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Abstract

A central aim in computational neuroscience is to relate the activity of large
populations of neurons to an underlying dynamical system. Models of these neural
dynamics should ideally be both interpretable and fit the observed data well. Low-
rank recurrent neural networks (RNNs) exhibit such interpretability by having
tractable dynamics. However, it is unclear how to best fit low-rank RNNs to
data consisting of noisy observations of an underlying stochastic system. Here,
we propose to fit stochastic low-rank RNNs with variational sequential Monte
Carlo methods. We validate our method on several datasets consisting of both
continuous and spiking neural data, where we obtain lower dimensional latent
dynamics than current state of the art methods. Additionally, for low-rank models
with piecewise-linear nonlinearities, we show how to efficiently identify all fixed
points in polynomial rather than exponential cost in the number of units, making
analysis of the inferred dynamics tractable for large RNNs. Our method both
elucidates the dynamical systems underlying experimental recordings and provides
a generative model whose trajectories match observed variability.

1 Introduction

A common goal of many scientific fields is to extract the dynamical systems underlying noisy
experimental observations. In particular, in neuroscience, much work is devoted to understanding the
coordinated firing of neurons as being implemented through underlying dynamical systems [1–5].
Recurrent neural networks (RNNs) constitute a common model-class of neural dynamics [6–13]
which can be reverse-engineered to form hypotheses about neural computations [14, 15]. As a
result, several recent research directions have centered on interpretable or analytically tractable RNN
architectures. In particular, RNNs with low-rank structure [16–22] admit a direct mapping between
high-dimensional population activity and an underlying low-dimensional dynamical system. RNNs
with piecewise-linear activations [8, 9, 23–26] are tractable, as they have fixed points and cycles that
can be accessed analytically.

To serve as useful models of brain activity, it is important that models also capture the observed brain
activity, including trial-to-trial variability. Many methods that fit RNNs to data are restricted to RNNs
with deterministic transitions [6–8, 10–12]. It is unlikely that, in general, all variability in the data
can be explained by variability in the RNNs initial state. Thus, adopting stochastic transitions is
imperative. While probabilistic sequence models are used effectively in neuroscience [27], they have
so far largely consisted of state space models without an obvious mechanistic interpretation [28–32].
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Figure 1: Our goal is to obtain generative models from which we can sample realistic neural data
while having a tractable underlying dynamical system. We achieve this by fitting stochastic low-rank
RNNs with variational sequential Monte Carlo.

Here, we demonstrate that we can fit large stochastic RNNs to noisy high-dimensional data. First, we
show that, by combining variational sequential Monte Carlo methods [33–35] with low-rank RNNs,
we can efficiently fit stochastic RNNs with many units by learning the underlying low-dimensional
dynamical system. The resulting RNNs are generative models of neural data that can be used to
sample trajectories of arbitrary length, and also allow for conditional generation with (both time-
varying and stationary) inputs. Second, we show that, for low-rank networks with piecewise-linear
activation functions, the resulting dynamics can be efficiently analyzed: In particular, we show how
all fix points can be found with a polynomial cost in the number of units — dramatically more
efficient than the exponential cost in the general case.

We first validate our method using several teacher-student setups and show that we recover both
the ground truth dynamics and stochasticity. We then fit our model to several real-world datasets,
spanning both spiking and continuous data, where we obtain a generative model which needs lower
dimensional latent dynamics than current state of the art methods. We also demonstrate how in our
low-rank RNNs fixed points can be efficiently inferred — potentially at a lower cost than approximate
methods [25], while additionally coming with the guarantee that all fixed points are found.

2 Theory and methods

2.1 Low-rank RNNs

2.1.1 Access to the low-dimensional dynamics underlying large networks

Our goal is to infer recurrent neural network models of the form

τ
dx

dt
= −x(t) + Jϕ(x(t)) + Γxξ(t), (1)

with neuron activity x(t) ∈ RN , time-constant τ ∈ R>0, recurrent weights J ∈ RN×N , element-wise
nonlinearity ϕ, an R dimensional white noise process ξ(t) and Γx ∈ RN×R. In particular, we are
interested in the case where the weight matrix J has rank R ≤ N , i.e., it can be written as J = MNT,
with M,N ∈ RN×R ([18–21]). Assuming that x(0) lies in the subspace spanned by the columns of
M and Γx = MΓz, with Γz ∈ RR×R , we can rewrite Eq. 1 as an equivalent R dimensional system,

τ
dz

dt
= −z(t) +NTϕ(Mz(t)) + Γzξ(t), (2)

where we can switch between Eq. 1 and Eq. 2 by means of linear projection, z(t) =
(MTM)−1MTx(t) and x(t) = Mz(t). Note that we can directly extend these equations to in-
clude input, representing, e.g., experimental stimuli or context. Even if these stimuli are time-varying,
x will be constrained to the span of the input weights and M. By including input to the RNN, we can
use the fit models for conditional generation (see Supplement C.2).
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2.1.2 Low-rank RNNs as state space models

We consider nonlinear latent dynamical systems with observations yt:

p(z1:T ,y1:T ) = p(z1)

T∏
t=2

p(zt | zt−1)

T∏
t=1

p(yt | zt),

p(zt | zt−1) = N (F (zt−1),Σz), p(z1) = N (µz1 ,Σz1),

p(yt | zt−1) = G(zt),

where the transition distribution is parameterised by discretising a low-rank RNN with timestep ∆t,
we have mean F (zt) = azt + ÑTϕ(Mzt), with a = 1 − ∆t

τ and Ñ = ∆t

τ N, and covariance Σz

(see Supplement C.1). The specific form of the observation function G, depends on the data-modality,
e.g., here we use a Poisson distribution for count observations. This formulation allows one to keep
the one-to-one correspondence between RNN units (or a subset of those) and recorded data neurons,
(as was desired in previous work, e.g., [10–12, 36]). For example, assuming Gaussian observation
noise, we can simply use that xt = Mzt and define G = N (Mzt,Σy).

Once we learn p(z1:T ,y1:T ), we can use the obtained RNN as a generative model to sample trajec-
tories, and reverse engineer the underlying dynamics to gain insight in the data generation process.
Given the sequential structure of the RNN, we can do model learning by using variational sequential
Monte Carlo (also called Particle Filtering) methods [33–35].

2.2 Model learning with variational sequential Monte Carlo

2.2.1 Sequential Monte Carlo

Sequential Monte Carlo (SMC) can be used to approximate sequences of distributions, such as those
generated by our RNN, with a set of K trajectories of latents z1:T (commonly called particles) [37].
As we do not have direct access to the posterior p(zt | y1:t), we instead sample from a proposal
distribution r, and adjust for the discrepancy between the proposal and target posterior distribution
using importance weights. Thus, a crucial choice when doing SMC is picking the right proposal
distribution r, from which we can sample latents conditioned on the previous latent zt−1 and observed
data y1:T , or a subset of those. Given initial samples z1:K1 ∼ r and corresponding importance weights
w1:K

1 (as defined below) SMC progresses by repeatedly executing the following steps:

resample akt−1 ∼ Discrete(akt−1 | wk
t−1),

propose zkt ∼ r(zkt | yt, z
ak
t−1

t−1 ),

reweight wk
t =

p(yt, z
k
t | z

ak
t−1

t−1 )

r(zkt | yt, z
ak
t−1

t−1 )
,

with wk
t =

wk
t∑K

j=1 wj
t

. Here, the resampling step avoids most of the weights from concentrating on

very few particles. Using SMC, we obtain, at time t, a filtering approximation to the posterior,

qfilt(z1:t | y1:t) =

K∑
k=1

wk
t δ(z

k
1:t). (3)

The unnormalised weights give an unbiased estimate to the marginal likelihood,

p̂(y1:T ) =

T∏
t=1

1

K

K∑
k=1

wk
t . (4)

We now detail how we pick the proposal distribution r. For linear Gaussian observations G =
N (Wzt,Σy), we set r(zt | yt, zt−1) = p(zt | yt, zt−1), as this is available in closed form and is
optimal (in the sense that it minimises the variance of the importance weights [37])

r(zt | yt, zt−1) = N ((I−KW)F (zt−1) +Kyt,Λz) (5)
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with K the Kalman Gain: K = ΛzW
TΣ−1

y , and Λz = (Σ−1
z +WTΣ−1

y W)−1 (or equivalently
K = ΣzW

T(WΣzW
T +Σy)

−1, and Λz = (I−KW)Σz). For non-linear observations, we can
not invert the observation process in closed form, so we instead jointly optimize a parameterized
‘encoding’ distribution e(zt | yt−t′:t) (as in a variational autoencoder [38]). In particular, we assume e
to be a multivariate normal with diagonal covariance, which we parameterize by a causal convolutional
neural network, such that each latent is conditioned on the t′ latest observations (although sometimes
non-causal encoders can be advantageous, see Supplement B.5). We then use the following proposal:

r(zt | zt−1,yt−t′:t) ∝ e(zt | yt−t′:t)p(zt | zt−1), (6)

where we now also assume p(zt | zt−1) has a diagonal covariance matrix.

2.2.2 Relationship to Generalised Teacher Forcing

In our approach, the mean of the proposal distribution at time t is a linear combination between
the RNN predicted state F (zt−1) and a data-inferred state ẑt. A recent study obtained state-of-
the art results for reconstructing dynamical systems by fitting deterministic RNNs with a method
called Generalised Teacher Forcing (GTF), which similarly linearly interpolates between a data-
inferred and an RNN predicted state at every time-step [8]; the model propagates forward in time
as zt = (1 − α)F (zt−1) + αẑt. Hess et al. [8] showed that by choosing the appropriate α, one
can completely avoid exploding gradients, while still allowing backpropagation through time, and
thus obtaining long-term stable solutions [39]. The optimal α can be picked based on the maximum
Lyaponuv exponent of the system (a measure of how fast trajectories diverge in a chaotic system).

By including the RNN in the proposal distribution, we similarly to GTF allow backpropa-
gation through time through the sampled trajectories. The linear combination is given by
α = (Σ−1

z +WTΣ−1
y W)−1WTΣ−1

y W in Eq. 5, and similarly in Eq. 6 by α = (Σ−1
z +Σ−1

ẑt
)−1Σ−1

ẑt
,

where Σẑt
is the predicted variance of the encoding network. Thus, instead of interpolating based

on an estimate of how chaotic the system is, our approach combines RNN and data inferred states
adaptively (every time step, if Eq. 6 is used) based on how relatively noisy the transition distribution
is with respect to the data-inferred states at time t, analogous to, e.g., the gain of a Kalman filter. In
the formulation of GTF of Hess et al. [8], an invertable observation model is required. By learning
an encoder that predicts a distribution over latents, our method naturally extends to models with
non-invertable (e.g., Poisson) observations.

2.2.3 Variational objective

We can fit our RNNs to data by using SMC to specify a variational objective [33–35]. In variational
inference, we specify a family of parameterized distributions Q, and optimize those parameters such
that a divergence (usually the KL divergence) between the variational distribution q(z1:T ) ∈ Q and
the true posterior p(z1:T | y1:T ) is minimized. We do this by maximising a lower bound (ELBO) to
the log likelihood p(y1:T ). In particular, we can use Eq. 4 to specify the ELBO objective [33–35]

L = Eqsmc(z1:K
1:T ,a1:K

1:T−1|y1:T )[log p̂(y1:T )], (7)

with qsmc the sampling distribution:

qsmc(z
1:K
1:T , a1:K1:T−1 | y1:T ) =

∏K
k=1 r(z

k
1 | y1)

∏K
k=1

∏T
t=2 r(z

k
t | z

ak
t−1

t−1 yt)Discrete(a
k
t−1 | wk

t−1).

During each training iteration, we run SMC, using the closed form optimal proposal (Eq. 5) if
observations are linear Gaussian, otherwise the proposal includes a parameterised encoder (Eq. 6).
We can then use the resulting unnormalised importance weights (Eq. 4) to estimate the ELBO, which
we maximise with backpropagation (through time). As suggested in previous studies [33–35, 40], we
use biased gradients during optimization by dropping high-variance terms arising from the resampling.

2.3 Finding fixed points in piecewise-linear low-rank RNNs

After having learned our model, we can gain insight into the mechanisms underlying the data
generation process by reverse engineering the learned dynamics [15], e.g., by calculating their
fixed points. Here, we show that the fixed points can be found analytically and efficiently for
low-rank networks with piecewise-linear activation functions. This class of activation functions
ϕ(xi) =

∑D
d b

(d)
i max(xi−h

(d)
i , 0) includes, e.g., the standard ReLU (ϕ(xi) = max(xi−hi, 0)) or
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the ‘clipped’ variant (ϕ(xi) = max(xi + hi, 0)−max(xi, 0)) [8] which we used in all experiments
with real-world data here.

Naively, the cost of finding all fixed points piecewise-linear networks scales exponentially with the
number of units in the networks: we would have to solve (D+1)N systems of N equations [9, 24]. If
networks are low rank, it is straightforward to show that we can reduce this cost to solving (D + 1)N

systems of R equations (See Supplement A.1). In addition, however, we show that the computational
cost can be greatly reduced further: One can find all fixed points in a cost that is polynomial instead
of exponential in the number of units:

Proposition 1. Assume Eq. 1, with J of rank R and piecewise-linear activations ϕ. For fixed
rank R and fixed number of basis functions D, we can find all fixed points in the absence of
noise, that is all x for which dx

dt = 0, by solving at most O(NR) linear systems of R equations.

Figure 2: Proof
sketch.

Proof. See Supplement A.1.

Sketch. Assuming D = 1, activations ϕ = max(0,xi − hi); N units will partition
the full phase space into 2N regions in which the dynamics are linear (2 units, 4
regions in Fig. 2). We can thus, in principle, solve for all fixed points by solving
all corresponding linear systems of equations [9, 24]. If dynamics are confined to
the R-dimensional subspace spanned by the columns of M, only a subset of the
linear regions (3 in Fig. 2) can be reached. Each unit partitions the space spanned
by the columns of M with a hyperplane (pink points in Fig. 2). The amount of
linear regions in M, becomes equivalent to ‘how many regions can we create in
R-dimensional space with N hyperplanes?’ Using Zaslavsky’s theorem [41], we
can show that this at most

∑R
r=0

(
N
r

)
∈ O(NR) (for fixed R).

3 Empirical Results

3.1 RNNs recover ground truth dynamics in student-teacher setups

We validated our method using several student-teacher setups (Fig. 3; additional statistics in Fig. S4).
We first trained a ‘teacher’ RNN, with the weight matrix constrained to rank 2, to oscillate. We then
simulated multiple trajectories with a high level of stochasticity in the latent dynamics (Fig. 3a, top
left) and additional additive Gaussian observation noise (Fig. 3a, top right) on the observed neuron
activity (yi ∼ N (xi, σ

2
y), with x = Mz). A second ‘student’ RNN was then fit to the data drawn

from the teacher, and both recovered the true latent dynamical system, as well as the right level of
stochasticity (Fig. 3a, bottom; Fig. 3d).

We also verified that we can obtain covariance matrices Σz that are numerically close to the ground
truth, for teacher networks with various levels of noise (Fig. S5). When using the bootstrap proposal
(i.e., sampling from the prior; r = p(zt | zt−1)), or too few particles, the right level of stochasticity is
not obtained, indicating that the use of multiple particles and a proposal that conditions on observed
data is indeed beneficial.

Given that neurons emit action potentials, which are commonly approximated as discrete events, we
repeated the initial teacher-student experiment with Poisson observations generated according to
yi ∼ Pois(softplus(wixi − bi)). The student RNN again recovers the oscillatory latent dynamics.
Note that because of the affine transformation in the observation model, the inferred dynamics can
be scaled and translated with respect to the teacher model. To verify that samples from our inferred
model follow the same distribution as samples from the teacher model, we computed several statistics,
which all show a close match (Fig. 3e; Fig. S4).

In our final teacher-student setups, we verified the ability to recover dynamics when there are known
stimuli or contexts. In particular, we trained a rank-2 RNN on a task where, at each trial, it receives a
transient pulse input corresponding to a particular angle θ (given as sin(θ), cos(θ)), and is asked to
provide output matching the input after stimulus offset. The teacher RNN learns to perform the task
by using an approximate ring attractor - which the student RNN accurately infers (Fig. 3c). Here, we
inferred all fixed points by making use of Preposition 1. To demonstrate that our method also works
when inputs are strongly time-varying, we included an additional setup where the teacher network
was asked to report the sign of the mean of a noisy stimulus (Fig. S6).
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Figure 3: RNNs recover dynamics in teacher-student setups. a) Example ground truth latent trajectory
and phase plane of low-rank RNN trained to oscillate (top left) and noisy observations of neuron
activity (top right; 6/20 shown). A second low-rank RNN trained on the activity of the first recovers
ground truth dynamics. b) Same set-up, but with Poisson observations. c) The teacher network was
trained on a task where it has to provide an output corresponding to 8 different angles depending on
an input cue. The student network, when given the same input during fitting, recovers the approximate
ring attractor. d) Mean (±1SD) autocorrelation of the latents of the models from panel a, show the
oscillation frequency is captured, as well as the decorrelation due to recurrent noise. The scale of the
observed rates also agrees between student and teacher. e) Mean rates and ISI between student and
teacher units of panel b match. f) Example rate distribution of one unit of the teacher and student
RNN (of panel c), after onset of the 8 different stimuli.

3.2 Stochasticity allows recovering low-dimensional latents underlying EEG data

Figure 4: Example ground truth EEG [42, 43] and
(unconditionally) generated traces by our model.
Shown are 5/64 EEG channels.

After validating our model on a toy example,
we went on to several challenging real-world
datasets. We first used an EEG dataset [42, 43]
with 64 channels containing one minute of con-
tinuous data sampled at 160 Hz (Fig. 4). This
dataset was recently used in a study where gen-
eralized teacher forcing (GTF) was used to fit
deterministic RNNs with low-rank structure [8].
The GTF method obtains state-of-the-art results
on several dynamical systems reconstruction
tasks. It outperformed SINDy [44], neural differ-
ential equations [45], Long-Expressive-Memory
[46], and other methods, while using a smaller
latent dynamical system.

Here we show that using a stochastic RNN with SMC instead of a deterministic RNN with GTF,
we can decrease the latent dimensionality even further, from 16 to just 3 latents, while matching
the original reconstruction accuracy (Table 1). We hypothesize this is because the data can be
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well explained by stochastic transitions with simple underlying dynamics as opposed to complex
deterministic chaos.

Table 1: Lower dimensional latent dynamics than SOTA at same sample quality. We report median ±
median absolute deviation over 20 independent training runs, ‘dim’ refers to the dimensionality of
the model’s underlying dynamics and |θ| denotes the total number of trainable parameters. Values
for GTF taken from Hess et al. [8].

Dataset Method Dstsp ↓ DH ↓ dim |θ|

EEG
(64d)

GTF [8] 2.1± 0.2 0.11± 0.01 16 17952
adaptive GTF [8] 2.4± 0.2 0.13± 0.01 16 17952
SMC (ours) 2.1± 0.1 0.11± 0.01 3 3920

We evaluated samples from our RNN with two measures which were used in previous work [8],
one KL divergence-based measure between the states (Dstsp), and one measure over time, based on
the power spectra of generated and inferred dynamics (DH ; see Supplement D.3.3). Unlike Hess
et al. [8], who applied smoothing, we optimized our models directly on the raw EEG data. We
also fit stochastic full-rank RNNs with variational SMC, however these models tend to have worse
performance on this task, while also being less interpretable (Fig. S7).

3.3 Interpretable latent dynamics underlying spikes recorded from rat hippocampus

Figure 5: RNNs reproduce the stationary distribution of spiking data. a) We fit a rank-3 RNN to
spike data recorded from rat hippocampus [47, 48] (left), and generate new samples from the RNN
(right). b) Single neuron statistics. Mean rates and means of interspike interval (ISI) distributions of
a long trajectory of data generated by the RNN (gen) match those of a held-out set of data (test). As a
reference we additionally computed the same statistics between the train and test set. c) Population
level statistics. We plot the pairwise correlations between all neurons for generated data against the
pairwise correlations in the test data. d) The corresponding latents generated by running the RNN
look visually similar to the local field potential (LFP). e) The peak in the power spectrum matches
between latents and LFP. f) The posterior latents show coherence with the LFP. As a reference, we
compute the coherence between the LFP and the latents generated by the RNN.

We next investigated how well our model can capture the distribution of non-continuous time series.
In particular, we used publicly available electrophysiological recordings from the hippocampus of rats
running to drops of water or pieces of food [47, 48]. We binned the spiking data into 10ms bins and
fit a rank-3 RNN to ∼850 s of data. Samples generated by running the fit RNN autonomously closely
matched the statistics of the recordings (Fig. 5a-c). Previous investigations into this dataset have
examined the relationship between spikes and theta (5-10 Hz) oscillations in the local field potential
([47]), and found that units were locked to the LFP rhythm, with the relative phase depending on the
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subregions from which the units were recorded. The latents generated by the RNN are visually similar
to the average local field potential (Fig. 5d) and match its power spectrum (Fig. 5e). While the model
was solely trained on the spikes, the posterior latents (Eq. 3) have a clear phase relationship with the
LFP, as evidenced by a high coherence between the posterior latents and LFP. In contrast, and as
expected, latents from running the RNN are not correlated with the LFP (Fig. 5f). The correspondence
between generated latents and LFP was absent when we use a related method for fitting RNNs (with
deterministic transitions) to neural data (LFADS [7]; Fig. S8). Using the bootstrap proposal also led
to lower-quality samples (Fig. S9).

Figure 6: Posterior latents of
our model (fit solely spikes)
can be used to predict rat posi-
tion.

Units in rat hippocampus have been shown to code for position,
e.g., through place cells [49], which tend to fire if the animal is at
a specific location. To further investigate how well we can model
recordings from the hippocampus, we fit a rank-4 RNN to an ad-
ditional set of recordings of rats running on a linear track [50–52]
(Fig. S10). As in Zhou and Wei [53], we first focus only on the
spikes recorded while the rat is moving, which we bin into 25 ms
bins. The RNN again accurately reconstructs the distribution of
spikes and again has latent oscillations. Here the frequency at which
power peaks is slightly higher than that of the LFP, potentially re-
lated to phase precession ([54]). While solely trained on spikes, the
posterior latents also allowed us to predict the position of the rats
with reasonable accuracy (R2 = 0.79 ± 0.05 mean ± SD, N = 4
RNNs; Fig. 6). We also fit rank-12 RNNs to around 15 minutes of
recording (again with 25 ms bins), which includes long intermediate
periods where the rat is stationary. Here our generative model learns
to have higher theta power during running bouts, in line with the
data (Fig. S11).

3.4 Extracting stimulus-conditioned dynamics in monkey reaching task

Figure 7: Inferred and generated dynamics from the model fit to macaque spiking activity during a
reaching task. a) Latent states inferred from the macaque spiking data prior to movement initiation
(‘pre-movement’) and during movement execution (‘movement’), colored by the intended reach
target. b) Reach trajectories decoded from model-inferred neural activity. c) Dissimilarity matrices
computed across the seven conditions (i.e., the seven colors in a, b) for per-neuron mean firing rate
and ISI. We generate neural activity from the model by providing the same conditioning stimuli as
in the real data. Then, for each statistic, we compute and show the correlation distance between
conditions in the real data (left) and model-generated data (right). d, e) Same as a, b, but with latent
activity and behavioral predictions generated from the model with conditioning inputs including
directions not seen in the real data (e.g., lime green). For clarity, we show only a subset of conditions
in the decoded reaches.
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We further investigated how well we can recover stimulus-conditioned dynamics. We applied our
method to spiking activity recorded from the motor and premotor cortices of a macaque performing
a delayed reaching task. This type of data has been popular for investigating neural dynamics
underlying the control of movement [2, 3] and evaluating neuroscientific latent variable models
[7, 55, 56]. We first validated the ability of our method to obtain a sensible posterior by evaluating it
on the Neural Latents Benchmark [56] (Supplement B.5, Table S2).

We then went on to a set-up where we explicitly conditioned our model on external context. For
simplicity, we constrained our experiment to trials with straight reach trajectories in the data. We fit a
rank-5 model to these data while conditioning the RNN dynamics on the target position by providing
the target position as input. Our model was able to infer single-trial latent dynamics and neuron
firing rates that predict reach velocity with high accuracy at lower latent dimensionalities than models
without inputs (Fig. 7b, R2 = 0.90 for this model, see Table S3 for additional statistics).

We examined the posterior latents inferred by the model and found that our model recovers structured
and interpretable latent dynamics. Before movement onset, latent states corresponded to the intended
reach targets, which were near the edges of a rectangular screen (Fig. 7a, left), in line with [55].
During the movement period, the latents followed parallel curved trajectories that preserve target
information (Fig. 7a, right) and can be decoded to predict monkey reach behavior (Fig. 7b).

We then generated neural data from the RNN conditioned on stimulus input. Again, the distribution
of spikes is well-captured (Fig. S12). We additionally evaluated whether the model faithfully captures
differences in spiking statistics across the seven reach directions, finding reasonable correspondence
in dissimilarities between conditions in the generated and the real data (Fig. 7c). Finally, we simulated
our trained RNN with conditioning inputs, including reach directions not present in the data, and
found that the structured latent space recovered by the model enables realistic generalization to
unseen reach conditions (Fig. 7d, e, lime green condition).

3.5 Searching for fixed points

Figure 8: Comparison of our ana-
lytic method (star) and the approximate
method proposed in Eisenmann et al.
[25] (blue) for finding the fixed points of
the teacher RNN in Fig. 3c. We can also
use Proposition 1 to constrain the search
space of the approximate method (or-
ange). Error bars denote the minimum
and maximum amount of fixed points
found over 20 independent runs of the
algorithm.

In Proposition 1, we derived a bound on the number of
systems of equations one has to solve in order to find
all fixed points in piecewise-linear low-rank RNNs. Re-
cently, an approximate algorithm for finding fixed points
in piecewise-linear networks was proposed [25]. Here, we
perform an exploration into how this compares to our an-
alytic method by searching for fixed points of the RNN in
Fig. 3c (top). For the same number of matrix inverses com-
puted by our analytic method, the approximate method
generally does not find all 17 fixed points (Fig. 8). We
note, however, that (unlike ours) the convergence of the
approximate method depends on the dynamics of the RNN,
and as a result, there are theoretical scenarios where the
approximate method can be shown to be faster. Yet we
empirically also found scenarios where the approximate
methods failed to converge within the time-frame of our
experiments (Fig. S13).

Our analytic method relies on the insight that only a subset
of all linear subregions formed by the piecewise-linear acti-
vations can be reached in low-rank networks. For networks
with moderate rank, the cost of searching through all of
the subregions might still be too high. We can, however,
hugely reduce the search space of the approximate method
[25] (from (D+1)N to

∑R
r=0 D

r
(
N
r

)
), at an upfront cost

(Supplement B.7; orange line in Fig. 8).
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4 Discussion

Here we proposed to fit low-rank RNNs to neural data using variational sequential Monte Carlo.
The resulting RNNs are generative models with tractable underlying dynamics, from which we can
sample long, stable trajectories of realistic data. We validated our method on several teacher-student
setups and demonstrated the effectiveness of our method on multiple challenging real-world examples,
where we generally needed a latent dynamical system with very few dimensions to accurately model
the data. Besides our empirical results, we obtained a theoretical bound on the cost of finding fixed
points for RNNs with piecewise-linear activation functions when they are also low-rank.

Adding stochastic transitions to low-rank RNNs can potentially hugely reduce the rank required
to accurately model observed data, as demonstrated here with a network fit to EEG data where we
could reduce the dimensionality from 16 to just 3. While many methods that fit RNNs to neural
data (e.g., [6–8, 10–12]) assume deterministic transitions, there is a rich literature concentrating
on probabilistic sequence models in neuroscience (e.g., [28–32]). In particular, a recent work
termed FINDR [31] uses variational inference (but not SMC), to similarly find very low-dimensional
dynamical systems underlying neural data. These stochastic dynamical systems were parameterized
using neural differential equations [45]. While Eq. 2 can be seen as a neural differential equation
with one hidden layer, our particular formulation allows us to find its fixed-points effectively and map
back to a regular, mechanistically interpretable RNN (Eq. 1) after fitting, which enables additional
investigations into neural population dynamics [18, 20–22].

We here — similar to FINDR (and [57]) — did not use the adjoint method as is typical in the
neural differential equation literature, but rather a simple Euler-Maruyama discretisation scheme
and standard backpropagation through time. However, one could investigate how we can integrate
our approach with variational approaches that use adjoint methods when fitting latent neural SDEs
[58, 59] as well as with filtering approaches for continuous time systems [60]. This could be especially
relevant for irregularly sampled time-series.

The reason we can do the mapping between a low-rank RNN (Eq. 1) and a latent dynamical system
(Eq. 2) crucially relies on our assumption that samples from the recurrent noise process are correlated,
such that they lie within the column-space of M. Valente et al. [61] showed that for linear low-
rank RNNs arbitrary covariances in the full N dimensional space can be used, when increasing
the dimensionality of the latent dynamics to twice the rank R (to the column space of both M and
N), this however does not generalise to our non-linear setting. We do expect correlated recurrent
noise to be appropriate for modeling stochasticity arising from unobserved inputs or from partial
observations [61] —additionally, correlated noise constituted a pragmatic choice that allows building
an stochastic model that can allow for trial-by-trial variability while maintaining the tractability of
low-rank deterministic RNNs.

Still, future work can investigate training networks with more relaxed assumptions on the recurrent
noise models, including extensions to non-Gaussian noise-processes. The latter could be of particular
interest if more biologically plausible (i.e., spiking) neurons were used in the recurrence [36, 62].

Our results also open up further avenues to explore questions in neuroscience. The relation between
LFP and spike (phase) in the hippocampus has been of great interest [47, 54, 63, 64]. While we
performed some preliminary investigation into the relation between the inferred latents and the
local field potential, further studies could perform a systematic investigation into their relation, for
instance, by using a multi-modal setup [13], or to investigate multi-region temporal relationships and
interactions [10].

Taken together, by inferring low-rank RNNs with variational SMC, we obtained generative models of
neural data whose trajectories match observed variability, and whose underlying latent dynamics are
tractable.

Code availability

Code to reproduce our results is available at https://github.com/mackelab/smc_rnns.
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A Supplemental material

A.1 Proof of preposition 1

A.1.1 Problem definition

We are interested in finding all fixed points of the following equation:

τ
dx

dt
= −x(t) + Jϕ(x(t)), (8)

with x(t) ∈ RN , element-wise nonlinearity ϕ(xi) =
∑D

d b
(d)
i max(xi − h

(d)
i ) and low-rank matrix

J = MNT, with M,N ∈ RN×R and R ≤ N . Since τ only scales the speed of the dynamics, we
will, for convenience and without loss of generality, assume τ = 1.

A.1.2 Preliminaries: Fixed points in Piecewise-linear RNNs

First, we briefly repeat results from Durstewitz [9]. Assume D = 1, ϕ(xi) = max(xi − hi). To find
all fixed points of Eq. 8, start by redefining ϕ by introducing a diagonal indicator matrix:

DΩ =


d1

d2
. . .

dN

, (9)

with di =

{
1, if xi > hi

0, otherwise
.

Then our RNN equation, for a given x and corresponding DΩ reads:

dx

dt
= −x(t) + JDΩx(t)− JDΩh.

Each of the 2N configurations of DΩ corresponds to a region in which the dynamics are linear. Thus,
for each configuration, we can solve:

0 = −x+ JDΩx− JDΩh,

x∗ = (JDΩ − I)−1JDΩh.

Next, we check whether the obtained x∗ is consistent with the assumed DΩ (Eq. 9). If so, we found
a fixed point of the RNN. We have to check, as the solution to the system of linear equations can
lie outside of the linear regions specified by DΩ. Note that if for some DΩ the matrix JDΩ − I is
not invertible, then there is no single fixed point, but we still can find a structure of interest (e.g., a
direction with eigenvalue 0 corresponds to marginal stability, i.e., a line attractor).

A.2 Preliminaries: Fixed points in Piecewise-linear low-rank RNNs

First, assume x(0) is in the subspace spanned by the columns of M. With the low-rank assumption,
we can rewrite Eq. 8 for all t ∈ [0,∞), by projecting it on M [18, 20, 21]:

dz

dt
= −z(t) +NTϕ(Mz(t)− h) (10)

with x(t) = Mz(t).

Now assume x(0) contains some part x⊥(0) not in the subspace spanned by M, i.e., we have
x(0) = Mz(0) + x⊥(0). The dynamics of x⊥(t) are simply given by x⊥

dt = −x⊥(t) which will
decay to its stable point at 0 irrespective of z(t), and can thus not contribute additional fixed points.
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Supplementary Figure 1: Proof sketch including DΩ’s. The phase-space of an RNN with N (here 2)
units with activation max(0,xi−hi) is partitioned into 2N (here 4) regions in which the dynamics are
linear, each corresponding to a configuration of DΩ. If dynamics are confined to the R-dimensional
subspace spanned by the columns of M, only a subset (here 3) can be reached. Each unit intersects
the space spanned by the columns of M with a hyperplane (the pink points in the Figure). The
amount of linear regions in M, thus becomes equivalent to "how many regions can we create in
R-dimensional space with N hyperplanes?"

Naively, using the same strategy as before to obtain all fixed points z, we would need to solve 2N

linear systems of R equations (again for all configurations of DΩ):

z∗ = (NTDΩM− I)−1NTDΩh, (11)

A.3 Preliminaries: Hyperplane arrangements

In the subsequent section, we will turn to the question of how many equations we need to solve to find
all possible fixed points. Recall that it is possible to calculate the fixed points analytically because
piecewise-linear nonlinearities partition space into subregions in which dynamics are linear. Each of
the linear regions corresponds to a configuration of DΩ. For networks with low-rank connectivity,
we have to consider only a small subset of those, as only a small subset of all configurations of DΩ

correspond to x’s within the column space of M (See Fig. S1). To find out exactly how many regions
lie within the column space, we will need to answer the question: in how many regions can we
divide R-dimensional space, with N hyperplanes? To answer this question in general, we will need a
theorem from the field of hyperplane arrangements [41, 65–67]. Here we give a brief introduction.

Introduction to hyperplane arrangements: A finite arrangements of hyperplanes is a set of
N affine subspaces A = {a1, . . . , aN} in some vector space V = RR. Recall a hyperplane is
an R − 1 dimensional subspace defined by a linear equation ai := {v ∈ V |mTv = h} for
some m ∈ V, h ∈ R. Note that any linear system of equations Mv = h with M ∈ RN×R

equivalents defines an arrangement of N hyperplanes in R dimensional space. In Fig. S2a,c, we show
arrangements of 3 hyperplanes in R2. In this case, a hyperplane is a line, but there are infinitely many
possibilities on how we can arrange these lines in two-dimensional space. We are interested in

N (A) := number of regions A partitions RR,

where regions correspond to the connected components of RR \ A. In this simple case, we can
visually verify that the arrangements in Fig. S2a partitions the space into 7 regions, whereas the
arrangement in Fig. S2c partitions the space into only 6 regions. Clearly, the number of regions
A partitions space in is strongly related to the number of unique intersections of lines. We have
fewer regions in Fig. S2c, simply because all lines intersect at the same point. If we can wiggle the
hyperplanes a little, and not change the number of regions (as we can do in Fig. S2a, but not Fig. S2c),
we call the hyperplanes in general position (see Theorem 1 for a formal definition).

To count the amount of regions for any arrangement of hyperplanes, we can leverage an algebraic
construction called the intersections poset L(A). This is the set of all nonempty intersections of
hyperplanes in A and includes V . Elements of this set are generally referred to as flats. The flats
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1

Supplementary Figure 2: a) An arrangement of 3 hyperplanes a1, a2 and a3 in general position. b)
the associated intersection poset of the arrangement in a. c) An alternative arrangement with its
associated intersection poset. d). Blue numbers indicate the value of the Möbius function.

are ordered by reverse inclusion x ≤ y ⇐⇒ x ⊇ y in the intersection poset. We visualized
example intersection posets of the previous examples (Fig. S2b, d). Here we organized the flats by
dimensionality (such a visualization is called a Hesse Diagram). Importantly for any real arrangement
A, N (A) solely depends on L(A) (Corollary 2.1, [67]).

To calculate N (A) from L(A), we need one last construction, namely the Möbius function, recur-
sively defined by

µ(X , s) =
{
1 if s = X
−
∑

X⊇s′⊃sµ(X , s′), if s ⊂ X .
(12)

The numerical values for the example are shown in Fig. S2.
Theorem 1 (Zaslavsky’s Theorem; [41, 67]). Given a vector space V = RR and an arrangement
of N hyperplanes A = {a1, . . . , aN} on V , then the number of regions A partitions V in (denoted
N (A), can be expressed as follows

N (A) =
∑

s∈L(A)

µ(RR, s)(−1)dim(s)

furthermore, it holds that

N (A) ≤
R∑

r=0

(
N

r

)
(13)

with equality if and only if A is in general position i.e., A must satisfy

(i) {a1, . . . , ap} ⊆ A and p ≤ R⇒ dim(
⋂p

i=1 ai) = N − p

(ii) {a1, . . . , ap} ⊆ A and p > R⇒
⋂p

i=1 ai = ∅

One can verify this fact for the given example shown in Fig. S2. We refer to Stanley [67] for an
in-depth formal introduction to this topic. Fundamentally, it is based on the following recursion that
the number of regions for any arrangement satisfies

N (A ∪ {aN+1}) = N (A) +N (AaN+1)
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whereAaN+1 := {aN+1 ∩ ai|ai ∈ A, aN+1 ∩ ai ̸= ∅, aN+1 ⊈ ai} (Lemma 2.1, Stanley [67]). Note
that aN+1 is itself an R− 1 dimensional vector space, and each intersection aN+1 ∩ ai is an R− 2
dimensional hyperplane within aN+1 (e.g., the intersection of two planes is a line within the planes).
Hence AaN+1 is itself an arrangement of N hyperplanes, but in an R− 1 dimensional subspace. In
fact, the intersection poset exhaustively enumerates the elements of all possible Aai , and the Möbius
function can be shown to satisfy the above recursion.

If we choose ϕ(xi) = max(xi − hi, 0) i.e D = 1, each neuron would partition space by a single
hyperplane xi = hi or equivalently the R dimensional subspace by the hyperplane Miz = hi.
Hence, the hyperplane arrangement is determined by the matrix M and offset h. As these quantities
are learned during training of the RNN, this arrangement is often in a general position because it is
simply numerically unlikely that two hyperplanes are exactly parallel or intersect in exactly the same
"point".This does, however, change in the general case D > 1, for which we derive a tighter bound in
the section below.

Arrangements of parallel families For the general case ϕ(xi) =
∑D

d=1 b
(d)
i max(xi − h

(d)
i , 0)

each neuron will partition space with D hyperplanes b(d)
i xi = b

(d)
i h

(d)
i ⇐⇒ xi = h

(d)
i as before;

equivalently each neuron partitions the R dimensional subspace with D hyperplanes Miz = h
(d)
i .

Notably, all the D hyperplanes here will share the same row of M, and thus they are parallel. Clearly,
any such arrangement cannot be in general arrangement by definition.

The resulting arrangement will have a very specific structure. Let’s define

Ai := {ai1, . . . , aiD}

as a family of D parallel hyperplanes. Any pair of hyperplanes ail, aim ∈ Ai is parallel. A low-
rank RNN with N neurons and a general piecewise-linear activation function will thus lead to an
arrangement consisting of N families of D parallel hyperplanes.

We can use this specific structure to obtain a tighter bound.
Lemma 1. LetA = A1 ∪ · · · ∪AN−1 be an arrangement of N − 1 families of D parallel lines, then
it satisfies the following recursion

N (A ∪AN ) = N (A) +
D∑

d=1

N (AaNd) .

Furthermore, denote byN (N,R,D) the maximum number of regions attainable by any arrangement
of N families of D parallel hyperplanes in R dimensional space then

N (N,R,D) ≤ N (N − 1, R,D) +D · N (N − 1, R− 1, D).

Proof. To add AN to A, we have to add D new parallel hyperplanes. We can do so by iteratively
applying Lemma 2.1 [67]. We obtain

N (A ∪ {aN1, . . . , aND}) = N (A ∪ {aN1, . . . , aN(D−1)}) +N (
(
A ∪ {aN1, . . . , aN(D−1)}

)aND
)

= N (A) +
D∑

d=1

N

([
A ∪

d−1⋃
i=1

{aNi}

]aNd)
.

Now note that AaNj := {aNj ∩ alm|alm ∈ A, aNj ∩ alm ̸= ∅, aNj ⊈ alm}, hence by definition
only hyperplanes that intersect with aNj are included in this set. As aNj is parallel to any other aNi

for all i ̸= j, all aNj ∩ aNi cannot be in the set. Hence for any d, we have that

N

([
A ∪

d−1⋃
i=1

{aNi}

]aNd)
= N (AaNd)

which proves the first equation.

Recall that we defineN (N,R,D) as the maximum number of regions attainable by any arrangement.
Notice that A by construction is an arrangement of N − 1 families of D parallel hyperplanes in R
dimension. Thus by definition N (A) ≤ N (N − 1, R,D).
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As noted before, the intersection set of two hyperplanes in dimension R is itself a hyperplane of
dimension R − 1. Furthermore the intersection sets of D parallel hyperplanes with aNd, remain
parallel. HenceAaNd is an arrangement of at most N − 1 families of D parallel hyperplanes in R− 1
dimensions. Thus N (AaNd) ≤ N (N − 1, R− 1, D) leaving us with

N (A ∪ {aN1, . . . , aND}) ≤ N (N − 1, R,D) +D · N (N − 1, R− 1, D).

As this holds for any arrangement, it also holds for the arrangement that has N (N,R,D) regions
(i.e., which maximizes the number of regions) and, therefore, proves the second equation.

Lemma 2. Let A be an arrangement of N families of D parallel hyperplanes. Then, it holds that

N(A) ≤
R∑

r=0

Dr

(
N

r

)
with equality if each family is in a general position, i.e., that every subarrangement {a1j1 , . . . , aNjN }
for all 1 ≤ ji ≤ D is in general position.

Proof. We will first construct an intersection poset L(A) on the level of families Ai in general
position. After all, the intersection properties between these families is the same as between their
elements, e.g., if ai1 intersects aj1 then also all lines in Ai intersect all lines in Aj .

The resulting intersection poset L(A) can be clustered into the corresponding families. We visualize
the construction in Fig. S3.

At each rank r (level from bottom to top), we can choose exactly
(
N
r

)
families of hyperplanes that

intersect (exactly the case if we just have N hyperplanes in general position). To obtain a flat of
dimension R− r we have to choose r out of the N hyperplane families without replacement.

If, e.g., two families of parallel hyperplanes Ai, Aj intersect, then any element aik will intersect with
any element ajl for all 1 ≤ k, l ≤ D leading to at most D2 flats within each family (there can be less
as other families might intersect in the same "point"). In general, each cluster of intersections of r
families will contain at most Dr flats.

By construction of L(A) and Theorem 1, the lemma follows directly.

To show that this construction indeed is an upper bound for all arrangements, we can use Lemma
1. There, we established a recursion, which any such upper bound must satisfy. Hence, assume
N (N,R,D) =

∑R
r=0 D

r
(
N
r

)
. Notice that using Pascal’s identity, we can rewrite

N (N,R,D) =

R∑
r=0

Dr

(
N

r

)

=

R∑
r=0

Dr

((
N − 1

r

)
+

(
N − 1

r − 1

))

=

R∑
r=0

Dr

(
N − 1

r

)
+

R∑
r=0

Dr

(
N − 1

r − 1

)

=

R∑
r=0

Dr

(
N − 1

r

)
+D0

(
N − 1

−1

)
︸ ︷︷ ︸

:=0

+

R∑
r=1

Dr

(
N − 1

r − 1

)

= N (N − 1, R,D) +

R−1∑
r=0

Dr+1

(
N − 1

r

)
= N (N − 1, R,D) +D · N (N − 1, R− 1, D)
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A1 | {a1i|i <= D} . . . AN | {aNi|i <= D}

A1 ∩A2 | {a1i ∩ a2j |i, j ≤ D} . . . A1 ∩AN | {a1i ∩ aNj |i, j ≤ D}

RR

...
...

...

⋂R
k=1 Ak | {

⋂
k akdk

|d1, . . . , dk ≤ D}. . . . . .

Supplementary Figure 3: Construction of the intersection poset L(A) for an arrangement of N
families Ai of D parallel hyperplanes in "general position".

A.4 Proof of proposition

Using the previously derived techniques, we will prove here the main proposition. Furthermore, in
Algorithm 1, pseudo-code is given to compute all fixed points in practice.
Proposition 1. Assume the RNN of Eq. 8, with J of rank R and piecewise-linear activations:
ϕ(xi) =

∑D
d b

(d)
i max(xi − h

(d)
i , 0). For fixed rank R and fixed number of basis functions D, we

can find all fixed points in the absence of noise, that is all x for which dx
dt = 0, by solving at most

O(NR) linear systems of R equations (for fixed R).

Proof. By definition, each neuron partitions RN in D+1 linear regions with D hyperplanes described
by x

(d)
i = h

(d)
i , for the i’th neuron. Using that in the columnspace of M, we have x = Mz, it

follows that each neuron partitions the R dimensional subspace spanned by columns of M, with D

hyperplanes described by
∑R

r Mi,rzr = h
(d)
i . Notice that these hyperplanes are parallel, as they all

share the same coefficients Mi but have a different offset h(d)
i . Using Lemma 2 we know that there

can only be
∑R

r=0 D
r
(
N
r

)
such regions.

How do we find those regions? Let’s first consider the case of D = 1, and assume that the hyperplanes
are in general position. We can find the corresponding configurations of DΩ as follows. We first obtain
the set of all intersections of R hyperplanes. For this we try to solve

(
N
R

)
systems of R equations. Let

MR ∈ RR×R be the matrix obtained by choosing R different rows 1, . . . , R of M ∈ RN×R (i.e.,
picking R neurons), then we may find the corresponding intersection of R hyperplanes by solving
the following linear system of R equations

z∩ = M−1
R hR and x∩ = Mz∩.

which will always have a unique solution if all hyperplanes are in general position, as then all MR

have rank R. Each x∩ has 2R possible bordering linear regions. We can find the corresponding
DΩ = diag([d1, . . . , dN )’s matrices of each of those subsections as follows. First di = I(x∩ < 0)
for all i <= N . By construction 1, . . . , R at x∩ will be exactly at the threshold, by moving away
from it dR can become either zero or one, depending on in which region we and up. Hence, the
2R regions correspond to one in which either combination of neurons 1, . . . R is active (meaning
that it is above the threshold). We thus just have to check all combinations d1, . . . , dR ∈ {0, 1}R.
Using this, we will find at most

∑R
r=0

(
N
r

)
unique configurations (as this is the maximal number

of regions possible for D = 1). To find all the fixed points we hence have to solve Eq. 11 for each
configuration. We thus end up with solving

(
N
R

)
systems of R linear equations to find all regions, and

another
∑R

r=0

(
N
r

)
∈ O(NR) (for fixed R) systems of R linear equations to find all fixed points.

Let us now consider the case for D > 1. Note that an RNN with N units and D basis functions per
unit, can be expanded to an RNN with ND units with activation ϕ(xi) = max(xi − hi, 0) ([24],
Theorem 1). Any fixed point can then still be analytically computed using Eq. 11. We expand
the network but keep track of all

∑R
r Dr

(
N
R

)
possible intersections. It still holds that from each
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intersection, we can reach 2R regions. In total, we will now find at most
∑R

r=0 D
r
(
N
r

)
regions

(Lemma 2). To find all the fixed points, we hence have to solve
(
N
R

)
Dr +

∑R
r=0

(
N
r

)
Dr systems of

R linear equations, which for constant D and R has a cost of O(NR)

Finally, let’s consider the case when hyperplanes are not in general position (which is unlikely to
happen when doing numerical optimization). If there are intersections of more than R hyperplanes,
we proceed as before, but in case the intersection of R hyperplanes we are currently considering
intersects additional hyperplanes, set the diagonal elements of DΩ corresponding to these additional
hyperplanes arbitrarily to 1 (as intersections including the additional hyperplanes are considered
separately). On the other hand, in case some hyperplanes are only part of intersections of less than
R hyperplanes (because they became parallel), we proceed as follows. Instead of considering only
intersections of R hyperplanes, we now also consider all possible intersections of r hyperplanes, with
1 ≤ r ≤ R. For this, we solve no more than

∑R
r

(
N
r

)
systems of r equations. Let Mr ∈ Rr×R be

the matrix obtained by choosing r different linearly independent rows 1, . . . , r of M ∈ RN×R; then
we may find a point on the corresponding intersection of r hyperplanes (note that the intersection
itself can now also be a hyperplane) by to solving the following linear system of r equations

z∩ = M†
rhr and x∩ = Mz∩.

with † being the pseudoinverse. We here now end up with solving no more than
∑R

r

(
N
r

)
systems of

r linear equations to find all regions, which has an equal cost in N as the previous cases.

We here provide pseudocode. For simplicity, we restrict ourselved to the case of D = 1 and assume
that the arrangement specified by M and h is in general position. This can be generalized to the
general setting as presented in the proof.

Algorithm 1: Improved exhaustive search for all fixed points

Data: N ∈ RN×R,M ∈ RN×R,h ∈ RN

Result: z_set set of all fixpoints, D_set the set of all relevant DΩ configurations.

D_set := {};
z_set := {};
idx = [1, . . . , N ];

// Find feasible configurations
idx_comb = all

(
N
R

)
combinations of indices idx;

for (i1, . . . , iR) in idx_comb do
MR = M[(i1, . . . , iR), :];
hR = h[(i1, . . . , iR)];
// MR is invertible as the arrangement is in general position
z∩ = solve(MR,hR);
x∩ = Mz∩;
d_init = x∩ > h;
for (v1, . . . , vR) in {0, 1}R do

d = d_init[(i1, . . . , iR)].set(v1, . . . , vR) ;
DΩ = diag(d) ;
D_set = D_set ∪ {DΩ};

end
end

// Find fixed points, for the at most
∑R

r=0

(
N
r

)
configurations

for DΩ in D_set do
z∗ = solve(NTDΩM− I,NTDΩh) ;
x∗ = Mz∗;
// check if fixed point is consistent with assumed DΩ

if diag(x∗ > h) == DΩ then
z_set = z_set ∪ {z∗};

end
end
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B Additional figures & tables

B.1 Additional statistics for Teacher-Student setups

Supplementary Figure 4: a-c) Pairwise correlations between units of the modes for panel a-c) of
Fig. 3, respectively. Note that c is computed over all conditions.

Supplementary Figure 5: Our method allows recovering the true latent noise in student-teacher setups.
We repeated the experiment of Fig. 3a for teacher networks with three levels of latent noise, with
diagonal covariances matrices Σz = σ2I. For each teacher we trained 5 student networks with
varying number of particles (k), as well as using the bootstrap proposal (i.e., sampling from the prior).
The standard deviations σ of the latent noise process only matches between the student and teacher,
if we use enough particles during training. The bootstrap proposal (with k=64) is not as reliable as
the optimal proposal.

Supplementary Figure 6: To demonstrate that our method works with time-varying input, a rank-1
teacher RNN with 60 units was trained to report the sign of a time-varying stimulus (left). We then
generated 400 trials of data with observation noise covariance Σx = .01I and latent noise covariance
Σx = .0025I. We trained a student on the observed activity of the teacher for 400 epochs. The
matching latent dynamics of the student and teacher lie in the column space of the recurrent and input
weights (right; coordinates z and s̃, respectively; see Supplement C.2).
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B.2 EEG: Inferring full-rank RNNs

Supplementary Figure 7: We fit full-rank RNNs to EEG data, by parameterising the mean of the
transition distribution as F (zt) = azt + (1− a)Jϕ(zt). We trained full-rank RNNs with 30 units (a
roughly similar amount of parameters as our rank-3 RNNs with 512 units), as well as full-rank RNNs
with 128 units (over 10 times more parameters). The KL divergence-based measure (Dstsp), between
generated samples and data is worse for the full-rank RNNs, while also being less interpretable.

Supplementary Figure 8: Latent Factor Analysis via Dynamical Systems (LFADS) [7] is a current
method that can be used to fit RNNs to neural data, and while it is generally used for inference, can
also be used for generation. We here explored sampling from LFADS, both using the autonomous
version, and when using the controller (i.e., stochastic inputs). We fitted LFADS to the HPC-2 dataset
(using AutoLFADS for model selection [68]). a) In the case of an autonomous LFADS model, one
samples an initial condition from the prior and then simulates a deterministic RNN forward. As on
long sequences not all variability can be explained by variability in the initial condition, the latents
end up not representing any variability that resembles the underlying system (cf. Fig. 5). b) In
the case of a full LFADS model with the controller, one can sample both an initial condition and
time-varying inputs from the controller’s auto-regressive prior. Here the full model seemed to rely
overly on the controller’s data-inferred inputs for inference, which deviated quite strongly from the
samples from the controller’s auto-regressive prior. As a consequence, the generated latents do not
seem to represent variability that is meaningful.

B.3 HPC-2, additional results

Supplementary Figure 9: The Hellinger distance (DH ) between the power spectrum of latents and
LFP of HPC-2 is lower when using the bootstrap proposal or too few particles (left), and simulated
data is slightly worse when using the bootstrap proposal (right)
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B.4 HPC-11, additional results

Supplementary Figure 10: a) We fit a rank-4 RNN to spikes recorded from rat hippocampus [50–52],
and generate new samples from the RNN (right), taking only the part of the recording where the rat
is running. b) Single neuron statistics. The mean rates and coefficient of variations of interspike
interval (ISI) distributions of a long trajectory of data generated by the RNN (gen) match those of
a held-out set of data (test). As a reference we additionally computed the same statistics between
the train and test set. c) Population level statistics. The pairwise correlations between neurons for
generated data and the test data. d) The corresponding latents generated by the RNN consists of 10Hz
(fast theta) oscillations on top of slower oscillations. e) Latents with further zooming in (on time),
shown together with the LFP signal. f) The power spectrum of latents sampled from the RNN, which
show power at a slightly higher frequency than that of the LFP [54].

Supplementary Figure 11: We additionally fit a rank-12 RNN to a whole recording (2067 seconds
resampled to 40 Hz) which includes long bouts where the rat is stationary. a) We generate a new
sample from the RNN and obtain matching spike statistics. b) Generated latents by our model. c)
Inferred posterior latents can again be used to predict the location of the rat on a held-out set. d)
Using the same decoder on generated latents, we obtain a model that also predicts alternating bouts
of stationarity and running. e) The mean power of the latents at theta frequency during running bouts
is higher then during stationarity bouts. The increased theta power during running is also there in the
LFP data — again with latent dynamics obtained from spiking data oscillating at a slightly higher
frequency than the LFP.
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Supplementary Figure 12: Spiking statistics of model-generated (teal) and train data (brick red)
compared against test data.
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B.5 Neural Latents Benchmark evaluation

We applied our method to the MC_Maze dataset of the Neural Latents Benchmark (NLB) [56] at 20
millisecond bin size (Table 2), by using our method to obtain expected Poisson rates, given a filtering
posterior over latents. The benchmark evaluates methods on a number of metrics: ‘co-bps’ (co-
smoothing bits-per-spike) assesses the quality of firing rate predictions for a set of held-out neurons
that are unobserved in the test data, evaluated with the Poisson likelihood of the true spiking activity
given the rate predictions. ‘vel R2’ evaluates how well the model’s inferred firing rates can predict
the subject’s hand velocity. ‘PSTH R2’ evaluates how well peri-stimulus time histograms (PSTHs)
computed from model-inferred rates match empirical PSTHs from the data. ‘fp-bps’ evaluates
predictions on heldout timesteps (which we predict by running the RNN forward from the last
data-inferred step). We found that our method outperforms classical methods (GPFA [69] and SLDS
[30]) while certain state-of-the-art deep learning (LFADS [7, 68], Neural Data Transformer [70]) are
slightly better than our method on the ‘co-bps’ metric, but our method matches them in the ‘vel R2’
metric (in case we include smoothing information in the proposal) . We do note that NLB metrics
center around evaluating the quality of smooth rates inferred from spikes, which is not the central
focus of our method, which is generation, i.e., sampling noisy trajectories that reproduce variability
in the data. We here found that the quality of inference increased when using an non-causal CNN
encoder as part of the proposal distribution, and additional gains might be obtained by also changing
the target distribution to a smoothing (instead of a filtering) one [71].

While our method also has comparatively lower dimensionality than the other deep learning ap-
proaches, a latent dimensionality of 36 is still considerably higher than all networks considered in the
Main text. We reason that we need a high number of latents, because the full MC_Maze dataset has a
large number of conditions (108), spanning multiple maze-configurations, which may be difficult to
fully model with autonomous low-dimensional latent dynamics.

Table 2: Performance of our method on the MC_Maze dataset of the Neural Latents Benchmark, ‘dim’
refers to the dimensionality of the model’s underlying dynamics (where possible).

method dim co-bps ↑ vel R2 ↑ PSTH R2 ↑ fp-bps ↑
Spike smoothing 137 0.2076 0.6111 −0.0005 —
GPFA 52 0.2463 0.6613 0.5574 —
SLDS 38 0.2117 0.7944 0.4709 −0.1513
LFADS 100 0.3554 0.8906 0.6002 0.2454
NDT 274 0.3597 0.8897 0.6172 0.2442

Ours 36 0.3225 0.8479 0.5927 0.2184
Ours (non-causal) 36 0.3407 0.8902 0.5963 0.2417

B.6 Stimulus-conditioning in monkey reaching task

For the experiment with stimulus-conditioned dynamics in the monkey reaching task, we tested the
performance of models with and without the conditioning inputs. We found that the conditioning
inputs allow the networks to perform better on velocity decoding at lower dimensionalities.

Table 3: Performance benefits of conditioning for monkey reaching task.

conditioning dim vel R2 ↑

w/o
conditioning

5 0.7897± 0.0687
6 0.8944± 0.0039
8 0.9085± 0.0048

16 0.9196± 0.0041

with
conditioning

5 0.8589± 0.0493
6 0.9018± 0.0114
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Following the analysis in Fig. 7, we also further visualized the model’s match to the spiking statistics,
including mean and standard deviation (SD) of spiking rate, and mean, SD, and coefficient of variation
(CV) of inter-spike intervals. We observed a good match to the mean and SD of the spiking rate
across all conditions. Match to ISI statistics is also quite reasonable given the noise observed between
estimates of the statistics from train and test.

B.7 Comparison to an approximate method for finding fixed points

Supplementary Figure 13: Repetition of the experiment of Fig. 8, but now with a rank-2 RNN with
128 units. Again, we show the number of fixed points found as a function of the number of matrix
inverses computed, with errorbars denoting the minimum and maximum amount of fixed points found
over 20 independent runs of the algorithm.

Recently an approximate method for finding fixed points in piecewise-linear RNNs was proposed
[25]. The method proceeds by randomly selecting a linear region (a configuration of DΩ, see
Supplement A.1.2) and calculating the corresponding fixed-point. If it is indeed a ‘true’ fixed point
of the RNN (it is consistent with the assumed DΩ), we store it. If the fixed point was inconsistent
with the assumed DΩ, we iteratively initialize DΩ according to the ‘virtual’ fixed point found and
calculate the new fixed point corresponding to this DΩ, until we either reach a ‘true’ fixed point or
reach a certain amount of iterations. Then, we reinitialize at a randomly selected new configuration
of DΩ and repeat the procedure.

Under some conditions, the approximate method can be shown to converge in linear time (∥MÑT∥+
∥aI∥ ≤ 1) [8], where it will be faster than our exact method — however in general the convergence
of the approximate method strongly depends on the dynamics of the networks. In particular, there
are reasonable settings where the approximate method fails to find all fixed points, such as of a
rank-2, 128 unit RNN with 17 fixed points (trained similarly to the teacher RNN of Fig. 3c; Fig. S13).
While an in-depth study of the approximate method is out of scope, we hypothesize that the failure
to converge is because when initializing with randomly selected DΩs out of (D + 1)N possible
configurations, the approximate method tends to converges to the same set of DΩs.

Our method is completely independent of the dynamics of the system and has a fixed cost, after which
one is guaranteed that all fixed points are found. However, we do note that there can be scenarios
where our exact method is still too costly. In this scenario, we propose to use the approximate method,
with one adjustment - we first pre-compute the subset of

∑R
r Dr

(
N
r

)
configurations that can contain

fixed points, and then initialize the approximate method using randomly selected DΩ from this subset.
Empirically, this leads to better convergence in at least some scenarios (Fig. 8, Fig. S13)

For the approximate method, we used code from https://github.com/DurstewitzLab/CNS-2023, which
was released with the GNU General Public License.

C Additional details of low-rank RNNs

C.1 Discretisation

Given

τ
dz

dt
= −z(t) +NTϕ(Mz(t)) + Γzξ(t),
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Using the Euler–Maruyama method with timestep ∆t:

zt+1 = (1− ∆t

τ
)zt +

∆t

τ
NTϕ(Mzt) +

√
∆t

τ
Γzϵt,

and with ϵt ∼ N (0, I), define a = 1− ∆t

τ , Ñ = ∆t

τ N, and Σz = ∆t

τ2 ΓzΓ
T
z , we obtain the transition

distribution used in our experiments. Note the slight ‘overloading’ of t here, as the discrete time
indice t of e.g., zt corresponds to the continuous time z((t− 1)∆t).

C.2 Conditional generation

Given input weights H ∈ RN×Ns and stimulus s ∈ RNs , we define our model as

τ
dx

dt
= −x(t) + Jϕ(x(t)) +Hs(t) + ξx.

Using the same assumptions as before, x can be described by R+Ns variables

τ
dz

dt
= −z(t) +NTϕ(Mz(t) +Hs̃(t)) + ξz,

τ
ds̃

dt
= −s̃(t) + s(t),

with x = Mz+Hs̃, and
[
z
s̃

]
= ([M,H]T[M,H])−1[M,H]Tx.

We can write the distribution generated after discretization as:

p(z1:T ,y1:T , s̃1:T |s1:T−1) = p(z1)p(s̃1)

T∏
t=2

p(s̃t | st−1)p(zt | s̃t−1, zt−1)

T∏
t=1

p(yt | s̃t, zt),

p(zt | s̃t−1, zt−1) = N (F (s̃t−1, zt−1),Σz), p(z1) = N (µz1
,Σz1

),

p(s̃t | s̃t−1, st−1) = δ(as̃t−1 + (1− a)st−1), p(s̃1) = δ(0),

where the mean of the transition distribution is F (s̃t, zt) = azt + ÑTϕ(Mzt +Hs̃t).

For constant input s, s̃ will converge to s, and we can ignore the additional Ns variables, assuming
x(0) = Mz(0)+ s. Similarly if s varies on a time scale slower than τ , s ≈ s̃ is a good approximation
[21]. Here, for experiments where the input is a constant context signal (Fig. 7), we substitute s for s̃
and consider the R dimensional system described by z (which now has additional conditioning on s):

p(z1:T ,y1:T | s1:T ) = p(z1)

T∏
t=2

p(zt | st−1, zt−1)

T∏
t=1

p(yt | st, zt),

p(zt | st−1, zt−1) = N (F (st−1, zt−1),Σz), p(z1) = N (µz1 ,Σz1),

where F (st, zt) = azt + ÑTϕ(Mzt +Hst).

C.3 Linear transformations of the latent space and orthogonalisation

Given
xt+1 = axt +MÑTϕ(xt) + ϵx

zt+1 = azt + ÑTϕ(Mzt) + ϵz

with ϵz ∼ N (0,Σz), ϵx ∼ N (0,MΣzM
T). We can do any linear transformation of the latent

dynamics z: ẑ = Az, as long as A has rank R, without changing the neuron activity x. To see this,
define M̂ = MA−1, N̂ = AÑ, and ϵẑ ∼ N (0,AΣzA

T ), giving us:

xt+1 = axt + M̂N̂Tϕ(xt) + ϵx

ẑt+1 = aẑt + N̂Tϕ(M̂ẑt) + ϵẑ,

which will leave x unchanged, while our latents z are expressed in a new basis. We typically got
a more interpretable visualization of the latents by orthonormalising the columns of M. Thus we
applied for all visualisations after training A = UTM, with M̂ = U, where U are the first R left
singular vectors of J = MNT.
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D Details of empirical experiments

D.1 Training details

D.1.1 Initialisation

Our models are (unless noted otherwise) initialized as follows:

Ñij ∼ U[− 1√
N

, 1√
N

],

Mij ∼ U[− 1√
R
, 1√

R
],

Wij ∼ N (0,
2

R
),

Hij ∼ U[− 1√
Ninp

, 1√
Ninp

],

hi ∼ U[− 1√
N

, 1√
N

],

b← 0,

a← .9,

Σz ← .01I,

Σz1 ← I,

µz1 ← 0,

where W and b are the output weights and biases respectively. For Gaussian observations we
initialise Σy ← .01I.

For experiments with Poisson observations, we jointly optimized a (usually causal) CNN encoder as
part of the proposal distribution. The CNN was conditioned on observations and predicted the mean
and log variance of a normal distribution. It consisted of common initial layers consisting of 1D
convolutions, with a GeLU activation function, and a separate output convolution for the predicted
mean and (log) variance. The CNN was initialized to the Pytorch [72] defaults, except for the bias of
the log variance output layer, to which we added a log(.01) term, such that the output matches the
initially predicted variance of the RNN. The exact number of layers and channels are reported in the
sections for each experiment.

For the teacher-student setups, we used as non-linearity ϕ(xi) = max(xi − hi, 0) for both the
students and the teachers, and for all experiments with real-world data, we used the ‘clipped’
ϕ(xi) = max(xi + hi, 0)−max(xi, 0) [8].

D.1.2 Parameterisation

We constrain a to be between 0 and 1 by instead optimising ã with the following (sigmoidal)
parameterisation a = exp(− exp(ã)) [73]. In experiments with the optimal proposal, we estimate
the full Σz, which we constrain to be symmetric positive definite, by optimizing a lower triangular
matrix C such that Σz = CCT , where we additionally constrain the diagonal of C to be positive
using Cii = exp(C̃ii/2). For all diagonal covariances, we parameterise the diagonal elements using
Σii = exp(Σ̃ii). For Poisson observations, we apply a Softplus function to rectify the predicted rate.

D.1.3 Optimisation

During training we minimise the variational SMC ELBO [33–35] (Eq.7) with stochastic gradient
descent, using the RAdam [74] optimiser in Pytorch [72]. We generally use an exponentially decaying
learning rate (details under each experiment).

D.2 Teacher student experiments

D.2.1 Dataset description

We created datasets by first training ‘teacher’ RNNs to perform a task and then generating observations
by simulating the trained teacher RNNs.
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For Fig. 3a, b we used code from [22] (https://github.com/mackelab/phase-limit-cycle-RNNs, Apache
licence) to train rank-2 RNNs to produce oscillations, using a sine-wave with a periodicity of 50
time-steps as a target and an additional L2 regularisation on the rates. After training, we extracted
the recurrent weights M,N and biases h, orthonormalized the columns of M, and created a dataset
by simulating the model for 75 timesteps, with Σz = .04I. For Fig. 3a we used N = 20 units and
generated observations according to G = N (Mzt,Σy), with Σy = .01I. Fig. 3b we used N = 40
units and generated observations according to G = Pois(Softplus(wMzt − b), with w = 4 and
b = 3.

For Fig. 3c, we followed a similar procedure but now trained the teacher RNN on a task where it has to
use input. After an initial period of 25 time steps, a stimulus was presented for 25 timesteps consisting
of [sin(θ),cos(θ)]T, where θ was randomly selected every trial out of 8 fixed angles. The RNN was
tasked to produce output that equals the transient stimulus for the next 100 time-steps. Here we
used N = 60 units, Σz = .0025I and generated observations according to G = N (Mzt,Σy), with
Σy = .0025I. The training data for the student RNN was included for each trial the corresponding
stimulus.

D.2.2 Training details

The ‘student’ RNNs had 20, 40, 60 units, respectively and rank R = 2, matching that of the teacher
RNNs. For Fig. 3a, c. The observation model was a linear Gaussian according to G = N (Mzt,Σy),
and we used the optimal proposal distribution. For Fig. 3b we used G = Pois(Softplus(WMzt−b)),
with W a diagonal matrix (scaling the output of each unit individually). For Fig. 3b, we used a
causal CNN encoder as part of the proposal distribution. It consisted of 3 layers, with kernel sizes
(21, 11, 1), and channels (64, 64, 2). We used (causal) circular padding.

For all three experiments, we used k = 64 particles, batch-sizes of 10, and decreased the learning rate
exponentially from 10−3 to 10−5. For Fig. 3a we trained for 1000 epochs of 200 trials, for Fig. 3b
for 1500 epochs of 400 trials and for Fig. 3c for 200 epochs of 800 trials. We used a workstation
with a NVIDIA GeForce RTX 3090 GPU for these runs. One model took about 3 to 4 hours to finish
training.

D.2.3 Evaluation setup

For Fig. 3 we generated long trajectories of T = 10000 time-steps of data for both the student and
teacher RNNs. To facilitate visual comparisons between student and teacher dynamics, we also
orthonormalized the columns of the students weights M after training, and for Fig. 3a,c picked signs
of the columns of M such that the student and teacher match (note that after orthormalizing, the
columns of M are equal to the non-zero singular vectors of the full weight matrix J, which are
only unique up to a sign flip). As noted before, this leaves the output of the model unchanged. The
autocorrelation in Fig. 3a was computed by convolving a sequence of lag= 120 steps of data with
itself (with duration 2×lag), and normalising such that lag=0 corresponds to a correlation of 1. We
repeated this for 80 sequences starting at different time-points of the whole trajectory.

D.3 EEG data

D.3.1 Dataset description

We used openly accessible electroencephalogram (EEG) data from [42, 43] (
https://www.physionet.org/content/eegmmidb/1.0.0/, ODC-BY licence). The data was recorded from
a human subject sitting still with eyes open (session S001R01), and was sampled at 160 Hz. Like
[8], we used the full 1 minute of recording, but unlike [8], we did not smooth the data (but just
standardized the data). Thus, to compare our performance to [8], who ran their evaluation using the
smoothed data, we smoothed our generated samples equivalently, using a Hann filter with a window
length of 15-time bins, so that we can also compare our samples to the smoothed data.

D.3.2 Training details

We used N = 512 units, and rank R = 3. The observation model was a linear Gaussian conditioned
on the hidden state and we used the optimal proposal distribution. We trained for 1000 epochs
consisting of 50 batches of size of 10, and k = 10 particles. The learning rate was decreased
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exponentially from 10−3 to 10−6. Models were trained using NVIDIA RTX 2080 TI GPUs on a
compute cluster. A single model took between 4 and 5 hours to finish training.

D.3.3 Evaluation setup

We used our RNN to generate one long trajectory of T = 9760 steps of data, yt (after discarding the
first 2440 steps), which we compare to the EEG data, ŷt, using two evaluation measures from [8, 24]
(using code from https://github.com/DurstewitzLab/GTF-shPLRNN, GNU General Public License):

Dstsp: This is an estimate of the KL divergence between the ground truth and generated states.
To compute this, we obtained kernel density estimates of the probability density functions (over
states, not time), using a Gaussian kernel with standard deviation σ = 1. We get for the EEG data:
p̂(y) = 1

T

∑T
t=1N (ŷt, I), and for the generated data q̂(y) = 1

T

∑T
t=1N (yt, I). We then used the

following Monte Carlo estimate of the KL divergence: Dstsp ≈ 1
n

∑
log p̂(ŷi)

q̂(ŷi) , using n = 1000

samples ŷi drawn randomly from the EEG data.

DH: This is an estimate of the difference in power spectra between the ground truth and generated
states. We first computed for each data dimension the spectra ŷi

ω , yi
ω for the EEG and generated data,

respectively. We used a Fast Fourier Transform, smoothed the estimates with a Gaussian kernel with
standard deviation σ = 20, and normalized the spectra so they sum to 1. We computed the mean of
the Hellinger distances between the spectra: DH = 1

64

∑64
i

1√
2
∥
√

ŷi
ω −

√
yi
ω∥.

D.4 Hippocampus HC-2

D.4.1 Dataset description

We used openly accessible neurophysiological data recorded from layer CA1 of the right dorsal
hippocampus [47, 48] (https://crcns.org/data-sets/hc/hc-2/about-hc-2. Signals were recorded as the
rats engaged in an open field task, chasing drops of water or pieces of food that were randomly placed.
We used the session ec013.527 from rat ID ec13, which is approximately 1062 seconds long. From
37 units (neurons) we used 21 neurons that have maximal spike counts, discarding the rest of the
comparatively silent neurons. We binned the spike data to 10ms. We used the first 80 percent of the
data for training, and the rest was saved for testing purposes.

D.4.2 Training details

We used N = 512 units, and rank R = 3 for the run that was used in our Fig. 5. We used a causal
CNN encoder as part of the proposal distribution, which consisted of 3 layers with kernel sizes (150,
11, 1), with (64, 64, 3) channels. During our study, we swept over multiple ranks and found that
theta oscillations consistently emerged from rank 3 onwards, after which reconstruction accuracy
was relatively stable. For each rank, we used three different seeds and two different first layer sizes
for the encoder, 25 or 150. The duration of a randomly sampled trial (sequence length) from the
whole data was 94 time steps when the first layer size was 25, and 219 when the first layer size was
150. We, however, also found that the choice of the duration did not affect the results much. We
trained the model using 3000 epochs, each epoch consisting of 3000 trials with 64 batches and k = 64
particles. The learning rate was decreased exponentially from 10−3 to 10−6. A single model took
approximately 21 hours to finish training on a NVIDIA RTX 2080 TI GPU on a compute cluster.

D.4.3 Evaluation setup

We used our RNN to generate data that matches the duration of the test data, which is 20810 time steps
(∼208 s) (after discarding the first 1000 steps). We compare different spike statistics of generated
data with test data, and for comparison purposes, we also compared the same statistics measurements
between train and test data as well. We calculated the mean firing rate of each neuron, mean of ISI
distributions, and pairwise correlations. We used a band-pass filter 1-40 Hz for the latents and the
LFP signal before calculating the powerspectrogram (Fig.5e).
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D.5 Hippocampus HC-11

D.5.1 Dataset description

We used openly accessible neurophysiological data recorded from hippocampal CA1 region [50–52]
(https://crcns.org/data-sets/hc/hc-11/about-hc-11). We used the subset of the dataset called the maze
epoch, where a rat was running on a 1.6-meter linear track, with rewards located at each end (left
and right). Throughout this task, neural activity was recorded from 120 identified pyramidal neurons.
As in [13], we only used 60 neurons that had sufficient activity and discarded rest of the units. We
used code from [53] (https://github.com/zhd96/pi-vae) to preprocess the spike data, and only use data
corresponding to the rat running and the location data being available for the results shown in Fig. 6
and Fig. S10. For the model shown in Fig. S11 we used the last 1350s of data of the Maze epoch,
which also includes bouts where the rat is stationary. We used 25ms bins.

D.5.2 Training details

We used N = 512 units, and rank R = 4 for Fig. 6 and Fig. S10 and rank R = 12 for Fig. S11. We
used a causal CNN encoder with zero padding with 3 layers (24, 11, 1), (64, 64, 4) channels, and 3
layers (150, 11, 1), (128, 64, 12) channels, respectively. The models were trained for 3000 epochs,
each epoch having 3000 trials with a sequence length of 94 time bins (2.35 s) and 219 bins (5.48
s), respectively. We used batch sizes of 64 and k = 64 particles. The learning rate was decreased
exponentially from 10−3 to 10−6. A single model took approximately 21 hours to finish training on a
NVIDIA RTX 2080 TI GPU on a compute cluster.

D.5.3 Evaluation setup

We used our RNN to generate data that matches the duration of the test data, which is 4289 time
steps (∼107 s) (after discarding the first 1000 steps) for Fig. 6 and Fig. S10 and 16539 time steps
(∼413 s) for Fig. S11. We calculated the mean firing rate of each neuron, coefficient of variations
of ISI distributions, and pairwise correlations. For the R2 reported in the Main text, we fit a ridge
regression model to the posterior latent variables on the training data, after smoothing with a Hann
window of size 100, and apply the regression model to latents inferred from the test data.

D.6 Monkey Reach

D.6.1 Dataset description

We used the publicly available MC_Maze dataset from the Neural Latents Benchmark (NLB) [56]
(https://dandiarchive.org/dandiset/000128, CC-BY-4.0 licence). The data were recorded from a
macaque performing a delayed center-out reaching task with barriers, resulting in a variety of straight
and curved reaches. For simplicity, we took only the trials with no barriers and thus straight reach
trajectories, resulting in 592 training trials and 197 test trials. We binned the data at 20 ms and aligned
each trial from 250 ms before to 450 ms after movement onset.

To create conditioning inputs for the model, we took the x and y coordinates of the target position for
each trial and scaled them to be between −1 and 1. We then provide this scaled target position as
constant context input to the RNN for the duration of the trial.

D.6.2 Training details

We ran a random search of 30 different models with rank r ∈ 3, 4, 5, 6 and particle number k ∈
16, 32, 64. All models had 512 units and used a causal CNN encoder with kernel sizes (14, 4, 2)
and channels (128, 64, r). We used (causal) reflect padding. We trained each model for up to 2000
epochs, terminating training early if no improvement was seen for 50 epochs. Each model took
around 3 to 4 hours to train on an NVIDIA RTX 2080 TI GPU on a compute cluster. Seeing that a
rank of 5 was sufficient for velocity decoding R2 ≈ 0.9, we took the best-performing rank-5 model
for subsequent analyses.
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D.6.3 Evaluation setup

For qualitative evaluation of replication of cross-condition differences, we grouped the reach targets
in the data into 7 conditions, one at each corner and the midpoint of each edge of the rectangular
reach plane, excluding the midpoint directly at the bottom. We then generated data from the model
RNN using conditioning inputs from the test trials of the real data. Then, for the test data and the
model-generated data, we computed mean firing rate and inter-spike interval for each neuron for
each condition. We then computed correlation distance (1− r, where r is the Pearson correlation
coefficient) on the neuron statistics between conditions in the test data and model-generated data.

For generation of data for Fig. 7d, e, we selected target locations by choosing angles from 0 to 360◦,
evenly spaced by 22.5◦, and determined the corresponding reach endpoint on a square spanning from
(−1,−1) to (1, 1). We then constructed conditioning inputs similar to the real data using these target
locations and simulated the RNN with them. To decode the reaches, we used a linear decoder trained
from inferred firing rates to reach velocity from the real data.

D.7 Neural Latents Benchmark

D.7.1 Dataset description

We again used the publicly available MC_Maze dataset from NLB (see Supplement D.6.1). We
resampled the data to 20 ms bin size and followed the standard data preprocessing procedures for the
benchmark, as described in [56].

D.7.2 Training details

We ran a random search of 30 different models with varying rank from 12 to 40 and particle number
k ∈ 16, 32, 64. All models had 512 units and used a used a CNN encoder with kernel sizes (14, 4, 2)
and channels (128, 64, 36), either with causal reflect padding or acausal zero padding. We trained
each model for up to 2000 epochs, terminating training early if no improvement was seen for 50
epochs. Each model took around 10 to 12 hours to train on an NVIDIA RTX 2080 TI GPU on a
compute cluster.

Because the primary task of the benchmark is co-smoothing, i.e., prediction of held-out neuron
firing rates from held-in neurons, we provide the encoder with only the activity of held-in neurons.
However, the observation likelihood component of the ELBO is computed on all neurons, held-in
and held-out.

After training, we selected the model with the best co-smoothing score on the validation split and
submitted its predictions to the benchmark for the final evaluation.

D.7.3 Evaluation setup

Automated evaluation was performed on the benchmark platform, as described in [56].

We used for the prediction at timestep t, the expected Poisson rate of held-out neurons, conditioned
on the activity of held-in neurons at the current and previous timesteps, by making use of the filtering
Posterior (Eq. 3). We averaged over 32 sets of trajectories with 192 particles each.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims are a) That we can fit stochastic (low-dimensional) low-rank
RNNs to noisy neural data with variational SMC, and b) that we can analytically obtain
the fixed points of the RNNs, if they are sufficiently low-rank. Claim a) is supported by
4 experiments with real datasets (after validation on student-teacher setups), where we
obtain RNNs whose generated samples match the statistics of those datasets while having an
underlying dynamical system that is 3-5 dimensional. Claim b) is supported by an extensive
proof, as well as 2 numerical experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In our discussion, we discussed restrictions on the noise model of our transition
distribution, which currently has to generate (correlated) samples, such that they lie in the
space of M. In addition, we discuss the limitations of our analytic method for finding fixed
points when the model’s rank is not low.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have an extensive proof of our theoretical result on fixed points in low-rank
piecewise-linear RNNs in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our Supplement contains for each experiment a separate section that includes
the exact experiment setup, hyperparameters, and evaluation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code to reproduce our results is available at https://github.com/
mackelab/smc_rnns.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Hyperparameters, data splits and so on are described for each experiment in
the Supplement.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Where-ever we show uncertainty, the figure or table caption reports what it is
over.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In the experiment details of the Supplement, we report the GPU used, as well
as the approximate compute-time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There is nothing that disagrees with any of the statements in the Ethics
guideline.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]

37

https://neurips.cc/public/EthicsGuidelines


Justification: Our work is fundamental, we do not directly apply our approach to any
problems with societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not foresee that our models have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We included links to all assets used, cited the requested papers, and mentioned
the licenses if available.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Our code includes a new method to find fixed points in piecewise-linear low-rank RNNs,
available at https://github.com/mackelab/smc_rnns.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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