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ABSTRACT

Current NL2SQL evaluation relies heavily on execution accuracy (EX), which
measures correctness by comparing query results against ground truth at the string
level. While effective for traditional supervised models that produce uniform out-
puts, this metric proves inadequate in the LLM era, where diverse yet semantically
equivalent SQL queries can correctly answer the same natural language question.
To address this limitation, we investigate LLM-based evaluation for NL2SQL
tasks and propose a rule generation-enhancing framework. It leverages a training
dataset with annotated correctness labels through a three-step learning process:
data clustering, intra-cluster rule summarization and refinement, and inter-cluster
rule aggregation. So the model learn from labeled data through evaluation rule
synthesis rather than parameter updates. The generated rules are integrated into
LLM evaluation prompts during testing. We conduct experiments across three
datasets, covering three evaluation scenarios: (1) identifying semantically correct
predictions that differ in execution results from reference SQL, (2) distinguishing
functionally different SQL queries that produce identical execution results, and
(3) evaluating generated SQL correctness in the absence of reference queries. Our
results demonstrate that traditional EX metrics show poor alignment with human
annotations, while LLMs exhibit strong potential for this evaluation task. Our
rule-generation framework consistently enhances LLMs’ performance across all
datasets and model variants. It effectively learns dataset-specific evaluation rules,
and these learned rules can be successfully transferred to smaller models to im-
prove their evaluation capabilities.

1 INTRODUCTION

Natural language to SQL (NL2SQL) transforms natural language queries into database queries based
on specified database schemas, enabling accessible database analysis for all users. Recent advances
in large language models (LLMs) have substantially improved NL2SQL performance, achieving
notable results on benchmarks such as Spider (Yu et al., 2018) and BIRD (Li et al., 2023), thereby
narrowing the gap between user intent and data analysis (Hong et al., 2024; Liu et al., 2024b; Gorti
et al., 2024; Wang et al., 2025).

In NL2SQL research, the dominant evaluation metric is Execution Accuracy (EX), which determines
correctness by comparing execution results using string matching. However, this metric suffers from
two fundamental limitations. First, identical execution results to reference SQL do not necessarily
indicate SQL correctness, as queries may coincidentally yield expected answers through erroneous
logic. To address this issue, prior work has proposed constructing comprehensive test suites (Zhong
et al., 2020), employing function-level verification models (Zhan et al., 2025), and leveraging LLM-
based evaluation methods (Zhao et al., 2023). Second, SQL queries having different execution
results with reference SQL may still be semantically correct if they faithfully capture the user’s
intent. This challenge parallels challenges in natural language generation tasks, such as machine
translation and question answering, where diverse outputs can be equally valid and desirable.

Research addressing this second limitation has been notably scarce, primarily because public
datasets such as Spider and BIRD encourage models trained on labeled data to produce uniform
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outputs that closely match reference solutions, making semantically equivalent but syntactically
different cases relatively uncommon. However, the rise of LLM-based approaches in practical ap-
plications has changed this landscape significantly. In the LLM era, task-specific training is often
unnecessary, and satisfactory performance can be achieved through sophisticated prompt engineer-
ing alone. This paradigm shift introduces substantially greater diversity in system outputs, rendering
the second challenge increasingly prevalent and critical for accurate evaluation.

Figure 1: Generated SQL has different results
with reference SQL, but correctly answers the
question.

For example, the question “Did institution B
win the bid for bond A?” (shown in Figure 1)
can be answered either by retrieving a spe-
cific winning bid record or by constructing a
Boolean SQL query that returns Yes or No.
Similarly, the query “What was the quota-
tion situation yesterday?” may be interpreted
through different combinations of fields, since
the term situation is ambiguous and may re-
fer to institution, bond name, bond type, quo-
tation amount, quotation time, etc. In practice,
users are often concerned with only a subset
of these fields, making multiple field combina-
tions equally valid. This diversity of correct
outputs limits the ability of a single ground-
truth SQL to represent all acceptable system
responses. Traditional automatic evaluation
methods based on SQL or execution results fail
to capture such legitimate variations and frequently misclassify correct outputs as incorrect. Human
evaluation, while capable of addressing this issue, is costly and inefficient, rendering it impractical
for large-scale, iterative system development.

Therefore, we investigate the ability of LLMs in evaluating NL2SQL results and introduce HLSe-
mEval (Human-Like Semantic Evaluation), a novel framework that simulates human judgment with
LLMs. The framework first derives evaluation rules from labeled data by learning from human an-
notators’ decisions on a small number of examples, and then applies these rules to assess whether
model-generated SQL queries satisfy intended semantic and structural requirements.

Experiments across three complementary benchmarks highlight the effectiveness and generality of
HLSemEval. On the Bond-QA dataset, which focuses on semantic correctness, it improves the eval-
uation F1 score of DeepSeek-V3 from 92.40 to 96.13. On the Spider-Pair dataset, which focuses
on functional equivalence, it achieves AUC scores competitive with the state-of-the-art FuncEval-
GMN while using less than 10% of its training data, underscoring strong data efficiency and scal-
ability. On the NL2SQL-BUGs dataset, which focuses on semantic correctness without reference
SQL, it raises DeepSeek-V3 F1 by 6.94 points, showing that reliable semantic rules can be dis-
tilled even without reference SQLs. Together, these results demonstrate that HLSemEval offers a
practical, generalizable, and semantically faithful framework for NL2SQL evaluation.

2 RELATED WORKS

2.1 EVALUATION OF NL2SQL

NL2SQL evaluation concerns the correctness of SQL generated from natural language. Mainstream
approaches include match-based metrics, graph-based methods, and LLM-based evaluators.

Match-Based Evaluation Popular benchmarks such as Spider and BIRD adopt evaluation
schemes based on SQL matching and execution results, including Execution Accuracy (EX), Com-
ponent Matching (CM), and Exact Match (EM). EX may yield false positives due to coincidental
data distributions. CM and EM check structure but can miss valid semantic variants. To mitigate
these issues, Zhong et al. (2020) proposes Test Suite Accuracy, which compares outputs across mul-
tiple constructed databases to approximate semantic equivalence. SQLSolver (Ding et al., 2023)
addresses unbounded summations via the extended Linear Integer Arithmetic with Stars (LIA∗) the-
ory, enabling principled handling of nested, parameterized, and non-linear unbounded summations.
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Figure 2: Overview of the Two-Stage Evaluation Framework: Rule Extraction (Learning) and Rule-
Guided Evaluation (Inference).

Graph-Based Evaluation Graph-based methods represent SQL as graphs and compare them via
graph matching. Köberlein et al. (2024) model queries as nodes and define edit operations weighted
by semantic differences; a shortest-path search yields a semantic distance. FuncEvalGMN (Zhan
et al., 2025) encodes queries as Relation Operation Trees, builds program graphs integrating data
and logic flows, and applies a Graph Matching Network to assess similarity. These methods abstract
execution logic, tolerate syntactic differences, and judge equivalence through functional semantics.

LLM-Based Evaluation LLMs are increasingly used as evaluators for generation tasks like ques-
tion answering (Gu et al., 2024; Liu et al., 2024c;d; Wang et al., 2023). Some work uses Embedding-
based methods, such as CodeBERTScore (Zhou et al., 2023) and CodeScore (Dong et al., 2025),
which combine contextual representations with execution semantics to improve robustness. Other
work employs LLMs directly. LLM-SQL-Solver (Zhao et al., 2023) uses two prompting strategies:
“Miniature and Mull” for strict functional equivalence, and “Explain and Compare” for functional
equivalence. FLEX (Kim et al., 2025) employs prompts that, when two SQL queries produce iden-
tical execution results, further inspect their logical structures to verify true equivalence, ensuring
that the predicted query is not only result-equivalent but also logically faithful to the user question.
When results diverge, it assesses whether the discrepancies remain acceptable in the task context.
Despite these advances, the evaluation paradigm largely reduces to testing SQL functional equiva-
lence, which remains difficult when a single question admits multiple valid answers (see Figure 1).

Overall, most automated NL2SQL evaluations center on SQL functional equivalence. This focus
limits effectiveness when multiple answers are valid, can misalign with user intent, and slows
NL2SQL system development. We address these limitations with HLSemEval, an LLM-based
framework that learns human-annotated rules to handle multi-answer scenarios, improving semantic
coverage, adaptability, and evaluation consistency.

3 METHODS

This section describes the design of HLSemEval, as illustrated in Figure 2. In the rule extraction
phase (learning by extracting rules as opposed to learning by updating parameters), the system
analyzes a set of human-annotated samples (i.e., the training set) to systematically derive evaluation
rules that emulate human judgment. In the rule-guided evaluation phase (inference), these extracted
rules are applied to guide an LLM in assessing SQL queries, enabling human-like evaluation.

3.1 PROBLEM DEFINITION

We consider the task of assessing whether a predicted SQL query ŝ answers the user’s question q.
Specifically, it takes as input a tuple (q, ŝ, s, ê, e), where

• q is the natural language question posed by the user;
• ŝ and s are the predicted and reference SQLs, respectively (we use “reference SQL” rather

than “gold SQL” to reflect the potential multiplicity of valid answers);
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• ê and e are the execution results of ŝ and s on the target database schema S.

The goal is to determine whether the predicted SQL query ŝ satisfies the semantic intent of q in
the given context. The output is a binary correctness label ŷ ∈ {0, 1}, where 1 indicates semantic
correctness and 0 otherwise.

3.2 LLM-BASED EVALUATION

Existing research has shown that the use of a multi-dimensional rubric to guide LLM evaluation and
scoring improves the consistency and interpretability of results in comparison with human reviewers,
as demonstrated by (Hashemi et al., 2024). Additionally, Pathak et al. (2025) highlights that task-
specific rubrics, rather than generic ones, significantly improve the evaluation performance.

To emulate human judgment in the evaluation process, we adopt an LLM-based approach guided
by a set of interpretable rules R = {r1, r2, . . . , rM}, where each rule ri is formulated in natural
language to enhance readability and interpretability. This process is formally defined as:

feval(·) = LLM
(
R; q, ŝ, s, ê, e

)
,

which produces a predicted correctness label ŷ indicating whether the generated SQL meets the
semantic intent of the input question under the given context.

Here, constructing an effective R is crucial for the accuracy of the evaluation. Similar to manually
constructed rule knowledge, we believe that R for a task should be derived by analyzing and sum-
marizing an existing dataset. Therefore, we assume the availability of a human-annotated dataset
from which the rules can be learned.

D =
{
(qj , ŝj , sj , êj , ej , yj)

}N

j=1
,

where yj ∈ {0, 1} denotes the human-provided correctness label for each instance. The objective is
to extract a rule setR from this dataset that enables accurate prediction of ŷj :

min
R

N∑
i=1

(feval(R; qj , ŝj , sj , êj , ej)− yi)
2.

3.3 LEARNING BY EXTRACTING RULES

During the learning phase, we aim to leverage LLMs to automatically summarize the implicit de-
cision logic embedded in human annotations, thereby extracting a rule set R = {r1, r2, . . . , rM}
which is readable. This rule set is used during LLM-based evaluation. Following standard machine
learning practice, we divide the original dataset into a training set Dtrain and a test set Dtest.

The learning process is shown in Figure 2. Initially, the rule set is empty R ← ∅, and all training
samples are placed into a working set Dtrain. We then proceed with a clustering-based rule extraction
pipeline as follows.

Clustering. Each input question q in Dtrain is projected into a vector space using an embedding
model. Then, they are grouped into a set of clusters C = {c1, c2, . . . , cm}, to aggregate semantically
similar questions. Semantically similar questions often correspond to similar SQL structures and
database operations; placing them within the same cluster allows for fine-grained comparison, which
helps the LLM discover subtle and precise evaluation rules.

Rule Extraction. For each semantic cluster c ∈ C, we perform rule extraction and optimization.
The input samples Dc = {(xi, yi)}Nc

i=1 of cluster c are first formatted into (input, label) pairs. These
formatted samples are then incorporated into a rule-extraction prompt, which is submitted to the
LLM to generate the initial rule setR(0)

c for cluster c.

Self-Evaluation and Refinement. Then, we assess R(0)
c by using them to evaluate samples within

cluster c and computing the evaluation accuracy a. Define a threshold θ, if a < θ, we enter an
iterative refinement phase indexed by t = 1, 2, . . . , T until a ≥ θ or t = T .

In each refinement iteration, inspired by Boosting-style hard example reweighting, we emphasize the
misclassified samples within the cluster and supplement them with a fixed proportion of correctly
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classified samples to refine the rules. This strategy aims to enhance the rule coverage over “blind
spot” samples that are not well captured by the current rules.

The selected samples E(t−1) and the current rule setR(t−1)
c are used to construct the prompt P (t)

refine,
where harder cases are given more emphasis by increasing their proportion within the samples used
for rule refinement and explicitly instructing the model in the refinement prompt to focus on these
cases. This refined prompt is then passed to the LLM to generate an updated rule setR(t)

c .

Rule Consolidation. Once rule extraction for all clusters is complete (in parallel), the individual
rule setsRc are consolidated via an LLM into a unified, merged, and deduplicated global setR. This
aggregation enhances global coverage while preserving the discriminative power of cluster-specific
rules, and the resultingR is used for inference.

4 EXPERIMENTS

Our experiments are conducted on three datasets: Bond-QA, Spider-Pair (Zhan et al., 2025), and
NL2SQL-BUGs (Liu et al., 2025), to cover three critical evaluation conditions: (i) predicted queries
producing different execution results yet representing semantically correct SQL (Bond-QA), (ii)
predicted queries producing the same execution results despite being functional inequivalence with
reference SQL (Spider-Pair), and (iii) fine-grained semantic error detection, where only an (q, ŝ, S)
triple is provided without reference SQL (NL2SQL-BUGs).

Our experiments demonstrate that widely used metrics such as execution accuracy (EX) exhibit clear
limitations, while LLMs show strong potential on this task. The proposed rule extraction method
automatically learns task-specific evaluation rules from annotated data, adapting to different datasets
and thereby improving model performance.

4.1 EXPERIMENTAL SETUP

Bond-QA. We collect 900 real-world DBQA samples from fixed-income workflows by in-house
experts. We use 150 instances for rule learning and 750 for testing. The evaluator outputs a binary
decision on whether the predicted SQL answers the question. Baselines: Miniature and Mull (Zhao
et al., 2023)1 and FLEX (Kim et al., 2025)2. FuncEvalGMN (Zhan et al., 2025) is omitted because
it targets functional (not pragmatic) equivalence, but this dataset focuses on functionally different
SQLs that both answer the question.

Spider-Pair. Zhan et al. (2025) construct the dataset using methods like LLM-based techniques
on the Spider dataset, among others, evaluates EX judgments for cases where the results are iden-
tical but may be functionally not equivalent to the reference SQL. Unlike Bond-QA, this dataset
investigates whether queries with structural differences but functionally equivalent outputs can be
detected. We simulate limited-data training with 1,600 randomly selected samples (mixing func-
tionally equivalent and non-equivalent pairs) which represents 10% of the training set used in the
FuncEvalGMN method. We evaluate on the four official test sets (Spider, WikiSQL, BIRD, and
Spider-DK). Inputs consist only of the SQL pair (ŝj , sj) (no execution results as they are the same).
Following (Zhan et al., 2025), we use the AUC metric for evaluation, and we modify the evaluator
to output a score in [0, 1], indicating functional consistency.

NL2SQL-BUGs. Semantic error detection over (q, ŝ, S) (Liu et al., 2025) without reference
SQL. We use binary labels only, splitting 505/1,513 for train/test. To prevent leakage, we cluster by
database schema: samples from the same schema are assigned to a cluster.

We use text-embedding-3-small as the embedding model, with temperature 0 for all LLM
calls, and use KMeans for clustering. Average cluster sizes are 15 for Bond-QA and 60 for Spider-
Pair. Further implementation details are provided in Appendix A.1.

1https://github.com/ZhaoFuheng/LLM-SQL-Solver
2https://github.com/HeegyuKim/FLEX
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4.2 METRICS

For Bond-QA and NL2SQL-BUGs, we evaluate the alignment between predicted labels and gold
labels using standard classification metrics: Accuracy, Precision, Recall, and F1. For the Spider-
Pair dataset, we follow the evaluation protocol of FuncEvalGMN (Zhan et al., 2025) and report the
Area Under the ROC Curve (AUC). We report classification metrics as percentages (0–100), while
AUC is reported on the [0,1] scale; improvements are expressed in percentage points (pts).

4.3 RESULTS AND ANALYSIS

4.3.1 RESULTS ON BOND-QA

Table 1: Evaluation results on the Bond-QA dataset. “–” denotes not applicable.

Method No Rules + Rules
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 ∆F1

EX 48.89 99.41 42.32 59.36 – – – – –
Miniature & Mull 14.82 100.00 9.38 17.14 – – – – –
Flex 89.44 97.56 91.04 94.19 – – – – –
DeepSeek-V3 92.40 98.93 92.84 95.79 96.13 97.47 98.43 97.95 +2.16
Kimi-K2 94.67 96.77 97.59 97.18 96.67 96.96 99.57 98.25 +1.07
GPT-4.1 95.07 98.27 96.45 97.35 96.80 98.85 97.73 98.29 +0.94
Qwen3-32B 91.87 98.64 92.62 95.54 91.07 99.23 91.21 95.05 -0.49
Qwen3-32B (+ds) – – – – 94.27 98.96 94.89 96.89 +1.35

Table 1 summarizes the overall performance of various evaluation methods on the Bond-QA dataset.
Overall, we observe clear differences in effectiveness across methods. In particular, the results reveal
four key aspects that explain the observed performance patterns:

Multiple valid results are common in the real world, and the EX metric is ineffective. EX
attains extremely high precision (99.41), correctly rejecting nearly all genuinely incorrect queries.
However, this comes at the expense of low recall (42.32), because it labels as incorrect any seman-
tically correct variant that does not exactly match the single reference output. This precision–recall
imbalance exposes a structural limitation of execution-only evaluation: it under-covers the legitimate
diversity of correct answers common in real-world workloads.

Carefully crafted manual prompts may fail to generalize across datasets. Different evalua-
tion objectives demand different prompt strategies, leading to strikingly varied outcomes. For in-
stance, under the DeepSeek-V3 setting, Miniature and Mull, while attaining perfect precision
(100.00), suffers from extremely poor overall accuracy (14.82) and recall (9.38). This approach
merely presents the LLM with two SQLs and a schema, asking it to infer equivalence under hy-
pothetical execution. Lacking actual execution results or contextual grounding, the LLM struggles
with realistic database complexity, resulting in severe under-detection of correct queries. In contrast,
FLEX employs a more adaptive design that integrates execution evidence and external knowledge,
enabling it to capture subtler semantic nuances and achieve much higher accuracy (89.44) and F1
(94.19). Nevertheless, FLEX still lags behind the best-performing methods on Bond-QA, since its
correctness criterion emphasizes SQL consistency rather than the true evaluation goal: determin-
ing whether the SQL answers the user’s question regardless of structural or executional variations.
When prompts are explicitly aligned with the Bond-QA objective, strong performance can already
be obtained even without additional rule guidance (“no rules” setting).

Automatically extracted rules provide further gains. Integrating rules consistently enhances
results across models. For instance, accuracy improves from 92.40 to 96.13 for Deepseek-V3 (Liu
et al., 2024a), from 94.67 to 96.67 for Kimi-K2 (Moonshot AI, 2024), and from 95.07 to 96.80 for
GPT-4.1. These gains demonstrate that rules distilled from labeled data capture subtle semantic
differences that instruction-only setups may miss.
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Extracted rules from strong models can be applied to weak models. When Qwen3-32B is
used as the rule extractor, downstream performance decreases rather than improves, indicating lim-
ited capacity to abstract reliable, task-level rules. In contrast, rules distilled by a stronger model such
as Deepseek-V3 yield clear gains even when applied to Qwen3-32B at evaluation time (see the
“Qwen3-32B (+ds)” row). This contrast shows that while rule guidance is broadly beneficial, ex-
tracting high-quality rules is capacity-sensitive. Once the rule set is established, however, it transfers
effectively to smaller models.

4.3.2 RESULTS ON SPIDER-PAIR

Table 2: AUC results on Spider-pair dev sets. SP = Spider-Pair-dev, BP = BIRD-Pair-dev, SDP =
Spider-DK-Pair-dev, WP = WikiSQL-Pair-dev.

Method SP BP SDP WP Avg.
G-eval (GPT-4) 0.6386 0.7042 0.7212 0.6139 0.6695
Test Suite 0.9637 0.9267 0.9277 – 0.9394
GPT-4.1 0.9325 0.9511 0.9586 0.9432 0.9464
Ours (GPT-4.1) 0.9559 0.9497 0.9704 0.9769 0.9632
FuncEvalGMN 0.9750 0.9272 0.9753 0.9910 0.9671

Table 2 reports the AUC on four development sets. For G-eval (GPT-4), Test Suite, and FuncEval-
GMN, we directly adopt the results reported in the FuncEvalGMN paper to ensure fair compara-
bility. Since version differences of LLMs may lead to non-trivial variance, we consistently use the
paper-reported values rather than re-running these methods.

Execution/string-based evaluators have inherent limits despite strong AUC. Spider-Pair ex-
poses a key failure mode of EX-style evaluation: even when ê = e, two queries can implement
different semantics, and EX will mark them as correct simply because their outputs coincide by ac-
cident. Test-suite evaluators can achieve high AUC (0.9394 across the three released sets), but they
depend on building task- and schema-specific sub-suites, and require database access for denotation
checks. This combination of schema customization and database dependency limits their portability
and general applicability. By contrast, LLM-based evaluators (e.g., GPT-4.1 and ours) assess func-
tional equivalence directly from the SQLs without execution, and more reliably flag nonequivalence
that arises from structural or logical disparities rather than surface similarity or coincidental result
ties, achieving consistently higher AUC scores across diverse evaluation sets.

Automatically extracted rules provide consistent gains. Compared with GPT-4.1 without rule
extraction, our method improves AUC by 2.34 pts on Spider-Pair-dev, 1.18 pts on Spider-DK-Pair-
dev, and 3.37 pts on WikiSQL-Pair-dev, with a marginal decrease of 0.14 pts on BIRD-Pair-dev. A
small decline on BIRD is reasonable because BIRD exhibits greater schema and SQL complexity
than Spider, so rules distilled mainly from Spider data are not fully general and can at times constrain
judgments in BIRD-specific situations. Nevertheless, the overall effect of adding rules remains
positive, as reflected by the average AUC gain of 1.68 pts across development sets.

Rules distilled by stronger models transfer effectively to weaker ones. On Spider-Pair-dev, we
also evaluated a smaller Qwen3-32B evaluator and found that rule guidance helps: it attains AUC
0.8869 vs. 0.8467 without rules (+4.02 pts). Moreover, when Qwen3-32B is guided by rules
distilled by GPT-4.1, its AUC rises to 0.9152, surpassing its self-extracted-rules variant (0.8869;
+2.83 pts) and the no-rule baseline (0.8467; +6.85 pts). These results corroborate our earlier ob-
servation: rule guidance is broadly beneficial, but extracting high quality rules requires sufficient
model capacity—rules distilled by stronger models yield larger gains.

Rule-guided LLM evaluators approach specialized systems with far less supervision. FuncE-
valGMN (Zhan et al., 2025) is a specialized evaluator that models SQL queries as program graphs
and leverages a Graph Matching Network to measure functional equivalence. With less than 10%
of its training data, our method still achieves near-parity AUC (avg. 0.9632 vs. 0.9671), offering
comparable accuracy at a fraction of the supervision cost and with simpler deployment.
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4.3.3 RESULTS ON NL2SQL-BUGS

Table 3: Results on NL2SQL-BUGs dataset.

Model / Version Acc. Prec. Rec. F1
DeepSeek-V3 (no rules) 73.10 86.21 56.92 68.57
DeepSeek-V3 (rules) 76.80 82.85 69.36 75.51
GPT-4.1 (no rules) 78.39 84.79 70.77 77.15
GPT-4.1 (rules) 79.64 85.65 72.69 78.64

On the NL2SQL-BUGs benchmark (Table 3), we do not compare with execution-based methods
such as EX since this dataset lacks reference SQLs. Instead, we demonstrate that LLMs can still
derive reliable rules through analysis and summarization, enabling correctness judgment without
reference SQL. Applying our rule-guided method improves the accuracy of DeepSeekV3 by 3.70
pts and the F1 score by 6.94 pts, and improves the accuracy of GPT-4.1 by 1.25 pts and the F1
score by 1.49 pts. These results demonstrate that even with supervision restricted to (q, ŝ, S, y),
the evaluator can still acquire generalizable and semantically meaningful rules that expand correct
coverage and improve end performance, highlighting our method’s robustness and extensibility.

4.4 CASE STUDY

We illustrate through several examples that the rules extracted by the model reflect dataset-specific
task settings. For instance, in the Bond-QA dataset, the rules mainly explain the circumstances under
which different execution results are acceptable, while in the Spider-Pair dataset, the rules focus on
situations where functional discrepancies are unacceptable. These rules are difficult to fully write
out directly and need to be derived through analysis and summarization of the dataset. In this section,
we discuss a single Bond-QA case study, with additional examples provided in Appendix A.3.

Consider the question: “How many secondary-market cash-bond trades and repo trades with A oc-
curred in 2024, reported as separate counts?” (see Appendix A.3.1). The predicted SQL groups
trades into Cash-Bond, Repo and returns one row per category, while the reference SQL uses
SUM(CASE...) to output two columns. Both constrain to counterparty A, the year 2024, and
confirmed trades.

Without rules, the prediction is marked incorrect as repo trades are zero because the grouped result
omits the “Repo” row, and the LLM considers this as an incomplete answer instead of inferring
zeros.

Our extracted rule states: When predicted and reference queries differ in aggregation form, grouping
fields, filters, or naming, but operate at the same granularity and filtering logic required by the
question, and the requested values can be directly inferred—including treating a missing group as
zero—classify as correct.

Applying this rule, the prediction satisfies all core constraints and implies repo = 0. Hence, the
predicted SQL is judged correct. This case shows how rule guidance recovers valid answers that
instruction-only LLMs fail to recognize and would otherwise label as false negatives.

4.5 ABLATION STUDY

Table 4: Ablation study on components.

Setting Acc. Prec. Rec. F1
Full 85.50 83.50 97.73 90.05
w/o Cluster 78.63 77.78 95.45 85.71
w/o Consolidation 80.16 78.70 96.59 86.73

8
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4.5.1 COMPONENT-LEVEL ABLATION

To assess the contribution of each component to evaluation performance, we built a focused abla-
tion test set of 131 Bond-QA samples with large execution-result discrepancies, representing the
dataset’s most challenging cases. Instead of covering the full dataset, this compact but representa-
tive subset isolates scenarios where execution matching fails. Unlike cases with consistent outputs,
where correctness is trivial to verify, these samples require the evaluator to emulate human reasoning
and apply rule-guided semantic judgment to both SQL and execution results.

Table 4 reports results using DeepSeek-V3 as the base model. The complete algorithm—retaining
both question clustering and rule consolidation—achieves the best overall performance and serves
as the reference baseline. Removing the clustering step (w/o Cluster), where samples are randomly
divided into groups to control input length, reduces accuracy to 78.63 and F1 to 85.71. This shows
that clustering aligns semantically related samples, facilitating high-quality rule extraction. Simi-
larly, removing rule consolidation and keeping only local cluster rules (w/o Consolidation) lowers
accuracy and F1 to 80.16 and 86.73. This highlights the consolidation module’s role in resolving
inter-cluster conflicts and ensuring global evaluation consistency.

4.5.2 TRAINING SIZE ABLATION

0 250 500 750 1000 1250 1500
Training Set Size

0.92

0.93

0.94

0.95

0.96
AUC

Figure 3: Performance with different
training set sizes (Spider-pair-dev).

This section investigates the impact of training sample
size on the quality of extracted rules and the overall
evaluation performance, measured by AUC. Using the
Spider-pair-dev dataset as the benchmark, we vary the
size of the training set used for rule extraction under con-
trolled conditions to examine its influence.

As shown in Fig. 3, even with only 200 annotated exam-
ples, rule-guided evaluation achieves a notable improve-
ment over the no-rules baseline: the AUC rises from
0.9325 to 0.9442. This demonstrates that a small amount
of supervision can already enhance the model’s capacity
to judge semantic equivalence between SQLs. When the
training size increases from 200 to 400 samples, the AUC
steadily improves from 0.9442 to 0.9497, reflecting better rule generalization and broader coverage
of subtle semantic patterns. Although a slight dip is observed at 800 samples (0.9470), further ex-
pansion to 1,600 samples leads to the highest AUC of 0.9559. This pattern suggests a generally
positive relationship between training size and evaluation performance, but with diminishing returns
once the rule set becomes sufficiently comprehensive.

In practice, our rule-driven evaluation framework can achieve strong performance without massive
training data: a moderate number of representative and diverse examples is sufficient to approach
optimal accuracy. Beyond this point, focusing on improving the quality and diversity of training
samples may be more effective than simply increasing quantity.

5 CONCLUSION AND DISCUSSION

We propose HLSemEval, an LLM-based evaluation framework that leverages LLMs to address the
challenge of evaluating multiple valid execution results in NL2SQL, where existing automatic meth-
ods fail to recognize semantically equivalent variants. By inducing interpretable rules from human-
labeled data and guiding LLM reasoning with these rules, HLSemEval achieves low-resource, inter-
pretable, and scalable automatic evaluation.

HLSemEval can be improved from multiple directions, such as refining clustering methods or adopt-
ing multi-round iterations over the overall workflow to compare and adjust samples and rules across
clusters. Nevertheless, our results demonstrate that systematically summarizing rules from datasets
can consistently enhance large models’ performance on this task, making HLSemEval a promising
approach.

9
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A APPENDIX

A.1 DATASETS AND EXPERIMENTAL SETUP (DETAILS)

Bond-QA. Bond-QA contains 900 real-world DBQA samples from an operational fixed-income
system spanning issuance, inquiry, investment, and trading. Domain experts authored NL questions;
technical staff paired reference SQLs. Predicted SQLs were produced by an existing workflow
and manually annotated for semantic correctness against the references. Unlike strict-equivalence
datasets, Bond-QA judges whether a generated SQL can validly answer the question even if its
execution result differs, reflecting the fact that multiple semantically correct SQLs may exist. In
our experiments, we use 150 instances for rule learning and 750 for testing. The evaluator outputs
a binary judgment on whether the predicted SQL answers the question. We compare to Miniature
and Mull (Zhao et al., 2023)3 and FLEX (Kim et al., 2025)4, and exclude FuncEvalGMN because it
emphasizes functional rather than pragmatic equivalence.

Spider-Pair. Spider-Pair (Zhan et al., 2025) is derived from Spider and enforces strict SQL equiv-
alence. Each sample includes a gold SQL, a predicted SQL, and a correctness label, with training
and test domains disjoint to avoid leakage. The corpus provides roughly 18,000 training samples
and four test sets (Spider, WikiSQL, BIRD, Spider-DK), reducing false positives where structurally
different SQLs coincidentally yield identical results. In our evaluation, we simulate limited-data set-
tings via a curated set of 1,600 training samples combining: (i) false positives (identical execution

3https://github.com/ZhaoFuheng/LLM-SQL-Solver
4https://github.com/HeegyuKim/FLEX
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results yet labeled incorrect) and (ii) correctly labeled pairs to prevent overfitting. Because Spider-
Pair lacks natural language questions, our inputs use only the SQL pair (ŝj , Yj) (without execution
results). The evaluator outputs a real-valued score in [0, 1] indicating functional consistency.

NL2SQL-BUGs. NL2SQL-BUGs (Liu et al., 2025) targets semantic error detection. Each in-
stance provides an NL question, a DB schema, and a candidate SQL; the task is to decide whether
the SQL semantically matches the NL over the given DB. The benchmark has 2,018 expert-annotated
instances across 9 main and 31 sub-categories, including correct and incorrect cases with detailed
error labels. In our experiments, we only use the binary correctness label: 505 samples (25%) for
training and 1,513 (75%) for evaluation. Different from the original question-similarity clustering,
we cluster by database schema so that queries from the same schema do not cross splits, enforcing
stricter generalization.

Algorithm 1 LLM-based Rule Extraction and Refinement in a Cluster

Require: Cluster c with Nc samples
Ensure: Refined rule set Rc

1: {Phase 1: Initial Rule Extraction using LLM}
2: Pextract ← BuildExtractionPrompt(Templateextract, c)
3: R0 ← LLM_Extract(Pextract)
4: {Phase 2: Iterative Refinement using LLM}
5: for j = 1 to Trefine do
6: Eresults ← ∅
7: for all sc ∈ c do
8: ŷ ← Inference(Rj−1, sc)
9: Eresults ← Eresults ∪ {ŷ}

10: end for
11: accj ← CalculateAccuracy(Eresults, c)
12: if accj ≥ θ then
13: break
14: end if
15: {Refine rules with error cases}
16: Arefine ← SelectRefinementSamples(Eresults, c) // Includes misclassified and a subset of

correct samples
17: Prefine ← BuildRefinementPrompt(Rj−1, Arefine) // Constructed from the selected samples
18: Rj ← LLM_Refine(Prefine)
19: end for
20: return Rargmax

j
accj

To provide a clearer understanding of our pipeline, Algorithm 2 illustrates the full procedure of
rule-guided assessment using LLMs
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Algorithm 2 Rule-guided evauation method with LLM

Require: Training set Dtrain, Test set Dtest

Ensure: Final rule library R
1: Initialize rule library R← ∅
2: Initialize working set D′

train ← Dtrain
3: {Step 1: Semantic Clustering}
4: C ← SemanticClustering(D′

train) {e.g., K-means over question embeddings}
5: {Step 2: Cluster-wise Rule Extraction}
6: for all c ∈ C do
7: Rc ← ExtractAndRefineRules(c)
8: R← R ∪Rc

9: end for
10: {Step 3: Rule Aggregation Module}
11: R← MergeRules({Rc}c∈C)
12: {Step 4: Final Evaluation on Test Set}
13: acctest ← Evaluate(R,Dtest)
14: return R
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A.2 PROMPT TEMPLATES USED IN EXPERIMENTS

For each dataset, we designed four types of prompt templates to support different stages of our
rule-based evaluation framework:

• Rule Extraction – to extract candidate evaluation rules from learning sets.
• Rule Refinement – to refine extracted rules.
• Rule Aggregation – to consolidate refined rules into a compact, generalizable rule library.
• Evaluation – to assess whether a predicted SQL is correct.

In the Evaluation stage, the overall instruction remains identical across conditions; the only differ-
ence lies in the presence or absence of the extracted rules in the input. This allows us to directly
quantify the impact of rule guidance while keeping other evaluation factors constant.

A.2.1 PROMPT TEMPLATES USED IN SPIDER-PAIR DATASET

Prompt Template: Rule Extraction

Task Description. We are building an LLM-based SQL equivalence evaluation system to
determine whether a predicted SQL query (pred_sql) is functionally equivalent to the
ground-truth SQL query (gold_sql).
The complete evaluation process consists of two phases:

1. Rule Extraction (Training): Derive evaluation rules from labeled samples to sim-
ulate the logic and criteria used by human annotators.

2. Rule-Based Evaluation (Inference): Use the extracted rules to determine whether
a predicted SQL query is functionally equivalent to the ground-truth SQL.

You are now responsible for the Rule Extraction phase.

Input.
• A set of labeled samples, each containing:

– Predicted SQL
– Ground-truth SQL
– Manual label (equivalent / non-equivalent)

• Input sample overview: {samples_info}

Rule Extraction Guidelines.
• Compare the structural and semantic differences between predicted SQL and

ground-truth SQL.
• Learn the reasoning behind human annotations (equivalent / non-equivalent).
• Extract rules that explain under what structural/semantic conditions a predicted

SQL is (or is not) functionally equivalent to a ground-truth SQL.

Requirements for Each Rule.
• Each rule must capture a specific structural or semantic difference in SQL that di-

rectly causes equivalence or non-equivalence.
• The rule must not rely on execution results or result sets.
• Rules should be both specific and generalizable:

– Specific: Describe the logical structure and semantic pattern clearly.
– Generalizable: Apply to a class of SQLs beyond a single example.

• Example snippets may be used to illustrate a rule but must not form the basis of the
rule.

• Be rigorous when defining equivalence; avoid overgeneralized rules that may result
in false positives.
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Output Format.
• First, provide your reasoning process step-by-step.
• Then output the final rules in the following strict JSON format:

```json
{
"rules": [
{
"description": "A clear logical explanation of why a certain

pattern leads to an equivalent or non-equivalent judgment.",
"type": "True/False" // True = equivalent, False = non-

equivalent
}

]
}
```

Prompt Template: Rule Refinement

Task Description. We are building an LLM-based SQL equivalence evaluation system to
judge whether a predicted SQL query (pred_sql) is functionally equivalent to a ground-
truth SQL query (gold_sql).
The complete evaluation process includes two phases:

1. Rule Extraction (Training) – Deriving evaluation rules from labeled samples to
simulate the logic and standards of manual evaluation (labels).

2. Rule-Based Evaluation (Inference) – Using the extracted rules to evaluate whether
a predicted SQL is functionally equivalent to a ground-truth SQL.

You are now in the iterative refinement part of the Rule Extraction phase. You need to
modify and improve the existing rules based on the provided samples, ensuring that the
revised rules can be correctly applied to the current set of samples.
You will receive a set of current evaluation rules and a set of samples that were evaluated
using these rules. Your task is to analyze the misjudgments in these samples, and modify
or add rules to more accurately simulate human evaluation logic, ensuring the revised rules
work correctly on this set of samples.

Input.
• Current Rule Set: Generated in the previous phase, containing multiple rules for

judging functional equivalence.
• Error Sample Set: Each sample includes the predicted SQL, ground-truth SQL,

the manual label, and the result from evaluation with the current rule set.
Current Rule Set: {current_rules}
Sample Evaluation Results Based on Current Rules: {error_analysis}

Rule Refinement Guidelines.
Rule Refinement Process

1. Error Analysis and Tracing:
• Identify misjudged samples where the evaluation result is inconsistent with the

manual label.
• Analyze the reasoning process for each to determine which rules were applied

and caused the misjudgment.
2. Rule Diagnosis and Modification:
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• For incorrectly applied rules, check if their descriptions are ambiguous or their
scope is inappropriate, and modify them to better fit the intended semantics.

• Delete rules that are inconsistent with the current semantics, cannot be gener-
alized, or are misleading.

• Merge redundant or duplicate rules, refining their common logic to enhance
their expressive power and applicability.

3. Rule Augmentation:
• For new patterns exposed in the misjudged samples that are not covered by the

existing rule system, add new rules to cover the corresponding judgment logic.

Requirements for Each Rule.
• Each rule must focus on specific structural and semantic differences in SQL, clearly

reflecting the logical basis for an equivalent or non-equivalent judgment.
• Rules must be as detailed and specific as possible, and must not rely on execution

results or result sets.
• Rules must be generalizable to SQL evaluations with similar structural or semantic

features, not tied to a single specific sample.
• Examples may be used to illustrate the context in which a rule applies, but should

focus on key SQL fragments rather than full queries.
• Rules that determine equivalence must be rigorously constructed to avoid false pos-

itives.

Output Format.
• First, provide your reasoning process step-by-step.
• Then output the final refined rules in strict JSON format:

```json
{
"rules": [
{
"description": "A clear logical explanation of why a certain

pattern leads to an equivalent/non-equivalent judgment.",
"type": "True/False" // True indicates support for

equivalence; False indicates a judgment of non-equivalence.
}

]
}
```

Prompt Template: Rule Aggregation

Task Description. We are building an LLM-based SQL equivalence evaluation system to
determine whether a predicted SQL query (pred_sql) is functionally equivalent to the
ground-truth SQL query (gold_sql).
The complete evaluation process consists of two major phases:

1. Rule Extraction (Training) – Derive evaluation rules from labeled samples to sim-
ulate the logic and criteria of manual evaluation (labels).

2. Rule-Based Evaluation (Inference) – Use the extracted rules to evaluate whether
the predicted SQL is functionally equivalent to the ground-truth SQL.

The Rule Extraction phase is divided into two parts:
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1. Grouped Rule Extraction – Since the number of samples can be large and difficult
to process at once, they are grouped. Rules are then extracted from each group,
resulting in local rules applicable to that specific group.

2. Rule Aggregation – These localized rules are then summarized and merged to form
a comprehensive, general-purpose, and high-coverage evaluation rule set.

You are now responsible for the Rule Aggregation phase.

Input.
• Rule Sets: Several sets of local rules generated from clustering. Each rule includes:

– description — the rule content
– type — True (equivalent) or False (non-equivalent)

• Rule content overview: {cluster_rules}

Rule Aggregation Guidelines.
Aggregation Goal

• Systematically merge rules with similar semantics or judgment criteria to form a
global, general, and information-complete rule set.

Aggregation Process

1. Merge Similar Rules
• Compare semantic content and merge rules with similar judgment logic and

application scope.
• Retain all valuable judgment criteria and example patterns from merged rules.

2. Handle Conflicts and Redundancy
• Prefer rules that are more general and broadly applicable.
• Merge or remove duplicate or overly narrow rules.

Requirements for Each Rule.
• Focus on specific structural or semantic SQL differences.
• Rules must be based on query structure only, not execution results.
• Be clear, precise, and generalizable where possible.

Output Format.
• First provide your reasoning process step-by-step.
• Then output the final rules in strict JSON format:

```json
{
"rules": [
{
"description": "Description of the merged rule.",
"type": "True/False"

}
]

}
```

Prompt Template: Evaluation
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Role. You are an expert in SQL equivalence evaluation, focusing on assessing the functional
equivalence between SQL queries. Your core task is to determine if a Predicted SQL is
functionally equivalent to a Ground-Truth SQL.
Note: Functional equivalence means that, across all valid database states, both SQLs return
the same result and achieve the same logical intent—even if their syntax differs.

Evaluation Process.
1. Functional Equivalence Judgment

• Compare the Predicted SQL with the Ground-Truth SQL. Based on the eval-
uation rules, determine if the Predicted SQL is functionally equivalent to the
Ground-Truth SQL.

2. Return Final Decision
• Output a score between 0 and 1 to represent functional and logical consistency.
• Do not only use binary scores like 0.00 or 1.00. Provide a smooth and

continuous score to reflect the degree of functional equivalence.
• A score closer to 1.00 indicates high equivalence; a score closer to 0.00 indi-

cates low equivalence.
• Scores ≥ 0.50 are considered functionally equivalent; scores < 0.50 are not.
• You must include a detailed reasoning to justify the score.

Evaluation Rules. Each rule includes:
• description — describing the logic behind equivalence or non-equivalence.
• type — True for equivalence, False for non-equivalence.

Input Rule Set: {applicable_rules}

Input.
• Predicted SQL: {predicted_sql}
• Ground-Truth SQL: {reference_sql}

Output Format.
• The output must be a JSON block enclosed in “‘json.
• Fields include:

– "reasoning": A detailed explanation of the judgment process.
– "score": A float between 0.00 and 1.00, with at least two decimal places.

Output Format Example.

```json
{
"reasoning": "The reasoning process for the judgment.",
"score": 0.87

}
```

A.2.2 PROMPT TEMPLATES USED IN BOND-QA

Prompt Template: Rule Extraction

Background. We are building a comprehensive SQL evaluation agent that judges whether
the predicted SQL can correctly answer the user’s question. The full process consists of two
steps:
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1. Rule Extraction (Training) — Derive evaluation rules from labeled samples to
simulate the reasoning logic and evaluation standards used by human annotators.

2. Rule-Based Evaluation (Inference) — Apply the extracted rules to assess whether
each predicted SQL correctly answers the user’s question.

You are responsible for the Rule Extraction stage.

Input.
• A cluster of semantically similar, labeled samples obtained via question clustering.
• Each sample contains:

– User question
– Predicted SQL
– Reference SQL
– Execution results of both SQLs
– Human annotation (whether the predicted SQL is judged correct by human

evaluation)
• The dataset is from the fixed-income domain, containing DBQA samples on

bond-related data, all manually annotated.

Your Task.
• Core Objective:

– Thoroughly analyze the samples to uncover the reasoning patterns behind the
human "correct/incorrect" judgments.

– Abstract a set of evaluation rules that are both generalizable and operational.
– These rules will be used later to determine whether a predicted SQL truly

satisfies the user’s query intent.

Principles for Rule Formulation.
1. Evaluation Dimension: Focus on whether the predicted SQL can answer the user’s

question, ignoring non-critical differences such as SQL syntax, field order, or nam-
ing variations.

• In practice, execution results are compared first; if they differ, rules are applied
to determine whether the predicted SQL is still reasonable.

• Therefore, rules should be grounded in SQL structural logic—selection logic,
chosen fields, aggregation methods, and other structural features—to deter-
mine which differences are acceptable and which are not.

2. Case Differentiation: Clearly distinguish conditions under which a predicted SQL
should be judged correct from those under which it should be judged incorrect.

3. Domain Context: Incorporate the dataset’s specific domain context relevant to the
question. Maintain transferability; avoid hard-coding specific table or field names.

4. Rule Requirements:
• Rules must be clearly described, detailed, and specific.
• They must be sufficiently general to apply to SQLs with similar structural or

semantic characteristics beyond the originating sample.
• A sample may be cited as an illustrative example, highlighting only the key

aspects that support the rule (do not display full sample details or original
sample IDs).

5. Note: The reference SQL is only a reference answer—it is not the only correct
answer.

Output Format Requirements.
• Final output must be enclosed in “‘json.
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• The top-level key must be "rules", whose value is a list of rules (no limit on the
number).

• Each rule must contain:
– "description" — textual description of the rule (in the same language as

the question in the sample).
– "type" — evaluation logic indicator ("True" if this rule supports judging

a predicted SQL as correct, "False" if it supports judging it as incorrect).

Output Example.

```json
{
"rules": [
{
"description": "A clear logical explanation of why a certain

pattern leads to an equivalent or non-equivalent judgment.",
"type": "True/False" // True = equivalent, False = non-

equivalent
}

]
}
```

Prompt Template: Rule Refinement

Background. We are building a comprehensive SQL evaluation agent to determine
whether a predicted SQL (pred_sql) generated by a database question answering (DBQA)
system can correctly answer the user’s question, even if it differs from the reference SQL
(ref_sql) in both SQL structure and execution results.
The complete evaluation process consists of two main steps:

1. Rule Extraction (Training) — Derive evaluation rules from labeled samples to
simulate the reasoning logic and evaluation standards used by human annotators.

2. Rule-Based Evaluation (Inference) — Apply the extracted rules to determine
whether each predicted SQL correctly answers the user’s question.

You are now in the refinement iteration phase of the Rule Extraction stage. Your task is to
modify and improve the existing rules so that they can be correctly applied to the current set
of samples. You will receive:

• A set of current evaluation rules.
• A set of evaluation results produced by applying these rules to the current samples,

along with human evaluation labels for comparison.
Your goal is to analyze the misjudged samples, identify the causes of these errors, and update
or supplement the rules so they better reflect human evaluation logic—ensuring that the
revised rules work correctly on the current sample set.

Input.
• Current Evaluation Rules:
{current_rules}

• Evaluation Sample Analysis (The "actual label" is the human evaluation result;
the rest of the evaluation-related information comes from the model’s evaluation
results based on the current rules):
{error_analysis}
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Rule Refinement Guidelines. Rule Refinement Process The objective of refinement is to
improve alignment between automated evaluation results and human judgments by modi-
fying, adding, or removing rules so they more accurately capture the logic humans use to
decide whether a predicted SQL correctly answers the question.
The process involves:

1. Error Analysis & Root Cause Identification Identify misjudged samples where
the automated evaluation result differs from the human label. For each, analyze the
evaluation reasoning process and determine which rules were applied and led to the
misjudgment.

2. Rule Diagnosis & Modification
• For incorrectly applied rules, check if the description is ambiguous or overly

broad, and modify it to better reflect the intended semantics.
• Remove rules that are inconsistent with the current semantics, cannot general-

ize, or may cause misleading judgments.
• Merge redundant or duplicate rules, extracting common logic to improve clar-

ity and generality.
3. Rule Addition If new patterns emerge from the misjudged samples that are not

covered by the current rule set, add new rules to capture these patterns.
Through this process, iteratively optimize the rule set to make SQL equivalence evaluation
more accurate and robust for the current sample set.

Output Format.
• First, present your reasoning process in plain text, showing your step-by-step

thought process.
• The final result must be enclosed in “‘json.
• The JSON top-level key must be "rules", whose value is a list (no limit on num-

ber of rules).
• Each rule must have:

– "description" — a clear logical statement describing the conditions un-
der which the predicted SQL should be considered correct/incorrect.

– "type" — either "True" (supports judging predicted SQL as correct) or
"False" (supports judging it as incorrect).

Example Output.

```json
{
"rules": [
{
"description": "Clear logical explanation of when a predicted

SQL is correct/incorrect",
"type": "True/False" // True = supports correctness; False =

supports incorrectness
}

]
}
```

Prompt Template: Rule Aggregation
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Background.
We are building a comprehensive SQL evaluation agent to assess whether a predicted SQL
in a database question answering (DBQA) system can effectively answer the user’s question.
In the Rule Extraction phase, a set of local evaluation rules has been generated for each
semantic cluster of samples. Your responsibility is the Rule Aggregation phase, where
the goal is to merge multiple sets of local rules into a unified global evaluation rule set
applicable to the entire dataset.

Full Process Overview.
1. Rule Extraction (Training) — Derive evaluation rules from labeled samples to

simulate the reasoning logic and evaluation standards of human annotators.
2. Rule-Based Evaluation (Inference) — Apply the extracted rules to assess whether

each predicted SQL correctly answers the user’s question.

The Rule Extraction stage itself consists of two sub-steps:
1. Cluster-wise Rule Extraction — Since the dataset is large, it is divided into clus-

ters. Rules are extracted for each cluster separately, producing local rules for that
cluster.

2. Rule Aggregation — These local rules are then generalized, merged, and consoli-
dated into a single global evaluation rule set with high coverage and broad applica-
bility.

You are responsible for the Rule Aggregation step.

Input.
• Rule Collections (each rule contains a description and a type, where the description

specifies the evaluation logic and the type indicates the evaluation direction):

{cluster_rules}

Rule Aggregation Guidelines. Aggregation Objective Your goal is to systematically merge
rules by integrating semantically similar or logically consistent rules into unified ones, re-
sulting in a global, general-purpose, and complete evaluation rule set.
Aggregation Process

1. Merge Similar Rules
• Compare the semantic meaning of different rules and merge those with similar

judgment criteria or applicability.
• When merging, retain all valuable judgment conditions and any illustrative

examples from each rule, ensuring that no critical information is lost in the
process.

2. Handle Conflicts and Redundancy
• If conflicts or overlapping coverage are found:

– Prioritize keeping rules that are more general, broader in scope, or easier
to apply.

– Remove or merge redundant, repetitive, or overly narrow rules.

Output Format.
• First, present your reasoning process (merging approach) in plain text, showing

your step-by-step thought process.
• The final result must be enclosed in “‘json.
• The JSON top-level key must be "rules", whose value is a list (no limit on num-

ber of rules).
• Each rule must have:

– "description" — a clear logical statement describing the conditions un-
der which the predicted SQL should be considered correct/incorrect.
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– "type" — either "True" (supports judging predicted SQL as correct) or
"False" (supports judging it as incorrect).

Example Output.

```json
{
"rules": [
{
"description": "Clear logical explanation of when a predicted

SQL is correct/incorrect",
"type": "True/False" // True = supports correctness; False =

supports incorrectness
}

]
}
```

Prompt Template: Evaluation

Role. You are an SQL evaluation expert, skilled at assessing Text-to-SQL systems. Your task
is to determine, based on the given user question, predicted SQL and its execution result, and
reference SQL and its execution result, whether the predicted SQL’s output can directly and
correctly answer the user’s question, or whether the correct answer can be inferred through
reasoning.

Evaluation Objective. Judge whether the predicted_sql and its execution result can
address the user’s question directly, or whether the correct answer can be inferred from the
SQL and its execution result. Prioritize checking whether the execution results match:

• If they match and satisfy the evaluation rules, return True.
• If they do not match, determine correctness based on the evaluation rules.

Note: The reference_sql is only a reference answer — it is not the only correct answer.

Evaluation Rules.
{applicable_rules}

Input.
• User Question:
{question}

• Current Time:
{current_time}

• Predicted SQL:
{predicted_sql}

• Predicted SQL Execution Result:
{predicted_result}

• Reference SQL:
{reference_sql}
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• Reference SQL Execution Result:
{reference_result}

• Background Knowledge:
{background_knowledge}

Output Format Requirements.
• Output must be enclosed in “‘json.
• Do not include any additional explanatory text outside the JSON.

Output Format.

```json
{
"reasoning": "Explanation of the judgment process",
"result": true/false // true = predicted SQL can correctly answer

the question; false = it cannot
}
```

A.3 CASE STUDY

In this section, we present illustrative examples from all three datasets to demonstrate how the
introduction of rule guidance corrects evaluation outcomes. Each case highlights a situation where,
without rules, the evaluator would misjudge the semantic correctness of a predicted SQL query.
By applying our extracted rules, the evaluator is able to reason more faithfully about equivalence,
leading to corrected decisions. These examples show concretely how our rules operate in practice.

A.3.1 CASE STUDY OF BOND-QA

NL Query
How many secondary-market cash-bond trades and repo trades with A occurred in 2024?
Report the counts separately.

SQLs
Predicted

SELECT
CASE
WHEN "trade_type" = 'Cash-Bond' THEN 'Cash-Bond'
WHEN "trade_type" IN ('Buyout Repo', 'Pledged Repo') THEN 'Repo'

END AS "trade_category",
COUNT(DISTINCT "instruction_id") AS "trade_count"

FROM "trade_instructions"
WHERE "counterparty" = 'A'

AND "trade_date" LIKE '2024%'
AND "trade_status" = 'Confirmed'
AND "trade_type" IN ('Cash-Bond', 'Buyout Repo', 'Pledged Repo')
AND "market" IS NOT NULL

GROUP BY
CASE
WHEN "trade_type" = 'Cash-Bond' THEN 'Cash-Bond'
WHEN "trade_type" IN ('Buyout Repo', 'Pledged Repo') THEN 'Repo'

END;

-- Execution Result
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-- trade_category | trade_count
-- Cash-Bond | 1825
-- Repo | 0

Reference

SELECT
SUM(CASE WHEN "trade_type" = 'Cash-Bond' THEN 1 ELSE 0 END)
AS "cash_bond_count",
SUM(
CASE
WHEN "trade_type" IN ('Pledged Repo', 'Buyout Repo') THEN 1
ELSE 0

END
) AS "repo_count"

FROM "trade_instructions"
WHERE
"source" = 'Sales'
AND "counterparty" = 'A'
AND "trade_status" = 'Confirmed'
AND "trade_date" >= '2024-01-01'
AND "trade_date" <= '2024-12-31';

-- Execution Result
-- cash_bond_count | repo_count
-- 1825 | 0

Label: 1

Evaluation without Rules
• Result: False
• Reasoning: The prediction returns only the cash-bond row when repo trades are

zero, so the repo category does not appear explicitly. Interpreting the absence as
zero is disallowed; therefore the answer is deemed incomplete.

Evaluation with Rules
• Result: True
• Reasoning: Core constraints align with the question: counterparty = A, time range

= 2024, and status = confirmed. The reference adds a source filter (source =
’Sales’) not mandated by the question. Under grouping semantics, a missing
category implies a zero count; thus the prediction directly yields the required counts
(cash-bond count and repo = 0), satisfying the user request.

Rule Triggered When the predicted_sql and reference_sql differ in implementation details
such as aggregation methods, grouping fields, filtering conditions, or field naming, but the
execution result of the predicted SQL fully and accurately covers all the key information
required by the user query (including fields, grouping categories, etc.), it should still be
judged as correct. This applies even if certain categories are not explicitly shown in the
result, as long as they can be logically inferred to be zero through standard SQL grouping
and aggregation rules (e.g., when a category has no data and therefore does not appear in the
output).

A.3.2 CASE STUDY OF SPIDER-PAIR

NL Query
How many models does each car maker produce? List maker full name, id and the number.
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SQLs
Predicted

SELECT fullname, id, COUNT(model) AS model_count
FROM model_list
LEFT JOIN car_makers ON model_list.maker = car_makers.id
GROUP BY fullname, id

Reference

SELECT t.FullName AS FULLNAME, t.Id AS ID, COUNT(*) AS EXPR$2
FROM (SELECT Id, FullName FROM car_makers) AS t
INNER JOIN (SELECT Maker FROM model_list) AS t0
ON t.Id = t0.Maker
GROUP BY t.Id, t.FullName

Label: 0

Evaluation without Rules
• Result: True ;(Score: 0.92)
• Reasoning: Both SQL queries aim to return, for each car maker, the maker’s full

name, id, and a count of associated models. However, there are notable differences
in their join types and counting logic. The Ground-Truth SQL uses an INNER
JOIN between car_makers and model_list, ensuring only makers with at least one
model are included. It counts all joined rows (COUNT(*)), which corresponds to
the number of models per maker. The Predicted SQL uses a LEFT JOIN from
model_list to car_makers, grouping by fullname and id, and counts the number of
models (COUNT(model)). This means it will include all makers from car_makers,
even those with zero models, but since the join is from model_list, only makers
present in mode_list will appear. However, the grouping and join direction in the
Predicted SQL may result in missing makers with zero models, similar to the IN-
NER JOIN in the Ground-Truth SQL. The main difference is that the Predicted
SQL’s COUNT(model) will not count NULLs, so if there are model_list rows with
NULL model values, those won’t be counted, whereas COUNT(*) in the Ground-
Truth SQL would count all joined rows. Additionally, the column aliases differ, but
this does not affect functional equivalence. Overall, the queries will return the same
results in most practical cases, except for edge cases involving NULLs in the model
column. Therefore, the functional equivalence is high but not perfect.

Evaluation with Rules
• Result: False ;(Score: 0.40)
• Reasoning: Both queries aim to return, for each car maker, the maker’s full name,

id, and a count of associated models. However, there are important differences in
their logic and join types. The Predicted SQL uses a LEFT JOIN from model_list
to car_makers, grouping by fullname and id, and counts the number of models
per maker. The Ground-Truth SQL uses an INNER JOIN from car_makers to
model_list, grouping by id and fullname, and counts the number of joined rows
(COUNT(*)).
Key differences: 1. Join Type: The Predicted SQL uses LEFT JOIN, which
will include makers even if they have no models (with model_count = 0), while
the Ground-Truth SQL uses INNER JOIN, which will only include makers that
have at least one model. This can lead to different result sets if there are mak-
ers with no models. 2. COUNT Argument: The Predicted SQL counts model
(COUNT(model)), which will count only non-null model values. The Ground-
Truth SQL uses COUNT(*), which counts all joined rows. In this schema, if a
model_list row exists, model is likely non-null, so this is probably equivalent, but
not guaranteed unless model is non-nullable. 3. Grouping Columns: The grouping
columns are the same in content (fullname/id vs. t.FullName/t.Id), just with dif-
ferent order, which is not significant unless order is required. 4. Projection: Both
queries output the same logical columns (fullname, id, count of models).
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The most significant difference is the join type: LEFT JOIN vs. INNER JOIN. This
means the Predicted SQL will include makers with zero models, while the Ground-
Truth SQL will not. This is a logical difference in the result set, violating rule
14 (join type changes row inclusion). Therefore, the queries are not functionally
equivalent. However, in the case where all makers have at least one model, the
results would match, so the queries are not completely unrelated. Thus, a score
reflecting partial equivalence is appropriate.

Rule Triggered
If the set of columns in SELECT, WHERE, GROUP BY, or JOIN clauses differs between
the queries, and these columns are not aliases or semantically equivalent, the queries are not
equivalent.

A.3.3 CASE STUDY OF NL2SQL-BUGS

NL Query
Which Russian set of cards contains the most cards overall?

Candidate SQL
SELECT T2.setCode
FROM sets AS T1
INNER JOIN set_translations AS T2

ON T1.code = T2.setCode
WHERE T2.language = 'Russian'
ORDER BY T1.baseSetSize DESC
LIMIT 1

Label: 0

Evaluation without Rules
• Result: True
• Reasoning: The NL query asks for the Russian set of cards (i.e., set where there is

a Russian translation) that contains the most cards overall. The schema shows that
‘sets‘ has ‘baseSetSize‘ (number of cards in the set), and ‘set_translations‘ links
‘setCode‘ to ‘sets.code‘ and has language. The SQL joins sets and set_translations
on ‘setCode‘, filters for Russian, orders by ‘baseSetSize‘ DESC, and limits to 1.
However, the SELECT clause returns ‘T2.setCode‘ (from set_translations), which
is correct since setCode is the set identifier. The query does not use an aggregate
function (MAX), but the ORDER BY ... DESC LIMIT 1 pattern is a valid way to
get the set with the maximum baseSetSize. Therefore, the query is semantically
correct and matches the NL query.

Evaluation with Rules
• Result: False
• Reasoning: The NL query asks for the Russian set of cards (i.e., set where

there is a Russian translation) that contains the most cards overall. The
schema indicates that ‘sets.baseSetSize‘ gives the number of cards in a set, and
‘set_translations.language‘ specifies the language. The SQL joins ‘sets‘ and
‘set_translations‘ on set code, filters for Russian, orders by ‘baseSetSize‘ descend-
ing, and limits to 1. However, the SELECT clause returns ‘T2.setCode‘, which is
the set code, not the set name. The NL query asks for the "set", which is ambiguous
but usually refers to the set name (‘sets.name‘), not the code. Therefore, the query
returns the set code, not the set name, which is an attribute mismatch.
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Rule Triggered (4) The SELECT clause omits required fields, includes fields not requested
by the question (when this changes the meaning or violates explicit requirements), or mis-
formats the output.

All Rules A SQL query is judged incorrect (False) if ANY of the following are true: (1) It
omits or misapplies any required entity, attribute, constraint, filter, or join from the natural
language question, or maps them to the wrong schema columns or values (including case
or value mismatches); (2) It uses incorrect, missing, or extraneous joins, filters, columns,
or logic that would change the result set or meaning, including joining on non-key or unre-
lated columns, or failing to join necessary tables; (3) It applies aggregations, calculations,
or groupings incorrectly, including using the wrong function, missing DISTINCT when re-
quired, failing to handle ties or uniqueness, or returning results at the wrong granularity;
(4) The SELECT clause omits required fields, includes fields not requested by the question
(when this changes the meaning or violates explicit requirements), or misformats the output
(e.g., missing both members of a pair, not using YES/NO when required, or not matching
required output format); (5) The query fails to map natural language terms to the correct
schema fields or values, including incorrect handling of date formats, string case, or value
sets; (6) The query is not robust to all plausible database states, such that for some valid data
it would return an incorrect, incomplete, or ambiguous answer (e.g., assuming uniqueness
where it may not exist, or using ’=’ instead of ’IN’ for subqueries that may return multiple
rows); (7) The query contains SQL syntax errors or uses hardcoded IDs or values not ref-
erenced in the question; (8) Any error or omission that could cause the result to be wrong,
incomplete, ambiguous, or not fully answer the question, including partial answers to multi-
part questions, incorrect logic for counting, grouping, or aggregating, or output in the wrong
format when the question explicitly requires a specific format.

Error Type
• Attribute-Related Errors: Attribute Mismatch

A.4 RULES EXAMPLE

Below are some representative rules extracted from the Spider dataset. As we can see, these rules
align well with human intuition. Green-highlighted rules indicate cases that are judged as equiva-
lent, while red-highlighted rules represent cases that are judged as non-equivalent

Examples of Semantic Equivalence Rules

[Rule 1] Differences in the use of GROUP BY and DISTINCT for deduplication are consid-
ered equivalent if the deduplication logic is preserved and no aggregation is present. For ex-
ample, SELECT DISTINCT column vs SELECT column GROUP BY column are
equivalent. However, if deduplication is omitted when duplicates are possible, the queries
are non-equivalent.

[Rule 2] Differences in the use of subqueries in the FROM clause, derived tables, or wrap-
ping a table/column selection in a subquery (e.g., FROM (SELECT ...) vs direct table
reference) do not affect equivalence if the subquery does not filter, transform, or otherwise
alter the data, and the logical meaning and output columns remain unchanged. Additional
subquery nesting or aliasing is also equivalent if the logical operation and selected columns
are the same.

[Rule 3] Differences in the use of aggregation functions (e.g., COUNT(*), COUNT(1),
COUNT(column)) are considered equivalent if the aggregation semantics are preserved,
the grouping keys are the same, and the counted column is either NOT NULL or a key.
However, COUNT(DISTINCT column) and COUNT(*) are only equivalent if the col-
umn is unique and non-null in context.

[Rule 4] If the predicted SQL uses a different aggregation function, operates on a different
column, or applies aggregation at a different grouping level than the ground-truth SQL, the
queries are non-equivalent. This includes differences in COUNT(*), COUNT(column),
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COUNT(DISTINCT ...), SUM, MAX, MIN, or grouping columns, unless the extra group-
ing columns are functionally dependent or redundant.

[Rule 5] If the predicted SQL uses different ORDER BY or LIMIT clauses, or omits them
when present in the ground-truth SQL, and this affects which rows are returned or if the
order is required by the question, the queries are non-equivalent. For example, ORDER BY
rating DESC LIMIT 1 vs omitting LIMIT or changing the sorting order.

[Rule 6] If the predicted SQL uses subqueries or aliases in a way that changes logical re-
lationships, data scope, or filtering compared to the ground-truth SQL, the queries are non-
equivalent. This includes differences in subquery placement (e.g., WHERE vs JOIN), corre-
lated subqueries, or logic that alters the rows or values being considered.

A.5 USE OF LARGE LANGUAGE MODELS

We only used large language models to polish the writing of this paper, and did not use them in any
other part of the research.
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