoning, whose datasets
can be found online. We also describe in detail the implementation of our method in both Section [f]
and Appendix B} including exact prompts used and hyperparameter configurations during training,
so the reader can reimplement our method from scratch. Furthermore, for the camera-ready submis-
sion, we plan to open-source the code we used to conduct our empirical evaluations.

REFERENCES

Marwa Abdulhai, Isadora White, Charlie Snell, Charles Sun, Joey Hong, Yuexiang Zhai, Kelvin Xu,
and Sergey Levine. Lmrl gym: Benchmarks for multi-turn reinforcement learning with language
models, 2023.

Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction, 2024.

André Barreto, Will Dabney, Rémi Munos, Jonathan J. Hunt, Tom Schaul, Hado van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In Advances in Neural
Information Processing Systems, 2017.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 449-458. JMLR. org, 2017.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning, 2023.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning, 2024. URL https://arxiv.org/abs/2302.02662.

Yevgen Chebotar, Quan Vuong, Alex Irpan, Karol Hausman, Fei Xia, Yao Lu, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, Keerthana Gopalakrishnan, Julian Ibarz, Ofir Nachum,
Sumedh Sontakke, Grecia Salazar, Huong T Tran, Jodilyn Peralta, Clayton Tan, Deeksha Manju-
nath, Jaspiar Singht, Brianna Zitkovich, Tomas Jackson, Kanishka Rao, Chelsea Finn, and Sergey
Levine. Q-transformer: Scalable offline reinforcement learning via autoregressive g-functions. In
7th Annual Conference on Robot Learning, 2023.

Xidong Feng, Bo Liu, Yan Song, Haotian Fu, Ziyu Wan, Girish A. Koushik, Zhiyuan Hu, Mengyue
Yang, Ying Wen, and Jun Wang. Natural language reinforcement learning, 2025. URL https:
//arxiv.org/abs/2411.14251.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Martin N. Hebart, Adam H. Dickter, Alexis Kidder, Wing Y. Kwok, Anna Corriveau, Charlotte
Van Wicklin, and Chris I. Baker. Things: A database of 1,854 object concepts and more than
26,000 naturalistic object images. PLOS ONE, 2019. URL https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0223792.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Joey Hong, Sergey Levine, and Anca Dragan. Zero-shot goal-directed dialogue via rl on imagined
conversations, 2023.

11

https://arxiv.org/abs/2302.02662
https://arxiv.org/abs/2411.14251
https://arxiv.org/abs/2411.14251
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223792
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223792

Under review as a conference paper at ICLR 2026

Joey Hong, Anca Dragan, and Sergey Levine. Planning without search: Refining frontier llms with
offline goal-conditioned rl, 2025. URL https://arxiv.org/abs/2505.18098.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=VTF8yNQM66.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate
Baumli, Shariq Igbal, Colton Bishop, Rebecca Roelofs, Lei M Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksan-
dra Faust. Training language models to self-correct via reinforcement learning, 2024. URL
https://arxiv.org/abs/2409.12917.

Kenneth Li, Samy Jelassi, Hugh Zhang, Sham M. Kakade, Martin Wattenberg, and David Brand-
fonbrener. Q-probe: A lightweight approach to reward maximization for language models. In
Proceedings of the 41st International Conference on Machine Learning, 2024.

Zhizhong Li and Derek Hoiem. Learning without forgetting. In European Conference on Computer
Vision, 2016.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Jessy Lin, Yuqing Du, Olivia Watkins, Danijar Hafner, Pieter Abbeel, Dan Klein, and Anca Dragan.
Learning to model the world with language, 2024. URL https://arxiv.org/abs/2308.01399.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback, 2022.

OpenAl Introducing deep research. https://openai.com/index/
introducing-deep-research/, 2025.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen

12

https://arxiv.org/abs/2505.18098
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2409.12917
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2308.01399
https://arxiv.org/abs/2303.17651
https://openai.com/index/introducing-deep-research/
https://openai.com/index/introducing-deep-research/

Under review as a conference paper at ICLR 2026

Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerén Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.

Evan Pu. Llm self-play on 20 questions. https://evanthebouncy.medium.com/
11m-self-play-on-20-questions-dee7a8c63377, 2023.

Valentina Pyatkin, Jena D. Hwang, Vivek Srikumar, Ximing Lu, Liwei Jiang, Yejin Choi, and Chan-
dra Bhagavatula. Reinforced clarification question generation with defeasibility rewards for dis-
ambiguating social and moral situations, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2023.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy op-
timization. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=8aHzds2uUyB.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay, 2016.
URL https://arxiv.org/abs/1511.05952.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools, 2023. URL https://arxiv.org/abs/2302.04761.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated

13

https://arxiv.org/abs/2303.08774
https://evanthebouncy.medium.com/llm-self-play-on-20-questions-dee7a8c63377
https://evanthebouncy.medium.com/llm-self-play-on-20-questions-dee7a8c63377
https://openreview.net/forum?id=8aHzds2uUyB
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/2302.04761

Under review as a conference paper at ICLR 2026

process verifiers for llm reasoning. In International Conference on Learning Representations
(ICLR), 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

[lia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
Ai models collapse when trained on recursively generated data. Nature, 631:755-759, 2024. doi:
10.1038/s41586-024-07566-y.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W.
Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain,
Amanda Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, An-
ders Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmiiller, Andrew Dai, An-
drew La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh
Gupta, Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabas-
sum, Arul Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Her-
rick, Avia Efrat, Aykut Erdem, Ayla Karakag, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph,
Barttomiej Bojanowski, Batuhan Ozyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin
Inden, Benno Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron
Diao, Cameron Dour, Catherine Stinson, Cedrick Argueta, César Ferri Ramirez, Chandan Singh,
Charles Rathkopf, Chenlin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Chris Waites,
Christian Voigt, Christopher D. Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera,
Clemencia Siro, Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Gar-
rette, Dan Hendrycks, Dan Kilman, Dan Roth, Daniel Freeman, Daniel Khashabi, Daniel Levy,
Daniel Mosegui Gonzélez, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito,
Dar Gilboa, David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, De-
nis Emelin, Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta
Misra, Dilyar Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Eka-
terina Shutova, Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Eliza-
beth Donoway, Ellie Pavlick, Emanuele Rodola, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem,
Ernie Chang, Ethan A. Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Ev-
genii Zheltonozhskii, Fanyue Xia, Fatemeh Siar, Fernando Martinez-Plumed, Francesca Happé,
Francois Chollet, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, German
Kruszewski, Giambattista Parascandolo, Giorgio Mariani, Gloria Wang, Gonzalo Jaimovitch-
Lépez, Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh
Hajishirzi, Harsh Mehta, Hayden Bogar, Henry Shevlin, Hinrich Schiitze, Hiromu Yakura, Hong-
ming Zhang, Hugh Mee Wong, lan Ng, Isaac Noble, Jaap Jumelet, Jack Geissinger, Jackson
Kernion, Jacob Hilton, Jaechoon Lee, Jaime Fernandez Fisac, James B. Simon, James Koppel,
James Zheng, James Zou, Jan Kocon, Jana Thompson, Janelle Wingfield, Jared Kaplan, Jarema
Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski, Jekaterina Novikova,
Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Jesujoba Alabi, Ji-
acheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller, John U. Balis,
Jonathan Batchelder, Jonathan Berant, Jorg Frohberg, Jos Rozen, Jose Hernandez-Orallo, Joseph
Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule, Joyce Chua,
Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina Ignatyeva, Katja
Markert, Kaustubh D. Dhole, Kevin Gimpel, Kevin Omondi, Kory Mathewson, Kristen Chia-
fullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson, Laria Reynolds, Leo
Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-Philippe Morency,

14

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2303.11366

Under review as a conference paper at ICLR 2026

Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis Oliveros Colén,
Luke Metz, Liitfi Kerem Senel, Maarten Bosma, Maarten Sap, Maartje ter Hoeve, Maheen Fa-
rooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco Maru, Maria
Jose Ramirez Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin Potthast,
Matthew L. Leavitt, Matthias Hagen, Métyds Schubert, Medina Orduna Baitemirova, Melody
Arnaud, Melvin McElrath, Michael A. Yee, Michael Cohen, Michael Gu, Michael Ivanitskiy,
Michael Starritt, Michael Strube, Michal Swedrowski, Michele Bevilacqua, Michihiro Yasunaga,
Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Tiwari, Mohit Bansal,
Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun Peng, Nathan A.
Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas Roberts, Nick Doiron,
Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Nitish Shirish Keskar,
Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang, Omar Agha, Omar El-
baghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth Doshi, Pascale Fung,
Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy Liang, Peter Chang, Pe-
ter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Mitkowski, Piyush Patil, Pouya Pezeshkpour,
Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade, Rachel Etta Rudolph, Raefer
Gabriel, Rahel Habacker, Ramon Risco, Raphagl Milliere, Rhythm Garg, Richard Barnes, Rif A.
Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan Sikand, Roman Novak, Ro-
man Sitelew, Ronan LeBras, Rosanne Liu, Rowan Jacobs, Rui Zhang, Ruslan Salakhutdinov,
Ryan Chi, Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan Yang, Sahib Singh, Saif M. Moham-
mad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wiseman, Samuel Gruetter, Samuel R.
Bowman, Samuel S. Schoenholz, Sanghyun Han, Sanjeev Kwatra, Sarah A. Rous, Sarik Ghaz-
arian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebastian Gehrmann, Sebastian Schus-
ter, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank Srivastava, Sherry Shi, Shikhar
Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar, Shubham Toshniwal, Shyam Upad-
hyay, Shyamolima, Debnath, Siamak Shakeri, Simon Thormeyer, Simone Melzi, Siva Reddy,
Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene, Sriharsha Hatwar, Stanislas Dehaene,
Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie Lin, Stephen Prasad, Steven T. Pi-
antadosi, Stuart M. Shieber, Summer Misherghi, Svetlana Kiritchenko, Swaroop Mishra, Tal
Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsu Hashimoto, Te-Lin Wu, Théo Des-
bordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo Schick,
Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj, Tushar
Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas Rau-
nak, Vinay Ramasesh, Vinay Uday Prabhu, Vishakh Padmakumar, Vivek Srikumar, William
Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong, Xinran
Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song, Yasaman
Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou, Yufang
Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang, and
Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the capabilities of lan-
guage models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008-3021, 2020.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL https:
//gwenlm.github.io/blog/qwg-32b/.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv: Arxiv-2305.16291, 2023.

Hanlin Wang, Jian Wang, Chak Tou Leong, and Wenjie Li. Steca: Step-level trajectory calibration
for llm agent learning, 2025. URL https://arxiv.org/abs/2502.14276,

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang

Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024.
URL https://arxiv.org/abs/2312.08935.

15

https://openreview.net/forum?id=uyTL5Bvosj
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2502.14276
https://arxiv.org/abs/2312.08935

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/2406.
12045.

Xiao Yu, Maximillian Chen, and Zhou Yu. Prompt-based monte-carlo tree search for goal-oriented
dialogue policy planning, 2023. URL https://arxiv.org/abs/2305.13660.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. In Proceedings of the
41st International Conference on Machine Learning (ICML), 2024a.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl, 2024b. URL |https://arxiv.org/abs/2402.19446.

16

https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2305.13660
https://arxiv.org/abs/2402.19446

Under review as a conference paper at ICLR 2026

A PROOFS

A.1 PROOF OF THEOREM[3.1]

The crux of our proof is establishing that the learned representations ™ (s, a) converges to the true
successor features ¥7 (s, a), and then using properties of successor features to link to the scalar Q-
function Q7. Let R be the metric space of R with the f~ norm. As shorthand, we also define the
iterative operator 77 @™ (s, a) = ¢(s) + VEys o pr D7(s',a’).

First, we verify that 7 is a y-contraction mapping on R. For any two functions ®1, ®,, we have:

[Tg @1 — Tg P20 = sup | Tg 1(s,a) — Tg Pa(s, a)loo

= sup [|(¢(s) +VE[@1(s", a)]) — (8(s) + YE[P2(s", "))l

s,a

= ysup |[Epx[®1(s', a) — @a(s', a')]

s,a

< ysupEp~ [[|@1(s",a") — 2(s, a) ||
s,a
<[[P1 — P2ffoo -
Since 7Z is contraction, the Banach Fixed-Point Theorem with Assumption @] guarantees that
minimization of our training objective in Equation [2]results in the unique fixed point
7 (s,a) = ¢(s) + 1By arnps @7(s', '),
which are exatly the successor features by definition.

Next, we want to establish a monotonic mapping from representations ®7 (s, a) to true Q-values
Q" (s,a). The true Q-function is defined as Q™ (s;,a;) = E-[>.>7, 7" 'r(s-,a,)]. Using As-
sumption[5.1] and substituting the fixed-point result from earlier, we have:

Qﬂ-(sa a) =E, lz 777t<¢(57) w)] = (Eﬂ Z’YT%ZS(ST)‘|> W= (I)Tr(sv a) "W

T=t
Since the natural language values at convergence are given by Q7 (s, a) = fo(®7 (s, a)), the mono-
tonic mapping g is defined by g(Q7 (s,a)) = fél(Qf(s, a)) - w. O

A.2 PROOF OF THEOREM[3.2]

First, we show monotonic policy improvement in each iteration of our algorithm. Recall that the
refinement policy 7" is defined as the oracle that generates a” such that Q7 (s,a”) > Q7 (s,a). By
Theorem [5.1) a monotonic mapping g exists between Q7 and Q™, and ensures that the ordering
established in the language space holds in the true scalar space:

Qi(s,a") 2 QL(s,a) = Q7(s,a") 2 Q" (s,a).

Note that the policy improvement objective in Equation[d]updates 7 to 7/, which is an approximation
of the refinement policy 7". By definition of refinement policy, this guarantees that the new policy

7' is monotonically better than 7 in terms of expected return: Q™ (s, a) > Q™ (s, a) for all s, a.

Next, we want to show convergence to optimal policy 77*. This naturally follows from the fact that in
a finite MDP, policy iteration that guarantees monotonic improvement at every step must converge
to the unique optimal policy 7* in a finite number of iterations. Hence, at convergence, the policy
satisfies Q™ (s,a) > Q™ (s, a) for all other policy . O

17

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION DETAILS

In this section, we provide details of implementation of NLAC across the various benchmarks we
evaluate. Details include the prompts used to mimic the different components of our algorithm, as
well as hyperparameters configured during RL training.

Recall from Section [6]that our algorithm consists of the following novel components:

(1) language successor model: probabilistically generates a text prediction of what will hap-
pen to policy 7 after taking an action.

(2) language Bellman backup: uses one-step sample of the immediate next state to also prob-
abilistically generate a target text prediction of the future after taking an action.

(3) language evaluator: processes textual futures to generate a critique of an action, com-
menting on optimality and an explanation why by referencing potential future outcomes.

(4) refinement policy: uses the critique of an action to propose an improved action.

In practice, since number of futures is & = 1 in our experiments, we combine the successor model
and evaluator into one generation by the language critic.

B.1 LANGUAGE CRITIC IMPLEMENTATION

The language critic is implemented by prompting the base LLM with instruction peya(s¢, a¢). In
the 7-bench benchmark, this is done by appending the following prompt to the history of messages
comprising s; and a;:

Evaluate your last action, first predicting one possible future and then comment on whether or
not your action was optimal, and if not, how it can be improved. Output should be exactly in the
format:

Future:

<Predict one possible scenario of what will happen next, up to whether or not you succeed at
the long-term task. Be concise and keep to a few sentences at most.>

Optimality:

<"Yes” or "No”. If "No”, explain how it can be improved in one sentence using the predicted
future to justify your explanation.>

Do not generate anything after the evaluation.

For a single-step task such as mathematical reasoning, the appended prompt is instead:

For your attempted solution, please perform the following evaluation and output the result
exactly in the format:

Correctness:

<"Yes or No”. If "No”, identify where any errors occurred. Remember the solution could be
incorrect simply because the answer is not formatted correctly with the answer in the format
\boxed{answer}.>

18

Under review as a conference paper at ICLR 2026

B.2 LANGUAGE BELLMAN BACKUP IMPLEMENTATION

The language Bellman backup is also implemented by prompting the base LLM with instruction
Deval (St, @, S¢11). This is done by first appending the following prompt to the history of messages
comprising s; and a; to get a bootstrapped future prediction:

The response to your latest action is (could be a tool API output or text utterance from the
customer):

{next observation}

From this state, describe one possible scenario of what will happen next, up to whether or not
you succeed at the long-term task. Be concise and keep to a few sentences at most.

Then, the target evaluation is obtained by appending the following prompt afterwards

Evaluate your latest action. Remember your output should be in exactly the following format:
Future:

<Combine the observed response to your latest action with the predicted future from there, up
to whether or not you succeed at the long-term task.>

Optimality:

<"Yes” or "No”. If "No”, explain how it can be improved in one sentence using the predicted
future to justify your explanation.>

Notes:

1. Do not call tools in the evaluation. They will be **ignored**.

2. If the action is optimal, just say "Yes” after the "Optimality:” tag and do not explain why.
3. Do not generate anything after the evaluation.

Another important detail when training reasoning models (that output chain-of-thought thinking by
default before every generation) is that its chain-of-thought output will reference the next state s;.
This makes it an unsuitable training target because it references information not provided to the
critic. Hence, we add an additional postprocessing step to generate a corrected chain-of-though
thinking that removes references to such ground-truth information:

In the above evaluation, the chain-of-thought thinking between <think>and <\think>tags likely
referenced the response to your action and future, or the final score if provided.

Fix the chain-of-thought thinking so that it does not refer to those quantities as a reference, but
rather infers them. So instead of saying an event will happen in the future, or that the final score
is 0, say that you believe it will happen.

Your corrected chain-of-thought should be similar to the original in style and prose, but simply
remove references to future or the final score as ground-truth information, and instead reason
about how you might be able to infer future events from only the observations thus far, up to your
latest action. Your output should be in to format: <corrected_think>Revised chain-of-thought
thinking goes here...<\corrected_think>

It is important that you enclose the corrected chain-of-thought thinking between
<corrected_think>and <\corrected_think>tags, as your response will get automatically
parsed by a computer. The part after the chain-of-thought thinking should be the evaluation
exactly in the format described earlier.

There should be exactly one <corrected_think>...<\corrected_think>block in your response. Do
not include any <think>or <\think>tags within this block. Do not generate anything after the
<\corrected_think>tag.

Then, we extract the corrected chain-of-thought thinking from the output and co-opt the original
chain-of-thought-thinking in the target evaluation.

19

Under review as a conference paper at ICLR 2026

B.3 REFINEMENT POLICY IMPLEMENTATION

The refinement policy is implemented by appending an additional prompt after Q7 (s, a,) that is
the output of the language critic:

Use the evaluation of the latest action to assess whether the latest action was optimal, and
generate a revised action that fixes any problems with the latest action (can simply copy latest
action if it is optimal). Output should be exactly in the format:

Thought:

<A single line of reasoning to process the context and inform the decision making. Do not
include extra lines.>

Action:

{"’name”: <Name of action>, "arguments”: <Arguments to the action in json format>}

Note that you are outputting an action that will replace the latest one. Do not output an action
that is meant to come afterwards.

Do not reference the previous action or its evaluation.

Again, for LLM policies that are reasoning models, we must correct the chain-of-thought thinking
that will likely reference the critique (which is not seen by the base policy). We append the following
postprocessing prompt afterwards:

In the above revised action, the chain-of-thought thinking likely used the previous action and its
evaluation to guide your thinking.

| want you to fix the chain-of-thought thinking so that it does not use the previous action and its
evaluation as reference, but rather infers those quantites. So instead of referring to an action
and its evaluation, say that if this action was chosen, then you believe the following evaluation
would happen.

Your revised chain-of-thought should be similar to the original in style and prose, but motivate
the revised action directly from just the last observed tool or customer response, as if the revised
action were your first attempt. Your output should be in to format: <corrected_think>Revised
chain-of-thought thinking goes here...<\corrected_think>

It is important that you enclose the corrected chain-of-thought thinking between
<corrected_think>and <\corrected_think>tags, as your response will get automatically parsed
by a computer. The part after the chain-of-thought thinking should be the evaluation exactly in
the format described earlier.

There should be exactly one <corrected_think>...<\corrected_think>block in your response. Do
not include any <think>or <\think>tags within this block. Do not generate anything after the
<\corrected_think>tag.

Like before, we parse the corrected chain-of-thought thinking and replace the original thinking in
the output of the refinement policy.

20

Under review as a conference paper at ICLR 2026

B.4 TRAINING DETAILS

Our fine-tuning baselines were implemented using the Volcano Engine Reinforcement Learning
(verl) library (Sheng et al.,[2024). We train on 8 H20 GPU nodes, resulting in 64 GPUs total, for a
total of 30, 720 gradient steps. Training took < 48 hours for each benchmark. We used the following
hyperparameter configuration for each benchmark, after some minimal amount of tuning:

Hyperparameter Setting
Maximum prompt length 8192
Maximum response length 24576
Batch size 1024
Number of iterations 30
Target network update 7 0.005
Prioritized replay buffer o 0.1
Optimizer AdamW
Learning rate 5e-6

B.5 TRAINING THE REFINEMENT POLICY

Currently, our method relies on base reasoning capabilities for the refinement policy to generate
ay ~ w5 (-|se, ar, QY (s¢,at)) such that QY (s¢,al) > QY (s¢,ar). In situations where pretrained
LLMs cannot refine actions through in-context learning, we describe how to explicitly train the
refinement policy.

To train the refinement policy, we adopt a similar approach as |Kumar et al.| (2024) did to train
policies to self-correct, but generalized to multi-step MDPs. Namely, for some on-policy sample
S¢, at, ay from the refinement policy, we additionally train on the loss:

L, (8t,at,ar) = —logmg(ay | st) (A”g(st,af) + (A”g(st,ag) — A7 (st,at))) . @)

Here, A is the estimated advantage function, which is either learned (as in PPO), or obtained from
averaging (as in GRPO), using Monte-Carlo rewards. We also include a bonus that is the improve-
ment in advantage of refined aj over base a;, where & > 0 is a tunable parameter. Our findings
indicated that this approach resulted in only marginal performance gains compared to the simpler,
implicit distillation method already employed by NLAC. Furthermore, the explicit RL objective
substantially increased training cost, requiring on-policy samples. Therefore, in the experiments we
consider, we do not employ such training. However, in more complex tasks, this may be necessary.

B.6 MITIGATING CATASTROPHIC FORGETTING

Several components of our method, such as the language Bellman backup and refinement policy,
are never explicitly trained but merely prompted to behave according to instruction. However, a
key challenge that arises is as our LLM model is trained, it becomes increasingly less competent at
following such instructions. We eventually observe catastrophic forgetting across all our training
runs, resulting in the score during training collapsing to 0.

In our experiments, we choose to stop training before catastrophic forgetting became a noticeable
issue. However, we also considered methods to minimize forgetting, notably by incorporating learn-
ing without forgetting into our training objective (Li & Hoiem, [2016). The way we do so is by
introducing auxiliary loss functions that penalizes divergence from the initial, pre-trained LLM. We
introduce two additional losses for the language Bellman backup and refinement policy, respectively:

Liwe 1 (8t at, ¢, 5041) = D (BLMa (- | 5¢,a¢) || BL Minic (- | 5¢,a)) (®)

Lyt 2(8t, a, QL(st, 1)) = D (g (- | 8¢, a1, Qr(se, ar)) || Tiie (- | 8¢, a1, Qr(st, 1))
Ultimately, we found that such objectives were able to prevent collapse, allowing our LLM model
to be trained for more iterations. However, training for more iterations did not prove significantly

advantageous in improving final performance. Therefore, we did not include such objectives in our
default algorithm.

21

Under review as a conference paper at ICLR 2026

C QUALITATIVE EXAMPLES

Agent:

Thought: We have identified the object is an edible food item. | should split the food category into fruits, vegetables, grains, meats,
etc.

Action: is the object a fruit?

User: YES

Agent:

Thought: The object is a non-red fruit. To narrow down the type of fruit, | can ask about its preparation to separate common meal
ingredients from desserts or snacks.

Action: is the object commonly found in a salad?

User: YES

Agent (base):
Thought: The object is a non-red fruit often found in salads. | will ask about the next most common color.
Action: is the object typically green in color?

Critique:

Future: The agent will eventually guess the color by searching through fruit colors. However, it is possible that color is not the
optimal characteristic and size of taste are required to identify the fruit.

Optimality: No. Linearly searching through fruit colors misses key discriminators like taste and size.

Agent (refined):
Thought: | should ask about whether the fruit is used in sweet or savory contexts.
Action: is the object commonly found in a fruit salad?

Figure 3: Sample timestep on 20Q, where the LLM agent attempts to guess the hidden object
“raisin.” The base LLM agent has narrowed down the object to a non-red fruit found in salads,
but proceeds to search over the color. However, color is often not the most defining characteristic,
so it is more optimal to search over other discriminators such as taste or size.

User: My name is Sofia Thomas. I'd like to inquire about making a couple of exchanges.

Agent:

Thought: To help Sofia modify her order, | first need to authenticate her. Since she provided name and zip code, | should use
find_user_id_by _name_zip to get her user ID.

Action: find_user_id_by_name_zip("Sofia", "Thomas", "75307")

Agent:

Thought: The product details show there's an available robotic vacuum with pet hair removal ... | need to confirm this new item with
the user and ask for a payment method to cover the difference.

Action: respond("We have an available vacuum cleaner..Please confirm if you want this new item")

User: Yes that works for me. The payment method ID is paypal_5334408.

Agent (base):

Thought: / need to call the modify_pending_order_items tool with the order id, item ids, new item ids, and payment method id to
complete the modification...

Action: modify_pending_order_items("#W2297866", ['7407609582"], ['4965355367"], "paypal_5334408")

Critique:

Future: The modify_pending_order_items tool will successfully update the first order. However, when the user requests to modify
another item, the agent will attempt to call modify_pending_order_items again, but this will fail as it is no longer modifiable.
Optimality: No. The action does not anticipate the need for subsequent modifications.

Agent (refined):
Thought: I should confirm with the user that no other items need modifications.
Action: respond('Before | make the modification, please confirm that there are no other orders you wish to modify.")

Figure 4: Sample timestep on 7-bench where a base LLM agent fails by modifying the database
(which can only be done once according to the guidelines) when more exchanges are likely needed.
The natural language critic correctly identifies why the action is suboptimal, and explains it in lan-
guage so that the same LLLM can process the critique and correct its action.

22

	Introduction
	Related Work
	Preliminaries
	Natural Language Actor-Critic
	Policy Evaluation
	Policy Improvement

	Theoretical Analysis
	Practical Implementation
	Training Components
	Training Algorithm

	Experiments
	Task Descriptions
	Results

	Discussion
	Reproducibility Statement
	Proofs
	Proof of Theorem 5.1
	Proof of Theorem 5.2

	Implementation Details
	Language Critic Implementation
	Language Bellman Backup Implementation
	Refinement Policy Implementation
	Training Details
	Training the Refinement Policy
	Mitigating Catastrophic Forgetting

	Qualitative Examples

