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Abstract

Modern neural recording techniques allow neuroscientists to observe the spiking
activity of many neurons simultaneously. Although previous work has illustrated
how activity within and between known populations of neurons can be summarized
by low-dimensional latent vectors, in many cases what determines a unique popu-
lation may be unclear. Neurons differ in their anatomical location, but also, in their
cell types and response properties. Moreover, multiple distinct populations may
not be well described by a single low-dimensional, linear representation. To tackle
these challenges, we develop a clustering method based on a mixture of dynamic
Poisson factor analyzers (mixDPFA) model, with the number of clusters treated as
an unknown parameter. To do the analysis of DPFA model, we propose a novel
Markov chain Monte Carlo (MCMC) algorithm to efficiently sample its posterior
distribution. Validating our proposed MCMC algorithm with simulations, we find
that it can accurately recover the true clustering and latent states and is insensitive
to the initial cluster assignments. We then apply the proposed mixDPFA model to
multi-region experimental recordings, where we find that the proposed method can
identify novel, reliable clusters of neurons based on their activity, and may, thus,
be a useful tool for neural data analysis.

1 Introduction

With modern high-density probes (Jun et al., 2017)), neuroscientists can observe the spiking activity
of many neurons from many different anatomical regions simultaneously. With these expanding
capabilities, new methods to analyze neural data at the population-level and at the level of multiple
populations become necessary. Several recent models have been developed to extract shared latent
structures from simultaneous neural recordings, assuming that neural activity can be described
through low-dimensional latent states. Many existing approaches are extensions of two basic models:
the linear dynamical system (LDS) model (Macke et al.,|2011) and a Gaussian process factor analysis
(GPFA) model (Yu et al [2009). The LDS model is built on the state-space model and assumes
latent factors evolve with linear dynamics. On the other hand, GPFA models the latent vectors by
non-parametric Gaussian processes. However, in both cases, the observation model is generalized
linear. Several variants of these models have been implemented to analyze multiple neural populations
and their interactions (Semedo et al.| [2019} |Glaser et al., 2020). However, in many cases, the total
number of distinct populations and which neurons belong to a population is unclear.
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Neurons in different anatomical locations may interact with each other or receive common input from
unobserved brain areas, sharing the same latent structure. On the other hand, neurons of different
cell-types within the same brain area may be better described by distinct latent structures. From a
functional point of view, neither the anatomical location nor cell type (Fig. [I]A) indicates which
neurons should be grouped into the same populations. The incorrect population assignments can
lead to biased and inconsistent inference on the latent structure (Ventura, |2009). If we instead ignore
multi-population structure and treat all neurons as a single population, then using linear model based
methods may not describe their activity well, especially when the input is non-homogeneous. Besides,
nonlinear models such as deep learning (Pandarinath et al.,[2018;|Whiteway et al., 2019) and Gaussian
processes (Wu et al.| [2017) have been developed, but these models do not explicitly distinguish
among distinct populations of neurons.

Motivated by the mixture of (Gaussian) factor analyzers (MFAJArminger et al.|1999;|Ghahramani and;
Hinton| 1996; [Fokoué and Titterington|2003), which describes globally nonlinear data by combining
a number of local factor analyzers, here we group neurons based on the latent factors (Fig. [IB). A
similar idea was previously implemented using a mixture of Poisson linear dynamical system (PLDS)
model (mixPLDS, |Buesing et al.|2014). The mixPLDS model infers the subpopulations and latent
factors using deterministic variational inference Wainwright and Jordan| (2008)); Jordan et al.| (1999);
Emtiyaz Khan et al.| (2013) and the model parameters are estimated by Expectation Maximization
(EM). Unlike MFA, the mixPLDS can capture temporal dependencies of neural activity as well as
interactions between clusters over time. However, there are several limitations for mixPLDS: 1) it
requires we predetermine the number of clusters, and 2) the clustering results are often sensitive to
the initial cluster assignment.

Here we cluster the neurons by a mixture of dynamic Poisson factor analyzers (mixDPFA). The
DPFA model takes the advantages of both Poisson factor analysis (FA) and PLDS and includes both
a population baseline and baselines for individual neurons. The number of clusters is treated as an
unknown parameter in the mixDPFA, and the posteriors are sampled using Markov Chain Monte
Carlo (MCMC). To sample high dimensional latent factors, we approximate the full conditional
distribution of the latent state by a Gaussian, which is similar to results by sampling from exact
full conditional distribution. To improve mixing in the cluster assignments, we marginalize the
loading out for clustering by Poisson-Gamma conjugacy. We also discuss the constraints necessity
for successful sampling of the proposed models. After validating the proposed model with simulated
data, we apply it to analyze multi-region experimental recordings from behaving mice: the Visual
Coding - Neuropixels Dataset from the Allen Institute for Brain Science. Overall, the proposed
method provides a way to efficiently cluster neurons into populations based on their activity.

2 Methods

Here we introduce a mixture of dynamic Poisson factor analyzers (mixDPFA) to cluster neurons
based on multi-population latent structure. The number of mixture components is treated as an
unknown parameter and the posteriors are sampled by MCMC. In this section, we first provide the
single population DPFA for a given cluster. Then, we introduce a prior on the number of clusters and
describe how we use the mixture of finite mixture model (MFM) to efficiently sample the posterior of
the mixDPFA.

2.1 Dynamic Poisson Factor Analyzer

Denote the observed spike count of neuron ¢ € {1,..., N} attime bint € {1,...,7T} as y;; (a
non-negative integer), and let y; = (y;1, ..., y;)’. Further, let z; be the cluster indicator of neuron
1. Motivated by the nature of neural activity and the former PLDS model (Macke et al., [2011)),
we propose a new Poisson FA model by adding individual baselines é;. The proposed model is
a combination of PLDS and Poisson FA, which includes both population baseline and individual
baseline. Assume neuron ¢ belongs to the j-th cluster (i.e., z; = j), and its spiking activity is
independently Poisson distributed, conditional on the low-dimensional latent state a:gj ) € RPs and
population baseline ,ugj ) as follows:
Yir ~ Poi(Nir),
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Figure 1: Model overview. A. There are multiple potential ways to define neural populations. For
instance, populations could be defined by anatomical regions (left) or by cell types (right). Since the
same latent structure could be shared across anatomical sites and cell types, a useful alternative may
be define populations based on neural activity directly. B. The main goal for the proposed method
is to cluster neurons according to their activity and extract functional grouping structure, based on
spike train observations. The activity of each neuron is determined by a low dimensional latent state,
specific to that neuron’s cluster assignment (e.g. yellow, red, blue). C. Graphical representation of
the mixture of finite mixtures (MFM) of dynamic Poisson factor analyzers (DPFA) generative model.

Here the cluster number is treated as a random variable. The population baseline (Mfﬂ' )) and the latent
factor (ac,g] )) for each cluster is generated by linear dynamics, with a Gaussian noise.

with ¢; ~ N, (0, I,,). The neuron-specific baseline d; is a constant across time for the ith neuron
and unrelated to the cluster assignment. For simplicity, we assume the dimension of latent factors
(states) is the same for all clusters, s.t. p; = p, however, our method easily extends to the situation

when p;s differs across clusters (see Discussion). Further, we assume the population baseline /ng )

and the latent state mgj ) evolve linearly over time with Gaussian noise as following
nh= g9 +rOu? e,
2= b+ 40D D,

where €7 ~ N(0,020)) and {7 ~ N, (0, QW)).

If we denote A\; = (\i1,..., \ir), pt) = (ugj),...,,u(j?))’ and X)) = (mij),...,mg))’, the
proposed model can be rewritten as

log/\i :51‘1T—|—[J,(j) +X(j)ci. M
Generally, a factor model is consistent only when 7//N — 0 (Johnstone and Lu} 2009), but this is
often not the case for most neural spike data. However, when we assume linear dynamics on (/)
and X ) it resolves the consistency issue. As known in a FA model, when p > 1, the model is only
identifiable up to orthogonal rotation on X ), with ¢; ~ N (0, I, »). With including an individual
baseline §; 17 in our proposed DPFA model (]II), it further makes the model invariant to translation of
19 and X @) That means if u©) and X () is a set solution, then ) + a1y and X DU + 17 @ m’
also satisfy the model, for any a, m and orthogonal matrix U. Thus, to make the model identifiable,
we need to add several constraints. Although the clustering is invariant to orthogonal rotation, how
we put constraints on translation will influence the cluster assignments. Here we assume A) and



Q(j ) are diagonal (Pefia and Poncela, [2004; Lopes et al., 2008), and, to encourage clustering based
on the trajectories of latent factors, we set 23:1 ,ugj ) = 0 and 23:1 zcgj ) = 0. See Sectionfor
more discussions about the choice of these constraints.

Given the parameters of the j-th cluster U) = {u(j), X0 p) g0 o206 AG) pl) QU } the
spike counts of neuron ¢ are generated by the dynamic Poisson factor analyzer (DPFA) model as
[yi | zi = j] ~ DPFA(S;,¢;,0%)). To faciliate the Bayesian computation, we have to impose
priors H on 81), see more details of prior settings in Appendix .

2.2 Clustering by Mixture of Finite Mixtures Model

When the population labels z;s are unknown, we cluster the neurons by a mixture of DPFA (mixDPFA).
Since the number of neural populations is finite but unknown, we need to put priors on it. To make the
Bayesian computation more efficient, we utilize the idea from the mixture of finite mixtures (MFM,
Miller and Harrison|2018)) model, by assigning the priors for the clusters in the following way:

k~ fr, frisap.mf. on{l,2, ...},
= (m1,...,7k) ~ Dirg(y,...,7) given k,
Z1yeeay ZN S given T, (2)
o, ... 0% g given k,

¥i = (i1, - - -, yir) ~ DPFA(6;,¢;,0))  given 6;,¢;, 0%, z;,Vi=1,..., N,

where p.m.f denotes the probability mass function. By using the MFM, we can integrate the field
knowledge about the number of neural populations into our analysis. In the analysis of this paper,
we assume k follows a geometric distribution, i.e., k ~ Geometric(a) with its density defined
as fr(kla) = (1 —a)*lafork = 1,2,..., and let y = 1. The complete generative model is
summarized in a graphical form shown in Fig. [TIC.

2.3 Inference

Here the posteriors of the proposed mixDPFA model are sampled by an MCMC algorithm (see
Appendix [A.T). In each iteration, we sample the model parameters assuming the known cluster
indices at first, and then sample the cluster indices given the model parameters. When sampling the
(labeled) model parameters, the latent state X /) and population baseline 1(?) have no closed-form
full conditional distributions. Although we could sample the posterior by particle MCMC directly,
convergence may be too slow for clustering. Here, we approximate the full conditional distribution for
X ) and %) by a Gaussian distribution (a Laplace approximation) and generate samples according
to this approximation. This Laplace approximation is widely used for EM (Macke et al.l 2011)
and variational inference (Glaser et al.| 2020) with PLDS models and their variants, and Gaussian
approximation of the intractable full conditional distribution of latent effects has also been used in
Bayesian mixed effects binomial regression, where [Berman et al.[2022|found that the approximation
provided reasonable estimation accuracy with substantial computational speedups. We, thus, use a
global Laplace approximation that can be efficiently computed in O(T") (Paninski et al.,[2010). To
help convergence, sampling on (labeled) model parameters is repeated several times before updating
the cluster indices. Approximating the intractable full conditional with a Laplace approximation
also makes computation of the proposed mixDPFA more efficient. However, to assess the accuracy
of the approximation we also compare our approach to directly sampling from the exact posterior
of the model. We develop a P6lya-Gamma (PG) data augmentation approach (Windle et al., 2013}
Linderman et al.;, 2017} 2016; [Polson et al., 2013)) with an additional Metropolis-Hastings (MH) step
(Metropolis et al.,|1953; Hastings, 1970) to sample exactly from the full conditional of X () and ,u(j ),
We find that the proposed method using a Laplace approximation is faster but performs similarly as
sampling from the exact joint posterior (Fig. 2} Fig. [T Appendix[A.2] and Table[T)).

Once we update the latent state X (/) and population baseline p(7), the cluster index is then sampled
by the analogy of partition-based algorithm in Dirichlet process mixtures (DPM, Neal 2000). See
details in Miller and Harrison|[2018| and the Appendix (A.T). When doing the clustering, we need
to evaluate the likelihood for neurons under each cluster. Although we can sample ¢; directly and
evaluate the full likelihood as in MCMC for Gaussian MFA (data-augmentation/ imputation-posterior



algorithm, [Fokoué and Titterington|2003)), the chain has poor mixing and stops after a few iterations,
because of the high dimensionality. The heavy dependency on the starting point when fitting the
mixture of PLDS (mixPLDS, Buesing et al.|2014) model may suggest a similar problem. To resolve
this, we evaluate the marginal likelihood by integrating out the neuron-specific ¢;, i.e., the marginal
likelihood of neuron ¢ in cluster j is computed by

Moo (i) = P(y:|0Y),8;) = /P(yi|9(j)a5iaci)P(ci)dci~ 3)

However, this marginal likelihood has no closed form. Though we may evaluate it by a Laplace
approximation, but iterating over all potential clusters for each neuron is computationally intensive.
To make faster clustering, we approximate the marginal likelihood by utilizing a Poisson-Gamma
conjugacy. This approach has been previously utilized to approximate posteriors (El-Sayyad,|1973))
and predictive distributions (Chan and Vasconcelos| 2009). In our situation, since ¢; ~ N (0, I,,), we
have \;; = exp(d; —}—,ugj) +c m(j)) ~ lognormal(d; —Q—,ugj), m;(”wg”), and then we can approximate
this lognormal distribution by a gamma distributjon, i.e., assume \;; follows Gamma(a;, byy) with
air = (2, V2) L and by = 2,V &) . +1”  Then, by the conjugate property with Poisson and
Gamma random variables, we have

P(yit|0(j)75i) = /P(yit|>\it)P()\it) dAiy =~ NB(yit‘Vit;pit)a

with v;; = a; and p;; = 1/(1 4 by). Further, noticing that we have the conditional independence
assumption for P(y;|0Y), 8;), that is P(y:]09),8;) = [[—, P(yi|69, 6;), we then have a closed-
form for Equation (3).

Another possible idea is to approximate the log-likelihood by second-order polynomials, with
coefficients determined by Chebyshev polynomial approximation (Keeley et al.,2020). However, we
find that this approximation doesn’t work well in practice when spike counts have a wide range. The
model is implemented in MATLAB and the code is available at https://github. com/weigcdsb/
MFM_DPFA_clean!|

3 Simulations

To validate and illustrate the proposed clustering method, we simulate neural data directly from the
generative model (1) . The labels for each neuron are assumed known and fixed at first to check
convergence and model identifiability. We then infer the labels to evaluate clustering performance.
All experiments in this paper were performed using a 3.40 GHz processor with 16 GB of RAM.

3.1 Labeled data

We first simulate 10 clusters with 5 neurons in each, with recording length 7" = 1000 and p = 2
dimensional latent factors for each cluster. Individual baselines are generated by §; ~ N (0, 0.52),
and the loading for the latent states are generated by ¢; ~ N (0, I,). The population baseline y1(7)
and latent vector X () are generated by the spline interpolation on 10 to 30 evenly spaced knots. The
simulations are conducted 50 times with different seeds. Here we show results for one simulation,
and the performance for the rest is similar.

Since the labels are known, each whole simulation is equivalent to 10 independent simulations,
with 5 neurons in each. Running MCMC for 10,000 iterations, we find that the log-likelihood per
spike converges rapidly for individual clusters and overall (Flgg]A) Trace plots (Fig2B) of the
(Frobenius) norms for linear dynamics samples (h(J) gD, o2() N Q(]) show rapid mixing
and convergence for each DPFA. The fitted mean firing rate (mean response) (Fig. r), 1) and
XU (Fig. ) match the ground truth well. The convergence is fast, especially in terms of mean
response and population baseline (7). Together, these results demonstrate the identifiability of the
DPFA with appropriate constraints.

We then compare the 10-cluster model with the simplified model ignoring the clustering structure
(1-cluster model). The p for 1-cluster model is 14, chosen by 5-fold speckled cross-validation
described in (Williams et al., [2020). To evaluate the fitting performance of these two models, we
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hold out 1/2 of the data and compare the held-out log-likelihood per spike. The distribution training
log-likelihood is evaluated by averaging over the samples in short chains (e.g. iteration 50 to 100),
which is justified by the observed fast convergence. The same procedure is replicated for 50 times.
In this case, ignoring the clustering structure leads to a worse performance (Fig2E), and the single
population analysis cannot describe the data as accurately, since the input is non-homogeneous and
the data is global nonlinear.
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Figure 2: Bayesian inference with labeled data Here we simulate 10 clusters and assess convergence
and mixing of for the DPFA. A. Traceplot of the log-likelihood per spike for all neurons and the
first 3 clusters. B. The traceplot of (Frobenius) norms of linear dynamics of p(9) and X () for each
cluster (showing the first 3). C. The true and the fitted mean firing rate, showing the averages over
samples from iteration 5000 to 10000. D. The true (black) and the fitted (colored) population baseline
and latent factor. The X,; denotes the [-th latent factor (i.e. the [-th column of X). The dashed
lines show the 95% highest posterior density (HPD) interval. The cosine (the "overlap") between
true values and posterior means shown besides. E. Comparison of the held-out likelihood per spike
when fitting to 1/2 of the data: 1) 10-cluster model where each cluster has p = 2 (true value), and 2)
1-cluster model where a single DPFA describes all neurons, with p = 14 selected by 5-fold speckled
cross-validation. Dots denote results from individual short (iterations 50-100), independent chains.

3.2 Clustering

Using the same simulation, we now infer the cluster labels. The latent factor dimension was first
optimized with p = 2 selected by 5-fold speckled CV on small chains (100 iterations). We then
compare three chains fitting with all data: two unique chains initialized using a single cluster and
one chain initialized with N = 50 clusters (i.e. all clusters are singletons). Traceplots (Fig. EIA) of
training log-likelihood and number of clusters show that all chains converge. When fit to the full data
or only half, the number of clusters converges to 10, although the prior over the number of clusters is
K ~ Geometric(0.2). When the recording length is sufficiently long, the likelihood will dominate,
and the number of clusters will not be much affected by the prior setting. The true mean firing rate
for each neuron (Fig. BB) can be well recovered, even with half data held out. To evaluate cluster
membership, here we show a similarity matrix where the entry (i, ) is the posterior probability that
data points ¢ and [ belong to the same cluster. The clustering results for all 4 chains recover the true
clusters, no matter what the the starting assignment is (Fig. [BC), which suggest the convergence of
MCMC. The overall performance of the full model, where cluster membership is inferred alongside
the latent states, is similar to the case when cluster labels are known and substantially higher than the
1-cluster model (Fig. BD and E).
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Figure 3: Bayesian clustering The same simulation setting as in Fig. 2} but inferring cluster labels
from spike observations alone. A. The trace plots of training log-likelihood per spike and the number
of clusters. The model is fitted by using all and half data as training with three chains shown for full
data (initialized with a single cluster, C1 or N = 50 clusters, CN). B. The true and fitted mean firing
rate, averaging from iteration 500 to 1000. C. The posterior similarity matrix for all chains (rows and
columns ordered according to the ground truth). D. Traceplot of the held-out (1/2) log-likelihood for
1) the 10-cluster model with labels known, 2) the full model estimating labels and optimizing p, and
3) the 1-cluster, single population model with p = 14 chosen by CV. E. Held-out log-likelihood per
spike for each model (samples for iteration 500 to 1000).

4 Multi-region neural spike recordings

We then apply the proposed clustering method to the Allen Institute Visual Coding Neuropixels
dataset. The dataset contains spiking activity from hundreds of neurons from multiple brain regions
of an awake mouse. See detailed data description in (Siegle et al.,2021). Here we investigate the
clustering structure of neurons from four anatomical sites (83 neurons): 1) hippocampal CA1 (24
neurons), 2) dorsal part of the lateral geniculate complex (LGd, 36 neurons), 3) lateral posterior
nucleus of the thalamus (LP, 12 neurons) and 4) primary visual cortex (VISp, 11 neurons). And we
analyze responses to 20s epochs during three visual stimuli: drifting gratings, spontaneous activity,
and natural movies. Only neurons with rates > 1Hz within the selected epochs are included (72% of
115 neurons) and we analyze data with 40ms bins. We use a Geometric(0.33) prior over the number
of clusters, such that p(k < 4) = 0.8.

In responses to drifting gratings, the 5-fold speckled CV log-likelihood is optimized with p = 2, and,
as in the simulations, the log-likelihood and number of clusters show rapid convergence and mixing
(Fig[4A and B). Low firing rates and short recording lengths tend to cause confusions in clustering,
reflecting uncertainty in cluster membership for neurons with little information. Here the average
number of clusters is 16. To summarize the clustering results stored as posterior samples in MCMC,
we give the single estimate for cluster indices Z; by maximizing the posterior expected adjusted Rand
index (maxPEAR, [Fritsch and Ickstadt[2009). The maxPEAR-sorted neural activity and posterior
similarity matrix are shown in Fig. {[C and D. Results sorted by Maximum a posteriori (MAP)
estimate are similar and are shown in the Appendix (Fig. 5). To examine the relationship between the
clustering results and anatomy, we additionally sort the neurons according anatomical labels (upper
left panel in Fig. BE). Although many identified clusters are neurons from the same anatomical area,




clusters also include neurons from different regions and neurons within a region are often clustered
into separate populations (P(neuron 7, in the same region|z; = z;, {y;}}¥.;) = 0.57). Together,
these results suggest that a simple assignment of populations based on anatomy many not accurately
represent the latent structure.

We then evaluate the clustering patterns for different visual stimuli. We run 2 independent chains for
each epoch (results from the second chain in Fig. 2D). The similarity matrices show that the pattern
is consistent for the same epoch, but will change along the time even under the same experimental
settings (D1 vs. D2 and S1 vs. S2). The changes in the clustering patterns may suggest long-term
drift for neuron interactions. To quantify the observations, we evaluate the adjusted Rand index
(ARI) of maxPEAR estimates (bottom right panel in Fig. @E). Between-epoch comparisons tend
to have lower similarity (average ARI from comparing 2 chains for each epoch) than within-epoch
comparisons (different chains) for both maxPEAR and MAP (Fig. [2C).

The MAP number of clusters is largest (18) for the natural movie, suggesting this epoch has the most
severe global non-linearity issue. Here we compare three models: 1) clustering model with p = 2, 2)
single cluster model, with p = 8 selected by 5-fold speckled CV and 3) anatomical cluster model.
The anatomical cluster model fits a single DPFA for each region, using the anatomical labels to define
the clusters explicitly. Using cross-validation, we find that the optimized dimension for each region is
p = (1,11, 5, 3), respectively. We find that the single cluster model tends to underfit the data, while
the anatomical cluster model tends to overfit the data (Fig. fJF).
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Figure 4: Application in Neuropixels data. A. and B. The trace plots of log-likelihood per spike
and number of clusters for drifting grating responses. All results are averages from iteration 500
to 1000. C. The observed spikes and fitted mean firing rate, sorted by the maxPEAR label. D.
The posterior similarity matrix, sorted by the maxPEAR label. E. The posterior similarity matrices
for 4 adjacent epochs and 1 further epoch with different visual stimuli, sorted sorted according to
maxPEAR estimate and anatomical label in the first drifting grating epoch. The last panel shows the
adjusted Rand index of the maxPEAR estimates. The diagonal is the ARI between two chains for
the same data, while off-diagonal values show the mean ARI of maxPEAR for the four comparisons
between two chains from two different epochs. F. For the natural epoch, we hold out 1/2 data as the
training, and show the histograms of training and held-out log-likelihood per spike, from iteration
500 to 1000 for three models: 1) clustering model, 2) single cluster model, and 3) anatomical cluster
model.

5 Discussion

Here we introduce a Bayesian approach to cluster neural spike trains by MCMC. Previous approaches
to multi-population latent variable modeling have used anatomical information to label distinct groups
of neurons, but this choice is somewhat arbitrary. Brain region and cell-type, for instance, can give



contradictory population labels. The proposed method groups neurons by common latent factors,
which may be useful for identifying "functional populations" of neurons. Here we use a mixDPFA
model and infer the number of clusters by MFM with a partition-based algorithm similar to DPM.
MFM may be more conceptually appropriate than DPM, since the number of neural "populations”
is unknown but finite. Additionally, MFM produces more concentrated, evenly dispersed clusters
(see Miller and Harrison|2018|for detailed discussion). The mixture modeling approach may also be
appropriate in cases where neurons share non-homogeneous inputs, since it can approximate global
nonlinearity with a mixture of locally linear models. Here we find that the mixture model outperforms
globally linear (1-cluster) models in simulations and with experimental data.

Although the proposed method can describe data and cluster neural spiking activity successfully, there
are some potential improvements. Firstly, as mentioned above, the unconstrained model does not have
unique solutions. To ensure model identifiable, we put diagonal constraints on AY) and Q) and
constrain 17) and X ) to have mean zero. The assumption that AU) and Q) are diagonal does
not allow interaction between latent factors. However, these interactions could be allowed by instead
constraining X’ @ XU to be diagonal (Krzanowski and Marriott, |1994blla; [Fokoué and Titterington,
2003). Such a constraint could allow unique solutions for the (P)LDS and GPFA. A second potential
improvement would be to automatically infer the dimension of the latent factors (states). In this paper,
we assume p; is the same for all clusters, for convenience. p is a pre-selected value or can be selected
by cross-validation (CV). This may limit the accuracy of the model, since populations of neurons in
experimental data are likely to have different latent dimensionalities. In future work, it would also
be possible to treat p; as a parameter and sample the posterior by a reversible-jump (RIH)MCMC
(Lopes and West, 2004), birth-death (BD)MCMC (Stephens,, 2000; [Fokoué and Titterington}, 2003)), or
adaptive Gibbs sampling with shrinkage prior on X /) (Bhattacharya and Dunson, 2011). Although
RIMCMC and BDMCMC can be easily implemented, they perform poorly for high dimensional data
and may be sensitive to priors. Adaptive Gibbs sampling with shrinkage, on the other hand, has been
implemented with the infinite mixture of infinite factor analyzers (IMIFA, [Murphy et al.|2020). The
same idea may be useful here with an additional prior on linear dynamics (A", b1) and Q1)) to
encourage shrinkage in X (/). Finally, a deterministic approximation of MCMC, such as variational
inference may be more computationally efficient. Standard methods for fitting the PLDS could be
used directly in the VI updates, and if we further use a stick-breaking representation for the MFM
model, it would be straightforward to use VI for clustering as well, similar to (Blei and Jordan, [2000)).

As the number of neurons and brain regions that neuroscientists are able to record simultaneously
continues to grow, understanding the latent structure of multiple populations will be a major statistical
challenge. The Bayesian approach to clustering neural spike trains introduced here converges fast
and is insensitive to the initial cluster assignments, and may, thus, be a useful tool for identifying
"functional populations" of neurons.
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