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ABSTRACT

While vision transformers show promise in numerous image restoration (IR) tasks,
the challenge remains in efficiently generalizing and scaling up a model for mul-
tiple IR tasks. To strike a balance between efficiency and model capacity for a
generalized transformer-based IR method, we propose a hierarchical information
flow mechanism for image restoration, dubbed Hi-IR, which progressively propa-
gates information among pixels in a bottom-up manner. Hi-IR constructs a hierar-
chical information tree representing the degraded image across three levels. Each
level encapsulates different types of information, with higher levels encompassing
broader objects and concepts and lower levels focusing on local details. Moreover,
the hierarchical tree architecture removes long-range self-attention, improves the
computational efficiency and memory utilization, thus preparing it for effective
model scaling. Based on that, we explore model scaling to improve our method’s
capabilities, which is expected to positively impact IR in large-scale training set-
tings. Extensive experimental results show that Hi-IR achieves state-of-the-art
performance in seven common image restoration tasks, affirming its effectiveness
and generalizability.

1 INTRODUCTION

Image restoration (IR) aims to improve image quality by recovering high-quality visuals from ob-
servations degraded by noise, blur, and downsampling. To address this series of inherently ill-posed
problems, numerous methods have been developed primarily for a single degradation, including
convolutional neural networks (CNNs) (Dong et al., 2014; Kim et al., 2016; Lim et al., 2017), vi-
sion transformers (ViTs) (Chen et al., 2021; Liang et al., 2021; Li et al., 2023a), and state space
models (Mamba) (Gu & Dao, 2023; Guo et al., 2024). However, the intricate and varied nature of
degradation presents formidable challenges to the prevailing IR methodologies. In particular, several
coupled problems remain for general IR:

* First, there is a lack of a generalized computational mechanism for efficient IR. A general IR
framework needs to deal with images with varying characteristics, such as different types and
intensities of degradation, as well as varying resolutions. Techniques designed for specific IR
tasks might not apply to other problems. Simply combining computational mechanisms designed
for different IR tasks does not necessarily result in an efficient solution. Thus, it is a challenge to
design a mechanism that is both efficient and capable of generalizing well to different IR tasks.

» Second, there is no systematic approach for guiding model scaling. Current image restoration
networks are typically limited to 10-20M parameters. Addressing multiple degradations often
requires increasing the model capacity by scaling up the model size. Yet, diminished model per-
formance is observed by simply scaling up the model. Therefore, the challenge of systematically
scaling up IR models remains unresolved.

e Third, it is still unclear how well a single model can generalize across different IR tasks. Existing
approaches tend to focus on either a single task or a subset of IR tasks. The generalizability of a
single model across a broader range of IR tasks has to be thoroughly validated.

This paper addresses the aforementioned questions in Sec. 3, Sec. 4. and Sec. 5, respectively. We
propose a hierarchical information flow principle designed specifically for general IR tasks. This
principle establishes relationships between pixels on multiple levels and progressively aggregates
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Figure 1: The proposed Hi-IR is notable for its efficiency and effectiveness (a)-(b), generalizability
across seven image restoration tasks (a)-(g), and improvements in the visual quality of restored

images (h)-(j).

information across multiple levels, which is essential for general IR. Compared with existing ap-
proaches such as convolution (Zhang et al., 2018c), global attention (Chen et al., 2021), and window
attention (Li et al., 2023a), hierarchical information flow balances complexity with the efficiency of
comprehending global contexts, ensuring an optimized process for integrating information across
various scales and regions. The underlying design principle opens the door to different realizations.
Considering the effectiveness and efficiency for image modeling, we propose a new architecture
based on a three-level hierarchical information flow mechanism for image restoration (i.e., Hi-IR).
Hi-IR employs a series of progressive computational stages for efficient information flow. The
first-level (L1) computational block works within individual patches, fostering local information ex-
change and generating intermediate node patches. Then, a second-level (L2) block works across
the intermediate node patches and allows for the effective propagation of information beyond the
local scope. As a final step, the third-level (L3) information flow block bridges the gaps between the
isolated node patches from the first two stages.

Motivated by the scaling law (Brown et al., 2020; Touvron et al., 2023; Kang et al., 2023; Saharia
et al., 2022; Yu et al., 2024), we scale up the model to enhance the model capacity. We analyze the
reason why it is difficult to scale up IR models. As a remedy to the notorious problem (Lim et al.,
2017; Chen et al., 2023), this paper proposes three strategies that systematically encompass model
training, weight initialization, and model design to enable effective model scaling.

This paper validates the generalizability of the proposed hierarchical information flow mechanism
through rigorous experiments on multiple aspects. First, we investigate the performance of the
model trained for a specific degradation type and intensity, including downsampling, motion blur,
defocus blur, noise, and JPEG compression. Second, we validate that the model can handle a single
degradation type with multiple intensities. Furthermore, we demonstrate that a single model can
generalize effectively across multiple tasks, validating its versatility. Our main contributions are
summarized as follows:

e We introduce a novel hierarchical information flow principle for image restoration, which facili-
tates progressive global information exchange and mitigates the curse of dimensionality.

o We propose Hi-IR, a compact image restoration model guided by the design principle, to propagate
information for image restoration efficiently.

e We examine the challenge of training convergence for model scaling-up in IR and propose miti-
gation strategies.

e Extensive experiments demonstrate the generalizability of the proposed hierarchical information
flow mechanism. The proposed Hi-IR consistently outperforms state-of-the-art image restoration
methods for multiple tasks.
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2 RELATED WORK

Image Restoration focuses on recovering high-quality images from their degraded counterparts.
As a challenging problem, IR has captured substantial interest in academic and industrial circles,
leading to practical applications such as denoising, deblurring, super-resolution (SR), and so on.
The landscape of IR has shifted with the evolution of deep learning and the increased availability of
computational resources, notably GPUs. Neural network-based pipelines, fueled by advancements
in deep learning, have supplanted earlier model-based solutions (Richardson, 1972; Liang et al.,
2021; Li et al., 2023b). Numerous CNN models have been proposed (Anwar & Barnes, 2020;
Li et al., 2022b; Dong et al., 2014; Zhang et al., 2017a) for different IR tasks. However, despite
their effectiveness, CNNs have been found to struggle in propagating long-range information within
degraded input images. This challenge is attributed to the limited receptive field of CNNs, which, in
turn, constrains the overall performance of CNN-based methods (Chen et al., 2022b; Zhang et al.,
2022; Li et al., 2023a).

Vision Transformer-based Models for IR have been proposed to address the problem of global
information propagation inspired by the success of Transformer architecture in machine transla-
tion (Vaswani et al., 2017) and high-level vision tasks (Dosovitskiy et al., 2020). Specifically,
IPT (Chen et al., 2021) applies ViTs for IR. Despite promising results, it is difficult to use full-range
self-attention within the ViTs because the computational complexity increases quadratically with the
image size. As a remedy, numerous methods explore ViTs in an efficient yet effective manner. In par-
ticular, SwinIR (Liang et al., 2021) conducts multi-head self-attention (MSA) window-wise. A shift
operation is applied to achieve the global interactive operation (Liu et al., 2021). Uformer (Wang
et al., 2022) proposes to propagate much more global information with a UNet structure but still
with window self-attention. Other methods (Zamir et al., 2022; Chen et al., 2022b; Ren et al., 2024)
re-design the attention operation with much more exquisite efforts, such as cross-covariance across
channel dimensions (Zamir et al., 2022), rectangle-window self-attention (Li et al., 2021), sparse
self-attention Huang et al. (2021), and graph-attention (Ren et al., 2024), spatial shuffle (Huang
etal., 2021), and random spatial shuffle Xiao et al. (2023). However, these transformer-based solu-
tions cannot balance the ability to generalize to multiple IR tasks and the computational complexity
of global modeling. In this paper, we propose a general and efficient IR solution which hierarchi-
cally propagates information in a tree-structured manner, simultaneously incorporating inputs from
lower and higher semantic levels.

3 METHODOLOGY

3.1 MOTIVATION

This paper aims to propose a general and efficient IR framework. Before presenting technical details,
we discuss the motivation behind the proposed hierarchical information flow mechanism.

In this work, we demonstrate the pivotal role of the information flow in decoding low-level fea-
tures, which become more pronounced with the introduction of ViTs. CNNs employ successive
convolutions that inherently facilitate progressive information flow beyond local fields. In contrast,
image restoration transformers typically achieve information flow via self-attention across manually
partitioned windows, combined with a window-shifting mechanism. When the flow of contextual
information between different regions or features within an image is restricted, a model’s ability
to reconstruct high-quality images from low-quality counterparts is significantly hindered. This ef-
fect can be observed by deliberately isolating the information flow in Swin transformer. In Tab. 1,
the flow of information across windows is prohibited by removing the window-shifting mechanism,
which leads to a decrease in PSNR on the validation datasets (specifically, a 0.27 dB drop for DF2K
training, and a 0.23 dB drop for LSDIR training). The obvious reductions indicate that information
isolation degrades the performance of IR techniques, likely because the algorithms are deprived of
the contextual clues necessary for accurately reconstructing finer image details.

Secondly, we observe that information propagation on fully connected graphs is not always nec-
essary or beneficial for improving the performance of the IR networks (Chen et al., 2021; Zamir
et al., 2022). As ViTs generate distinct graphs for each token, early attempts to facilitate global
information dissemination led to the curse of dimensionality, causing quadratic growth in compu-
tational complexity with token increase (Wang et al., 2020; Liu et al., 2021). Subsequent attention
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Table 1: Removing shifted windows leads to Table 2: Plateau effect of enlarged window size re-
degraded SR performance. PSNR is reported ported on Urban100 for 4x SR. Window size larger

on Urban100 dataset for 4x SR. than 32 is not investigated due to the OOM issue.
Traini Window Shift Window size PSNR PSNR gain GPU Mem. Computation
raining Dataset ~Yes  No
8 27.42 0.00 14.63GB x1
DF2K (Agustsson & Timofte, 2017)|27.45 27.18 (-0.27) 16 27.80  +0.38 17.22GB x4
LSDIR (Li et al., 2023b) 27.87 27.64 (-0.23) 32 28.03 +0.22 27.80GB x16

NN Based (b) Global Attention Based

(c) Window-Attention Based (d) Tree Structure Attention (Ours)

Figure 2: Illustration of information flow principles. The colors represent local information, with
their blending indicating propagation beyond the local region. (a) The CNN-based. (b) The original
ViTs based. (c) Window attention based. (d) The proposed hierarchical information flow prototype.

mechanisms, building graphs based on windows, achieve better IR results. However, the benefits
of expanding the window size tend to plateau. Tab. 2 shows the effect of window size versus per-
formance. The quality of the reconstructed images improves as the window size grows from 8§ to
32, evident from rising PSNR values. Yet, with larger windows, the gains decrease, accompanied
by a sharp increase in memory footprint and computational demands, resulting in a plateau effect.
This prompt a reassessment of the information propagation mechanism on large windows. The chal-
lenge lies in balancing the scope and the complexity of window attention while enhancing global
information propagation efficiency.

Effective information flow. The above analysis emphasizes the crucial role of effective information
flow in modern architectural designs. CNN-based methods propagate information slowly within
a small region covered by the filter (Fig. 2(a)). A large receptive field has to be achieved by the
stack of deep layers. Global attention based ViT propagates information directly across the whole
sequence with a single step. However, the computational complexity grows quadratically with the
increase of tokens (Fig. 2(b)). To address this problem, window attention in Fig. 2(c) propagates
information across two levels but still has a limited receptive field even with shift operation.

To facilitate fast and efficient information flow across the image, we propose a hierarchical informa-
tion flow principle shown in Fig. 2(d). In this model, information flows progressively from the local
scope, aggregated in several intermediate levels, and disseminated across the whole sequence. This
new design principle is more efficient in that it enables a global understanding of the input sequence
with several operations. Moreover, the actual implementation of the tree structure such as the depth
of the tree can be configured to ensure computational efficiency. One realization in this work is a
three-level information flow model.

3.2 HIERARCHICAL TREE-STRUCTURED INFORMATION FLOW

As shown in Fig. 3(a) - (c), the hierarchical tree-structured information flow mechanism consists of
three levels and aims to effectively model both the local and the global information for a given feature
X € REXWXC efficiently. We denote the information within X as /, level meta-information.

L1 information flow attention is achieved by applying MSA to the input feature X withina p x p
patch. To facilitate the MSA, the input feature is first partitioned into local patches, leading to X’ €

HW ><[)2 xC

R »? . Then feature X' is linearly projected into query (Q1), key (K1), and value (V).
Self-attention within the local patches is denoted as Y;"' = SoftMax(Q (K1) /v/d)V;"*, where i
index the windows, and d represents the head dimension. This process is shown in Fig. 3(a). Each
node within the Y'* grid represents all the Iy level meta-information derived from its corresponding
original window, marked by the same color.
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Figure 3: Illustrations of: (a) The hierarchical information flow. (b) The proposed hierarchical
information flow transformer layer. (c) The overall framework of the proposed Hi-IR.

L2 information flow attention is achieved upon the previous /; level information Y"1, Despite the
expanded scope of information within each grid of Y, comprehensive cross-window information
propagation remains a challenge. As indicated conceptually in Fig. 2(d), 2D s x s non-overlapping
local patches p x p in L1 information flow should be grouped together to form a broader P x P
region for L2 information flow. Different from the previous operations (Xiao et al., 2023; Huang
et al., 2021), we do not expand to the whole image in this phase due to two considerations: 1) The
computational complexity of attention in the global image can be quite high; 2) Not all global
image information is relevant to the reconstruction of a specific pixel. To facilitate MSA, the
dispersed pixels need to be grouped together via a permutation operation. The seemingly complex
operation is simplified by first reshaping the input tensor to Y & R 7 *xsXpxF xsxpxC followed
by a permutation to form (Y')h € R(# % Fxp*)xs*xC_ The simple permutation operation facil-
itates the distribution of /; information nodes across a higher level region, ensuring each window
contains a comprehensive, cross-window patch-wise /5 information set without hurting the overall
information flow.

To better integrate the permuted information (Y”)", we further project (Y')* to Q", K", and
V!, And the second MSA (L Information flow attention in Fig. 3(b)) among patches is applied
via Y}? = SoftMax(Q! (K*)T/Vd)V}". As a result, the larger patch-wise global information
(colorful nodes in Y1) now is well propagated to each triangle node (Fig. 3) in Y'!2.

L3 convolutional information flow FFN is implemented via a 3 x 3 convolution operation between
two 1 x 1 convolution operations, forming the convolutional feed-forward network in this paper and
outputs the third level information Y3, As a result, this design not only aggregates all the channel-
wise information more efficiently but also enriches the inductive modeling ability (Chu et al., 2022;
Xu et al., 2021) for the proposed mechanism.

3.3 HiI-IR LAYER

The Hi-IR layer, serving as the fundamental component for both architectures, is constructed based
on the innovative tree-structured information flow mechanism (TIFM) introduced above, and the
detailed structure is depicted in Fig. 3(b). For each Hi-IR layer, the input feature X;_; first passes
through a layer normalization and two consecutive information propagation attentions. After adding
the shortcut, the output X l/ is fed into the convolutional feed-forward networks with another shortcut
connection and outputs X;. We formulate this process as follows:

X'} = TIFM a¢t (LN (X1-1)) + z—1,

1
X; = TIFMcony (LN (X/l)) + X/l b

where TIFM ¢ consists of both the L1 and L2 information flow attention, TIFMc¢,,, denotes the
L3 convolutional information flow FFN.
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3.4 OVERALL ARCHITECTURE

To comprehensively validate the effectiveness of the proposed method, similar to prior meth-
ods (Chen et al., 2022a; Li et al., 2023a; Ren et al., 2024), we choose two commonly used basic
architectures including the U-shape hierarchical architecture shown in Fig. 3(c) and the columnar
architecture shown in Fig. 7 of Appx. A.l. The columnar architecture is used for image SR while
the U-shape architecture is used for other IR tasks. Specifically, given degraded low-quality image
Tjow € RIXWX1/3 (1 for the grayscale image and 3 for the color image ), it was first sent to the
convolutional feature extractor and outputs the shallow feature Fj,, € RHXWXC for the follow-
ing Hi-IR stages/layers. H, W, and C' denote the height, the width, and the channels of F},,. For
the U-shape architecture, F},, undergoes representation learning within the U-shape structure. In
contrast, for the columnar architecture, F}, traverses through N consecutive Hi-IR stages. Both
architectures ultimately generate a restored high-quality image I},;,;, through their respective image
reconstructions.

4 MODEL SCALING-UP

Table 3: Model scaling-up exploration with SR.  Table 4: Investigated weight intialization and
rescaling method for model scaling-up.

Scale Model [ Warm Conv PSNR
Size up Type |[Set5 Setl4 BSD100 Urban100 Mangal09
. PSNR on Set5
2x 1569 | No convl |3852 3447 3256  34.17 39.77 Method Description o 3%
2x  57.60 | No convl |38.33 34.17 3246 33.60 39.37
9% 57.60 | Yes convl |38.41 3433 32.50 33.80 39.51 Zero Layer-|Initialize the weight and bias of|38.35 34.81
2x | 5423 | Yes linear|38.56 3459 3258 3432 39.87 Norm LayerNorm as 0 (Liu et al., 2022b).
2% 15573 | Yes conv3 |38.65 3448 32.58 3433 40.12 Residual Rescale the residual blocks by a|38.31 34.79
rescale factor of 0.01 (Lim et al., 2017;|
3x 15.87| No convl [35.06 30.91 29.48 30.02 3441 Chen et al., 2023).
3x 5778 | No convl 3470 30.62 29.33  29.11 33.96 Weight Rescale the weight parameters in[38.36  34.84
3x | 5778 | Yes convl |3491 30.77 29.39 29.53 34.12 rescale residual blocks by a factor o
3x | 5441 | Yes linear|35.13 31.04 29.52 30.20 34.54 0.1 (Wang et al., 2018).
3x |5591| Yes conv3 |35.14 31.03 29.51 30.22 34.76 trunc_normal _|Truncated normal distribution 38.33 3471

Existing IR models are li'mited to a model size of Table 5: Dot production attention vs. cosine sim-
10-20M parameters. In this paper, we develop mod- ilarity attention for model scaling. PSNR reported
els of medium and large sizes. However, scaling up  for SR.

the model size from 15M to 57M leads to an unex- Scale | Attn. type | Set5 Setl4 BSD100 Urban100 Mangal09

pected performapc;e drop, as Sh‘?W“ in the pink rows == 0 o e 3256 3413 39.69
of Tab. 3. In addition, as shown in Appx. B, the 57M  2x | dotprod |38.56 34.79 32.63 3449  39.89
model also converges slower than the 15M model =~ 4x |cosinesim|33.08 29.15 2796  27.90 3140

. . 4x | dotprod |33.14 29.09 27.98  27.96  31.44
during training.

Initial attempts. Existing methods handle this problem with weight initialization and rescaling
techniques. For example, Chen et al. (2023) and Lim et al. (2017) reduce the influence of residual
convolutional blocks by scaling those branches with a sufficiently small factor (0.01). Wang et al.
(2018) rescale the weight parameters in the residual blocks by a factor of 0.1. Liu et al. (2022b)
intialize the weight and bias of LayerNorm as 0. In addition, we also tried the truncated normal
distribution to initialize the weight parameters. However, as shown in Tab. 4, none of the four
methods improves the convergence and performance of the scaled models, indicating that they do
work for the attention modules of the IR transformers.

Solutions. The initial investigation indicates that the problem can be attributed to the training strat-
egy, the initialization of the weight, and the model design. Thus, three methods are proposed to
mitigate the model scaling problem. First, we warm up the training for 50k iterations at the begin-
ning. As shown in Tab. 3, this mitigates the problem of degraded performance of scaled up models,
but does not solve it completely. Secondly, we additionally replace heavyweight 3 x 3 convolution
(convl in Tab. 3) with lightweight operations besides warming up the training. Two alternatives
are considered including a linear layer (1 inear in Tab. 3) and a bottleneck block with 3 lightweight
convolutions (1 x 1 conv+3 X 3 conv+1 X 1 conv, conv3 in Tab. 3). The number of channels of the
middle 3 x 3 conv in the bottleneck blocks is reduced by a factor of 4. Tab. 3 shows that removing the
large 3 x 3 convolutions leads to a much better convergence point for the large models. Considering
that the bottleneck block leads to better PSNR than linear layers in most cases, it is adopted in all
the other experiments. Thirdly, we also investigate the influence of the self-attention mechanism on
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the convergence of scale-up models. Specifically, two attention mechanisms are compared including
dot product attention (Liu et al., 2021) and cosine similarity attention (Liu et al., 2022b). As shown
in Tab. 5, dot product self-attention performs better than cosine similarity self-attention. Thus, dot
product self-attention is used throughout this paper unless otherwise stated. The rationale behind
why the proposed three strategies are effective for model scaling-up is detailed in Appx. B.

5 EXPERIMENTS

In this section, the results of the ablation study are first reported. Then we validate the effectiveness
and generalizability of Hi-IR on 7 IR tasks, i.e., image SR, image Dn, JPEG image compression
artifact removal (CAR), single-image motion deblurring, defocus deblurring and image demosaick-
ing, and IR in adverse weather conditions (AWC). More details about the training protocols and
the training/test datasets are shown in Appx A. The best and the second-best quantitative results
are reported in red and blue. Note that ¥ denotes a single model that is trained to handle multiple
degradation levels (i.e., noise levels, and quality factors) for validating the generalizability of Hi-IR.

5.1 ABLATION STUDIES

TOTAIY WOTT

opeuLOyu 1]

Somafong wding

(a) Transformer Layer v1 (b) Transformer Layer v2 (c) Transformer Layer v3

Figure 4: Comparison of three types of transformer layers designed in this paper.

Table 6: Ablation study on model Taple 7: Model efficiency vs. accuracy for SR and Dn. PSNR
design with SR (reported on Set5). s reported on Urban100 dataset.

L3 Version Params FLOPs Runtime PSNR
Scale\zlgi‘oanodel size[M]| _ PSNR Task Network Arch. T G] [ms] [dB]
with L3 w/o L3[with L3 w/o L3 SwinIR (Liang et al., 2021)|Columnar] 11.90 21532 152.24 27.45
9% | vl | 1435 1187|3834 3831 . gg/CAT (Chenetal,2022b) (Columnar| 1660 387.86 357.97 27.89
2% v2 19.22 16.74 | 38.30 38.22 HAT (Chen et al., 2023)  |Columnar| 20.77 416.90 368.61 28.37
o% | v3 | 1560 1321|3837 3835 Hi-IR (Ours) Columnar| 14.83 287.20 331.92 28.44
2x | v4 1719 - 3841 - SwinIR (Liang et al., 2021)|Columnar| 11.50 804.66 1772.84 27.98
4x | vl 1450 12023289 3285  p 5o Restormer U-shape | 26.13 154.88 210.44 28.29
4x | v2 | 1937 16.89 | 32.88 32.77 (Zamir et al., 2022) P
ix | w3 | 1584 1336 32.92 3287 GRL (Lietal., 2023a)  |Columnar| 19.81 1361.77 3944.17 28.59
Ax v 17.35 - 32.95 _ Hi-IR (Ours) U-shape | 22.33 153.66 399.05 2891

Extensive ablation experiments explore the following key aspects:

Effect of L1 and L2 information flow. One design choice for the L1/L2 information flow attentions
is to decide whether to interleave them across Transformer layers or to implement them in the same
layer. To validate this choice, we develop three versions, including vl where L1 and L2 attentions
alternate in consecutive layers, v2 and v3 where L1 and L2 attentions are used in the same layer
(Fig. 4). Compared with v1, v2 showed reduced performance despite increased model complexity.
To address this issue, we introduce v3, where the projection layer between L1 and L2 is removed and
the dimension of Q and K in L1/L2 attention is reduced by half to save computational complexities.
The v3 L1/L2 information flows can be conceptually unified into a single flow with an expanded
receptive field. Our ablation study reveals that v3 yielded the best performance, as evidenced by the
results in Tab. 6. Consequently, v3 was adopted for all subsequent experiments.

Effect of the depth of the tree structure. Ablation study was conducted to evaluate the effect
of the tree structure’s depth. In Tab. 6, the depth of the tree in the vl model is 3. Removing the
L3 information flow reduces the depth to 2, resulting in degraded image SR performance, even
on the small Set5 dataset. Additionally, a v4 model was designed by adding an information flow
attention beyond L2 to v3 model, creating a depth-4 tree structure. As shown in Tab. 6, this increased
complexity improves SR results. Thus, well-designed deeper tree structures lead to improved model
performance but with increased model complexity.
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Table 8: Classical image SR results. Note that 10-20M models (best in light pink and second best
in light cyan ) and 40M models are ranked seperately (best in red).

Params‘ Set5 [ Set14 [ BSD100 [ Urban100 [ Mangal09

Method [M] [PSNRT SSIMT[PSNRT SSIMT|PSNRT SSIMT|PSNRT SSIM?|PSNRT SSIMT

Scale

SwinlR (Liang et al., 2021) | 2x 11.75| 38.42 0.9623| 34.46 0.9250| 32.53 0.9041| 33.81 0.9427| 39.92 0.9797
CAT-A (Chen et al., 2022b) | 2x 16.46| 38.51 0.9626| 34.78 0.9265| 32.59 0.9047| 34.26 0.9440| 40.10 0.9805
ART (Zhang et al., 2022) 2x 16.40| 38.56 0.9629| 34.59 0.9267| 32.58 0.9048 | 34.30 0.9452| 40.24 0.9808
EDT (Li et al., 2021) 2% 11.48| 38.63 0.9632| 34.80 0.9273| 32.62 0.9052| 34.27 0.9456| 40.37 0.9811
GRL-B (Li et al., 2023a) 2x 20.05| 38.67 0.9647| 35.08 0.9303| 32.67 0.9087| 35.06 0.9505| 40.67 0.9818
HAT (Chen et al., 2023) 2x 20.62| 38.73 0.9637| 35.13 0.9282| 32.69 0.9060| 34.81 0.9489| 40.71 0.9819

Hi-IR-B (Ours) 2x 14.68| 38.71 0.9657| 35.16 0.9299| 32.73 0.9087 | 34.94 0.9484| 40.81 0.9830
HAT-L (Chen et al., 2023) | 2x 40.70| 3891 0.9646| 3529 0.9293| 32.74 0.9066| 35.09 0.9505| 41.01 0.9831
Hi-IR-L (Ours) 2% 39.07| 38.87 0.9663| 3527 0.9311| 32.77 0.9092| 35.16 0.9505| 41.22 0.9846

SwinlR (Liang et al., 2021) | 4X 11.90| 32,92 0.9044| 29.09 0.7950| 27.92 0.7489| 27.45 0.8254| 32.03 0.9260
CAT-A (Chen et al., 2022b) | 4x 16.60| 33.08 0.9052| 29.18 0.7960| 27.99 0.7510| 27.89 0.8339| 32.39 0.9285
ART (Zhang et al., 2022) 4x 16.55| 33.04 0.9051| 29.16 0.7958| 27.97 0.7510| 27.77 0.8321| 32.31 0.9283
EDT (Li et al., 2021) 4x 11.63| 33.06 0.9055| 29.23 0.7971| 27.99 0.7510| 27.75 0.8317 | 32.39 0.9283
GRL-B (Li et al., 2023a) 4x 20.20| 33.10 0.9094| 29.37 0.8058| 28.01 0.7611| 28.53 0.8504| 32.77 0.9325
HAT (Chen et al., 2023) 4x 20.77| 33.18 0.9073| 29.38 0.8001| 28.05 0.7534| 28.37 0.8447| 32.87 0.9319

Hi-IR-B (Ours) 4x 14.83| 33.14 0.9095| 29.40 0.8029| 28.08 0.7611| 28.44 0.8448| 32.90 0.9323
HAT-L (Chen et al., 2023) | 4% 40.85| 33.30 0.9083| 29.47 0.8015| 28.09 0.7551| 28.60 0.8498| 33.09 0.9335
Hi-IR-L (Ours) 4x 39.22| 33.22 0.9103| 29.49 0.8041| 28.13 0.7622| 28.72 0.8514| 33.13 0.9366

SwinlR GRL = HAT

(Liang et al., 2021)

(Lietal.,20232)  (Chen etal., 2023)
; L

b l ~ il " J
SwinlR GRL HAT
(Liangetal,2021)  (Lietal,2023a)  (Chen etal, 2023)

Hi-IR (Ours)

Figure 5: Visual results for classical image x4 SR on Urban100 dataset.

Efficiency Analysis. We report the efficiency comparison results on two IR tasks. For the colum-
nar architecture-based SR, our Hi-IR achieves the best PSNR with much lower parameters (28.6%
reduction) and FLOPs (31.1% reduction), and runtime (9.95% reduction) compared to HAT (Chen
et al., 2023). Similar observation can also be achieved on the denoising task.

5.2 EVALUATION OF HI-IR ON VARIOUS IR TASKS

Image SR. For the classical image SR, we compared our Hi-IR with state-of-the-art SR models.
The quantitative results are shown in Tab. 8. Aside from the 2nd-best results across all scales on
Set5 and the 2nd-best results for the 2x scale on Set14, the proposed Hi-IR archives the best PSNR
and SSIM on all other test sets across all scales. In particular, significant improvements in terms of
the PSNR on Urban100 (i.e., 0.13 dB for 2x SR of the base model and 0.12 dB for the 4x SR of
the large model) and Mangal09 (i.e., 0.21 dB for 2x SR) compared to HAT (Chen et al., 2023), but
with fewer trainable parameters. The visual results shown in Fig. 5 also validate the effectiveness of
the proposed Hi-IR in restoring more details and structural content. More results are in Tab. 19 of
Appx. C, Fig. 10 to Fig. 12 of Appx. E.

Image Denoising. We provide both the color and the grayscale image denoising results in Tab. 9.
Our approach demonstrates superior performance on diverse datasets, including Kodak24, McMas-
ter, and Urban100 for color image denoising, as well as Set12 and Urban100 for grayscale image
denoising. These comparative analyses serve to reinforce the efficacy of the proposed Hi-IR, sug-
gesting that it may exhibit a higher degree of generalization. Additionally, a closer examination of
more visual results is available in Fig. 13 of Appx. E, further substantiates the capabilities of Hi-IR.
These results illustrate its proficiency in effectively eliminating heavy noise corruption while pre-
serving high-frequency image details. The outcome is sharper edges and more natural textures, with
no discernible issues of over-smoothness or over-sharpness.
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Table 9: Color and grayscale image denoising results.
Params Color Grayscale

Method [M] Kodak24 McMaster Urban100 Setl2 Urban100

0=15 0=25 0=50|0=15 0=25 0=50|c=15 0=25 0=50||c=15 0=25 0=50{0c=15 0=25 0=50
DnCNN (Kiku et al., 2016) 0.56 |34.60 32.14 28.95|33.45 31.52 28.62 32.98 30.81 27.59| 32.86 30.44 27.18|32.64 29.95 26.26
RNAN (Zhang et al., 2019) 8.96 - - 2958 - - 29.72‘ - - 29.08 ‘ - - 2770 - - 27.65
IPT (Chen et al., 2021) 115.33 - - 2964 - - 2998 - - 2971 - - - - - -
EDT-B (Li et al., 2021) 11.48 |35.37 32.94 29.87|35.61 33.34 30,25‘35.22 33.07 30.16 ‘ - - - - - -
DRUNet (Zhang et al., 2021) | 32.64 |35.31 32.89 29.86|35.40 33.14 30.08 34.81 32.60 29.61| 33.25 30.94 27.90|33.44 31.11 27.96
SwinlR (Liang et al., 2021) 11.75 |35.34 32.89 29.79|35.61 33.20 30.22‘35,13 32.90 29.82 ‘33.36 31.01 27.91(33.70 31.30 27.98
Restormer (Zamir et al., 2022)| 26.13 |35.47 33.04 30.01(35.61 33.34 30.30 35.13 32.96 30.02| 33.42 31.08 28.00|33.79 31.46 28.29
Xformer (Zhang et al., 2023a) | 25.23 |35.39 32.99 29.94(35.68 33.44 30.38‘35.29 33.21 30.36(|33.46 31.16 28.10|33.98 31.78 28.71
Hi-IR (Ours) 22.33 |35.42 33.01 29.98|35.69 33.44 30.42 35.46 33.34 30.59| 33.48 31.19 28.15|34.11 31.92 28.91

Table 10: Grayscale image JPEG compression artifact removal results. TA single model is trained
to handle multiple noise levels.

| JPEG | f{DnCNN3 | +DRUNet | {Hi-IR (Ours) || SwinlR | ART | CAT | Hi-IR (Ours)
[PSNRT SSIMT|PSNRT SSIMf|PSNR{ SSIMT|PSNRT SSIMf|PSNRT SSIMT|PSNR{ SSIMT|PSNRT SSIMf|PSNRT SSIMf

27.82 0.7600| 29.40 0.8030| 30.16 0.8234| 30.25 0.8236 | 30.27 0.8249| 30.27 0.8258| 30.26 0.8250| 30.38 0.8266
0.8340 0.8610| 32.39 0.8734| 32.51 0.8737] 32.52 0.8748 - 32.57 0.8754] 32.62 0.8751
0.8670 0.8860 | 33.59 0.8949| 33.74 0.8954| 33.73 0.8961 0.8964 | 33.77 0.8964| 33.80 0.8962
0.8850 0.9000 | 34.41 0.9075] 34.55 0.9078| 34.52 0.9082| 34.55 0.9086| 34.58 0.9087| 34.61 0.9082
0.7730 0.8120] 29.79 0.8278| 29.84 0.8328| 29.86 0.8287| 29.89 0.8300| 29.89 0.8295| 29.94 0.8359
0.8510 0.8800| 32.17 0.8899| 32.24 0.8926 32.25 0.8909 - 3230 0.8913| 3231 0.8938
0.8850 0.9090 | 33.59 0.9166| 33.67 0.9192] 33.69 0.9174| 33.71 33.73 09177| 33.73 0.9223
0.9040 0.9250| 34.58 0.9312] 34.66 0.9347]| 34.67 0.9317] 34.70 34.720.9320| 34.71 0.9347
0.7816 0.8484 | 30.31 0.8745| 30.62 0.8808| 30.55 0.8835| 30.87 30.81 0.8866| 31.07 0.8950
0.8545 0.9050| 32.81 0.9241| 33.21 0.9256|| 33.12 0.9190 33.38 0.9269| 33.51 0.9250
0.9013 0.9312] 3423 0.9414| 34.64 0.9478| 34.58 0.9417 34.81 0.9449| 34.86 0.9459
0.9215 0.9412] 3520 0.9547| 35.63 0.9566| 35.50 0.9515 35.73 0.9511| 35.77 0.9561

Set| QF

Classic5

33.74

0.9178
0.9322
0.8894

31.01
32.47
33.49

0.9442
0.9553

34.81
35.73

30.00
31.06

Urban100| LIVEl

Table 11: Single-image motion deblurring on Table 12: Single image motion deblurring on
GoPro and HIDE dataset. GoPro dataset is used RealBlur dataset. §: Methods trained on Real-

for training. Blur.

GoPro HIDE Average RealBlur-R RealBlur-J Average
Method IPSNR? / SSIMT|PSNR* / SSIMTPSNR?T / SSIMT  Method [PSNRT / SSIMT{PSNRT / SSIM1{PSNRT / SSIMT
DeblurGAN-v2 (Kupyn et al., 2019)| 29.55/0.934 | 26.61/0.875 | 28.08/0.905 DeblurGAN-v2 36.44/0.935 | 29.69/0.870 | 33.07/0.903
SRN (Tao et al., 2018) 30.26/0.934 | 28.36/0.915 | 29.31/0.925 FSRN (Tao et al., 2018) 38.65/0.965 | 31.38/0.909 | 35.02/0.937
SPAIR (Purohit et al., 2021) 32.06/0.953 | 30.29/0.931 | 31.18/0.942 ‘MPRNet (Zamir et al., 2021) 39.31/0.972 | 31.76/0.922 | 35.54/0.947
MIMO-UNet+ (Cho et al., 2021) 32.45/0.957 | 29.99/0.930 | 31.22/0.944 FMIMO-UNet+ (Cho et al., 2021)| -/- 32.05/0.921 -/-
MPRNet (Zamir et al., 2021) 32.66/0.959 | 30.96/0.939 | 31.81/0.949 TMAXIM-3S (Tu et al., 2022) 39.45/0.962 | 32.84/0.935 | 36.15/0.949
MAXIM-3S (Tu et al., 2022) 32.86/0.961 | 32.83/0.956 | 32.85/0.959 BANet (Tsai et al., 2022b) 39.55/0.971 | 32.00/0.923 | 35.78/0.947
Restormer (Zamir et al., 2022) 32.92/0.961 31.22/0.942 | 32.07/0.952 TMSSNet (Kim et al., 2022) 39.76/0.972 | 32.10/0.928 | 35.93/0.950
Stripformer (Tsai et al., 2022a) 33.08/0.962 | 31.03/0.940 | 32.06/0.951 DeepRFT+ (Mao et al., 2023) 39.84/0.972 | 32.19/0.931 | 36.02/0.952
ShuffleFormer (Xiao et al., 2023) 33.38/0.965 | 31.25/0.943 | 31.32/0.954 ‘FStripformer (Tsai et al., 2022a) | 39.84/0.974 | 32.48/0.929 | 36.16/0.952
GRL-B (Li et al., 2023a) 33.93/0.968 | 31.65/0.947 | 32.79/0.958 GRL-B (Li et al., 2023a) 40.20/0.974 | 32.82/0.932 | 36.51/0.953
Hi-IR-L (Ours) 33.99/0.968 | 31.64/0.947 | 32.82/0.958 THi-IR-L (Ours) 40.40/0.976 | 32.92/0.933 | 36.66/0.954

Image JPEG CAR. For JPEG CAR, the experiments are conducted for grayscale images with four
quality factors (i.e., 10, 20, 30, and 40) under two experimental settings (i.e., T, one single model is
trained to handle multiple quality factors, and each model for each image quality). We compare Hi-
IR with DnCNN3 (Zhang et al., 2017a), DRUNet (Zhang et al., 2021), SwinIR (Liang et al., 2021),
ART (Zhang et al., 2022), CAT (Chen et al., 2022b). Specifically, the quantitative results shown
in Tab. 10 validate that the proposed Hi-IR outperforms most of the other comparison methods
under both settings. Visual comparisons are provided in Fig. 14 of Appx. E to further support the
effectiveness of the proposed Hi-IR.

Single-Image Motion Deblurring. The results regarding the single-image motion deblurring are
shown in Tab. 11 and Tab. 12. For the synthetic datasets, compared with previous stat-of-the-art
GRL (Li et al., 2023a), the proposed Hi-IR achieves the best results on the GoPro dataset and the
second-best results on HIDE datasets. For the real dataset, our method also achieves the new state-
of-the-art performance of 40.40 PSNR on the RealBlur-R dataset and 32.92 PSNR on the RealBlur-J
dataset. The visual results are shown in Fig. 16 and Fig. 17 of Appx. E.

Defocus Deblurring. We also validate the effectiveness of our Hi-IR for dual-pixel defocus deblur-
ring. The results in Tab. 13 show that Hi-IR outperforms the previous methods for all three scenes.
Compared with Restormer on the combined scenes, our Hi-IR achieves a decent performance boost
of 0.35 dB for dual-pixel defocus deblurring.
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Table 13: Defocus deblurring results. D: dual-pixel defocus deblurring.

Method Indoor Scenes Outdoor Scenes Combined
PSNR1[SSIMT|MAE] [LPIPS]|PSNRT[SSIMT|MAE] |LPIPS] [PSNRT|SSIMT[MAE] [LPIPS]

DPDNetp (Abuolaim & Brown, 2020)| 27.48 | 0.849 | 0.029 | 0.189 | 22.90 | 0.726 | 0.052 | 0.255 | 25.13 | 0.786 | 0.041 | 0.223
RDPDp, (Abuolaim et al., 2021) 28.10 | 0.843 | 0.027 | 0.210 | 22.82 | 0.704 | 0.053 | 0.298 25.39 | 0.772 | 0.040 | 0.255
Uformerp (Wang et al., 2022) 28.23 | 0.860 | 0.026 | 0.199 | 23.10 | 0.728 | 0.051 | 0.285 | 25.65 | 0.795 | 0.039 | 0.243
IFANp (Lee et al., 2021) 28.66 | 0.868 | 0.025 | 0.172 | 23.46 | 0.743 | 0.049 | 0.240 25.99 | 0.804 | 0.037 | 0.207
Restormerp (Zamir et al., 2022) 29.48 | 0.895 | 0.023 | 0.134 | 23.97 | 0.773 | 0.047 | 0.175 \ 26.66 | 0.833 | 0.035 | 0.155
Hi-IR p-B (Ours) 29.70 | 0.902 | 0.023 | 0.116 | 24.46 | 0.798 | 0.045 | 0.154 27.01 | 0.848 | 0.034 | 0.135

Table 14: Image demosaicking results. Table 15: IR in AWC results.

Dataset ‘All-in-One TransWeather SemanIR Ours

Datasets |Matlab DDR DeepJoint RLDD DRUNet RNAN GRL-S Hi-IR (Ours) b
Kodak | 35.78 41.11 4200 4249 42.68 43.16 4357  43.69 RainDrop 31.12 28.84 3082 30.84
McMaster| 3443 37.12 39.14 3925 3939 3970 4022  40.78 Test1 (rain+fog)|  24.71 27.96 29.57 30.93
SnowTest100k-L| 28.33 28.48 3076 30.85
Datasets Datasets
3] 36 Datasets Datasets
\ D 521268 \ o zl"]:"‘;:r 425 —— Classic5 A 4001 — ivel
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(a) Grayscale image denoising (b) Color image denoising (c) Grayscale image JPEG CAR (d) Color image JPEG CAR

Figure 6: Training one model for multiple degradation levels.

Image Demosaicking. We compare DDR (Wu et al., 2016), Deeploint (Gharbi et al., 2016),
RLDD (Guo et al., 2020), DRUNet (Zhang et al., 2021), RNAN (Zhang et al., 2019), and GRL-S (Li
et al., 2023a) with the proposed method for demosaicking in Tab. 14. It shows that the proposed Hi-
IR archives the best performance on both the Kodak and MaMaster test datasets. Especially, 0.12
dB and 0.56 dB absolute improvement compared to the current state-of-the-art GRL.

One model for multiple degradation levels. For image denoising and JPEG CAR, we trained a
single model to handle multiple degradation levels. This setup makes it possible to apply one model
to deal with images that have been degraded under different conditions, making the model more
flexible and generalizable. During training, the noise level is randomly sampled from the range
[15, 75] while the JPEG compression quality factor is randomly sampled from the range [10, 90].
The degraded images are generated online. During the test phase, the degradation level is fixed to a
certain value. The experimental results are summarized in Fig. 6. The numerical results for grayscale
JPEG CAR are presented in Tab. 10. These results show that in the one-model-multiple-degradation
setting T, the proposed Hi-IR achieves the best performance.

IR in AWC. We validate Hi-IR in adverse weather conditions like rain+fog (Test1 (Li et al., 2020)),
snow (SnowTestl100K-L (Liu et al., 2018)), and raindrops (RainDrop (Qian et al., 2018)). We
compare Hi-IR with All-in-One (Li et al., 2020) TransWeather (Valanarasu et al., 2022), and Se-
manlR (Ren et al., 2024). The PSNR score is reported in Tab. 15 for each method. Our method
achieves the best performance on Testl (i.e., 4.6% improvement) and SnowTest100k-L (i.e., 0.09
dB improvement), while the second-best PSNR on RainDrop compared to all other methods. The
visual comparison presented in Fig. 15 of Appx. E also shows that our method can restore better
structural context and cleaner details.

6 CONCLUSION

In this paper, we introduced a hierarchical information flow principle for IR. Leveraging this con-
cept, we devised a new model called Hi-IR, which progressively propagates information within local
regions, facilitates information exchange in non-local ranges, and mitigates information isolation in
the global context. We investigated how to scale up an IR model. The effectiveness and generaliz-
ability of Hi-IR was validated through comprehensive experiments across various IR tasks.

10
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APPENDIX

A EXPERIMENTAL SETTINGS

A.1 ARCHITECTURE DETAILS

We choose two commonly used basic architectures for IR tasks including the U-shape hierarchical
architecture and the columnar architecture. The columnar architecture is used for image SR while
the U-shape architecture is used for other IR tasks including image denoising, JPEG CAR, image
deblurring, IR in adverse weather conditions, image deblurring, and image demosaicking. We in-
cluded details on the structure of the Hi-IR in Tab. 16. This table outlines the number of Hi-IR stages
and the distribution of Hi-IR layers within each stage for a thorough understanding of our model’s

architecture.
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Figure 7: The columnar Hi-IR architecture.

Table 16: The details of the Hi-IR stages and Hi-IR layers per stage for both architectures.

U-shaped architecture Columnar architecture
Down Stages Upstages Latent Stage | Hi-IR-Base Hi-IR-Large
Num. of Hi-IR Stages 3 3 1 6 8
Num. of Hi-IR Layer/Stage 6 6 6 6 8

A.2 TRAINING DETAILS

The proposed Hi-IR explores 7 different IR tasks, and the training settings vary slightly for each
task. These differences encompass the architecture of the proposed Hi-IR, variations in training
phases, choice of the optimizer, employed loss functions, warm-up settings, learning rate schedules,
batch sizes, and patch sizes. We have provided a comprehensive overview of these details.

In addition, there are several points about the training details we want to make further explanation.
1) For image SR, the network is pre-trained on ImageNet (Deng et al., 2009). This is inspired
by previous works (Dong et al., 2014; Chen et al., 2021; Li et al., 2021; Chen et al., 2023). 2) The
optimizer used for IR in AWC is Adam (Kingma & Ba, 2014), while AdamW (Loshchilov & Hutter,
2018) is used for the rest IR tasks. 3) The training losses for IR in AWC are the smooth L1 and the
Perception VGG loss (Johnson et al., 2016; Simonyan & Zisserman, 2015). For image deblurring,
the training loss is the Charbonnier loss. For the rest IR task, the L1 loss is commonly used during
the training. 4) For IR in AWC, we adopted similar training settings as Transweather (Valanarasu
et al., 2022), the model is trained for a total of 750K iterations.

A.3 DATA AND EVALUATION

The training dataset and test datasets for different IR tasks are described in this section. For IR in
AWC, we used a similar training pipeline as Transweather with only one phase. Additionally, for
tasks such as image super-resolution (SR), JPEG CAR, image denoising, and demosaicking, how
the corresponding low-quality images are generated is also briefly introduced below.

Image SR. For image SR, the LR image is synthesized by Mat 1ab bicubic downsampling function
before the training. We investigated the upscalingg factors x2, x3, and x4.

* The training datasets: DIV2K (Agustsson & Timofte, 2017) and Flickr2K (Lim et al., 2017).
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» The test datasets: Set5 (Bevilacqua et al., 2012), Setl4 (Zeyde et al., 2010), BSD100 (Martin
et al., 2001), Urban100 (Huang et al., 2015), and Mangal09 (Matsui et al., 2017).

Image Denoising. For image denoising, we conduct experiments on both color and grayscale image
denoising. During training and testing, noisy images are generated by adding independent additive
white Gaussian noise (AWGN) to the original images. The noise levels are set to o = 15,25, 50.
We train individual networks at different noise levels. The network takes the noisy images as input
and tries to predict noise-free images. Additionally, we also tried to train one model for all noise
levels.

* The training datasets: DIV2K (Agustsson & Timofte, 2017), Flickr2K (Lim et al., 2017),
WED (Ma et al., 2016), and BSD400 (Martin et al., 2001).

* The test datasets for color image: CBSD68 (Martin et al., 2001), Kodak24 (Franzen, 1999), Mc-
Master (Zhang et al., 2011), and Urban100 (Huang et al., 2015).

* The test datasets for grayscale image: Setl2 (Zhang et al., 2017a), BSD68 (Martin et al., 2001),
and Urban100 (Huang et al., 2015).

JPEG compression artifact removal. For JPEG compression artifact removal, the JPEG image is
compressed by the cv2 JPEG compression function. The compression function is characterized by
the quality factor. We investigated four compression quality factors including 10, 20, 30, and 40.
The smaller the quality factor, the more the image is compressed, meaning a lower quality. We also
trained one model to deal with different quality factors.

* The training datasets: DIV2K (Agustsson & Timofte, 2017), Flickr2K (Lim et al., 2017), and
WED (Ma et al., 2016).

* The test datasets: Classic5 (Foi et al., 2007), LIVE1 (Sheikh, 2005), Urban100 (Huang et al.,
2015), BSD500 (Arbelaez et al., 2010).

IR in Adverse Weather Conditions. For IR in adverse weather conditions, the model is trained on
a combination of images degraded by a variety of adverse weather conditions. The same training
and test dataset is used as in Transweather (Valanarasu et al., 2022). The training data comprises
9,000 images sampled from Snow 100K (Liu et al., 2018), 1,069 images from Raindrop (Qian et al.,
2018), and 9,000 images from Outdoor-Rain (Li et al., 2019a). Snow100K includes synthetic images
degraded by snow, Raindrop consists of real raindrop images, and Outdoor-Rain contains synthetic
images degraded by both fog and rain streaks. The proposed method is tested on both synthetic and
real-world datasets.

* The test datasets: testl dataset (Li et al., 2020; 2019a), the RainDrop test dataset (Qian et al.,
2018), and the Snow100k-L test.

Image Deblurring. For single-image motion deblurring,

* The training datasets: GoPro (Nah et al., 2017) dataset.

e The test datasets: GoPro (Nah et al., 2017), HIDE (Shen et al., 2019), RealBlur-R (Rim et al.,
2020), and RealBlur-J (Rim et al., 2020) datasets.

Defocus Deblurring. The task contains two modes including single-image defocus deblurring and
dual-pixel defocus deblurring. For single-image defocus deblurring, only the blurred central-view
image is available. For dual-pixel defocus deblurring, both the blurred left-view and right-view
images are available. The dual-pixel images could provide additional information for defocus de-
blurring and thus could lead to better results. PSNR, SSIM, and mean absolute error (MAE) on the
RGB channels are reported. Additionally, the image perceptual quality score LPIPS is also reported.

* The training datasets: DPDD (Abuolaim & Brown, 2020) training dataset. The training subset
contains 350 scenes.

¢ The test datasets: DPDD (Abuolaim & Brown, 2020) test dataset. The test set contains 37 indoor
scenes and 39 outdoor scenes

18



Under review as a conference paper at ICLR 2025
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Figure 8: When the SR model is scale-up from Hi-IR-L to Hi-IR-B, the model Hi-IR-L converges
slower than Hi-IR-B.

Image Demosaicking. For image demosaicking, the mosaic image is generated by applying a Bayer
filter on the ground-truth image. Then the network try to restore high-quality image. The mosaic
image is first processed by the default Mat 1ab demosaic function and then passed to the network
as input.

* The training datasets: DIV2K (Agustsson & Timofte, 2017) and Flickr2K (Lim et al., 2017).
* The test datasets: Kodak (Franzen, 1999), McMaster (Zhang et al., 2011).

B MODEL SCALING-UP

As mentioned in the main paper, when the initially designed SR model is scaled up from about 10M
parameters to about 50M parameters, the performance of the large SR model becomes worse. The
effect is shown in Fig. 8. The PSNR curve on the Set5 dataset for the first 200k iterations is shown
in this figure. The scale-up model Hi-IR-L converges slower than the smaller model Hi-IR-B. The
same phenomenon could be observed by comparing the first two rows for each upscaling factor in
Tab. 17, where scaled-up models converge to worse local minima. A similar problem occurs in
previous works (Chen et al., 2023; Lim et al., 2017).

Table 17: Model scaling-up exploration with SR.

Scale | Model | Warm  Cony | PSNR
Size up Type [ Set5 Setl4 BSDIO0O Urbanl00 M: 109
2% 15.69 No convl 3852 3447 32.56 34.17 39.77
2x 57.60 No convl 3833 34.17 32.46 33.60 39.37
2% 57.60 Yes convl | 3841 3433 32.50 33.80 39.51
2x 54.23 Yes linear | 3856 34.59 32.58 34.32 39.87
2x 55.73 Yes conv3 | 38.65 3448 32.58 34.33 40.12
3x 15.87 No convl 35.06 3091 29.48 30.02 34.41
3x 57.78 No convl 3470 30.62 29.33 29.11 33.96
3% 57.78 Yes convl | 3491 30.77 29.39 29.53 34.12
3x 54.41 Yes linear | 35.13 31.04 29.52 30.20 34.54
3x 5591 Yes conv3 | 35.14 31.03 29.51 30.22 34.76
4x 15.84 No convl 33.00 29.11 27.94 27.67 31.41
4x 57.74 No convl 33.08 29.19 27.97 27.83 31.56
4x 57.74 Yes convl | 32.67 28093 27.83 27.11 30.97
4x 54.37 Yes linear | 33.06 29.16 27.99 27.93 31.66
4x 55.88 Yes conv3 | 33.06 29.16 27.97 27.87 31.54

B.1 WHY DOES REPLACING HEAVYWEIGHT CONVOLUTION WORK?

We hypothesize that replacing dense 3 x 3 convolutions with linear layers and bottleneck blocks
works because of the initialization and backpropagation of the network.

In the Xavier and Kaiming weight initialization method, the magnitude of the weights is inversely
related to fan_in/fan_out of a layer which is the multiplication of the number of input and output
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Table 18: Comparison of SR results between dot production attention and cosine similarity attention
for scaled-up models.

Scale | Attn. type | Set5 Setl4 BSDI100 Urbanl00 Mangal09
X2 | dotprod |38.56 34.79 32.63 34.49 39.89

X2 | cosine sim | 38.43 34.65 32.56 34.13 39.69
x3 | dotprod |34.98 3098 2945 30.06 34.35
X3 | cosine sim | 34.92 30.86 29.40 29.82 34.18
x4 | dotprod |33.14 29.09 27.98 27.96 31.44
x4 | cosine sim | 33.08 29.15  27.96 27.90 31.40

channels and kernel size, namely,
fin = €in X k2, )

Fout = Cour X k?, 3
where f;, and f,,; denotes fan_in and fan_out, ¢;;, and ¢,,; denotes input and output channels,
and k is kernel size. Thus, when a dense 3 x 3 convolution is used, f;;, and f,,: can be large,
which leads to small initialized weight parameters. This in turn leads to small gradients during
the backpropagation. When the network gets deeper, the vanishing gradients could lead to slow
convergence. When dense 3 x 3 convolution is replaced by linear layers, the kernel size is reduced
to 1. When the bottleneck module is used, the number of input and output channels of the middle
3 x 3 convolution in the bottleneck block is also reduced. Thus, both of the two measures decreases
the fan_in and fan_out values, leading to larger initialized weight parameters.

B.2 WHY DOES WARMUP WORK?

Warmup is effective for training large models primarily because it mitigates issues related to unsta-
ble gradients and helps the optimizer gradually adapt to the model’s large parameter space (Kalra &
Barkeshli, 2024; Goyal, 2017). In the early stages of training, the model’s parameters are initialized
randomly. A high learning rate at this stage can cause large updates, leading to unstable or divergent
training due to exploding or vanishing gradients. Warmup starts with a small learning rate and grad-
ually increases it, allowing the optimizer to find a stable path in the loss landscape before applying
larger updates. Warmup enables the model to adapt gradually, avoiding overshooting minima and
ensuring smoother convergence.

B.3 WHY DOES DOT PRODUCT WORK BETTER THAN COSINE SIMILARITY?

As shown in Tab. 18, dot product attention works better than cosine similarity attention. We an-
alyze the gradient of dot product and cosine similary as follows. Suppose q denotes the query
and k denotes the keys. Then dot product and cosine similarity between q and k are denoted as
dot_prod(q, k) and cos_sim(q, k). The gradient of dot product with respect to q is

aquot,prod(q, k) =k. 4)

The gradient of cosine similarity with respect to q is

k (a-kjg 1 /o : R
= - = — (k — cos_sim(q, k)q ) ,
lalllkl flallPlk]  fall ( )

where ¢ and k are normalized q and k. The gradients with respect to k have the similar form. The
gradient of cosine similarity involves more terms compared to the gradient of the dot product. This
increased complexity in the gradient of cosine similarity makes it more prone to producing large or
even unstable gradient values. We conducted a numerical analysis of the gradient values for the two
attention methods, with the results presented in Fig. 9. As shown in the figure, the gradient of cosine
similarity is indeed more prone to producing large values. This issue becomes more pronounced as
the model scales up.

agqcos,sim(q, k) 5)

C MORE QUANTITATIVE EXPERIMENTAL RESULTS

Due to the limited space in the main manuscript, we only report a part of the experimental result. In
this section, we show the full quantitative experimental results for each IR task in the following.
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Figure 9: Comparsion of gradients between dot product and cosine similarity.

C.1 FULL RESULTS ON IMAGE SR

The full numerical comparison results among the proposed Hi-IR and other state-of-the-art methods
are presented in Tab. 19. It shows that besides the second-best results on Set5 and the X2 on Set14,
our method achieves all the best results across various scale factors and datasets. Especially, we
outperform HAT (Chen et al., 2023) with less trainable parameters.

C.2 RESULTS FOR COLOR IMAGE JPEG COMPRESSION ARTIFACT REMOVAL

The following methods are compared for color image JPEG artifact removal including
QGAC (Ehrlich et al., 2020), FBCNN (Jiang et al., 2021), DRUNet (Zhang et al., 2021),
SwinlR (Liang et al., 2021), GRL-S (Li et al., 2023a), and Hi-IR. The results shown in Tab. 20
also validate the effectiveness of the proposed Hi-IR.

C.3 SINGLE-IMAGE DEFOCUS DEBLURRING

In addition to the dual-pixel defocus deblurring results, we also shown single-image defocus deblur-
ring results in Tab. 21

C.4 GENERALIZING ONE MODEL TO MORE TYPES DEGRADATIONS

To validate the generalization capability of the proposed method to different types of degradation, we
conducted the following experiments. First, we used the same model for both denoising and JPEG
compression artifact removal tasks. Notably, a single model was trained to handle varying levels of
degradation. The experimental results for denoising are shown in Tab. 22 while the results for JPEG
compression artifact removal are shown in Tab. 20 and Tab. 10. Second, we performed experiments
on image restoration under adverse weather conditions, including rain, fog, and snow. The results
are shown in Tab. 15. Third, we further investigated a one-in-all image restoration setup, encompass-
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Table 19: Classical image SR results. Top-2 results are highlighted in red and blue.

Method Seale | Params| Set5 | Sett4 | BSD100 | Urban100 | Mangal09
[M] [PSNRT SSIMT[PSNRT SSIM?T|PSNRT SSIMT|PSNRT SSIMf|PSNRT SSIMT
EDSR (Lim et al., 2017) x2 | 4073| 38.11 09602 3392 09195| 3232 09013 | 3293 09351 39.10 09773

SREBN (Li et al., 2019b) x2 2.14| 38.11 ().9609‘ 33.82 09196 | 32.29 0.9010| 32.62 0.9328 | 39.08 0.9779
RCAN (Zhang et al., 2018b) | X2 15.44| 3827 09614 34.12 09216 | 3241 0.9027 | 3334 0.9384| 39.44 0.9786

SAN (Dai et al., 2019) X2 15.71| 38.31 0.9620‘ 34.07 09213 | 3242 0.9028 | 33.10 0.9370 | 39.32 0.9792
HAN (Niu et al., 2020) x2 63.61| 38.27 0.9614 34.16 09217 | 3241 09027 | 3335 0.9385| 39.46 0.9785
NLSA (Mei et al., 2021) x2 42.63| 38.34 09618 | 34.08 09231| 3243 0.9027 | 33.42 0.9394 | 39.59 0.9789
IPT (Chen et al., 2021) x2 | 11548| 3837 - 34.43 - 3248 - 33.76 - - -

SwinIR (Liang et al., 2021) | X2 1175 3842 09623 ] 3446 09250 3253 09041 3381 0.9427| 39.92 0.9797

CAT-A (Chen et al., 2022b) | x2 16.46| 38.51 0.9626 34.78 0.9265| 32.59 0.9047 | 3426 0.9440| 40.10 0.9805
ART (Zhang et al., 2022) x2 16.40| 38.56 0.9629 | 34.59 0.9267 | 32.58 0.9048 | 343 0.9452| 40.24 0.9808

EDT (Li et al., 2021) X2 11.48| 38.63 0.9632 34.80 0.9273| 32.62 0.9052 | 34.27 0.9456 | 40.37 0.9811
GRL-B (Li et al., 2023a) x2 20.05| 38.67 ().9647‘ 35.08 0.9303| 32.67 0.9087 | 35.06 0.9505| 40.67 0.9818
HAT (Chen et al., 2023) x2 20.62| 38.73 0.9637 35.13 0.9282| 32.69 0.9060 | 34.81 0.9489| 40.71 0.9819
Hi-IR-B (Ours) X2 14.68| 3871 0.9657| 35.16 0.9299 | 32.73 0.9087 | 34.94 0.9484 | 40.81 0.9830
HAT-L (Chen et al., 2023) x2 40.70| 3891 0.9646 3529 0.9293| 32.74 0.9066 | 35.09 0.9505| 41.01 0.9831
Hi-IR-L (Ours) X2 39.07| 38.87 0.9663 ‘ 35.27 0.9311| 3277 0.9092] 35.16 0.9505| 41.22 0.9846
EDSR (Lim et al., 2017) x3 43.68| 34.65 0.9280 30.52 0.8462| 29.25 0.8093 | 28.80 0.8653 | 34.17 0.9476

SREBN (Li et al., 2019b) x3 2.83| 34.70 0.9292‘ 30.51 0.8461| 29.24 0.8084 | 28.73 0.8641 | 34.18 0.9481
RCAN (Zhang et al., 2018b) | x3 15.63| 34.74 09299 30.65 0.8482| 29.32 0.8111 | 29.09 0.8702| 34.44 0.9499

SAN (Dai et al., 2019) x3 1590 3475 0.9300| 30.59 0.8476| 29.33 0.8112| 28.93 0.8671| 3430 0.9494
HAN (Niu et al., 2020) X3 64.35| 3475 0.9299 30.67 0.8483 | 29.32 0.8110 | 29.10 0.8705| 34.48 0.9500
NLSA (Mei et al., 2021) x3 45.58| 34.85 0.9306 ‘ 30.70 0.8485| 29.3¢ 0.8117| 29.25 0.8726 | 34.57 0.9508
IPT (Chen et al., 2021) x3 | 115.67| 34.81 - 30.85 - 29.38 - 29.49 - - -

SwinIR (Liang et al., 2021) | X3 11.94| 3497 093187 30.93 08534] 29.46 08145 29.75 0.8826| 3512 0.9537

CAT-A (Chen et al., 2022b) | x3 16.64| 3506 09326 31.04 0.8538| 29.52 0.8160 | 30.12 0.8862| 35.38 0.9546
ART (Zhang et al., 2022) x3 16.58| 35.07 0.9325] 31.02 0.8541| 29.51 0.8159| 30.1 0.8871| 3539 0.9548

EDT (Li et al., 2021) x3 11.66| 35.13 0.9328 31.09 0.8553| 29.53 0.8165| 30.07 0.8863| 35.47 0.9550
GRL-B (Li et al., 2023a) x3 20.24| 35.12 0.9353 ‘ 31.27 0.8611| 29.56 0.8235| 30.92 0.8990 | 35.76 0.9566
HAT (Chen et al., 2023) x3 20.81| 35.16 0.9335 31.33 0.8576| 29.59 0.8177 | 30.7 0.8949| 35.84 0.9567
Hi-IR-B (Ours) x3 14.87] 3511 0.9372] 3137 0.8598 | 29.60 0.8240 | 30.79 0.8977 | 35.92 0.9583
HAT-L (Chen et al., 2023) X3 40.88| 3528 0.9345 31.47 0.8584| 29.63 0.8191| 30.92 0.8981| 36.02 0.9576
Hi-IR-L (Ours) x3 39.26| 3520 0.9380 ‘ 3155 0.8616| 29.67 0.8256| 31.07 0.9020| 36.12 0.9588
EDSR (Lim et al., 2017) x4 43.09| 3246 0.8968 28.80 0.7876| 27.71 0.7420| 26.64 0.8033 | 31.02 0.9148

SRFBN (Li et al., 2019b) x4 3.63| 3247 0.8983‘ 28.81 0.7868 | 27.72 0.7409 | 26.60 0.8015| 31.15 0.9160
RCAN (Zhang et al., 2018b) | x4 1559 32.63 0.9002 2887 0.7889| 27.77 0.7436| 26.82 0.8087 | 31.22 0.9173

SAN (Dai et al., 2019) x4 15.86| 32.64 0.9003 | 28.92 0.7888 | 27.78 0.7436 | 26.79 0.8068 | 31.18 0.9169
HAN (Niu et al., 2020) x4 64.20| 32.64 0.9002 28.90 0.7890 | 27.80 0.7442 | 26.85 0.8094 | 31.42 0.9177
NLSA (Mei et al., 2021) x4 44.99| 32.59 0.9000‘ 28.87 0.7891| 27.78 0.7444 | 26.96 0.8109 | 31.27 09184
IPT (Chen et al., 2021) x4 | 115.63| 32.64 - 29.01 27.82 - 27.26

SwinIR (Liang et al., 2021) | x4 1190] 3292 0.9044] 29.09 0.7950| 27.92 0.7489 | 27.45 0.8254| 32.03 0.9260
CAT-A (Chen et al., 2022b) | x4 16.60| 33.08 0.9052 29.18 0.7960 | 27.99 0.7510 | 27.89 0.8339| 3239 0.9285
ART (Zhang et al., 2022) x4 16.55| 33.04 0.9051 ‘ 29.16 0.7958 | 27.97 0.751 | 27.77 0.8321| 3231 0.9283

EDT (Li et al., 2021) x4 11.63| 33.06 0.9055 29.23 0.7971| 27.99 0.7510 | 27.75 0.8317| 3239 0.9283
GRL-B (Li et al., 2023a) x4 20.20| 33.10 0.9094‘ 29.37 0.8058 | 28.01 0.7611| 28.53 0.8504 | 32.77 0.9325
HAT (Chen et al., 2023) x4 20.77{ 33.18 0.9073 29.38 0.8001 | 28.05 0.7534 | 28.37 0.8447| 32.87 0.9319
Hi-IR-B (Ours) x4 14.83| 33.14 09095 | 29.40 0.8029 | 28.08 0.7611 | 28.44 0.8448 | 32.90 0.9323
HAT-L (Chen et al., 2023) x4 40.85| 3330 0.9083 29.47 0.8015| 28.09 0.7551| 28.60 0.8498 | 33.09 0.9335
Hi-IR-L (Ours) x4 39.22| 33.22 0.9103 ‘ 29.49 0.8041| 28.13 0.7622| 28.72 0.8514| 33.13 0.9366

Table 20: Color image JPEG compression artifact removal results.

| JPEG | iQGAC | {FBCNN | {DRUNet |{Hi-IR (Ours)| SwinlR | GRL-S |Hi-IR (Ours)
[PSNR SSIM |PSNR SSIM |[PSNR SSIM |[PSNR SSIM [PSNR SSIM |[PSNR SSIM [PSNR SSIM [PSNR SSIM

10125.69 0.7430] 27.62 0.8040/27.77 0.8030|27.47 0.8045|28.24 0.8149/28.06 0.8129(28.13 0.8139/28.36 0.8180
20128.06 0.8260 29.88 0.8680(30.11 0.8680(30.29 0.8743|30.59 0.8786 |130.44 0.8768|30.49 0.8776|30.66 0.8797
30129.37 0.8610| 31.17 0.8960|31.43 0.8970|31.64 0.9020|31.95 0.9055 ||31.81 0.9040|31.85 0.9045|32.02 0.9063
40]30.28 0.8820| 32.05 0.9120]32.34 0.9130(32.56 0.9174|32.88 0.9205/32.75 0.9193|32.79 0.9195/32.94 0.9210

10]25.84 0.7410( 27.74 0.8020|27.85 0.7990(27.62 0.8001|28.26 0.8070|/28.22 0.8075|28.26 0.8083|28.35 0.8092
20128.21 0.8270] 30.01 0.8690|30.14 0.8670{30.39 0.8711|30.58 0.8741 ||30.54 0.8739|30.57 0.8746|30.61 0.8740
30129.57 0.8650(31.330 0.8980|31.45 0.8970(31.73 0.9003|31.93 0.9029 ||31.90 0.9025|31.92 0.9030|31.99 0.9035
40]30.52 0.8870] 32.25 0.9150]32.36 0.9130{32.66 0.9168|32.87 0.9193/32.84 0.9189/32.86 0.9192/32.92 0.9195
10]24.46 0.7612| - - - - ]27.10 0.8400|28.78 0.8666 ||28.18 0.8586|28.54 0.8635|29.11 0.8727
20126.63 0.8310| - - - - 130.17 0.8991|31.12 0.9087 ||30.53 0.9030|30.93 0.9067|31.36 0.9115
30|27.96 0.8640| - - - - |31.49 0.9189]32.42 0.9265|131.87 0.9219]32.24 0.9247|32.57 0.9279
40]28.93 0.8825| - - - - 32.36 0.9301|33.26 0.9363||32.75 0.9329|33.09 0.9348|33.37 0.9373

Set|QF

LIVEI
S

S

S

(=}

Urban100 | BSD500

Table 21: Sinlge-image Defocus deblurring results. S: single-image defocus deblurring.

Method Indoor Scenes Outdoor Scenes ‘ Combined
PSNR?T[SSIMT|MAE][LPIPS| |PSNRT[SSIMT[MAE]|LPIPS| [PSNRT[SSIM{[MAE|[LPIPS|
EBDBg (Karaali & Jung, 2017) 25.77 | 0.772 | 0.040 | 0.297 | 21.25 | 0.599 0.058 | 0.373 23.45 0.683 | 0.049 | 0.336
DMENetg (Lee et al., 2019) 25.50 | 0.788 | 0.038 | 0.298 | 21.43 | 0.644 \ 0.063 | 0.397 \ 2341 \ 0.714 | 0.051 | 0.349
JNBg (Shi et al., 2015) 26.73 | 0.828 | 0.031 | 0.273 | 21.10 | 0.608 0.064 | 0.355 23.84 0.715 | 0.048 | 0.315
DPDNetg (Abuolaim & Brown, 2020)| 26.54 | 0.816 | 0.031 | 0.239 | 22.25 | 0.682 \ 0.056 | 0.313 \ 24.34 \ 0.747 | 0.044 | 0.277
KPACg (Son et al., 2021) 27.97 | 0.852 | 0.026 | 0.182 | 22.62 | 0.701 0.053 | 0.269 25.22 0.774 | 0.040 | 0.227
IFANg (Lee et al., 2021) 28.11 | 0.861 | 0.026 | 0.179 | 22.76 | 0.720 | 0.052 | 0.254 | 25.37 | 0.789 | 0.039 | 0.217
Restormerg (Zamir et al., 2022) 28.87 | 0.882 | 0.025 | 0.145 | 23.24 | 0.743 0.050 | 0.209 25.98 0.811 | 0.038 | 0.178
Hi-IRs-B (Ours) 28.73 | 0.885 | 0.025 | 0.140 | 23.66 | 0.766 \().()48 0.196 \ 26.13 \ 0.824 | 0.037 | 0.169

ing five different tasks with real-world images. The experimental results in Tab. 23 demonstrate that
the proposed method outperforms previous methods by a significant margin. These three sets of ex-
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Table 22: Color and grayscale image denoising results. A single model is trained to handle multiple
noise levels.

Params Color Grayscale
Method ™M] CBSD68 Kodak24 McMaster Urban100 Setl2 Urban100
0=15 0=25 0=50|0=15 0=25 0=50|0=15 0=25 0=50|0=15 0=25 0=50||0=15 0=25 0=50|c=15 0=25 0=50

DnCNN (Kiku et al., 2016) 0.56 |33.90 31.24 27.95|34.60 32.14 28.95|33.45 31.52 28.62|32.98 30.81 27.59|/32.67 30.35 27.18|32.28 29.80 26.35
FFDNet (Zhang et al., 2018a) | 0.49 |33.87 31.21 27.96|34.63 32.13 28.98|34.66 32.35 29.18|33.83 31.40 28.05||32.75 30.43 27.32|32.40 29.90 26.50
IRCNN (Zhang et al., 2017b) | 0.19 |33.86 31.16 27.86|34.69 32.18 28.93|34.58 32.18 28.91|33.78 31.20 27.70||32.76 30.37 27.12|32.46 29.80 26.22
DRUNet (Zhang et al., 2021) | 32.64 |34.30 31.69 28.51|35.31 32.89 29.86|35.40 33.14 30.08|34.81 32.60 29.61||33.25 30.94 27.90|33.44 31.11 27.96
Restormer (Zamir et al., 2022)| 26.13 |34.39 31.78 28.59|35.44 33.02 30.00|35.55 33.31 30.29|35.06 32.91 30.02|/33.35 31.04 28.01|33.67 31.39 28.33
TreelR (Ours) 22.33 |34.43 31.80 28.60|35.42 33.00 29.95|35.67 33.43 30.38|35.46 33.32 30.47||33.49 31.18 28.14|34.09 31.87 28.86

Table 23: Comparison to state-of-the-art on five degradations. PSNR (1) and SSIM (1) metrics
are reported on the full RGB images with (1) denoting general image restorers, others are specialized
all-in-one approaches. Best and second best performances are highlighted.

Method ‘Params ‘ Dehazing ‘ Deraining ‘ Denoising ‘Deblurring‘ Low-Light ‘

Average
| | SOTS | Rainl0OL |BSD68,—s| GoPro | LOLvl |
NAFNet} (Chen et al., 2022a) 17M[25.23 0.939(35.56 0.967[31.02 0.883]26.53 0.808]20.49 0.809|27.76 0.881
DGUNet} (Mou et al., 2022) 17M [24.78 0.940(36.62 0.971|31.10 0.883|27.25 0.837|21.87 0.823|28.32 0.891
SwinIR{ (Liang et al., 2021) 1M [21.50 0.891(30.78 0.923|30.59 0.868(24.52 0.773|17.81 0.723|25.04 0.835
Restormer{. (Zamir et al., 2022) 26M|24.09 0.927|34.81 0.962|31.49 0.884|27.22 0.829]|20.41 0.806|27.60 0.881
MambalR{ (Guo et al., 2024) 27M|25.81 0.944|36.55 0.971|31.41 0.884|28.61 0.875|22.49 0.832|28.97 0.901
DL (Fan et al., 2019) 2M|20.54 0.82621.96 0.762(23.09 0.745]19.86 0.672]19.83 0.712|21.05 0.743
Transweather (Valanarasu et al., 2022)| ~ 38M |21.32 0.885(29.43 0.905(29.00 0.841|25.12 0.757|21.21 0.792|25.22 0.836
TAPE (Liu et al., 2022a) 1M [22.16 0.861[29.67 0.904|30.18 0.855|24.47 0.763|18.97 0.621|25.09 0.801
AirNet (Li et al., 2022a) 9M |21.04 0.88432.98 0.951(30.91 0.882(24.35 0.78118.18 0.735|25.49 0.847
IDR (Zhang et al., 2023b) 15M [25.24 0.943|35.63 0.965|31.60 0.887|27.87 0.846|21.34 0.826|28.34 0.893
PromptIR (Potlapalli et al., 2024) 36M|26.54 0.949(36.37 0.97031.47 0.88628.71 0.881|22.68 0.832(29.15 0.904
AdalR (Cui et al., 2024) 29M [30.53 0.97838.02 0.981|31.35 0.889|28.12 0.858|23.00 0.845(30.20 0.910
Hi-IR (Ours) 22M|31.42 0.98938.67 0.985[31.58 0.890|28.95 0.889|23.12 0.851|30.75 0.921

periments collectively highlight that the proposed hierarchical information flow mechanism enables
training a single model that generalizes effectively to various types and levels of degradation.

D COMPARISON WITH SHUFFLEFORMER AND SHUFFLE TRANSFORMER

We compare with Random shuffle transformer (ShuffleFormer) (Xiao et al., 2023) and Shuffle trans-
former (Huang et al., 2021). Both methods use spatial shuffle operations to facilitate non-local
information exchange, with one being random and the other deterministic.

Random Shuffle Transformer (ShuffleFormer) (Xiao et al., 2023) applies random shuffling on the
spatial dimension, which increases the probability of global information existing within a local win-
dow. While this operation extends the receptive field globally in a single step, it compromises the
relevance of pixels within the window. In contrast, the hierarchical information flow proposed in
this paper progressively propagates information from local to global while preserving the relevance
of attended pixels. A comparison with ShuffleFormer on image deblurring is presented in Tab. 11.
Hi-IR outperforms ShuffleFormer by a significant margin while using 55.5% fewer parameters. This
demonstrates the effectiveness of the hierarchical information flow method introduced in this work.

Shuffle Transformer (Huang et al., 2021) employs a spatial shuffle operation to aggregate infor-
mation from distant pixels or tokens. However, it differs from the proposed Hi-IR in several key
aspects. First, Shuffle Transformer does not enable progressive information propagation within a
hierarchical tree structure. Second, its shuffle operation is based on a fixed grid size of g = 8. The
distance between pixels in the shuffled window is H/g and /g along the two axes, which directly
depends on the image size. For large images (e.g., 1024 pixels), this design forces distant pixels to
attend to one another, often introducing irrelevant information. Consequently, this operation is un-
suitable for image restoration tasks, where image sizes can become extremely large. In contrast, the
L2 information flow attention proposed in this paper limits the maximum patch size, thereby con-
straining the maximum distance between pixels at this stage. This restriction enhances the relevance
of pixel interactions, making it more effective for image restoration tasks.
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Hi-IR (Ours)
Figure 10: Visual results for classical image x4 SR on B100 dataset.

E MORE VISUAL RESULTS

To further support the effectiveness and generalizability of the proposed Hi-IR intuitively. We pro-
vide more visual comparison in terms of image SR (Fig. 10, Fig. 11, and Fig. 12), image denoising
(Fig. 13), JPEG compression artifact removal (Fig. 14 ), image restoration in adverse weather con-
ditions(Fig. 15), and single-image deblurring (Fig. 16 and Fig. 17) blow. As shown in those figures,
the visual results of the proposed Hi-IR are improved compared with the other methods.

F LIMITATIONS

Despite the state-of-the-art performance of Hi-IR, our explorations towards scaling up the model for
IR in this paper are still incomplete. Scaling up the IR model is intricate, involving considerations
like model design, data collection, and computing resources. We hope our work can catalyze positive
impacts on future research, encouraging more comprehensive scaling-up explorations and propelling
IR into the domain of large-scale models.
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Hi-IR (Ours)

Figure 11: Visual results for classical image SR on B100 dataset. The upscaling factor is x4.
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SwinIR

IR (Ours)

Hi.

EDT

SwinIR

Hi-IR (Ours)

Figure 12: Visual results for classical image x4 SR on Mangal09 dataset.

26



Under review as a conference paper at ICLR 2025

SwinlR IPT Restormer Hi-IR (Ours)

Figure 13: Visual results for classical color image denoising on Urban100 dataset. The noise level
is 0 = 50.
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SwinlR GRL Hi-TR {Onrs)

Figure 14: Visual results for color image JPEG compression artifact removal on BSD500 dataset.
The quality factor of JPEG image compression is 10.
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Raining Input RESCAN MPRNet

All-in-One TransWeather Hi-IR (Ours)

TransWeather Hi-IR (Ours)

Figure 15: Visual results for restoring images in adverse weather conditions.
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Blurred MPRNet Uformer

Restormer GRL Hi-IR (Ours)

Figure 16: Visual results for single image motion deblurring. The proposed method Hi-IR could
recover sharper details compared with the other methods.
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Restormer GRL Hi-IR (Ours)

Restormer Hi-IR (Ours)

Figure 17: Visual results for single image motion deblurring. The proposed method Hi-IR could
recover sharper details compared with the other methods.
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