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ABSTRACT

Human activity is organized by the physical infrastructure such as roads and build-
ings, making their characterization essential for applications ranging from disaster
preparedness and national security to real estate analytics and public resource al-
location. Despite the availability of datasets detailing building attributes many of
these are incomplete, particularly in data scarce regions, limiting their utility in
critical decision making tasks. We propose a deep learning approach for imputing
missing building attributes by learning from sparse to no observed data, expert
knowledge, and spatial correlations among buildings. Our model is based on a
Vector Quantised-Variational AutoEncoder (VQ-VAE) architecture with a graph
neural network (GNN) encoder that captures spatial dependencies, while an ad-
ditional KL-divergence based loss term incorporates expert-informed priors. By
jointly leveraging observed data and expert-informed priors, the model learns la-
tent representations that enable imputing missing data for attributes with little or
no training data. Experimental results on real-world datasets demonstrate the ro-
bustness and effectiveness of our proposed method.

1 INTRODUCTION

Buildings, roads and among other infrastructure is how humans organize there daily lives. Under-
standing key building attributes, such as, building use type, floor counts, construction material, and
foundation is critical for application in disaster management, national security, real estate develop-
ment, and equitable resource allocation. Accurate building attribution can help inform policy makers
with decision making at local and national levels.

Several publicly available datasets aim to capture this information, including OpenStreetMap
(OSM) |OpenStreetMap contributors| (2017), Microsoft’s US Building Footprints Microsoft| (2018]),
and FEMA’s USA Structures dataset|Yang et al.[(2024). While these datasets provide valuable cov-
erage, they are often incomplete especially in developing regions or rural areas.

Manual surveys and remote sensing approaches can partially address these gaps, but they are costly,
time-consuming, and difficult to scale globally. To bridge this gap, there is a growing need for
scalable, automated approaches to impute missing building attribute data using machine learning
methods that can generalize across geographies and data regimes. We posit that building attributes
arise from an underlying structural latent representation, which can be learned and exploited for
imputation.

In this work, we propose a deep learning approach to address the challenge of incomplete build-
ing attribute datasets. The method is built on a Vector Quantised-Variational AutoEncoder (VQ-
VAE) van den Oord et al.| (2018)); Nazabal et al.| (2018) framework, with a graph neural network
(GNN) Zhou et al.| (2021)) encoder that learns spatial relationships between neighbouring buildings.
These spatial cues, such as proximity and shared neighborhood characteristics often carry valuable
implicit information [Besag & Kooperberg (1995) about building types and attributes.

Moreover, we enhance the VQ-VAE with an expert-elicitation guided training, introduced through
a KL-divergence-based loss term. By combining learned data representations with expert-guided
constraints, the model produces imputations that are aligned with domain knowledge.
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We validate the proposed approach using real-world data from sources such as OpenStreetMaps
(OSM) and USA Structures. The results show that the proposed model outperforms traditional
imputation methods, particularly in data-poor settings where standard approaches struggle.

Our key contributions are as follows:

* We introduce the first application of VAEs for imputing incomplete building data, providing
a fast and scalable solution to a long standing challenge.

* We exploit structural distinctions in building types by shaping the latent space with discrete
building representations via vector quantization.

* We leverage aggregate-level expert priors into latent space, enabling informed imputations
in regions with little or no observed data.

* We enable testing of domain assumptions about the built environment by encoding them
explicitly in a directed acyclic graph.

2 METHOD

We propose a Expert-Guided Variational Autoencoder (EGVAE) with a graph neural network
encoder, a vector quantization bottleneck, and a multi-head decoder. We also assume a directed
acyclic graph (DAG) that encodes relationships between building attributes. The model is trained to
minimize reconstruction error while respecting a prior distribution defined by expert elicitations that
are represented as conditional probability tables (CPTs). The CPTs describe numerical probabilities
associated with each dependency in the DAG.
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Figure 1: The forward pass involves processing input data consisting of n buildings, each character-
ized by d categorical attributes, with each attribute having ¢; € (co, - - - , cq—1) possible categories.
Each attribute in the input data is embedded into a space of dimension d., with an additional cat-
egory to account for missing values. These individual embeddings are concatenated into an input
data matrix H, which is then mapped to a latent space of dimension d, by the encoder g4. The
resulting latent representations Z are quantized to one of k prototype vectors, which represent the
embeddings in the latent space. Finally, the quantized embeddings Z are projected into a probability

vector space X using the decoder py with a softmax normalization.

2.1 PROBLEM SETUP

Let X € {—1,0,...,c;—1}"*? denote a categorical tabular dataset with n buildings and d building
attributes (features), where each feature X; with ¢; categories takes values from {—1,0,...,¢; —
1} and —1 represents missing data. Dependencies between features are modeled using a directed
acyclic graph D = (V, E), with nodes corresponding to features and edges indicating conditional
relationships between them. While another directed graph G = (B, P) represents buildings B and
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edges P derived using adjacency matrix A corresponding to buildings in the 20 meter proximity of
each building.

2.2 MODEL ARCHITECTURE

2.2.1 ENCODER
Each feature X; is embedded using a learnable embedding matrix E; € R(¢:t1*de where the last
row handles the missing value indicator. For a batch of instances, the full input embedding is:

H = concat ([Ei(Xi)]?:l)

We apply a three-layer Graph Convolutional Network (GCN) |Kipf & Welling| (2017) with ReLU
activations and 35% MC Dropouts to encode these embeddings, using the adjacency matrix A of G:

ZY) = MCDropout(c(GCNConv; (H, A))) (1)
Z?) = MCDropout(c(GCNConvy (Z™1), A))) 2
Z = GCNConv,(Z?) | A) 3)

where o denotes the ReLU activation function and Z € R™*%: is the latent representation.

2.2.2 VECTOR QUANTIZATION

To enforce discrete latent variables, we use vector quantization with a learnable codebook £ =
{e; };?:1 C R Each latent vector z; is quantized to its nearest codebook vector:

2, =e;, wherel=argmin|z; — e;|
J

Z = concat([2;]},)

2.2.3 DECODER

The quantized representations Z are passed through a shared hidden layer and then to separate
output heads for each feature:

h =ReLU(WZ2 + b) 4
&; = Softmax(W;h + b;) (5)
where W’s, b’s are learnable weights and biases, and &; € R is the predicted categorical distribu-

tion for the 7 feature.

2.3 LoSSs FUNCTION

The total training loss combines the reconstruction loss, vector quantization loss and CPT regular-
ization:
£t0tal = Erecon + ACCPT + ACVQ

each described below.

2.4 RECONSTRUCTION LOSS

To account for missing data, we compute the reconstruction loss only on observed entries using
cross-entropy:

d

1 o

Lrecon = E o1 g CrossEntropy(z\), z\?))
i=1 """ jeo;

where O; = {j | :vgj ) £ —1} denotes the set of observed indices for feature i.
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2.4.1 VECTOR QUANTIZATION LOSS

We follow the formulation of [van den Oord et al.|(2018)) and define the vector quantization loss as:
Lvq = |lsglz] — 215 + Bllz — sgl2]ll3

Here, the operator sg[-] denotes the stop-gradient operation, which treats its argument as a constant
during backpropagation. Specifically, sg[z] blocks gradients from flowing into the encoder, allowing
the codebook to be updated independently, while sg[2] ensures the encoder receives gradients to
align its output with the quantized vectors.

2.4.2 CPT-BASED REGULARIZATION

To incorporate prior knowledge, we regularize the model using conditional probability tables (CPTs)
associated with a Bayesian network structure D. For each variable X, let Pa(X;) be the set of its
parent variables. The CPT defines a conditional distribution P(X; | Pa(X;)).

Let &; be the predicted distribution and &; be the target CPT-derived distribution. We define the
CPT loss as the KL-divergence between the two:

d
Lepr =Y Dir(i | &)

i=1

If X; has no parents, ; is the marginal distribution; otherwise, it is selected based on the predicted
parent configuration.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

3.1.1 DATASETS

Table 1: Dataset Description: Percentage of Missing Values and Expert Priors Available.

Attribute Nashville (N=18,390) Amman (N=428,494) Mexico City (N=3,194,984)

% Missing Priors % Missing Priors % Missing Priors
purpose 0.0 v 33.04 v 7.25 v
area 15.51 v 0.00 X 0.00 X
facade 44.80 v 100.00 v 100.00 X
floors 0.14 v 0.01 v 99.94 v
roof shape 100.00 X 100.00 v 100.00 X
roof material 46.18 v 100.00 X 100.00 X
material 100.00 v 100.00 v 100.00 v
foundation 100.00 X 100.00 X 100.00 X
1lrs 100.00 v 100.00 v 100.00 v

We evaluate the proposed model on three separate real-world tabular datasets with d = 9 building
attributes for Amman, Jordan, and Mexico City. Due to the lack of publicly available datasets
that jointly provide building footprints, building attributes, and expert priors, we rely on internally
curated datasets for evaluation. All three datasets have a considerable amount of missing building
attributes with expert prior information on some attributes (Table [T). Additionally, we assume the
same graph structure D describing the relationships between building attributes for all three datasets
(Figure|2).

Additionally, we also report results on a synthetic dataset with 4 building attributes - area, height,
material and purpose. We first define the DAG (see Figure[3)) and the associated CPTs. The dataset
is generated by drawing (N = 5000) samples from the CPTs.
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3.1.2 CONDITIONAL PROBABILITY TABLES (CPTSs)

Many building attributes such as roof shape, floor counts, external facade are not indepen-
dent and therefore cannot be described by marginal distributions alone. They exhibit struc-
tured, hierarchical relationships for example, the likelihood of a building being classified as
tall is strongly dependent on area occupied by the building footprint and the use type of
the building, while the lateral load resistance system (LLRS) of a building is conditional on
both the floor count of the building and the primary construction material (see Figure [2).

Conditional probability tables (CPTs) provide a natural mech-
anism for representing such dependencies. Formally, a CPT
specifies the distribution of a categorical attribute X; condi- @ @
tioned on a set of parents attributes Pa(X;). Each row of the

table encodes @ @
P(X; | Pa(X;) = p), (6)
where p denotes a particular configuration of parent attribute @ @ @

values. The full set of CPTs defines a directed acyclic graph

over building attributes, ensuring the joint distribution factors o
as
d . . .
P(X1,- X)) = HP(Xi|Pa(Xi)) % Figure 2: Directed acyclic graph G

i=1
This representation enables explicit incorporation of domain knowledge. Structural engineers and
urban planners can specify plausible or implausible attribute combinations directly in the tables,
while also assigning relative probabilites to reflect common patterns observed in the built environ-
ment. Predefined structures such as Global Exposure Model [Yepes-Estrada et al.| (2023) provide a
global coverage on some of the building attributes that are leveraged in this study. The CPT frame-
work thus provides two critical functions in our modeling approach, First, it ensures that imputed
attributes remain internally consistent, respecting the conditional structures encoded by experts. Sec-
ond, it allows probabilistic models to integrate heterogeneous sources of information, while prior
CPT specifications act as regularizers in sparse-data contexts. This hybrid approach is particularly
valuable in regions where detailed building attribute labels are unavailable but expert knowledge of
local construction practices is strong.

3.1.3 IMPLEMENTATION DETAILS
We use the following hyperparameters for all models -
purpose
* Embedding Dimension: d. = 16

* Hidden Dimension: d), = 64 Carea ) Cmaterial

¢ Latent Dimension: d, = 32
¢ Codebook Size: k = 64 @

¢ Commitment Cost: 5 = 0.25 Figure 3: DAG for

We use the Adam optimizer with a learning rate of 1e—3. The model is trained ~Synthetic data
for 500 epochs for synthetic data on Apple M2 processor. Amman, Nashville

and Mexico city data is trained for 500, 500 and 1000 epochs respectively on

a 64-bit AMD EPYC 7742 clocked at 2.25 GHz.

3.2 EVALUATION METRICS

We use F1 scores to evaluate model performance, it is computed by comparing the imputed labels
against a held-out subset of the dataset. We evaluate the model in three steps. First, we compare the
average F1 score of our approach against existing imputation baselines to evaluate overall perfor-
mance (see Table E] and Table @) Second, we conduct an ablation study to assess the contribution
of each components of the model architecture (see Table ). Third, we test model’s robustness by
measuring imputation accuracy under varying levels of missingness (see Tables [5).
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3.3 RESULTS

3.3.1

MODEL ACCURACY

To evaluate imputation accuracy, we hold out 10% of the observed data for each attribute and use
them as ground truth for computing F1 scores. Due to lack of observed data we only hold out
10%. Our method is specifically designed to leverage aggregate level expert elicitations, which to
best of our knowledge is second of its kind expect for |Krapu et al.| (2023)). Other baselines chosen
to compare our method are popular imputation methods and most of them require training data.
Following are the baselines our proposed model is compared with:

* Mode: Missing values are imputed using the most frequent value in each column.

* MICE: Multiple Imputation by Chained Equations [van Buuren & Groothuis-Oudshoorn
(2011), which iteratively models each variable conditional on the others using regression-
based updates.

* ReMasker: Transformer-based approach for tabular data imputation |Du et al.| (2023).

* OT Imputer: Optimal transport-based approach for tabular data imputation Muzellec et al.
(2020).

* GBIMC: Hierarchical Bayesian model with conditional autoregressive priors designed for
spatially-informed attribute imputation Krapu et al.[(2023)).

Table 2: Synthetic data (N = 5000) imputation F1 scores.

Mode MICE OTImputer GBIMC EGVAE

Attribute Missingness
MAR 0.409 0.205 0.495 0.564 0.596
area (40% missing) MCAR 0.384 0.192 0.493 0.455 0.585
MNAR 0.414 0.207 0.482 0430  0.637
MAR - - - 0.269 0.499
height (100% missing) MCAR - - - 0.121 0.424
MNAR - - - 0.213 0.492
MAR 0.427 0.237 0.511 0.524 0.669
material (65% missing) MCAR 0.402 0.296 0.532 0.402 0.647
MNAR 0.428 0.234 0.492 0.202 0.681
MAR 0.195 0.756 0.308 0.820 0.741
purpose (90% missing) MCAR 0.415 0451 0.594 0.595 0.671
MNAR 0.195 0.737 0.334 0.579 0.701
M Nashville Amman Mexico City
odel
facade roof mat purpose area floors| area floors purpose| area purpose floors
Mode* 0.190 0.126  0.117 0.089 0.072]0.084 0.156 0.132 [0.118 0.120 0.450
MICE* 0.190 0.126  0.117 0.089 0.072|0.084 0.156 0.132 |0.118 0.120 0.450
ReMasker* | 0.382  0.051 0.168 0.415 0.103| - - - - - -
OTImputer*| 0.237 0.174  0.160 0.305 0.120(0.150 0.217 0.132 |0.132 0.120 0.307
GBIMC 0.159 0.115  0.200 0.402 0.109|0.239 0.403 0.231 - - -
EGVAE 0289 0.176 0.178 0.391 0.121|0.220 0.318 0.235 (0.171 0.325 0.324

Table 3: F1 Scores across different models for Nashville, Amman and Mexico (¥ cannot impute
columns with no observations).

Table [2| reports the performance of our method and the base- o
lines in terms of F1 score for synthetic data with various types

of missingness (MAR: Missing at Random, MCAR: Miss-

ing Completely at Random and MNAR: Missing Not at Ran-
dom) Little & Rubin|(2002). EGVAE outperforms other models
for most variables across different types of missingness. Ad- w0
ditionally, height, which is completely missing in the dataset

n Time

@ EGVAE
GBIMC

] @ mice

-@- MissForest

@~ Mode

-@- oTimputer
ReMasker

Figure 4: Runtime vs. F1 Score
(Nashville data)
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imputations can only be generated using GBIMC and EGVAE

(— denotes no training data for imputation), where EGVAE

markedly outperfoms GBIMC. Table[3|reports the performance

for Nashville, Amman and Mexico City building datasets. Re-

sults are reported only for attributes with at least some observed

data, as most baseline models cannot impute attributes with no

training observations. *—* denotes that the process did not complete within the 14-hour time limit.
Given the global scalability requirements of this problem, extended runtimes substantially dimin-
ish the methodological utility of the approach. Across all read world datasets, we find that naive
approaches such as Mode and MICE tend to collapse to imputing the majority class, reflecting the
highly skewed nature of the observed data. This bias severely limits their effectiveness for attributes
with no observation, heterogeneous or long-tailed distributions. By contrast, our model, which
combines learned representations with expert-guided priors, achieves substantially higher F1 scores
than the naive models and comparable results to ReMasker and OTImputer when large amount of
observed data is available. These results highlight the importance of expert priors for robust im-
putation in real-world building datasets. GBIMC approach fares better than naive approaches by
explicitly modeling spatial correlations and expert priors, but it is computationally intensive and
does not scale well to large datasets. Inference requires substantial resources and processing time,
which limits its practicality for city-scale applications. In comparison, our model combines learned
latent representations from a GNN with expert-guided priors using neural networks to achieve both
higher F1 scores and substantially faster runtimes (see Figure [.

EGVAE, much like other variational autoencoders, is trained with a hybrid loss function. Each of its
components directing the model in different direction and building a posterior overtime, such is the
case with EGVAE (see Figure [5). During early training, the model often prioritizes reconstructing
the input (Lrecon and Lcpr) before it has learned a well-structured latent space (Lvq) .

o 200 400 600 800 1000 o 100 200 300 400 500 o 100 200 300 400 500
Training Step Training Step Training Step

(a) Nashville (b) Amman (c) Mexico City

Figure 5: EGVAE Training Loss Components

3.3.2 ABLATION STUDY

We conduct an ablation study to evaluate the effect of individual components of our model:

* No CPT Regularization: To assess the impact of incorporating expert knowledge into our
model, we use kl-divergence between imputation with expert priors. We conduct an abla-
tion in which we remove the KL-divergence-based regularization term from the EGVAE
loss function. This term guides the model toward expert priors. Without this component,
the model retains its ability to perform competitively on attributes with partial observa-
tions demonstrating that the data alone can support reasonable inference in these cases (see
Table ). For instance, in Nashville dataset facade, roof material, purpose and area have
similar KL-divergence value to the full model. This is also the case for partially observed
attributes in Amman and Mexico City dataset. However, for attributes with no observed
data, the model without expert regularization fails to align its predictions with expert pri-
ors. These results underline the importance of expert-guided regularization for improving
the plausibility and reliability of imputations in the absence of observed data. Expert regu-
larization aligns imputation to the expert opinion except when observed data is not in line
with expert prior such in the case of floors.
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* No Graph Structure: To evaluate the contribution of the graph-based encoder in our
model, we perform an ablation study by replacing it with a simple two-layer fully connected
feedforward neural network (matching hidden and latent dimensions, dj, d. to graph neu-
ral network). This version removes any relational inductive bias introduced by the graph
structure. The resulting model is outperformed by the full EGVAE model on most at-
tributes (see Table ). This highlights the value of neighbouring buildings information for
improving imputations in the absence of direct observations.

Nashville
Variant Metric llrs* mat.* found.* shape* facade roof mat purpose area floors
EGVAE F1 Score (1) - - - - 0.289 0.176 0.178 0.391 0.121
No GNN F1 Score (1) - - - 0.190 0.058 0.144 0.381 0.090
EGVAE KL Div () 1.502 3.376 0. 400 1.215 3.595 8.126 0.391 0.462 4.263
No Exp. Reg. KL Div (}) 2.008 5.022 1.018 1.746 3.680 12.296  0.391 0.478 4.093

Amman

llrs* mat.* found.* shape* facade* roof mat* purpose area floors

EGVAE F1 Score (1) - - - -
No GNN F1 Score (1) - - -
EGVAE KL Div (}) 0.607 1.409 0. 001 0.127
No Exp. Reg. KL Div (}) 1.313 1.868 1.092 3.864

0.455 0.087
2.500 0.447

0.235 0.220 0.318
0.145 0.214 0.349
0.043 0.177 0.431
0.041 0.171 0.423

Mexico City

llrs* mat.* found.* shape* facade* roof mat* purpose area floors

EGVAE F1 Score (1) - - - -
No GNN F1 Score (1) - - -
EGVAE KL Div () 0.818 0.978 0. 441 0.001
No Exp. Reg. KL Div (}) 1.129 1.461 1.489 1.404

1.032 0.883
1.566 0.544

0.325 0.171 0.324
0.124 0.149 0.381
0.047 0.410 0.840
0.047 0.407 1.133

Table 4: Ablation study comparing contributions of model components to performance. We report
F1 Score (higher is better) and KL-divergence (lower is better) for Nashville and Amman dataset (*

no observed data).

3.3.3 IMPACT OF MISSINGNESS

To study the robustness of our model to missing data, we vary the missing value rate across three
levels: 10%, 20%, and 30%. Table [5] shows relatively stable performance of our model as the
missing rate increases. This suggests that the model is able to leverage prior information effectively,
offsetting the uncertainty introduced by increased missing values.

Dataset Variable Support 10% Missing 20% Missing 30% Missing
Nashville facade 12 0.2898 0.3226 0.2649
(N =18, 390) roof mat. 13 0.1763 0.1501 0.1662
purpose 9 0.1787 0.1997 0.1979
area 6 0.3912 0.3716 0.3675
floors 11 0.1211 0.0863 0.0999
Amman area 6 0.2201 0.2116 0.2310
(N = 428,494) floors 4 0.3180 0.3060 0.3054
purpose 9 0.2352 0.2414 0.2310
Mexico area 6 0.1717 0.1422 0.1750
(N =3,194,984) floors 4 0.3247 0.2996 0.2772
purpose 9 0.3254 0.2621 0.2599

Table 5: Variable support and F1 Scores at various levels of missingness.

3.3.4 UMAP OF LATENT REPRESENTATIONS

We project the learned latent representations Z into two dimensions using UMAP [Mclnnes et al.
(2020), as shown in Figure [6] In all plots, the points are colored by the attribute purpose. The
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results demonstrate that our model learns separable latent representations that reflect meaningful
distinctions across building types. A similar clustering pattern is observed even when KL-divergence
regularization is removed. However, when the graph neural network encoder is replaced with a
simple feed-forward neural network, the resulting representations fail to exhibit such clear structure.

(a) Nashville (Full Model) (b) Nashville (No KL-div) (c) Nashville (No GNN)

" - =
(d) Amman (Full Model) (e) Amman (No KL-div) (f) Amman (No GNN)

Figure 6: UMAP plots for latent representations of buildings.

4 CONCLUSION

We introduced Expert-Guided-VAE, leveraging variational-autoencoder framework for modeling
tabular data with known structural dependencies and discrete latent representations. By integrating
graph-based encoders, vector quantization, and conditional probability table (CPT) regularization,
our model effectively incorporates prior knowledge and domain structure into learning. Extensive
experiments demonstrate that this combination significantly improves imputation performance, par-
ticularly in data-scarce regimes.

Experiments demonstrate that the proposed method outperforms existing methods in terms of impu-
tation accuracy and alignment with expert knowledge (priors). The use of graph-based encoder and
CPT regularization significantly improves performance. The ablation studies confirm the critical
role of each model component in achieving these results.

Crucially, our approach underscores the value of expert elicitation to define probabilistic depen-
dencies as a key driver of accurate imputation when observational data is limited. By aligning
learned representations with expert-informed CPTs, the model ensures semantically consistent and
trustworthy predictions, paving the way for reliable deployment in high-stakes applications such as
healthcare, finance, and policy modeling.

5 REPRODUCABILITY

The source code, along with instructions to reproduce our results for the synthetic data, is available
at https://anonymous.4open.science/r/EGAVE-ICLR-A72E/. Random seeds are
fixed across runs to ensure consistent behavior of stochastic components. Further extension of the
mathematical formulation of the model and a pseudo code is fully specified in the Appendix.
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7 APPENDIX

This appendix provides the full mathematical specification of the Expert-Guided Variational Autoen-
coder (EGVAE). We begin by formalizing the observed data and missingness mask, then introduce
the two graph structures that underlie the model: the building graph, which captures the spatial or
relational similarity between individual buildings, and the attribute directed acyclic graph (DAG),
which encodes expert knowledge about dependencies among the building attributes. We then present
the encoder architecture based on graph convolutional neural networks (GCNs), the discrete latent
representation obtained via vector quantization, and the decoder that produces categorical attribute
predictions. Finally we derive the training objective, comprising reconstruction, expert CPT regu-
larization, and VQ losses; as well as the imputation procedure used at test time.

7.1 DATA REPRESENTATION AND GRAPH STRUCTURE

Given a categorical tabular dataset, X, with n buildings and d building attributes (features),
we model the i™ feature of building j, denoted Xj;, as one of ¢; + 1 categories from
{-1,0,1,...,¢; — 1}. The value X;; = —1 denotes a missing value while the other ¢; categories
represent observable quantities of feature ¢. To account for missingness, let M be an n X d mask
matrix, with M;; =1 {X ji 7 —1}, where I is an indicator function. Under the assumption that
buildings maintain similar physical properties, dictated by as building codes, and spatial properties,
dictated by zoning and administrative boundaries, we propose two graph structures.

The spatial properties are identified through a building graph, G = (B, P), where the nodes are
buildings such that |[B| = n and P is the set of all edges, determined by an adjacency ma-
trix, A. For two buildings indexed by u and v, the value A,, = A,, is defined as A,, =
I{]|loc(u) —loc(v)||2 < 7}, where loc(u) is the spatial coordinate of building w.

The physical properties are identified through a directed acyclic graph, D = (V| E), where
V = {1,2,...,d} represents the vertices of the graph being the d features and F are a collec-
tion of conditional relationships between the d features. The structure of D induces a Parent-Child
relationship between the features and can be captured through a topological ordering of the graph
defined by

Pa(i)={peV:B, =1}, p=<1i VYpePa(i)

and B,, = I{(p — i) € E}. Here, B is a d x d Parent-Child mask. Then, given D, for each
attribute 4, experts provide a conditional categorical

d
i ('|$Pa(i)) SN (T1,.. - 2a) = Hm (wi\xpa(i)) )
i=1

where the values of x are the categorical attribute assignments and A is the probability simplex

Cq
Ap,oq = {pERc’i 1P EO,Zpl = 1}.

=1

Hence the quantity 7; ('|J}pa(i)) is a conditional distribution for attribute ¢. To obtain the target
distribution, Z, let

H c R anepau) Cp
i

collect 7; columns by parent configuration. Using one-hot parent vectors eg;i) € {0,1}” and a

Kronecker selector

irat) = & e;’;) € {0, 1} ercr

P
p€Pa(i)
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The expert target distribution for attribute j is then
i (12j0aiy) = [ [ ipace) € A%

In the case of missing data, such that M, = 0 for p € Pa (i), we see that 7); p,(;) is undefined as
we will not know which CPT column to to select. To resolve this, we will need a plug-in rule for
missing parents; to which the decoder’s categorical predictions, gy , (-|2;), can be used in a mean-
field MAP value. Construction of gg ,, (-|£;) will be developed during discussion of the decoder.The
resulting plug-in value is then

Xip, M;, =1 (observed),
Tjp =
argmax qpp(¢| %), M;, =0 (missing).
2€{0,...,cp—1}

The CPT component, Lcpr, of the global loss function, Ly, is then given by

n d

1 N -
Lopr = — DD KL(ga(- | ) |7l - | & pa)) -

j=11i=1

7.2 VECTOR QUANTIZED AUTOENCODER

In all entries where the mask matrix, M is zero, an imputation process is needed to complete the data
matrix, X . Here, we propose a Vector Quantized Autoencoder that operates in three stages: encode,
vector quantize, decode. The encoder process takes the observed data, X, and propagates infor-
mation across the building graph, G. The vector quantization process compresses each building’s
representation into a discrete latent code, Z;. The decoder process uses Z; to predict all attributes of
the building, thereby creating a categorial distribution, gg ; (+|2;).

7.2.1 ENCODE PROCESS

For the encode process, each feature X; is embedded using a learnable embedding matrix, E; €
R(ci+)+de where the last row handles the missing value indicator. Then, for building j, the initial
feature vector is the concatenation of all feature embeddings

W = [ETen||ET ¢l .. |ET ¢5d]

where ;; is the one-hot encoding for feature ¢. Collecting all rows, letting d, = d x d. we obtain
H < R™*? which we denote the full input embedding. To encode these embeddings, we appeal to
the Kipf-Welling Graph Convolutional Network (GCN) using the spatial adjacency matrix, A, from
the building graph G and the full input embedding. Under this construction, the first layer of the
encoding stage is obtained through a ReLU activation of a composition of the normalized adjacency
graph and the full input embedding as

max {o, (diag (A + I) J)) "% (A +I) (diag (A + I) J)) "2 Hw} :

where J is a vector of all one and W is a weight matrix. Note that diag ((A + I) J) is the degree
matrix. Next, at each stage of the GCN, we impose a % dropout using a random Bernoulli mask
matrix, M, where [M,];; = 1 with probability (1 — «). The resulting first layer of the three-layer
GCN is given by

ZM = M© & max {o, (diag (A + I) J)) " (A +I) (diag (A + I) J)) "% H<0>} .
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Here, we introduce a superscript to identify the input and output of each layer within the GCN. For
all three layers, we obtain

Z® = M© & max {o, (diag (A +I)J)) "% (A+I) (diag (A+I)J))"* H(O)W(O)} ,

(3)
Z® = MY © max {o, (diag (A + I)J)) " (A +I) (diag (A + I)J))" % Z“)W(l)} :
©)
Z = (diag (A +1I)J)) % (A+1I) (diag (A +I)J)) 2 ZOW®D.
(10)
(11)

A single forward pass will yield Z with parameter set ¢ = { E;, W©, W® W &1 dropout masks
w = {M(O), M(l)}, and inputs A and H(®). As a result, Z is a collection of latent vectors, z;,
each of length d. Noting that index j corresponds to building j, we call z; a latent code for building
7.

7.2.2 VECTOR QUANTIZATION PROCESS

Given these latent codes, we then define a codebook of K embeddings, £ = {ej,es,...,ex } with
er € R%. The vector quantization process assigns each latent code to its nearest codebook vector,
defined via

Zj = eg(5), where ¢* (j) = argmin ||z; — e[3.
ee{1,2,....K}

Through assignment of the latent codes to the codebook vectors, some amount of error exists, which
requires training during optimization. To this end, a forward pass optimization is used from the
encode stage through the vector quantization stage and through the decode stage. After the forward
pass is completed, a backward pass optimization is used. At the vector quantization stage, these
optimization passes are handled differently. To control for forward and backward passes, the stop-
gradient operator, sg[-], is applied. Here, sg[z;] = z; * [ {forwardpass}. This means that during
the forward pass, we obtain the expression Z; = ey~ (;). However in the backward pass, the gradient
with respect to z; passes through the z; term only, while the gradient with respect to the codebook
vector ey~ (;) passes through (6@*(j) —sg [z]}) This prevents double-counting in the gradient in the
backward pass. Thus, we obtain the vector quantization component of the loss function, Ly, of the
global loss function, Ly, given by

S|

Lvo =3 (lIssles) = 115 + 8 lles - selzll3)
j=1

where $ > 0 balances encoder commitment against codebook stability. The result is a vector quan-
tized, discrete latent code Z = [21; Zo; . . . ; Z,]. Furthermore, the learnable parameters through Lvq
g, and the codebook

are the encoder parameters, ¢ through the commitment term, 5 ||z; — sg[Z;]
embeddings, {ej,} through the codebook update term, ||sg[z;] — 2; Hg
7.2.3 DECODE PROCESS

In the decode process, the quantized latent representations, Z, are mapped into categorical proba-
bility distributions over the attribute categories. Specifically, each quantized vector Z; is first trans-
formed through a hidden layer:
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h;j = ReLUWWz; + M) h; e R,

where W (") ¢ R4 *d= and b(") € R% . Then, for each feature i € {1,2,...,d} with ¢; categories,
a softmax projection produces the predicted categorical distribution:

exp ((W(i)hj + b(i))g)
ch Zoexp (WOh; +b0),,) ’

q0,:(L ] 25) = 0=0,...,¢—1,

where W) € Re*dr and b() € R. Then g (- | 2;) € A%~! is the decoder’s predicted
probability distribution for feature <. From this model, the probability of the observed feature for
building j is given by

d c;—1

po(z;. | 25) H H Go,i (L | 2;)Hrai=tMe

i=1 (=0

where Mj; is the missingness mask matrix and I{x;; = ¢} is the indicator of the true category.
Then, the reconstruction component of loss function, Liecon, Of the global loss function, L, 1S
given by

d

1 n
Erecon(a) = _ﬁ ZZ IOgQ9 i sz ‘ Z])
j=1i=1

The parameters for the reconstruction loss are the decoder parameters, the encoder parameters, ¢,
and the codebook parameters, £. The decoder parameters are given by

0 — {Wm)’ p) W p) @ 52 @) b(d)} 7

which are the weights and biases for the hidden layer and the respective d features. It should be
noted that the weights here are not the same as in the encoder process.

Algorithm 1: Train EGVAE

Input: Graph data (z, edge_index), hyperparameters
Output: Trained EGVAE parameters

2z = GraphEncoder (z, edge_index) ;

(2,0vq) ¢ VectorQuantizer (z);

I < Decoder (2);

lrecon = Cross—Entropy(Zobs, Tobs);

lx1, = KL-Div(Z, x);

Total 10ss: £ = lrecon + fvq + fkL;

Update model parameters with gradient step on ¢;
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