
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

On the Robustness of Transformers against Context Hijacking
for Linear Classification

Anonymous Authors1

Abstract
Transformer-based Large Language Models
(LLMs) have demonstrated powerful in-context
learning capabilities. However, their predictions
can be disrupted by factually correct context, a
phenomenon known as context hijacking, reveal-
ing a significant robustness issue. To understand
this phenomenon theoretically, we explore an in-
context linear classification problem based on re-
cent advances in linear transformers. In our setup,
context tokens are designed as factually correct
query-answer pairs, where the queries are similar
to the final query but have opposite labels. Then,
we develop a general theoretical analysis on the
robustness of the linear transformers, which is for-
mulated as a function of the model depth, training
context lengths, and number of hijacking context
tokens. A key finding is that a well-trained deeper
transformer can achieve higher robustness, which
aligns with empirical observations. We show that
this improvement arises because deeper layers
enable more fine-grained optimization steps, ef-
fectively mitigating interference from context hi-
jacking. This is also well supported by our numer-
ical experiments. Our findings provide theoretical
insights into the benefits of deeper architectures
and contribute to enhancing the understanding of
transformer architectures.

1. Introduction
Transformers (Vaswani et al., 2017) have demonstrated re-
markable capabilities in various fields of deep learning,
such as natural language processing (Radford et al., 2019;
Achiam et al., 2023; Vig & Belinkov, 2019; Touvron et al.,
2023; Ouyang et al., 2022; Devlin, 2018). A common view
of the superior performance of transformers lies in its re-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

markable in-context learning ability (Brown, 2020; Chen
et al., 2022; Liu et al., 2023a), that is, transformers can
flexibly adjust predictions based on additional data given
in context contained in the input sequence itself, without
updating parameters. This impressive ability has triggered
a series of theoretical studies attempting to understand the
in-context learning mechanism of transformers (Olsson
et al., 2022; Garg et al., 2022; Xie et al., 2021; Guo et al.,
2023; Wu et al., 2023). These studies suggest that trans-
formers can behave as meta learners (Chen et al., 2022),
implementing certain meta algorithms (such as gradient de-
scent (Von Oswald et al., 2023; Ahn et al., 2023; Zhang
et al., 2024b) based on context examples, and then applying
these algorithms to the queried input.

Despite the benefits of in-context learning abilities in trans-
formers, this feature can also lead to certain negative im-
pacts. Specifically, while well-designed in-context prompts
can help generate desired responses, they can also mislead
the transformer into producing incorrect or even harmful
outputs, raising significant concerns about the robustness
of transformers (Chowdhury et al., 2024; Liu et al., 2023c;
Zhao et al., 2024). For instance, a significant body of work
focuses on jailbreaking attacks (Chao et al., 2023; Niu et al.,
2024; Shen et al., 2024; Deng et al., 2023; Yu et al., 2023),
which aim to design specific context prompts that can bypass
the defense mechanisms of large language models (LLMs)
to produce answers to dangerous or harmful questions (e.g.,
“how to build a bomb?”). It has been demonstrated
that, as long as the context prompt is sufficiently long and
flexible to be adjusted, almost all LLMs can be successfully
attacked (Anil et al., 2024). These studies can be cate-
gorized under adversarial robustness, where an attacker is
allowed to perturb the contextual inputs arbitrarily to induce
the transformer model to generate targeted erroneous out-
puts (Shi et al., 2023; Pandia & Ettinger, 2021; Creswell
et al., 2022; Yoran et al., 2023).

However, in addition to the adversarial attack that may
use harmful or incorrect context examples, it has been
shown that the predictions of LLMs can also be dis-
rupted by harmless and factually correct context. Such
a phenomenon is referred to as context hijacking (Jiang
et al., 2024; Jeong, 2023), which is primarily discovered
on fact retrieval tasks, i.e. the output of the LLMs can

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

On the Robustness of Transformers against Context Hijacking for Linear Classification

Figure 1. Context hijacking phenomenon in LLMs of different depths. Left: If there are no or only a few factually correct prepends,
LLMs of different depths can correctly predict the next token. When the number of prepends increases, the outputs of models are disrupted,
and deeper models are more robust. Right: Four different types of tasks are introduced, each with a fixed template, and tested on LLMs of
different depths. The horizontal axis is the model with depth from small to large, and the vertical axis is the average number of prepends
required to successfully interfere with the model output. Experiments show that deeper models perform more robustly. (Experimental
setup is given in Appendix G.1)

be simply manipulated by modifying the context with
additional factual information. For example, as shown
in Figure 1, the GPT2 model can correctly answer the
question “Rafael Nadal’s best sport is” with
“tennis” when giving context examples. However, if fac-
tually correct context examples such as “Rafael Nadal
is not good at playing basketball” are pro-
vided before the question, the GPT-2 model may incorrectly
respond with “basketball”. Then, it is interesting to
investigate whether such a phenomenon depends on differ-
ent tasks and transformer architectures. To this end, we
developed a class of context hijacking tasks and counted the
number of context examples that led to incorrect outputs
(see Figure 1). Our findings indicate that increasing the
number of prepended context examples amplifies the effect
on the transformer’s prediction, making it more likely to
generate incorrect outputs. Additionally, we observed that
deeper transformer models exhibit higher robustness to con-
text hijacking, requiring more prepended context examples
to alter the model’s output. Therefore, conducting a precise
robustness analysis regarding context hijacking could pro-
vide valuable insights in understanding the architecture of
the transformer model.

In this paper, we aim to develop a comprehensive theoretical
analysis on the robustness of transformer against context
hijacking. In particular, we follow the general design of
many previous theoretical works (Olsson et al., 2022; Ahn
et al., 2023; Frei & Vardi, 2024) on the in-context learn-
ing of transformers, by considering the multi-layer linear
transformer models for linear classification tasks, where the
hijacking examples are designed as the data on the boundary
but with an opposite label to the queried input. Starting from
the view that the L-th transformer models can implement
L-step gradient descent on the context examples, with an ar-
bitrary initialization, we formulate the transformer training

as finding the optimal multi-step gradient descent methods
with respect to the learning rates and initialization. Then, we
prove the optimal multi-step gradient strategy, and formulate
the optimal learning rate and initialization as the function
of the iteration number (i.e., model depth) and the context
length. Furthermore, we deliver the theoretical analysis on
the robustness based on the proved optimal gradient descent
strategy, which shows that as the transformer become deeper,
the corresponding more fine-grained optimization steps can
be less affected by the hijacking examples, thus leading to
higher robustness. This is well aligned with the empirical
findings and validated by our numerical experiments. We
summarize the main contributions of this paper as follows:

• We develop the first theoretical framework to study the ro-
bustness of multi-layer transformer model against context
hijacking, where the hijacked context example is designed
as the data with the factually correct label but close to the
prediction boundary. This is different from a very recent
related work on the robustness of transformer (Anwar
et al., 2024) that allows the context data to be arbitrarily
perturbed, which could be factually incorrect.

• Based on the developed theoretical framework, we formu-
late the test robust accuracy of the transformer as a func-
tion with respect to the training context length, number
of hijacked context examples, and the depth of the trans-
former model. The key of our analysis is that we model
the in-context learning mechanism of a well-trained multi-
layer transformer as an optimized multi-step gradient de-
scent, where the corresponding optimal initialization and
learning rates can be precisely characterized. This could
of independent interest to other problems that involve the
gradient descent methods on linear problems.

• Based on the developed theoretical results, we demon-
strate that deeper transformers are more robust because
they are able to perform more fine-grained optimization

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

On the Robustness of Transformers against Context Hijacking for Linear Classification

steps on the context samples, which can potentially ex-
plain the practical observations of LLMs in the real world
(see Figure 1). The theoretical results are well supported
by synthetic numerical experiments in various settings.

2. Related works
In-context learning via transformers. The powerful per-
formance of transformers is generally believed to come
from its in-context learning ability (Brown, 2020; Chen
et al., 2022; Min et al., 2022; Liu et al., 2023a; Xie et al.,
2021). A line of recent works study the phenomenon of
in-context learning from both theoretical (Bai et al., 2024;
Guo et al., 2023; Lin et al., 2023; Chen et al., 2024; Frei
& Vardi, 2024; Huang et al., 2023; Siyu et al., 2024; Li
et al., 2024) and empirical (Garg et al., 2022; Akyürek
et al., 2022a; Li et al., 2023a; Raventós et al., 2024; Pathak
et al., 2023; Panwar et al., 2023; Bhattamishra et al., 2023;
Fu et al., 2023; Lee et al., 2024) perspectives on diverse
settings. Brown (2020) first showed that GPT-3 can per-
form in-context learning. Chen et al. (2024) studied the
role of different heads within transformers in performing
in-context learning focusing on the sparse linear regression
setting. Frei & Vardi (2024) studied the ability of one-layer
linear transformers to perform in-context learning for linear
classification tasks.

Mechanism interpretability of transformers. Among the
various theoretical interpretations of transformers (Friedman
et al., 2024; Yun et al., 2020; Dehghani et al., 2019; Lindner
et al., 2024; Pandit & Hou, 2021; Pérez et al., 2021; Bills
et al., 2023; Wei et al., 2022; Weiss et al., 2021; Zhou et al.,
2023; Chen & Zou, 2024), one of the most widely studied
theories is the ability of transformers to implement optimiza-
tion algorithms such as gradient descent (Von Oswald et al.,
2023; Ahn et al., 2023; Zhang et al., 2024b; Bai et al., 2024;
Wu et al., 2023; Cheng et al., 2023; Akyürek et al., 2022b;
Dai et al., 2023; Zhang et al., 2024a). Von Oswald et al.
(2023) theoretically and empirically proved that transform-
ers can learn in-context by implementing a single step of
gradient descent per layer. Ahn et al. (2023) theoretically
analyzed that transformers can learn to implement precondi-
tioned gradient descent for in-context learning. Zhang et al.
(2024b) considered ICL in the setting of linear regression
with a non-zero mean Gaussian prior, a more general and
common scenario where different tasks share a signal, which
is highly relevant to our work.

Robustness of transformers. The security issues of large
language models have always attracted a great deal of atten-
tion (Yao et al., 2024; Liu et al., 2023b; Perez & Ribeiro,
2022; Zou et al., 2023; Apruzzese et al., 2023). However,
most of the research focuses on jail-breaking black-box
models (Chowdhury et al., 2024), such as context-based
adversarial attacks (Kumar et al., 2023; Wei et al., 2023; Xu

et al., 2023; Wang et al., 2023a; Zhu et al., 2023; Cheng
et al., 2024; Wang et al., 2023b). There is very little white-
box interpretation work of attacks on the transformer, the
foundation model of LLMs (Qiang et al., 2023; Bailey et al.,
2023; He et al., 2024; Anwar et al., 2024; Jiang et al., 2024).
Qiang et al. (2023) first considered attacking large language
models during in-context learning, but they did not study
the role of transformers in robustness. Jiang et al. (2024)
proposed the phenomenon of context hijacking, which be-
came the key motivation of our work. They analyzed this
problem from the perspective of associative memory models
instead of the in-context learning ability of transformers.

3. Preliminaries
In this section, we will provide a detailed introduction to
our setup of the context hijacking problem, including the
data model, transformer architecture, and evaluation metric.

3.1. Data model

To understand the mechanism of context hijacking phe-
nomenon, we model it as a binary classification task, where
the query-answer pair is modeled as the input-response pair
((x, y) ∈ Rd × {±1}). In particular, we present the defini-
tion of the data model as follows:
Definition 3.1 (Data distribution). Let w∗ ∈ Rd be a vector
drawn from a prior distribution on the d dimensional unit
sphere Sd−1, denoted by pβ∗(·), where β∗ ∈ Sd−1 denotes
the expected direction of w∗. Then given the generated
w∗, the data pair (x, y) is generated as follows: the feature
vector is x ∼ N (0d, Id) and the corresponding label is
y = sign(⟨w∗,x⟩).

Based on the data distribution of each instance, we then
introduce the detailed setup of the in-context learning task
in our work. In particular, we consider the setting that
the transformer is trained on the data with clean context
examples and evaluated on the data with hijacked context.

Training phase. During the training phase, we are given
n clean context examples {(x1, y1), . . . , (xn, yn)} and a
query xquery with its label yquery. In particular, here we
mean the clean examples as the {(x1, y1), . . . , (xn, yn)}
are drawn from the same data distribution Dw∗ as
(xquery, yquery). Then, the input data matrix for in-context
learning is designed as follows:

Z =

[
x1 . . . xn xquery

y1 . . . yn 0

]
∈ R(d+1)×(n+1). (3.1)

Here, to ensure that the dimension of xquery aligns with
those of other input pair (xi, yi), we concatenate it with
0 as a placeholder for the unknown label yquery. Ideally,
we anticipate that given the input Z, the output of the trans-
former model, denoted by ŷquery can match the ground truth

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

On the Robustness of Transformers against Context Hijacking for Linear Classification

one. Moreover, we also emphasize that within each data
matrix Z, the context examples and the queried data should
be generated based on the same ground truth vector w∗,
while for different input matrices, e.g., Z and Z′, we allow
their corresponding ground truth vectors could be different,
which are i.i.d. drawn from the prior pβ∗(·).

The training data distribution simulates the pre-training data
of the large language model. Unlike existing works (Ahn
et al., 2023; Olsson et al., 2022) where the prior of w∗ is
assumed to have a zero mean, we consider a setting where
w∗ has a non-zero mean (i.e., β∗). This approach is inspired
by empirical observations (see Figure 1) that transformer
models can perform accurate zero-shot predictions. Con-
sequently, our model can encapsulate both memorization
and in-context learning, where the former corresponds to re-
covering the mean of the prior distribution, i.e., β∗, and the
latter aims to manipulate the {(x1, y1), . . . , (xn, yn)} effec-
tively. In contrast, existing works primarily focus on the
latter, thereby failing to fully explain the interplay between
memorization and in-context learning.

Test phase. During the test phase, context examples are
designed based on the query input xquery to effectively exe-
cute the attack. Inspired by empirical observations (Figure
1) and prior experience with jailbreaking attacks (Anil et al.,
2024), we choose to use repeated hijacking context exam-
ples during the test phase. Specifically, since the hijacked
context should be factually correct, we consider data similar
to the queried input but with a correct and opposite label
of low confidence. Mathematically, this involves project-
ing xquery onto the classification boundary. To this end,
given the target query data (xquery, yquery), we formalize
the design of the hijacked context example as follows.

Definition 3.2 (Hijacked context data). Let (x, y) be a input
pair and w∗ be the corresponding ground truth vector. Ad-
ditionally, denote x⊥ as the projection of x on the boundary
of classifier, i.e. x⊥ = (Id−w∗(w∗)⊤) ·x. Then, the query
pair (xquery, yquery) is generated as xquery = x⊥ + σw∗

and yquery = sign
(
⟨w∗,xquery⟩

)
= sign(σ) with σ be-

ing a random variable, and the hijacked context example is
designed as xhc = x⊥ and yhc = −yquery.

Note that we pick ⟨xhc,w
∗⟩ = 0 to enforce hijacked con-

text lies on the boundary of the classifier. A more rigor-
ous design is to set xhc = x⊥ − η · yquery · w∗ for some
positive quantity η, where it can be clearly shown that
yhc = sign(⟨xhc,w

∗⟩) = −yquery. Definition 3.2 concerns
the limiting regime by enforcing η → 0+.

Then, based on the above design, the input data matrix in
the test phase is constructed as follows:

Zhc =

[
xhc . . . xhc xquery

yhc . . . yhc 0

]
∈ R(d+1)×(N+1).

(3.2)

Here we use N to denote the number of hijacked context
examples. The example (xhc, yhc) can also be interpreted to
the closest data to xquery but with a different label −yquery,
which principally has the ability to perturb the prediction of
xquery. Additionally, because the prediction is highly likely
to be correct in the zero-shot regime (i.e., N = 0), the
prediction in the test phase can be viewed as a competition
between model memorization and adversarial in-context
learning. This dynamic is primarily influenced by the num-
ber of hijacked context examples.

3.2. Transformer model

Following the extensive prior theoretical works for trans-
former (Zhang et al., 2024a;b; Chen et al., 2024; Frei &
Vardi, 2024; Ahn et al., 2023), we consider linear attention-
only transformers, a prevalent simplified structure to inves-
tigate the behavior of transformer models. In particular,
We define an L-layer linear transformer TF as a stack of
L single-head linear attention-only layers. For the input
matrix Zi−1 ∈ R(d+1)×(n+1), the i-th single-head linear
attention-only layer TFi updates the input as follows:

Zi = TFi(Zi−1) = Zi−1 +PiZiM(Z⊤
i−1QiZi−1),

(3.3)

where M :=

(
In 0
0 0

)
∈ R(n+1)×(n+1) is the mask matrix.

We design this architecture to constrain the model’s focus
to the first n in-context examples. Moreover, the matrix
P := Wv ∈ R(d+1)×(d+1) serves as the value matrix in
the standard self-attention layer, while the matrix Q :=
W⊤

k Wq ∈ R(d+1)×(d+1) consolidates the key matrix and
query matrix. This mild re-parameterization has been widely
considered in numerous recent theoretical works (Huang
et al., 2023; Wang et al., 2024; Tian et al., 2023; Jelassi
et al., 2022). To adapt the transformer for solving the linear
classification problem, we introduce an additional linear
embedding layer WE ∈ R(d+1)×(d+1). Then the output of
the transformer TF is defined as

ŷquery = TF(Z0;WE , {Pℓ,Qℓ}Lℓ=1)

= −[TFL ◦ · · · ◦ TF1 ◦WE(Z0)](d+1),(n+1)

= −[ZL](d+1),(n+1), (3.4)

i.e. the negative of the (d + 1, n + 1)-th entry of ZL, and
this position is replaced by 0 in the input Z0. The reason
for taking the minus sign here is to align with previous
work (Von Oswald et al., 2023; Shen et al., 2024), which
will be explained in Proposition 4.1.

3.3. Evaluation metrics

Based on the illustration regarding the transformer architec-
ture, we first define the in-context learning risk of a L-layer

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

On the Robustness of Transformers against Context Hijacking for Linear Classification

model TF in the training phase. In particular, let Dtr be the
distribution of the input data matrix Z in (3.1) and the target
yquery, which covers the randomness of both (x, y) and w∗,
then the risk function in the training phase is defined as:

R (TF) := EZ,yquery∼Dtr

[
(TF(Z;θ)− yquery)

2]
. (3.5)

where θ = {WE , {Pℓ,Qℓ}Lℓ=1} denotes the collection of
all trainable parameters of TF. This risk function will be
leveraged for training the transformer models (where we
use the stochastic gradient in the experiments).

Additionally, in the test phase, let Dte be the distribution of
the input data matrix Zhc in (3.2) and the target yquery, we
consider the following population prediction error:

E (TF) := PZhc,yquery∼Dte

[
TF(Zhc;θ) · yquery < 0

]
.

(3.6)

4. Main theory
In this section, we present how we establish our theoretical
analysis framework regarding the robustness of transformers
against context hijacking. In summary, we can briefly sketch
our framework into the following several steps:

• Step 1. We establish the equivalence between the L-layer
transformers and L steps gradient descent, converting the
original problem of identifying well-trained transform-
ers to the problem of finding the optimal parameters of
gradient descent (i.e., initialization and learning rates).

• Step 2. We derive the optimal learning rates and initial-
ization of gradient descent, revealing its relationship with
the number of layers L and training context length n.

• Step 3. By formulating the classification error of a linear
model obtained by L steps gradient descent with optimal
parameters on hijacking distribution Dte, we characterize
how the number of layers L, the training context length n
and test context length N affect the robustness.

4.1. Optimizing over in-context examples

Inspired by a line of recent works (Zhang et al., 2024b; Bai
et al., 2024; Chen et al., 2024; Ahn et al., 2023; Olsson
et al., 2022) which connects the in-context learning of trans-
former with the gradient descent algorithm, we follow a
similar approach by showing that, in the following propo-
sition, multi-layer transformer can implement multi-step
gradient descent, starting from any initialization, on the
context examples.

Proposition 4.1. For any L-layer single-head linear trans-
former, let ŷ(l)query be the output of the l-th layer of t, i.e.
the (d + 1, n + 1)-th entry of Zl. Then, there exists a
single-head linear transformer with L layers such that
ŷ
(l)
query = −⟨w(l)

gd ,xquery⟩. Here, w(l)
gd ’s are the parameter

vectors obtained by the following gradient descent iterative
rule and the initialization w

(0)
gd can be arbitrary:

w
(l+1)
gd = w

(l)
gd − Γl∇L̃(w

(l)
gd),

where L̃(w) =
1

2

n∑
i=1

(⟨w,xi⟩ − yi)
2. (4.1)

Here Γl can be any d× d matrix.

As Γl could be any d × d matrix, Proposition 4.1 demon-
strates that the output of the L-layer transformers is equiva-
lent to that of a linear model trained via L-steps of full-batch
preconditioned gradient descent on the context examples,
with {Γl}L−1

l=0 being the learning rates. This suggests that
each L-layer transformer defined in (3.4), with different
parameters, can be viewed as an optimization process of
a linear model characterized by a distinct set of initializa-
tion and learning rates {w(0)

gd ,Γ0, . . . ,ΓL−1}. Therefore, it
suffice to directly find the optimal parameters of the gradi-
ent descent process, without needing to infer the specific
parameters of the well-trained transformers.

Among all related works presenting similar conclusions
that transformers can implement gradient descent, our re-
sult is general as we prove that transformers can implement
multi-step gradient descent from any initialization. In com-
parison, for example, Zhang et al. (2024b) shows that a
single-layer transformer with MLP can implement one-step
gradient descent from non-zero initialization. Ahn et al.
(2023) demonstrate that linear transformers can implement
gradient descent, but only from 0 initialization.

4.2. Optimal multi-step gradient descent

Based on the discussion in the previous section, Proposi-
tion 4.1 successfully transforms the original problem of
identifying the parameters of well-trained transformers into
the task of finding the optimal learning rates and initializa-
tion for the gradient descent process (4.1). In this section,
we present our conclusions regarding these optimal param-
eters. As we consider optimizing over the general training
distribution Dtr, where the tokens xi’s follow the isotropic
distribution, it follows that the updating step size should be
equal in each direction from the perspective of expectation.
Therefore we consider the case Γl = αlId to simplify the
problem, with αl being a scalar for all l ∈ {0, . . . , L− 1}.
In the following, we focus on the optimal set of parame-
ters {w(0)

gd , α0, . . . , αL−1}. Specifically, we consider the

population loss for w(L)
gd as

R(w
(L)
gd) := ET,w∗∼Dtr

[(
⟨w(L)

gd ,xquery⟩ − yquery
)2]

,

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

On the Robustness of Transformers against Context Hijacking for Linear Classification

where T = {(x1, y1), . . . , (xn, yn), (xquery, yquery)} is the
set of all classification pairs 1. This definition resembles
R(TF) defined in (3.5). We attempt to find the w

(L)
gd that

minimizes this population loss, along with the correspond-
ing learning rates {αl}Ll=0 and initialization w

(0)
gd , which

can generate this w via gradient descent. We first present
the following proposition demonstrating that there exists
commutative invariance among the learning rates {αl}Ll=0

for producing w
(L)
gd .

Proposition 4.2. Let {α0, α1, . . . , αL−1} be a set of learn-
ing rates, and {α′

0, α
′
1, . . . , α

′
L−1} be another set of learn-

ing rates that is a permutation of {α0, α1, . . . , αL−1},
meaning both sets contain the same elements, with the
only difference being the order of these elements. With
w

(L)
gd ∈ Rd denoting as the parameters achieved by learn-

ing rates {α0, α1, . . . , αL−1} and w
(L)
gd′ ∈ Rd as the param-

eters achieved by learning rates {α′
0, α

′
1, . . . , α

′
L−1} from

the same initialization w
(0)
gd , it holds that w(L)

gd = w
(L)
gd′ .

Proposition 4.2 implies that the learning rates at different
steps contribute equally to the overall optimization process.
Consequently, we will consider a consistent learning rate α
through the entire gradient descent procedure, which signifi-
cantly reduces the difficulty of analysis and does not incur
any loss of generality. Now we are ready to present our main
results regarding the derivation of the optimal parameters α
and w

(0)
gd .

Theorem 4.3. For training distribution Dtr in Definition 3.1,
suppose that the training context length n is sufficiently
large such that n ≥ Ω̃(max{d2, dL}). Additionally, sup-
pose that the perturbation of w∗ around its expectation β∗

is smaller than π
2 , i.e. ⟨w∗,β∗⟩ > 0. Based on these as-

sumptions, the optimal learning rate α and initialization
w

(0)
gd , i.e. α,w(0)

gd = argmin
α,w

(0)
gd

R(w
(L)
gd), take the value

as follows:

α = Θ̃

(
1

nL

)
; w

(0)
gd = cβ∗,

where c is an absolute constant.

Theorem 4.3 clearly identifies the optimal learning rate α

and initialization w
(0)
gd . Specifically, it shows that the opti-

mal initialization w
(0)
gd aligns the direction of the expectation

β∗, with its length independent of the number of steps L,
and the context length n. Such a conclusion complies with
our intuitions as the initialization w

(0)
gd represents the mem-

ory of large language models, which is not dependent on
the task-specific context examples. In contrast, the optimal
learning rate α is inversely related to both n and L. This sug-
gests that in both cases: (i) with more in-context examples;

1Here we slightly abuse the notation of Dtr to denote both the
distribution of Z,wquery and T,w∗.

and (ii) with more layers, the output of pre-trained trans-
formers will equal to that of a more fine-grained gradient
descent process using a smaller learning rate. Generally, a
small-step strategy ensures the convergence of the objective,
highlighting the potential benefits of deeper architectures
and training inputs with longer context.

4.3. Robustness against context hijacking

The previous two subsections illustrate that for any input
with context examples, we can obtain the corresponding
prediction for that input from the well-trained transformers
by applying gradient descent with the optimal parameters
we derived in Theorem 4.3. As we model Dte the distri-
bution of hijacking examples, to examine the robustness
of L-layer transformers against hijacking, we only need to
check whether the linear model achieved by L-step gradient
on (xhc, yhc) can still conduct successful classification on
xquery. Specifically, we consider the classification error of
the parameter vector w̃(L)

gd as,

E(w̃(L)
gd) := PT,w∗∼Dte

(
yquery · ⟨w̃(L)

gd ,xquery⟩ < 0
)
,

where T = {(xhc, yhc), (xquery, yquery)}, and w̃
(L)
gd is ob-

tained by implementing gradient descent on (xhc, yhc) with
L steps and the optimal α and w

(0)
gd . Similar to the previous

result, E(w̃(L)
gd) is identical to E(TF) defined in (3.6). Based

on these preliminaries, we are ready to present our results
regarding the robustness against context hijacking. We first
introduce the following lemma illustrating that when the
context length of hijacking examples is small, we hardly
observe the label flipping phenomenons of the prediction
from well-trained transformers.

Lemma 4.4. Assume that all assumptions in Theorem 4.3
still hold. Additionally, assume that the length of hijacking
examples N is small such that N ≤ Õ

(
n

d3/2

)
and σ follows

any continuous distribution. Based on these assumptions, it
holds that

E(w̃(L)
gd) ≤ E(w(0)

gd) + o(1).

Lemma 4.4 demonstrates that when the context length of
hijacking examples is small, the classification error of the
linear model obtained through gradient descent on these
hijacking examples is very close to that of the optimal ini-
tialization. The reasoning is straightforward: When N is
relatively smaller compared to training context length n,
and since the optimal learning rate α is on the order of the
reciprocal of n, the contributions from the hijacking exam-
ples become almost negligible in gradient descent iterations,
allowing the model to remain close to its initialization. Con-
sequently, we consider the case that N is comparable with
n in the following theorem.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

On the Robustness of Transformers against Context Hijacking for Linear Classification

Figure 2. Gradient descent experiments using a single-layer neural network. We use grid search to obtain the optimal learning rate for
different training context lengths n and different steps of gradient descent L. Then we use the corresponding optimal learning rate to
perform multi-step gradient descent optimization on the test dataset. The results show that longer training context lengths and more
gradient descent steps lead to smaller optimal learning rate and better optimization.

Theorem 4.5. Assume that all assumptions in Theorem 4.3
still hold. Additionally, assume that N ≥ Ω̃

(
n

d3/2

)
, n ≥

Ω̃
(
Nd
)
, and σ follows some uniform distribution. Based on

these assumptions, it holds that

E(w̃(L)
gd) ≤ c1 − c2

(
1− Θ̃

(
Nd

nL

))L

,

where c1, c2 are two positive scalar solely depending on the
distribution of σ and w∗.

Based on a general assumption that σ follows the uniform
distribution, Theorem 4.5 formulates the upper bound of
the classification error as a function of the training context
length n, the number of hijacking examples N , and the num-
ber of layers L. Specifically, this upper bound contains a
term proportional to −

(
1−Θ̃

(
Nd
nL

))L
. As

(
1−Θ̃

(
Nd
nL

))L
is a monotonically increasing function for N and a monoton-
ically decreasing function for n and L, Theorem 4.5 success-
fully demonstrates two facts: (i) well-trained transformers
with deeper architectures, or those pre-trained on longer
context examples, will exhibit more robustness against con-
text hijacking; and (ii) for a given well-trained transformer,
the context hijacking phenomenon is easier to observe when
provided with more hijacking examples. These conclusions
align well with our experimental observations (Figure 3).

5. Experiments
In this section, we conduct experiments based on the setting
in Section 3 to verify the theory we proposed in Section 4.
We first verify the consistency of our theory with optimal
multi-step gradient descent. Then we train a series of linear
transformers to examine their robustness on test data.

5.1. Optimal gradient descent with different steps

In our theoretical framework, for the same optimization
objective, the optimal gradient descent with more steps L or
longer training context length n will have a smaller learning

rate per step (Theorem 4.3), and this combination of more
steps with small learning rates will perform better on the
optimization process over context samples (Theorem 4.5).
Our theory shows that a trained transformer will learn the
optimal multi-step gradient descent, which will make it
more robust during testing. Therefore, we directly verified
the consistency between practice and theory in the multi-
step gradient descent experiment.

We construct a single-layer neural network to conduct opti-
mal multi-step gradient descent experiments. Each training
sample (xi, yi) is drawn i.i.d. from the distribution Dtr

defined in Section 3.1. We consider the learning rate that
minimizes the loss of the test sample which is also drawn
from Dtr when the single-layer neural network is trained
using 1 to 8 steps of gradient descent, that is, the optimal
learning rate αL corresponding to L-step gradient descent,
which can be obtained by grid search. Figure 2 shows that
αL decreases as L and n increases, which is aligned with
our theoretical results (Theorem 4.3).

Next, we discuss the second part of the theoretical frame-
work, i.e., gradient descent with more steps and small step
size performs a more fine-grained optimization (Theorem
4.5), which can be verified by our experiment results. We ap-
ply the optimal learning rate searched in the training phase
to the test phase, and perform gradient descent optimiza-
tion on the test samples drawn from Dte with the optimal
learning rate and its corresponding number of steps. We can
find that with the increase in the number of gradient descent
steps and the decrease in the corresponding learning rate, the
performance of the model will be significantly improved.

5.2. Robustness of linear transformers with different
number of layers

Applying our theoretical framework to the context hijacking
task on transformers can explain it well, indicating that our
theory has practical significance. We train linear transform-
ers with different depths and context lengths on the training
dataset based on distribution Dtr. We mainly investigate

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

On the Robustness of Transformers against Context Hijacking for Linear Classification

Figure 3. Linear transformers experiments with different depths and different training context lengths. By testing the trained linear
transformers on the test set, we can find that as the number of interference samples increases, the model prediction accuracy becomes
worse. However, deeper models have higher accuracy, indicating stronger robustness. As the training context length increases, the model
robustness will also increase because the accuracy converges significantly more slowly.

Figure 4. Linear transformers experiments on training dataset. By
testing trained linear transformers on the training set, the initial ac-
curacy of the model is high and can be improved with the increase
of context length, indicating that the model can use in-context
learning to fine-tune β⋆ to w⋆. And deeper models have stronger
optimization capabilities.

the impact of training context length n, and model depth
L and the testing context length N on model classification
accuracy.

We first test the trained transformers on the training dataset
to verify that the model can fine-tune the memorized β∗

to w⋆ . According to the Figure 4, we can find that the
model has a high classification accuracy when there are
very few samples at the beginning. This means that the
model successfully memorizes the shared signal β∗. As the
context length increases, the accuracy of the model gradually
increases and converges, meaning that the model can fine-
tune the pre-trained β∗ by using the context samples. In
addition, deeper models can converge to larger values faster,
corresponding to the theoretical view that deeper models
can perform more sophisticated optimization.

Then we conduct experiments on the test set. Observing the
experiment results (Figure 3), we can see that as the context
length increases, the accuracy of the model decreases sig-
nificantly and converges to 50%, showing that the model is
randomly classifying the final query xquery. This is consis-
tent with the context hijacking phenomenon that the model’s
robustness will deteriorate as the number of interference
prompt words increases. When the number of layers in-
creases, the models with different depths show the same

trend as the context length increases, but the accuracy of
the model will increase significantly, which is consistent
with the phenomenon that deeper models show stronger ro-
bustness in practical applications. In addition, the model
becomes significantly more robust as the training context
length increases, which is reflected in the fact that the clas-
sification accuracy converges more slowly as the length
increases.

6. Conclusion and discussion
In this paper, we explore the robustness of transformers
from the perspective of in-context learning. We are in-
spired by the real-world problem of LLMs, namely context
hijacking (Jiang et al., 2024), and we build a comprehen-
sive theoretical framework by modeling context hijacking
phenomenon as a linear classification problem. We first
demonstrate the context hijacking phenomenon by conduct-
ing experiments on LLMs with different depths, i.e., the
output of the LLMs can be simply manipulated by modi-
fying the context with factually correct information. This
reflects an intuition: deeper models may be more robust.
Then we develop a comprehensive theoretical analysis of
the robustness of transformer, showing that the well-trained
transformers can achieve the optimal gradient descent strat-
egy. More specifically, we show that as the number of model
layers or the length of training context increase, the model
will be able to perform more fine-grained optimization steps
over context samples, which can be less affected by the
hijacking examples, leading to stronger robustness. Specifi-
cally considering the context hijacking task, our theory can
fully explain the various phenomena, which is supported by
a series of numerical experiments.

Our work provides a new perspective for the robustness
explanation of transformers and the understanding of in-
context learning ability, which offer new insights to un-
derstand the benefit of deeper architecture. Besides, our
analysis on the optimal multi-step gradient descent may also
be leveraged to other problems that involve the numerical
optimization for linear problems.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

On the Robustness of Transformers against Context Hijacking for Linear Classification

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Trans-
formers learn to implement preconditioned gradient de-
scent for in-context learning. Advances in Neural Infor-
mation Processing Systems, 36:45614–45650, 2023.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. In The Eleventh
International Conference on Learning Representations,
2022a.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. In The Eleventh
International Conference on Learning Representations,
2022b.

Anil, C., Durmus, E., Rimsky, N., Sharma, M., Benton, J.,
Kundu, S., Batson, J., Tong, M., Mu, J., Ford, D. J., et al.
Many-shot jailbreaking. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024.

Anwar, U., Von Oswald, J., Kirsch, L., Krueger, D., and
Frei, S. Adversarial robustness of in-context learning
in transformers for linear regression. arXiv preprint
arXiv:2411.05189, 2024.

Apruzzese, G., Anderson, H. S., Dambra, S., Freeman, D.,
Pierazzi, F., and Roundy, K. “real attackers don’t com-
pute gradients”: bridging the gap between adversarial
ml research and practice. In 2023 IEEE Conference on
Secure and Trustworthy Machine Learning (SaTML), pp.
339–364. IEEE, 2023.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection. Advances in neural infor-
mation processing systems, 36, 2024.

Bailey, L., Ong, E., Russell, S., and Emmons, S. Image
hijacks: Adversarial images can control generative mod-
els at runtime. In Forty-first International Conference on
Machine Learning, 2023.

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A.
Benign overfitting in linear regression. Proceedings of
the National Academy of Sciences, 117(48):30063–30070,
2020.

Bhattamishra, S., Patel, A., Blunsom, P., and Kanade, V.
Understanding in-context learning in transformers and
llms by learning to learn discrete functions. In The Twelfth
International Conference on Learning Representations,
2023.

Bills, S., Cammarata, N., Mossing, D., Tillman, H., Gao, L.,
Goh, G., Sutskever, I., Leike, J., Wu, J., and Saunders,
W. Language models can explain neurons in language
models. URL https://openaipublic. blob. core. windows.
net/neuron-explainer/paper/index. html.(Date accessed:
14.05. 2023), 2, 2023.

Brown, T. B. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

Chao, P., Robey, A., Dobriban, E., Hassani, H., Pappas, G. J.,
and Wong, E. Jailbreaking black box large language mod-
els in twenty queries. arXiv preprint arXiv:2310.08419,
2023.

Chen, X. and Zou, D. What can transformer learn with
varying depth? case studies on sequence learning tasks.
arXiv preprint arXiv:2404.01601, 2024.

Chen, X., Zhao, L., and Zou, D. How transformers
utilize multi-head attention in in-context learning? a
case study on sparse linear regression. arXiv preprint
arXiv:2408.04532, 2024.

Chen, Y., Zhong, R., Zha, S., Karypis, G., and He, H. Meta-
learning via language model in-context tuning. In 60th
Annual Meeting of the Association for Computational Lin-
guistics, ACL 2022, pp. 719–730. Association for Com-
putational Linguistics (ACL), 2022.

Cheng, X., Chen, Y., and Sra, S. Transformers implement
functional gradient descent to learn non-linear functions
in context. In Forty-first International Conference on
Machine Learning, 2023.

Cheng, Y., Georgopoulos, M., Cevher, V., and Chrysos,
G. G. Leveraging the context through multi-round
interactions for jailbreaking attacks. arXiv preprint
arXiv:2402.09177, 2024.

Chowdhury, A. G., Islam, M. M., Kumar, V., Shezan, F. H.,
Jain, V., and Chadha, A. Breaking down the defenses: A
comparative survey of attacks on large language models.
arXiv preprint arXiv:2403.04786, 2024.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

On the Robustness of Transformers against Context Hijacking for Linear Classification

Creswell, A., Shanahan, M., and Higgins, I. Selection-
inference: Exploiting large language models for inter-
pretable logical reasoning. In The Eleventh International
Conference on Learning Representations, 2022.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and
Wei, F. Why can gpt learn in-context? language models
secretly perform gradient descent as meta-optimizers. In
Findings of the Association for Computational Linguis-
tics: ACL 2023, pp. 4005–4019, 2023.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, L. Universal transformers. In International Con-
ference on Learning Representations, 2019.

Deng, G., Liu, Y., Li, Y., Wang, K., Zhang, Y., Li, Z.,
Wang, H., Zhang, T., and Liu, Y. Jailbreaker: Automated
jailbreak across multiple large language model chatbots.
arXiv preprint arXiv:2307.08715, 2023.

Devlin, J. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Frei, S. and Vardi, G. Trained transformer classifiers gen-
eralize and exhibit benign overfitting in-context. arXiv
preprint arXiv:2410.01774, 2024.

Friedman, D., Wettig, A., and Chen, D. Learning trans-
former programs. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Fu, J., Yang, T., Wang, Y., Lu, Y., and Zheng, N. How does
representation impact in-context learning: A exploration
on a synthetic task. arXiv preprint arXiv:2309.06054,
2023.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Guo, T., Hu, W., Mei, S., Wang, H., Xiong, C., Savarese,
S., and Bai, Y. How do transformers learn in-context
beyond simple functions? a case study on learning with
representations. In The Twelfth International Conference
on Learning Representations, 2023.

He, P., Xu, H., Xing, Y., Liu, H., Yamada, M., and Tang,
J. Data poisoning for in-context learning. arXiv preprint
arXiv:2402.02160, 2024.

Huang, Y., Cheng, Y., and Liang, Y. In-context convergence
of transformers. In Forty-first International Conference
on Machine Learning, 2023.

Jelassi, S., Sander, M., and Li, Y. Vision transformers
provably learn spatial structure. Advances in Neural In-
formation Processing Systems, 35:37822–37836, 2022.

Jeong, J. Hijacking context in large multi-modal models.
arXiv preprint arXiv:2312.07553, 2023.

Jiang, Y., Rajendran, G., Ravikumar, P. K., and Aragam, B.
Do llms dream of elephants (when told not to)? latent
concept association and associative memory in transform-
ers. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Kumar, A., Agarwal, C., Srinivas, S., Li, A. J., Feizi, S., and
Lakkaraju, H. Certifying llm safety against adversarial
prompting. arXiv preprint arXiv:2309.02705, 2023.

Lee, J., Xie, A., Pacchiano, A., Chandak, Y., Finn, C.,
Nachum, O., and Brunskill, E. Supervised pretraining
can learn in-context reinforcement learning. Advances in
Neural Information Processing Systems, 36, 2024.

Li, Y., Ildiz, M. E., Papailiopoulos, D., and Oymak, S.
Transformers as algorithms: Generalization and stability
in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023a.

Li, Y., Rawat, A. S., and Oymak, S. Fine-grained analysis
of in-context linear estimation: Data, architecture, and be-
yond. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Lin, L., Bai, Y., and Mei, S. Transformers as decision
makers: Provable in-context reinforcement learning via
supervised pretraining. In The Twelfth International Con-
ference on Learning Representations, 2023.

Lindner, D., Kramár, J., Farquhar, S., Rahtz, M., McGrath,
T., and Mikulik, V. Tracr: Compiled transformers as a
laboratory for interpretability. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023a.

Liu, Y., Deng, G., Li, Y., Wang, K., Wang, Z., Wang, X.,
Zhang, T., Liu, Y., Wang, H., Zheng, Y., et al. Prompt
injection attack against llm-integrated applications. arXiv
preprint arXiv:2306.05499, 2023b.

Liu, Y., Yao, Y., Ton, J.-F., Zhang, X., Cheng, R. G. H.,
Klochkov, Y., Taufiq, M. F., and Li, H. Trustworthy llms:
A survey and guideline for evaluating large language
models’ alignment. arXiv preprint arXiv:2308.05374,
2023c.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual associations in gpt. Advances in Neu-
ral Information Processing Systems, 35:17359–17372,
2022.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

On the Robustness of Transformers against Context Hijacking for Linear Classification

Min, S., Lewis, M., Zettlemoyer, L., and Hajishirzi, H.
Metaicl: Learning to learn in context. In Proceedings of
the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pp. 2791–2809, 2022.

Niu, Z., Ren, H., Gao, X., Hua, G., and Jin, R. Jailbreaking
attack against multimodal large language model. arXiv
preprint arXiv:2402.02309, 2024.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Pandia, L. and Ettinger, A. Sorting through the noise: Test-
ing robustness of information processing in pre-trained
language models. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing,
pp. 1583–1596, 2021.

Pandit, O. and Hou, Y. Probing for bridging inference in
transformer language models. In NAACL 2021-Annual
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics, 2021.

Panwar, M., Ahuja, K., and Goyal, N. In-context learning
through the bayesian prism. In The Twelfth International
Conference on Learning Representations, 2023.

Pathak, R., Sen, R., Kong, W., and Das, A. Transformers can
optimally learn regression mixture models. In The Twelfth
International Conference on Learning Representations,
2023.

Perez, F. and Ribeiro, I. Ignore previous prompt: Attack
techniques for language models. In NeurIPS ML Safety
Workshop, 2022.

Pérez, J., Barceló, P., and Marinkovic, J. Attention is turing-
complete. Journal of Machine Learning Research, 22
(75):1–35, 2021.

Qiang, Y., Zhou, X., and Zhu, D. Hijacking large language
models via adversarial in-context learning. arXiv preprint
arXiv:2311.09948, 2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Raventós, A., Paul, M., Chen, F., and Ganguli, S. Pretrain-
ing task diversity and the emergence of non-bayesian
in-context learning for regression. Advances in Neural
Information Processing Systems, 36, 2024.

Shen, X., Chen, Z., Backes, M., Shen, Y., and Zhang, Y.
” do anything now”: Characterizing and evaluating in-
the-wild jailbreak prompts on large language models. In
Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, pp. 1671–1685,
2024.

Shi, F., Chen, X., Misra, K., Scales, N., Dohan, D., Chi,
E. H., Schärli, N., and Zhou, D. Large language models
can be easily distracted by irrelevant context. In Inter-
national Conference on Machine Learning, pp. 31210–
31227. PMLR, 2023.

Siyu, C., Heejune, S., Tianhao, W., and Zhuoran, Y. Training
dynamics of multi-head softmax attention for in-context
learning: Emergence, convergence, and optimality. In The
Thirty Seventh Annual Conference on Learning Theory,
pp. 4573–4573. PMLR, 2024.

Tian, Y., Wang, Y., Chen, B., and Du, S. S. Scan and snap:
Understanding training dynamics and token composition
in 1-layer transformer. Advances in Neural Information
Processing Systems, 36:71911–71947, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vig, J. and Belinkov, Y. Analyzing the structure of atten-
tion in a transformer language model. In Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pp. 63–76, 2019.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

Wang, J., Liu, Z., Park, K. H., Jiang, Z., Zheng, Z., Wu,
Z., Chen, M., and Xiao, C. Adversarial demonstra-
tion attacks on large language models. arXiv preprint
arXiv:2305.14950, 2023a.

Wang, J., Xixu, H., Hou, W., Chen, H., Zheng, R., Wang,
Y., Yang, L., Ye, W., Huang, H., Geng, X., et al. On

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

On the Robustness of Transformers against Context Hijacking for Linear Classification

the robustness of chatgpt: An adversarial and out-of-
distribution perspective. In ICLR 2023 Workshop on
Trustworthy and Reliable Large-Scale Machine Learning
Models, 2023b.

Wang, Z., Wei, S., Hsu, D., and Lee, J. D. Transform-
ers provably learn sparse token selection while fully-
connected nets cannot. In Forty-first International Con-
ference on Machine Learning, 2024.

Wei, C., Chen, Y., and Ma, T. Statistically meaningful
approximation: a case study on approximating turing
machines with transformers. Advances in Neural Infor-
mation Processing Systems, 35:12071–12083, 2022.

Wei, Z., Wang, Y., Li, A., Mo, Y., and Wang, Y.
Jailbreak and guard aligned language models with
only few in-context demonstrations. arXiv preprint
arXiv:2310.06387, 2023.

Weiss, G., Goldberg, Y., and Yahav, E. Thinking like trans-
formers. In International Conference on Machine Learn-
ing, pp. 11080–11090. PMLR, 2021.

Wu, J., Zou, D., Chen, Z., Braverman, V., Gu, Q., and
Bartlett, P. How many pretraining tasks are needed for
in-context learning of linear regression? In The Twelfth
International Conference on Learning Representations,
2023.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. In International Conference on Learning Rep-
resentations, 2021.

Xu, X., Kong, K., Liu, N., Cui, L., Wang, D., Zhang, J.,
and Kankanhalli, M. An llm can fool itself: A prompt-
based adversarial attack. In The Twelfth International
Conference on Learning Representations, 2023.

Yao, Y., Duan, J., Xu, K., Cai, Y., Sun, Z., and Zhang, Y.
A survey on large language model (llm) security and pri-
vacy: The good, the bad, and the ugly. High-Confidence
Computing, pp. 100211, 2024.

Yoran, O., Wolfson, T., Ram, O., and Berant, J. Making
retrieval-augmented language models robust to irrelevant
context. In The Twelfth International Conference on
Learning Representations, 2023.

Yu, J., Lin, X., Yu, Z., and Xing, X. Gptfuzzer: Red team-
ing large language models with auto-generated jailbreak
prompts. arXiv preprint arXiv:2309.10253, 2023.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S., and
Kumar, S. Are transformers universal approximators
of sequence-to-sequence functions? In International
Conference on Learning Representations, 2020.

Zhang, R., Frei, S., and Bartlett, P. L. Trained transform-
ers learn linear models in-context. Journal of Machine
Learning Research, 25(49):1–55, 2024a.

Zhang, R., Wu, J., and Bartlett, P. L. In-context learning
of a linear transformer block: benefits of the mlp com-
ponent and one-step gd initialization. arXiv preprint
arXiv:2402.14951, 2024b.

Zhao, Y., Pang, T., Du, C., Yang, X., Li, C., Cheung, N.-
M. M., and Lin, M. On evaluating adversarial robustness
of large vision-language models. Advances in Neural
Information Processing Systems, 36, 2024.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O.,
Susskind, J. M., Bengio, S., and Nakkiran, P. What
algorithms can transformers learn? a study in length
generalization. In The Twelfth International Conference
on Learning Representations, 2023.

Zhu, K., Wang, J., Zhou, J., Wang, Z., Chen, H., Wang, Y.,
Yang, L., Ye, W., Zhang, Y., Zhenqiang Gong, N., et al.
Promptbench: Towards evaluating the robustness of large
language models on adversarial prompts. arXiv e-prints,
pp. arXiv–2306, 2023.

Zou, A., Wang, Z., Carlini, N., Nasr, M., Kolter, J. Z.,
and Fredrikson, M. Universal and transferable adversar-
ial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

On the Robustness of Transformers against Context Hijacking for Linear Classification

A. Notations
Given two sequences {xn} and {yn}, we denote xn = O(yn) if there exist some absolute constant C1 > 0 and N > 0
such that |xn| ≤ C1|yn| for all n ≥ N . Similarly, we denote xn = Ω(yn) if there exist C2 > 0 and N > 0 such that
|xn| ≥ C2|yn| for all n > N . We say xn = Θ(yn) if xn = O(yn) and xn = Ω(yn) both holds. Additionally, we denote
xn = o(yn) if, for any ϵ > 0, there exists some N(ϵ) > 0 such that |xn| ≤ ϵ|yn| for all n ≥ N(ϵ), and we denote
xn = ω(yn) if yn = o(xn). We use Õ(·), Ω̃(·), and Θ̃(·) to hide logarithmic factors in these notations respectively. Finally,
for any n ∈ N+, we use [n] to denote the set {1, 2, · · · , n}.

B. Proof of Proposition 4.1
In this section we provide a proof for Proposition 4.1.

Proof of Proposition 4.1. Our proof is inspired by Lemma 1 in Ahn et al. (2023), while we consider a non-zero initialization.
We first provide the parameters WE ,Pℓ,Qℓ ∈ R(d+1)×(d+1) of a L-layers transformer.

WE =

[
In 0

−w
(0)
gd 1

]
, Pℓ =

[
0d×d 0
0 1

]
, Qℓ =

[
−Γℓ 0
0 0

]
where Γℓ ∈ Rd×d.

For the linear classification problem, the input sample Z0 ∈ R(d+1)×(n+1) consists of {(xi, yi)}i = 1n and (xquery, yquery)
in (3.1) , which will first be embedded by WE . Let X(0) ∈ Rd×(n+1) denote the first d rows of WE(Z0) and let
Y(0) ∈ R1×(n+1) denote the (d+ 1)-th row of WE(Z0). In subsequent iterative updates in (3.3), the values at the same
position will be denoted as X(l) and Y(l), for l = 1, . . . , L. Similarly, define X̄(l) ∈ Rd×n and Ȳ(l) ∈ R1×n as matrices
that exclude the last query sample (x

(l)
query, y

(l)
query). That is, they only contain the first n columns of the output of the l-th

layer. Let x(l)
i and y

(l)
i be the i-th pair of samples output by the l-th layer. Define a function g(x, y, l) : Rd × R× Z → R:

let x(0)
query = x and y

(0)
query = y − ⟨w(0)

gd ,x⟩, then g(x, y, l) := y
(k)
query. Next, based on the update formula (3.3) and the

parameters constructed above, we have:

X(l+1) = X(l) = · · · = X(0), Y(l+1) = Y(l) −Y(l)M(X(0))⊤ΓlX
(0).

Then for all i ∈ {1, . . . , n},

y
(l+1)
i = y

(l)
i −

n∑
j=1

xi
⊤Γlxjy

(l)
j .

So y
(l+1)
i does not depend on y

(l+1)
query. For query position,

y(l+1)
query = y(l)query −

n∑
j=1

x⊤
queryΓlxjy

(l)
j .

Then we obtain g(x, y, l) and g(x, 0, l):

g(x, y, l) = y(l−1)
query −

n∑
j=1

x⊤
queryΓl−1xjy

(l−1)
j

= y(l−2)
query −

n∑
j=1

x⊤
queryΓl−2xjy

(l−2)
j −

n∑
j=1

x⊤
queryΓl−1xjy

(l−1)
j

...

= y(0)query −
n∑

j=1

x⊤
queryΓ0xjy

(0)
j − · · · −

n∑
j=1

x⊤
queryΓl−1xjy

(l−1)
j

= y − ⟨w(0)
gd ,xquery⟩ −

n∑
j=1

x⊤
queryΓ0xjy

(0)
j − · · · −

n∑
j=1

x⊤
queryΓl−1xjy

(l−1)
j ;

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

On the Robustness of Transformers against Context Hijacking for Linear Classification

g(x, 0, k) = y(l−1)
query −

n∑
j=1

x⊤
queryΓl−1xjy

(l−1)
j

= y(l−2)
query −

n∑
j=1

x⊤
queryΓl−2xjy

(l−2)
j −

n∑
j=1

x⊤
queryΓl−1xjy

(l−1)
j

...

= y(0)query −
n∑

j=1

x⊤
queryΓ0xjy

(0)
j − · · · −

n∑
j=1

x⊤
queryΓl−1xjy

(l−1)
j

= −⟨w(0)
gd ,xquery⟩ −

n∑
j=1

x⊤
queryΓ0xjy

(0)
j − · · · −

n∑
j=1

x⊤
queryΓl−1xjy

(l−1)
j ; .

So we have g(x, y, l) = g(x, 0, l) + y. Observing g(x, 0, l), we can find that it is linear in x for the reason that every term
of g(x, 0, l) is linear in xquery, which means we can rewrite it. We verify that there exists a θl ∈ Rd for each l ∈ [L], such
that for all x, y,

g(x, y, l) = g(x, 0, k) + y = ⟨θl,x⟩+ y.

Let l = 0, we have ⟨θ0,x⟩ = g(x, y, 0)− y = y
(0)
query − y = −⟨w(0)

gd ,xquery⟩, so θ0 = −w
(0)
gd . Next, we will show that for

all (xi, yi) ∈ {(x1, y1) . . . , (xn, yn), (xquery, yquery)},

g(xi, yi, l) = y
(l)
i = ⟨θl,xi⟩+ yi.

Observing the update formulas for y(l+1)
i and y

(l+1)
query, if we let xquery := xi for some i, we can get that y(l+1)

i = y
(l+1)
query

because y
(0)
i = y

(0)
query by definition. This indicates that

Ȳ(l) = Ȳ(0) + θT
l X̄.

Finally, we can rewrite the update formula for y(n+1)
k

y(l+1)
query = y(l)query −

n∑
j=1

x⊤
queryΓlxjy

(l)
j .

= y(l)query − ⟨ΓlX̄(Ȳ(l))⊤,xquery⟩

⇒
〈
θl+1,xquery⟩ = ⟨θl,xquery⟩ − ⟨ΓlX̄

(
X̄⊤θl + (Ȳ(0))⊤

)
,xquery

〉
Since xquery is an arbitrary variable, we get the more general update formula for θl:

θl+1 = θl − ⟨ΓlX̄
(
X̄⊤θl + (Ȳ(0))⊤

)
⟩.

Notice that we use the mean squared error, we have

L̃(w) =
1

2

n∑
i=1

(⟨w,xi⟩ − yi)
2

=
1

2
∥X̄⊤w − (Ȳ(0))⊤∥2.

Then we get its gradient ∇L̃(w) = X̄
(
X̄⊤w − (Ȳ(0))⊤

)
. Let w(l)

gd := −θl, we have

θl+1 = θl − ⟨ΓlX̄
(
X̄⊤θl + Ȳ⊤

0

)
⟩

⇒ w
(l+1)
gd = w

(l)
gd − ⟨ΓkX̄

(
X̄⊤w

(l)
gd − (Ȳ(0))⊤

)
⟩

= w
(l)
gd − Γl∇L̃(w

(l)
gd).

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

On the Robustness of Transformers against Context Hijacking for Linear Classification

And the output of the l-th layer y(l)query is

g (xquery, yquery, l) = yquery + ⟨θl,xquery⟩ = yquery − ⟨w(l)
gd ,xquery⟩.

In our settings, we have yn+1
k = −⟨w(l)

gd ,xquery⟩ because the input query label is 0.

C. Gradient descent updates of parameters

In this section, we provide further details regarding the updating of parameters w(l)
gd , which will be utilized in subsequent

proof. Besides, it can directly imply Proposition 4.2. Before demonstrating the mathematical, we first introduce several
utility notations, which will be used in subsequent technical derivations and proofs. We denote Sl,k as the set of all
k-dimensional tuples whose entries are drawn from {0, 1, . . . , l − 1} without replacement, i.e.

St,k =
{
(j1, j2, . . . , jk)|j1, j2, . . . , jk ∈ {0, 1, . . . , l − 1}; j1 ̸= j2 ̸= . . . ̸= jk

}
.

Then given the set of all historical learning rates before or at l-th iteration, i.e. {α0, α1, . . . , αl−1}, and Sl,k defined above,
we define Al,k as

Al,k :=
∑

(j1,j2,...,jk)∈Sl,k

k∏
κ=1

αjκ .

Then we can observe that the permutation of elements of {α0, α1, . . . , αl−1} would not change the value of Al,k. Then
based on these notations, we present mathematical derivation in the following.

By some basic gradient calculations, we can re-write the iterative rule of gradient descent (4.1) as

w
(l+1)
gd = w

(l)
gd − αl∇L(w

(l)
gd)

= w
(l)
gd − αl

n∑
i=1

(
⟨w(l)

gd ,xi⟩ − sign(⟨w∗,xi⟩)
)
· xi

=

(
Id − αl

(n∑
i=1

xix
⊤
i

))
·w(l)

gd + αl

(n∑
i=1

sign(⟨w∗,xi⟩) · xi

)
. (C.1)

Based on this detailed iterative formula, and the definition of Sl,k and Al,k above, we present and prove the following
lemma, which characterizes the closed-form expression for w(l).

Lemma C.1. For the iterates of gradient descent, i.e. w(l)
gd ’s with l ∈ {0, 1, . . . , L− 1}, it holds that

w
(l)
gd =

(
Id +

l∑
k=1

Al,k

(
−

n∑
i=1

xix
⊤
i

)k)
·w(0)

gd +

(l∑
k=1

Al,k

(
−

n∑
i=1

xix
⊤
i

)k−1
)
·
(n∑

i=1

sign(⟨w∗,xi⟩) · xi

)
. (C.2)

Proof of Lemma C.1. Before we demonstrate our proof, we first present some conclusions regarding Sl,k and Al,k. By
directly applying the Binomial theorem and the definition of Al,k, we can obtain that

l−1∏
k=0

(
Id + αk

(
−

n∑
i=1

xix
⊤
i

))
= Id +

l∑
k=1

Al,k

(
−

n∑
i=1

xix
⊤
i

)k
. (C.3)

Additionally, by utilizing the definition of Sl,k, we can easily derive that

Sl+1,k =
{
(j1, j2, . . . , jk)|j1, j2, . . . , jk ∈ {0, 1, . . . , l}; j1 ̸= j2 ̸= . . . ̸= jk

}
=
{
(j1, j2, . . . , jk)|j1, j2, . . . , jk ∈ {0, 1, . . . , l − 1}; j1 ̸= j2 ̸= . . . ̸= jk

}
∪
{
(j1, j2, . . . , jk−1, l)|j1, j2, . . . , jk−1 ∈ {0, 1, . . . , l − 1}; j1 ̸= j2 ̸= . . . ̸= jk−1

}
=Sl,k ∪

{
(j1, j2, . . . , jk−1, l)|(j1, j2, . . . , jk−1) ∈ Sl,k−1

}
,

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

On the Robustness of Transformers against Context Hijacking for Linear Classification

holds when k ≤ l. This result can further imply that

Al+1,k =
∑

(j1,j2,...,jk)∈Sl+1,k

k∏
κ=1

αjκ =
∑

(j1,j2,...,jk)∈Sl,k

k∏
κ=1

αjκ +
∑

(j1,j2,...,jk−1)∈Sl,k−1

k−1∏
κ=1

αjκαl = Al,k + αlAl,k−1.

(C.4)

holds when k ≤ l. Additionally, it is straightforward that

Al+1,l+1 = αlAl,l; Al+1,1 = Al,1 + αl. (C.5)

With these conclusions in hands, we will begin proving this lemma by induction. When l = 1, by the iterative rule (C.1), we
can obtain that

w
(1)
gd =

(
Id − α0

(n∑
i=1

xix
⊤
i

))
·w(0)

gd + α0

(n∑
i=1

sign(⟨w∗,xi⟩) · xi

)
,

which follows the conclusion of (C.2) due to (C.3) and the definition of A1,1. By induction, we assume that (C.2) holds at
l-th iteration. Then at (l + 1)-th iteration, we can obtain that,

w
(l+1)
gd =

(
Id − αl

(n∑
i=1

xix
⊤
i

))
·w(l)

gd + αl

(n∑
i=1

sign(⟨w∗,xi⟩) · xi

)

=αl

(n∑
i=1

sign(⟨w∗,xi⟩) · xi

)
+

(
Id − αl

(n∑
i=1

xix
⊤
i

))

·

{
l−1∏
τ=0

(
Id − ατ

(n∑
i=1

xix
⊤
i

))
·w(0)

gd +

(t∑
k=1

Al,k

(
−

n∑
i=1

xix
⊤
i

)k−1
)
·
(n∑

i=1

sign(⟨w∗,xi⟩) · xi

)}

=αl

(n∑
i=1

sign(⟨w∗,xi⟩) · xi

)
+

l∏
k=0

(
Id − αk

(n∑
i=1

xix
⊤
i

))
·w(0)

gd

+

(l∑
k=1

Al,k

(
−

n∑
i=1

xix
⊤
i

)k−1

+

l∑
k=1

αlAl,k

(
−

n∑
i=1

xix
⊤
i

)k)
·
(n∑

i=1

sign(⟨w∗,xi⟩) · xi

)

=

l∏
k=0

(
Id − αk

(n∑
i=1

xix
⊤
i

))
·w(0)

gd + (Al,1 + αl) ·
(n∑

i=1

sign(⟨w∗,xi⟩) · xi

)

+

(
l∑

k=2

(Al,k + αlAl,k−1)
(
−

n∑
i=1

xix
⊤
i

)k−1
)

·
(n∑

i=1

sign(⟨w∗,xi⟩) · xi

)

+ αlAl,l

(n∑
i=1

xix
⊤
i

)l
·
(n∑

i=1

sign(⟨w∗,xi⟩) · xi

)

=

l∏
k=0

(
Id − αk

(n∑
i=1

xix
⊤
i

))
·w(0)

gd +Al+1,1 ·
(n∑

i=1

sign(⟨w∗,xi⟩) · xi

)

+

(t∑
k=2

Al+1,k

(
−

n∑
i=1

xix
⊤
i

)k−1
)
·
(n∑

i=1

sign(⟨w∗,xi⟩) · xi

)
+Al+1,l+1

(
−

n∑
i=1

xix
⊤
i

)k
·
(n∑

i=1

sign(⟨w∗,xi⟩) · xi

)

=

(
Id +

l+1∑
k=1

Al+1,k

(
−

n∑
i=1

xix
⊤
i

)k)
·w(0)

gd +

(l+1∑
k=1

Al+1,k

(
−

n∑
i=1

xix
⊤
i

)k−1
)
·
(n∑

i=1

sign(⟨w∗,xi⟩) · xi

)
.

The second equality holds by substituting w
(l)
gd with its expansion from (C.2), assuming it is valid at the l-th iteration by

induction. The third and fourth equalities are established by rearranging the terms. The penultimate equality is derived
by applying the conclusions regarding Al,k from (C.4) and (C.5). The final equality is obtained by applying (C.3). This
demonstrates that (C.2) still holds at l+1-th iteration given it holds at l-th iteration, which finishes the proof of induction.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

On the Robustness of Transformers against Context Hijacking for Linear Classification

Lemma C.1 demonstrate that the learning rates αl’s will only influence w
(L)
gd by determining the value of AL,k’s. While as

we have discussed above, the values of AL,k’s depend solely on the elements in the {α0, . . . , αL−1}, and remain unchanged
when the order of these learning rates is rearranged. Consequently, the permutation of {α0, . . . , αL−1} will also not affect
the value of w(L)

gd , thereby confirming that Proposition 4.2 holds.

D. Proof of Theorem 4.3
In this section, we provide a detailed proof for Theorem 4.3. We begin by introducing and proving a lemma that demonstrates
how w

(0)
gd must align with the direction of β∗. This alignment constrains the choice of w(0)

gd to a scalar multiple of β∗,

specifically in the form of c0 · β∗. Additionally, in the subsequent sections, we will use the notation Σ̂ =
∑n

i=1 xix
⊤
i .

Lemma D.1. Under the same conditions with Theorem 4.3, to minimize the loss R(w
(L)
gd), w(0)

gd is always in the form of
c0 · β∗.

Proof of Lemma D.1. Utilizing the independence among the examples in T = {(x1, y1), . . . , (xn, yn), (xquery, yquery)},
and w∗, we can expand R

w
(L)
gd

by law of total expectation as

R(w
(L)
gd) = ET,w∗

[(
⟨w(L)

gd ,xquery⟩ − sign(⟨w∗,xquery⟩)
)2]

= ET,w∗
[
⟨w(L)

gd ,xquery⟩2 − 2 sign(⟨w∗,xquery⟩)⟨w(L)
gd ,xquery⟩

]
+ 1

= E{(xi,yi)}n
i=1,w

∗

[
E(xquery,yquery)

[
⟨w(L)

gd ,xquery⟩2 − 2 sign(⟨w∗,xquery⟩)⟨w(L)
gd ,xquery⟩

∣∣{(xi, yi)}ni=1,w
∗]]+ 1

= E{(xi,yi)}n
i=1,w

∗

[∥∥∥∥w(L)
gd −

√
2

π
w∗
∥∥∥∥2
2

]
+ 1− 2

π
,

where the last equality holds since Exquery [⟨w,xquery⟩2] = w⊤Exquery [xqueryx
⊤
query]w = ∥w∥22 when w is independent

with xquery, and Exquery [⟨w1,xquery⟩ sign(⟨w2,xquery⟩)] =
√

2
π ⟨w

∗,w
(L)
gd ⟩ implied by Lemma F.1. Therefore in the

next we attempt to optimize the first term E{(xi,yi)}n
i=1,w

∗

[∥∥∥w(L)
gd −

√
2
πw

∗
∥∥∥2
2

]
. By applying the closed form of w(L)

gd in
Lemma C.1 with all αl = α, we have

w
(L)
gd =

(
Id − αΣ̂

)L ·w(0)
gd + α

L−1∑
l=0

(
Id − αΣ̂

)l · (n∑
i=1

sign(⟨w∗,xi⟩)xi

)
.

Based on this, we can further derive that

E{(xi,yi)}n
i=1,w

∗

[∥∥∥∥w(L)
gd −

√
2

π
w∗
∥∥∥∥2
2

]
=(w

(0)
gd)

⊤E{(xi,yi)}n
i=1,w

∗
[(
Id − αΣ̂

)2L]
w

(0)
gd

− 2α(w
(0)
gd)

⊤E{(xi,yi)}n
i=1,w

∗

[L−1∑
l=0

(
Id − αΣ̂

)l+L ·
(n∑

i=1

sign(⟨w∗,xi⟩)xi

)]
+ C

=c1
∥∥w(0)

gd

∥∥2
2
− 2c2⟨w(0)

gd ,β
∗⟩+ C

=c1

∥∥∥w(0)
gd − c2

c1
β∗
∥∥∥2
2
+ C − c22

c1
, (D.1)

where c1, c2, C are some scalar independent of w
(0)
gd . The second inequality holds since E{(xi,yi)}n

i=1,w
∗
[(
Id −

αΣ̂
)2L]

= c1Id for some scalar c1, guaranteed by Lemma F.2, and E{(xi,yi)}n
i=1,w

∗
[∑L−1

l=0

(
Id − αΣ̂

)l+L ·(∑n
i=1 sign(⟨w∗,xi⟩)xi

)]
= c2β

∗ for some scalar c2, guaranteed by Lemma F.3. As the result of (C.3) is a quartic
function of w(0)

gd , we can easily conclude that it achieves the minimum value when w
(0)
gd = c0β

∗ for some scalar c0, which
completes the proof.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

On the Robustness of Transformers against Context Hijacking for Linear Classification

Based on Lemma D.1, in the following proof, we will directly replace w
(0)
gd with c0β

∗ and attempt to find the optimal c0.
Now we are ready to prove the following theorem, a representation of Theorem 4.3.

Theorem D.2 (Restate of Theorem 4.3). For training distribution Dtr in Definition 3.1, suppose that the training context
length n is sufficiently large such that n ≥ Ω̃(max{d2, dL}). Additionally, suppose that the perturbation of w∗ around its
expectation β∗ is smaller than π

2 , i.e. ⟨w∗,β∗⟩ > 0. then for any learning rate α and initialization w
(0)
gd , it holds that

R(w
(L)
gd) ≤ Θ

(
(1− αn)L∥w(0)

gd − c1w
∗∥22
)
+ Θ̃(αdL) + C,

where both c1, C are absolute constants. Additionally, by taking w
(0)
gd = c1β

∗ and α = Θ̃(1
nL), the upper bound above

achieve its optimal rates as

R(w
(L)
gd) ≤ Θ̃

(d
n

)
+ C.

Proof of Theorem D.2. Utilizing the fact that Id−
(
Id−αΣ̂

)L
= α

∑L−1
l=0

(
Id−αΣ̂

)l
Σ̂ and w

(0)
gd = c0β

∗, we can re-write

the close form of w(L)
gd as

w
(L)
gd =

(
Id −

(
Id − αΣ̂

)L) ·√ 2

π
w∗ +

(
Id − αΣ̂

)L · c0β∗ − α

L−1∑
l=0

(
Id − αΣ̂

)l · (√ 2

π
Σ̂w∗ −

(n∑
i=1

sign(⟨w∗,xi⟩)xi

))
Then by the similar calculation to Lemma D.1, we have

R(w
(L)
gd) = E

[∥∥∥∥w(L)
gd −

√
2

π
w∗
∥∥∥∥2
2

]
+ C

= E

[∥∥∥∥(Id − αΣ̂
)L ·

(
c0β

∗ −
√

2

π
w∗
)
− α

L−1∑
l=0

(
Id − αΣ̂

)l · (√ 2

π
Σ̂w∗ −

(n∑
i=1

sign(⟨w∗,xi⟩)xi

))∥∥∥∥2
2

]
+ C

≤ 2E

[∥∥∥∥(Id − αΣ̂
)L ·

(
c0β

∗ −
√

2

π
w∗
)∥∥∥∥2

2

]
︸ ︷︷ ︸

I

+2E

[
α2

∥∥∥∥ L−1∑
l=0

(
Id − αΣ̂

)l · (√ 2

π
Σ̂w∗ −

(n∑
i=1

sign(⟨w∗,xi⟩)xi

))∥∥∥∥2
2

]
︸ ︷︷ ︸

II

+C

where the last inequality hols by (a + b)2 ≤ 2a2 + 2b2, and C is an absolute constant. Therefore, in the following, we
discuss the upper-bounds for I and II respectively. For I , we have

I ≤ E
[∥∥∥(Id − αΣ̂

)∥∥∥2L
2

]
· E

[(
c0β

∗ −
√

2

π
w∗
)∥∥∥∥2

2

]
≤ O

(
(1− αn)2L

)
· E

[(
c0β

∗ −
√

2

π
w∗
)∥∥∥∥2

2

]
,

where the first inequality is derived by the independence among xi and w∗ and the submultiplicativity of ℓ2 norm, and the
second inequality holds by the concentration results regarding ∥Σ̂∥2 provided in Lemma F.4. For II , we can derive that

II ≤ E
[
α2

L−1∑
l1,l2=0

∥∥Id − αΣ̂
∥∥l1+l2

2

]
︸ ︷︷ ︸

II.1

E
[∥∥∥∥
√

2

π
Σ̂w∗ −

(n∑
i=1

sign(⟨w∗,xi⟩)xi

)∥∥∥∥2
2

]
︸ ︷︷ ︸

II.2

,

where the inequality is guaranteed by the submultiplicativity of ℓ2 norm. Then we discuss II.1 and II.2 respectively. For
II.1, we have

II.1 ≤ α

∥Σ̂∥2

L−1∑
l1,l2=0

1

l1 + l2 + 1
≤ αL

∥Σ̂∥2

L−1∑
l1=0

1

l1 + 1
≤ O

(
αL logL

n

)
.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

On the Robustness of Transformers against Context Hijacking for Linear Classification

The first inequality holds by the fact that x(1 − x)k ≤ 1
k+1 for x ∈ [0, 1]. The second inequality holds by replace

1
l1+l2+1 with its upper bound 1

l1+1 . The third inequality holds by
∑L−1

l1=0
1

l1+1 ≤ logL and ∥Σ̂∥2 = Θ(n) demonstrated in
Lemma F.4. For II.2, we have

II.2 = E
[∥∥∥∥
√

2

π
(Σ̂− nId)w

∗ −
(n∑

i=1

sign(⟨w∗,xi⟩)xi − n

√
2

π
w∗
)∥∥∥∥2

2

]

≤ 4

π
E∥Σ̂− nId∥22 + 2E

[∥∥∥∥ n∑
i=1

sign(⟨w∗,xi⟩)xi − n

√
2

π
w∗
∥∥∥∥2
2

]
≤ Õ(nd).

The first equality adds and minuses the same term. The first inequality holds by the submultiplicativity of ℓ2 norm, and
the fact (a + b)2 ≤ 2a2 + 2b2. The second inequality holds as ∥Σ̂ − nId∥2 ≤ Õ(

√
nd), proved in Lemma F.4 and∥∥∑n

i=1 sign(⟨w∗,xi⟩)xi − n
√

2
πw

∗
∥∥
2
≤ Õ(

√
nd), proved in Lemma F.5. Combining all the preceding results, we can

obtain that

R(w
(L)
gd) ≤ O

(
(1− αn)2L

)
· E

[(
c0β

∗ −
√

2

π
w∗
)∥∥∥∥2

2

]
+ Õ(αdL) + C.

It is straightforward that when taking c0 =
√

2
π , the expectation term will achieve its minimum, which is the variance of w∗

multiplying by a factor
√

2
π . This finishes the proof that the optimal initialization takes the value as w(0)

gd =
√

2
πβ

∗. We
re-plug this result into the upper-bound above and utilize the fact that the variance is at the constant order. Then to find the
optimal learning rate α is actually to optimize the summation of (1− αn)2L and αdL. We can note that the first term will
decrease as α increases, while the second term will increase as α increases. Therefore, minimizing the summation of these
two terms is essentially equivalent to finding an optimal α such that both terms are of the same order. Then we can notice
that when consider α = log(n/d)

2nL , the first term can be bounded as

(1− αn)2L =

(
1− log(n/d)

2L

)2L

≤ d

n
.

Additionally, it is straightforward that αdL = d log(n/d)
n . When omitting the factors of log, we conclude that these two terms

are at the same order. Therefore, the optimal choice of learning rate is α = Θ̃(1
nL), which can optimize the excess risk as

R(w
(L)
gd)− C ≤ Õ

(
d

n

)
.

This completes the proof.

Here we provide further discussions regarding the upper bound for the population loss achieved when choosing the optimal
learning rate and initialization. The constant C represents an irreducible term arising from the variance of the model.
Such an irreducible term always exists when considering least-squares loss, similar to the noise variance in classic linear
regression problems. Therefore, when considering the problems with least-square loss function, it is common to define
R(w

(L)
gd)− C as the excess risk and attempt to minimize this term. Consequently, Theorem D.2 reveals that when using the

optimal parameters, the excess risk R(w
(L)
gd)− C will converge to 0 as the context length n goes to infinity.

E. Proof of Lemma 4.4 and Theorem 4.5
In this section, we provide the proof for both Lemma 4.4 and Theorem 4.5. W.L.O.G, we assume that σ > 0 in the
subsequent proof. This implies that yhc = −1, yquery = 1 and E(w) = P(⟨w,xquery⟩ < 0) for any w. Then we first
introduce a lemma providing a closed form for w̃(l)

gd , which is the parameter vector of the linear model trained by gradient
descent with the optimal parameters derived in Theorem 4.3 and data (xhc, yhc).

Lemma E.1. For the gradient descent iterates w̃(l)
gd , it holds that

w̃
(l)
gd = cβ∗ + a(l) · x⊥ (E.1)

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

On the Robustness of Transformers against Context Hijacking for Linear Classification

for all l ∈ {0, 1, . . . , L}. c is the coefficient of β∗ of initialization w
(0)
gd and a(l) follows that

a(l) = −
(
1−

(
1− αN∥x⊥∥22

)l)1 + c⟨x⊥,β
∗⟩

∥x⊥∥22

Proof of Lemma E.1. We prove this lemma by induction. It is straightforward that w̃(0)
gd = cβ∗ and w̃

(1)
gd = cβ∗ − αNx⊥,

complying with the formula (E.1). By induction, we assume (E.1) still holds for l-th iteration. Then at the l + 1-th iteration,
we have

w̃
(l+1)
gd =

(
Id − αNx⊥x

⊤
⊥
)
· w̃(l)

gd − αNx⊥

=
(
Id − αNx⊥x

⊤
⊥
)
·
(
cβ∗ + a(l)x⊥

)
− αNx⊥

= cβ∗ +
(
a(l)(1− αN∥x⊥∥22)− αN(1 + c⟨x⊥,β

∗⟩)
)
= cβ∗ + a(l + 1)x⊥.

Additionally, by the fact a(l + 1) = a(l)(1− αN∥x⊥∥22)− αN(1 + c⟨x⊥,β
∗⟩), we can derive that(

a(l + 1) +
1 + c⟨x⊥,β

∗⟩
∥x⊥∥22

)
=
(
1− αN∥x⊥∥22

)(
a(l) +

1 + c⟨x⊥,β
∗⟩

∥x⊥∥22

)
= · · ·

= −
(
1− αN∥x⊥∥22

)l 1 + c⟨x⊥,β
∗⟩

∥x⊥∥22
.

This implies that

a(l) = −
(
1−

(
1− αN∥x⊥∥22

)l)1 + c⟨x⊥,β
∗⟩

∥x⊥∥22
,

which completes the proof.

Based on the closed form of w̃(L)
gd obtained by Lemma E.1, we are ready to prove Lemma 4.4 and Theorem 4.5.

Proof of Lemma 4.4. By Lemma E.1, the output of the linear model trained via gradient descent on xquery can be expanded
as

⟨w̃(L)
gd ,xquery⟩ = ⟨cβ∗ + a(L)x⊥,x⊥ + σw∗⟩

= c⟨β∗,x⊥⟩+ a(L)∥x⊥∥22 + cσ⟨w∗,β∗⟩

= c⟨β∗,x⊥⟩ −
(
1−

(
1− αN∥x⊥∥22

)L)(
1 + c⟨x⊥,β

∗⟩
)
+ cσ⟨w∗,β∗⟩

= cσ⟨w∗,β∗⟩ − 1 +
(
1− αN∥x⊥∥22

)L(
1 + c⟨x⊥,β

∗⟩
)
. (E.2)

By utilizing the independence among w∗, σ, and x⊥ and law of total expectation, we can derive that

E(w̃(L)
gd) = P

(
cσ⟨w∗,β∗⟩ − 1 +

(
1− αN∥x⊥∥22

)L(
1 + c⟨x⊥,β

∗⟩
)
≤ 0
)

= E
[
P
(
cσ⟨w∗,β∗⟩ − 1 +

(
1− αN∥x⊥∥22

)L(
1 + c⟨x⊥,β

∗⟩
)
≤ 0
∣∣∣w∗,x⊥

)]
= E

[
Fσ

(
1−

(
1− αN∥x⊥∥22

)L(
1 + c⟨x⊥,β

∗⟩
)

c⟨w∗,β∗⟩

)]
, (E.3)

where Fσ(·) is the cumulative distribution function of σ. Similarly, we also have

E(w(0)
gd) = E

[
Fσ

(
− ⟨x⊥,β

∗⟩
⟨w∗,β∗⟩

)]
.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

On the Robustness of Transformers against Context Hijacking for Linear Classification

Therefore, by Taylor’s first order expansion, we have

E(w̃(L)
gd)− E(w(0)

gd) = E

[
F ′
σ(ξ)

(
1−

(
1− αN∥x⊥∥22

)L)(
1 + c⟨x⊥,β

∗⟩
)

1 + c⟨w∗,β∗⟩

]

≤

(
1−

(
1−Θ

(
Nd

nL

))L)
Õ(

√
d) ≤ Õ

(
Nd3/2

n

)
≤ õ(1),

where the first inequality utilizing the concentration results that ∥x⊥∥22Θ(d) and ⟨x⊥,β
∗⟩ = Õ(

√
d). The second inequality

holds by the fact
(
1−Θ

(
Nd
nL

))L
= 1−Θ

(
Nd
n

)
by our condition n ≤ o(d3/2/n), which also implies the last inequality

holds. Therefore, we finish the proof.

In the next, we prove Theorem 4.5

Proof of Theorem 4.5. Similar to the proof of Lemma 4.4, we have that

E(w̃(L)
gd) = E

[
Fσ

(
1−

(
1− αN∥x⊥∥22

)L(
1 + c⟨x⊥,β

∗⟩
)

c⟨w∗,β∗⟩

)]

= E

[
Fσ

(
1−

(
1− αN∥x⊥∥22

)L
c⟨w∗,β∗⟩

)
− F ′

σ(ξ)

(
1− αN∥x⊥∥22

)L|⟨x⊥,β
∗⟩| sign(⟨x⊥,β

∗⟩)
⟨w∗,β∗⟩

]

= E

[
Fσ

(
1−

(
1− αN∥x⊥∥22

)L
c⟨w∗,β∗⟩

)]
= E

[
Fσ

(
1−

(
1− Θ̃(Nd

nL)
)L

c⟨w∗,β∗⟩

)]
,

where the third inequality holds as sign(⟨x⊥,β
∗⟩) is independent with |⟨x⊥,β

∗⟩| and ∥x⊥∥22, and F ′(ξ) is a constant.
Additionally, let σ follows the uniform distribution from a to b, then we can expand the expectation above as

E(w̃(L)
gd) =E

[
Fσ

(
1−

(
1− Θ̃(Nd

nL)
)L

c⟨w∗,β∗⟩

)
1

{
1−

(
1− Θ̃(Nd

nL)
)L

c⟨w∗,β∗⟩
≤ a

}]

+ E

[
Fσ

(
1−

(
1− Θ̃(Nd

nL)
)L

c⟨w∗,β∗⟩

)
1

{
a <

1−
(
1− Θ̃(Nd

nL)
)L

c⟨w∗,β∗⟩
≤ b

}]

+ E

[
Fσ

(
1−

(
1− Θ̃(Nd

nL)
)L

c⟨w∗,β∗⟩

)
1

{
1−

(
1− Θ̃(Nd

nL)
)L

c⟨w∗,β∗⟩
> b

}]

=

(
1−

(
1− Θ̃

(
Nd

nL

))L
)
E

[
1

c⟨w∗,β∗⟩
1

{
a <

1−
(
1− Θ̃(Nd

nL)
)L

c⟨w∗,β∗⟩
≤ b

}]
+ E

[
1

{
1−

(
1−Θ(Nd

nL)
)L

c⟨w∗,β∗⟩
> b

}]

=c1 − c2

(
1− Θ̃

(
Nd

nL

))L

where c1, c2 are two positive scalars solely depending on a, b and the distribution of w∗. This completes the proof.

F. Technical lemmas
In this section, we introduce and prove some technical lemmas utilized in the previous proof.

Lemma F.1. Let x ∼ N (0d, Id), and w1,w ∈ Rd be two vectors independent of x, with ∥w1∥2 = 1, then it holds that

Ex[⟨w,x⟩ sign(⟨w1,x⟩)] =
√

2

π
⟨w,w1⟩.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

On the Robustness of Transformers against Context Hijacking for Linear Classification

Proof of Lemma F.1. Since ∥w1∥2 = 1, let Γ = [w1,w2, . . . ,wd] ∈ Rd be the orthogonal matrix with w1 being its first
column. Then we have

Ex[⟨w,x⟩ sign(⟨w1,x⟩)] = Ex[w
⊤ΓΓ⊤x sign(⟨w1,x⟩)]

=

d∑
k=1

⟨w,wk⟩Ex[⟨wk,x⟩ sign(⟨w1,x⟩)] =
√

2

π
⟨w,w1⟩,

where the last equality holds since ⟨wk,x⟩ ∼ N (0, 1) for all k ∈ [d], ⟨wk1
,x⟩ and ⟨wk2

,x⟩ are independent when k1 ̸= k2,

and E[⟨w1,x⟩ sign(⟨w1,x⟩)] = E[|⟨w1,x⟩|] =
√

2
π . This completes the proof.

For the next lemmas, we follow the notation we used in previous section that Σ̂ =
∑n

i=1 xix
⊤
i .

Lemma F.2. For any k ∈ N, it holds that E[Σ̂k] = cId, where c is a scalar.

Proof of Lemma F.2. Let Γ be any orthogonal matrix, then we have Γxi ∼ N (0d, Id). This implies that
∑n

i=1(Γxi)(Γxi)
⊤

has the same distribution with Σ̂. Therefore, we can derive that

ΓE[Σ̂k]Γ = E
[(n∑

i=1

(Γxi)(Γxi)
⊤
)k]

= E[Σ̂k]

holds for any orthogonal matrix Γ, which implies that E[Σ̂k] must be at the form cId. This completes the proof.

Lemma F.2 implies that E[(Id − Σ̂)k] = cId for some scalar c as by binomial formula it can be expanded as a summation of
polynomials of Σ̂, which all have the expectations with the form cId.

Lemma F.3. For any k ∈ N, it holds that

E
[
Σ̂k
(n∑

i=1

xiyi

)]
= cβ∗,

where c is some scalar.

Proof of Lemma F.3. By binomial theorem, we have

E
[
Σ̂k
(n∑

i=1

xiyi

)]
=

n∑
i=1

k∑
k1=0

(
k

k1

)
E
[(∑

i′ ̸=i

xi′x
⊤
i′

)k−k1
]
E[(xix

⊤
i)

k1xiyi].

By Lemma F.2, we already obtain that E
[(∑

i′ ̸=i xi′x
⊤
i′

)k−k1
]
= cId for some scalar c. In the next, it suffices to show that

E[(xix
⊤
i)

k1xiyi] = cβ∗ for some scalar c. Since ∥w∗∥2 = 1, let Γ = [w∗,w2, . . . ,wd] ∈ Rd be the orthogonal matrix
with w∗ being its first column, and let x′

i = Γ⊤xi ∼ N (0, Id). This implies that yi = sign(⟨w∗,xi⟩) = sign(x′
i,1), which

is the first coordinate of x′
i. Based on this, for any fixed w∗, we can further derive that

E[(xix
⊤
i)

k1xiyi|w∗] = ΓE[(x′
ix

′⊤
i)k1x′

i sign(x
′
i,1)] = ΓE[∥x′

i∥
2k1
2 x′

i sign(x
′
i,1)] = cw∗.

The last equality holds as ∥x′
i∥

2k1
2 is a even function for each coordinate of x′

i, which implies that
E[∥x′

i∥
2k1
2 x′

i,j sign(x
′
i,1)] = 0 for any j ∈ [d] and j ̸= 1. Therefore, we can finally obtain that

E[(xix
⊤
i)

k1xiyi] = E
[
E[(xix

⊤
i)

k1xiyi|w∗]
]
= cE[w∗] = cβ∗,

which completes the proof.

Lemma F.4 (Theorem 9 in Bartlett et al. (2020)). For any δ > 0, with probability at least 1− δ, it holds that,∥∥∥∥ 1nΣ̂− Id

∥∥∥∥
2

≤ O

(
max

{
d

n
,

√
d

n
,
log(1/δ)

n
,

√
log(1/δ)

n

})
.

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

On the Robustness of Transformers against Context Hijacking for Linear Classification

Lemma F.5. For any δ > 0, with probability at least 1− δ, it holds that,∥∥∥∥ n∑
i=1

sign(⟨w∗,xi⟩)xi − n

√
2

π
w∗
∥∥∥∥
2

≤ O
(√

nd log(d/δ)
)
.

Proof of Lemma F.5. Similar to the previous proof technique, let Γ = [w∗,w2, . . . ,wd] ∈ Rd be the orthogonal matrix
with w∗ being its first column, and let x′

i = Γ⊤xi ∼ N (0, Id). Then we can derive that

n∑
i=1

sign(⟨w∗,xi⟩)xi − n

√
2

π
w∗ =

[n∑
i=1

(
|x′

i,1| −
√

2

π

)]
·w∗ +

d∑
j=2

[n∑
i=1

sign(x′
i,1)x

′
i,j

]
·wj .

Since |x′
i,1| is a subgaussian random variable with expectation

√
2
π , by Hoeffding’s inequality we can derive that with

probability at least 1− δ/d,

n∑
i=1

(
|x′

i,1| −
√

2

π

)
≤ O

(√
n log(d/δ)

)
.

Additionally, when j ̸= 1, sign(x′
i,1)x

′
i,j still follows a standard normal distribution (A standard normal random variable

times an independent Rademacher random variable is still a standard normal random). Therefore, we can also derive that

n∑
i=1

sign(x′
i,1)x

′
i,j ≤ O

(√
n log(d/δ)

)
holds with probability at least 1− δ

d . Then by taking an union bound, we can finally obtain that∥∥∥∥ n∑
i=1

sign(⟨w∗,xi⟩)xi − n

√
2

π
w∗
∥∥∥∥2
2

=

[n∑
i=1

(
|x′

i,1| −
√

2

π

)]2
+

d∑
j=2

[n∑
i=1

sign(x′
i,1)x

′
i,j

]2
≤ O

(
nd log(d/δ)

)
.

The first equality holds by the orthogonality among w∗,w2, . . . ,w
∗. This completes the proof.

Lemma F.6. For any δ > 0, with probability at least 1− δ, it holds that,∣∣∥x⊥∥22 − (d− 1)
∣∣ ≤ O

(√
d log(1/δ)

)
;∣∣⟨x⊥,β

∗⟩
∣∣ ≤ O

(√
d log(1/δ)

)
.

Proof of Lemma F.6. By the fact that ∥x⊥∥22 ∼ χ2
d−1, we have E[∥x⊥∥22] = d− 1. Then by the Bernstein’s inequality, we

can obtain that ∣∣∥x⊥∥22 − (d− 1)
∣∣ ≤ O

(√
d log(1/δ)

)
holds with probability at least 1 − δ/2. Besides, since ⟨x⊥,β

∗⟩ ∼ N (0, 1 − ⟨w∗,β∗⟩), by applying the tail bounds of
Gaussian distribution, we can obtain that ∣∣⟨x⊥,β

∗⟩
∣∣ ≤ O

(√
d log(1/δ)

)
holds with probability at least 1− δ/2. By applying a union bound, we obtain the final result.

G. Experimental setup
G.1. Context hijacking in LLMs

This section will describe our experimental setup for context hijacking on LLMs of different depths. We first construct
four datasets for different tasks, including language, country, sports, and city. The samples in each dataset consist of four
parts: prepend, error result, query, and correct result. Each task has a fixed template for the sample. For the language,

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

On the Robustness of Transformers against Context Hijacking for Linear Classification

the template is “{People} did not speak {error result}. The native language of {People}
is {correct result}”. For the country, the template is “{People} does not live in {error result}.
{People} has a citizenship from {correct result}”. For the sports, the template is “{People} is
not good at playing {error result}. {People}’s best sport is {correct result}”. For
the city, the template is “{Landmarks} is not in {error result}. {Landmarks} is in the city
of {correct result}”. We allow samples to have certain deviations from the templates, but they must generally
conform to the semantics of the templates. Instance always match the reality, and the main source of instances is the
CounterFact dataset (Meng et al., 2022). In our dataset, each task contains three hundred to seven hundred specific
instances. We conduct experiments on GPT2 (Radford et al., 2019) of different sizes. Specifically, we consider GPT2,
GPT2-MEDIUM, GPT2-LARGE, and GPT2-XL. They have 12 layers, 24 layers, 36 layers, and 48 layers, respectively.
We construct a pipeline that test each model on each task, recording the number of prepends for which the context just
succeeded in perturbing the output. For those samples that fail to perturb within a certain number of prepends (which is
determined by the maximum length of the pre-trained model), we exclude them from the statistics. Finally, we verify the
relationship between model depth and robustness by averaging the number of prepends required to successfully perturb the
output.

G.2. Numerical experiments

We use extensive numerical experiments to verify our theoretical results, including gradient descent and linear transformers.

Gradient descent: We use a single-layer neural network as the gradient descent model, which contains only one linear
hidden layer. Its input dimension is the dimension d of feature x, and we mainly experiment on d = {15, 20, 25}. Its output
dimension is 1, because we only need to judge the classification result by its sign. We use the mean square error as the
loss function and SGD as the optimizer. All data comes from the defined training distribution Dtr. The hyperparameters
we set include training context length N = 50, mean of the Gaussian distribution β⋆ = 1, variance of the Gaussian
distribution Σ = 0.1 (then normalized). We initialize the neural network to cβ, and then perform gradient descents with
steps Steps = {1, 2, ..., 8} and learning rate lr. We use grid search to search for the optimal c and lr for the loss function.
This is equivalent to the trained transformers of layers 1 to 8 learning to obtain the shared signal cβ and the optimal learning
rate lr for the corresponding number of layers. Then they can use in-context data to fine-tune cβ to a specific w⋆.

After obtaining the optimal initialization and learning rate, we test it on the dataset from Dte. Again, we set exactly the
same hyperparameters as above. In addition, we set the σ in the test distribution to 0.1.

Linear Transformer: We train on multi-layer single-head linear transformers and use Adam as the optimizer. The
training settings for models with different numbers of layers are exactly the same. We use the initial learning rate
lr ∈ {0.0001, 0.0002}, and the training steps are 600,000. We use a learning rate decay mechanism, where the learning
rate is decayed by half every 50,000 training steps. For training and testing data, we set the data dimension d = 20 and the
training context length N = {10, 20, 30, 40}. We use a batchsize of 5,000 and apply gradient clipping with a threshold of 1.

H. Additional experiments
H.1. Robustness of standard transformers with different number of layers

To generalize the results to more realistic settings, we transfer the experiments from linear transformers to larger and
standard transformers, such as GPT-2 (Radford et al., 2019). We train and test GPT-2 with different numbers of layers based
on exactly the same settings as the linear transformers experiments. The results once again verify our theory (Figure 5). As
the context length increases, the model’s accuracy decreases, but increasing the number of layers of the model significantly
improves the robustness, indicating that our theory has more practical significance. Then we describe the setup of standard
transformers experiments briefly.

Setup: We use the standard transformers of the GPT-2 architecture for the experiments, and the main settings are similar to
(Garg et al., 2022). We set the embedding size to 256, the number of heads to 8, and the batch size to 64. We use a learning
rate decay mechanism similar to linear transformers experiments, with an initial learning rate of 0.0002, and then reduced by
half every 200,000 steps, for a total of 600,000 steps. We use Adam as the optimizer.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

On the Robustness of Transformers against Context Hijacking for Linear Classification

Figure 5. Standard transformers experiments with different depths. Testing the trained standard transformers (GPT-2 architecture (Radford
et al., 2019)) on the test set, as the number of interference samples increases, the model classification accuracy decreases and gradually
converges. The results also show that deeper models are more robust.

H.2. Linear transformers facing different interference intensity

In this section, we mainly discuss how the robustness of the model changes with the interference intensity. In our modeling,
the interference intensity is determined only by the distance between the query sample and the similar interference samples
defined in the test set, that is, by the variable σ in Dte. In real-world observations, according to the idea of the induction
head (Olsson et al., 2022), the more similar the context prepend used for interference is to the query, the more likely the
model is to use in-context learning to output incorrect results. Therefore, we examine different σ to determine whether the
model conforms to the actual real-world interference situation, that is, to verify the rationality of our modeling.

Observing the experiment results in Figure 6, when σ gradually decreases from 0.8 to 0.1, that is, the interference intensity
of the data gradually increases, the classification accuracy of the model decreases significantly. When σ is larger and the
interference context is less, the model can always classify accurately, indicating that weak interference does not affect the
performance of the model, which is consistent with real observations. Various experimental phenomena show that our
modeling of the context hijacking task by the distance between the interference sample and the query sample is consistent
with the real semantics.

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

On the Robustness of Transformers against Context Hijacking for Linear Classification

Figure 6. Linear transformers experiments with different depths and different σ. In real-world semantics, smaller σ means stronger
interference. Comparing the test performance of the model under different σ, we can find that as σ decreases, the robustness of the model
decreases significantly, which verifies the rationality of our modeling.

26

