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Abstract

Regret-based algorithms are highly efficient at finding approximate Nash equilibria
in sequential games such as poker games. However, most regret-based algorithms,
including counterfactual regret minimization (CFR) and its variants, rely on iterate
averaging to achieve convergence. Inspired by recent advances on last-iterate con-
vergence of optimistic algorithms in zero-sum normal-form games, we study this
phenomenon in sequential games, and provide a comprehensive study of last-iterate
convergence for zero-sum extensive-form games with perfect recall (EFGs), using
various optimistic regret-minimization algorithms over treeplexes. This includes al-
gorithms using the vanilla entropy or squared Euclidean norm regularizers, as well
as their dilated versions which admit more efficient implementation. In contrast
to CFR, we show that all of these algorithms enjoy last-iterate convergence, with
some of them even converging exponentially fast. We also provide experiments to
further support our theoretical results.

1 Introduction

Extensive-form games (EFGs) are an important class of games in game theory and artificial intelli-
gence which can model imperfect information and sequential interactions. EFGs are typically solved
by finding or approximating a Nash equilibrium. Regret-minimization algorithms are among the
most popular approaches to approximate Nash equilibria. The motivation comes from a classical
result which says that in two-player zero-sum games, when both players use no-regret algorithms, the
average strategy converges to Nash equilibrium [Freund and Schapire, 1999, Hart and Mas-Colell,
2000, Zinkevich et al., 2007]. Counterfactual Regret Minimization (CFR) [Zinkevich et al., 2007]
and it variants such as CFR+ [Tammelin, 2014] are based on this motivation.

However, due to their ergodic convergence guarantee, theoretical convergence rates of regret-
minimization algorithms are typically limited to O(1/

√
T ) or O(1/T ) for T rounds, and this is also

the case in practice [Brown and Sandholm, 2019a, Burch et al., 2019]. In contrast, it is known that
linear convergence rates are achievable for certain other first-order algorithms [Tseng, 1995, Gilpin
et al., 2008]. Additionally, the averaging procedure can create complications. It not only increases
the computational and memory overhead [Bowling et al., 2015], but also makes things difficult when
incorporating neural networks in the solution process, where averaging is usually not possible. Indeed,
to address this issue, Brown et al. [2019] create a separate neural network to approximate the average
strategy in their Deep CFR model.

Therefore, a natural idea is to design regret-minimization algorithms whose last strategy converges (we
call this last-iterate convergence), ideally at a faster rate than the average iterate. Unfortunately, many
regret minimization algorithms such as regret matching, regret matching+, and hedge, are known not
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to satisfy this property empirically and theoretically even for normal-form games. Although Bowling
et al. [2015] find that in Heads-Up Limit Hold’em poker the last strategy of CFR+ is better than the
average strategy, and Farina et al. [2019b] observe in some experiments the last-iterate of optimistic
OMD and FTRL converge fast, a theoretical understanding of this phenomenon is still absent for
EFGs.

In this work, inspired by recent results on last-iterate convergence in normal-form games [Wei
et al., 2021], we greatly extend the theoretical understanding of last-iterate convergence of regret-
minimization algorithms in two-player zero-sum extensive-form games with perfect recall, and
open up many interesting directions both in theory and practice. First, we show that any optimistic
online mirror-descent algorithm instantiated with a strongly convex regularizer that is continuously
differentiable on the EFG strategy space provably enjoys last-iterate convergence, while CFR with
either regret matching or regret matching+ fails to converge. Moreover, for some of the optimistic
algorithms, we further show explicit convergence rates. In particular, we prove that optimistic mirror
descent instantiated with the 1-strongly-convex dilated entropy regularizer [Kroer et al., 2020], which
we refer to as Dilated Optimistic Multiplicative Weights Update (DOMWU), has a linear convergence
rate under the assumption that there is a unique Nash equilibrium; we note that this assumption was
also made by Daskalakis and Panageas [2019], Wei et al. [2021] in order to achieve similar results for
normal-form games.

2 Related Work

Extensive-form Games Here we focus on work related to two-player zero-sum perfect-recall
games. Although there are many game-solving techniques such as abstraction [Kroer and Sandholm,
2014, Ganzfried and Sandholm, 2014, Brown et al., 2015], endgame solving [Burch et al., 2014,
Ganzfried and Sandholm, 2015], and subgame solving [Moravcik et al., 2016, Brown and Sandholm,
2019b], these methods all rely on scalable methods for computing approximate Nash equilibria. There
are several classes of algorithms for computing approximate Nash equilibria, such as double-oracle
methods [McMahan et al., 2003], fictitious play [Brown, 1951, Heinrich and Silver, 2016], first-order
methods [Hoda et al., 2010, Kroer et al., 2020], and CFR methods [Zinkevich et al., 2007, Lanctot
et al., 2009, Tammelin, 2014]. Notably, variants of the CFR approach have achieved significant
success in poker games [Bowling et al., 2015, Moravčík et al., 2017, Brown and Sandholm, 2018].
Underlying the first-order and CFR approaches is the sequence-form representation [von Stengel,
1996], which allows the problem to be represented as a bilinear saddle-point problem. This leads to
algorithms based on smoothing techniques and other first-order methods [Gilpin et al., 2008, Kroer
et al., 2017, Gao et al., 2021], and enables CFR via the theorem connecting no-regret guarantees to
Nash equilibrium.

Online Convex Optimization and Optimistic Regret Minimization Online convex optimization
[Zinkevich, 2003] is a framework for repeated decision making where the goal is to minimize regret.
When applied to repeated two-player zero-sum games, it is known that the average strategy converges
to Nash Equilibria at the rate of O(1/

√
T ) when both players apply regret-minimization algorithms

whose regret grows on the order of O(
√
T ) [Freund and Schapire, 1999, Hart and Mas-Colell, 2000,

Zinkevich et al., 2007]. Moreover, when the players use optimistic regret-minimization algorithms,
the convergence rate is improved to O(1/T ) [Rakhlin and Sridharan, 2013, Syrgkanis et al., 2015].
Recent works have applied optimism ideas to EFGs, such as optimistic algorithms with dilated
regularizers [Kroer et al., 2020, Farina et al., 2019b], CFR-like local optimistic algorithms [Farina
et al., 2019a], and optimistic CFR algorithms [Burch, 2018, Brown and Sandholm, 2019a, Farina
et al., 2021a]. However, the theoretical results in all these existing papers consider the average
strategy, while we are the first to consider last-iterate convergence in EFGs.

Last-iterate Convergence in Saddle-point Optimization As mentioned previously, two-player
zero-sum games can be formulated as saddle-point optimization problems. Saddle-point problems
have recently gained a lot of attention due to their applications in machine learning, for example
in generative adversarial networks [Goodfellow et al., 2014]. Basic algorithms, including gradient
descent ascent and multiplicative weights update, diverge even in simple instances [Mertikopoulos
et al., 2018, Bailey and Piliouras, 2018]. In contrast, their optimistic versions, optimistic gradient
descent ascent (OGDA) [Daskalakis et al., 2018, Mertikopoulos et al., 2019, Wei et al., 2021] and
optimistic multiplicative weights update (OMWU) [Daskalakis and Panageas, 2019, Lei et al., 2021,
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Wei et al., 2021] have been shown to enjoy attractive last-iterate convergence guarantees. However,
almost none of these results apply to the case of EFGs: Wei et al. [2021] show a result that implies
linear convergence of vanilla OGDA in EFGs (see Corollary 5), but no results are known for vanilla
OMWU or more importantly for algorithms instantiated with dilated regularizers which lead to fast
iterate updates in EFGs. In this work we extend the existing results on normal-form games to EFGs,
including the practically-important dilated regularizers.

3 Problem Setup

We start with some basic notation. For a vector z, we use zi to denote its i-th coordinate and ‖z‖p to
denote its p-norm (with ‖z‖ being a shorthand for ‖z‖2). For a convex function ψ, the associated
Bregman divergence is define as Dψ(u,v) = ψ(u) − ψ(v) − 〈∇ψ(v),u − v〉, and ψ is called
κ-strongly convex with respect to the p-norm if Dψ(u,v) ≥ κ

2 ‖u − v‖
2
p holds for all u and v in

the domain. The Kullback-Leibler divergence, which is the Bregman divergence with respect to the
entropy function, is denoted by KL(·, ·). Finally, we use ∆P to denote the (P − 1)-dimensional
simplex and [N ] to denote the set {1, 2 . . . , N} for some positive integer N .

Extensive-form Games as Bilinear Saddle-point Optimization We consider the problem of
finding a Nash equilibrium of a two-player zero-sum extensive-form game (EFG) with perfect recall.
Instead of formally introducing the definition of an EFG (see Appendix A for an example), for the
purpose of this work, it suffices to consider an equivalent formulation, which casts the problem as a
simple bilinear saddle-point optimization [von Stengel, 1996]:

min
x∈X

max
y∈Y

x>Gy = max
y∈Y

min
x∈X

x>Gy, (1)

whereG ∈ [−1,+1]M×N is a known matrix, and X ⊂ RM and Y ⊂ RN are two polytopes called
treeplexes (to be defined soon). The set of Nash equilibria is then defined as Z∗ = X ∗ × Y∗, where
X ∗ = argminx∈X maxy∈Y x>Gy and Y∗ = argmaxy∈Y minx∈X x>Gy. Our goal is to find a
point z ∈ Z = X × Y that is close to the set of Nash equilibria Z∗, and we use the Bregman
divergence (of some function ψ) between z and the closest point in Z∗ to measure the closeness, that
is, minz∗∈Z∗ Dψ(z∗, z).

For notational convenience, we let P = M +N and F (z) = (Gy,−G>x) for any z = (x,y) ∈
Z ⊂ RP . Without loss of generality, we assume ‖F (z)‖∞ ≤ 1 for all z ∈ Z (which can always be
ensured by normalizing the entries ofG accordingly).

Treeplexes The structure of the EFG is implicitly captured by the treeplexes X and Y , which are
generalizations of simplexes that capture the sequential structure of an EFG. The formal definition is
as follows. (In Appendix A, we provide more details on the connection between treeplexes and the
structure of the EFG, as well as concrete examples of treeplexes for better illustrations.)

Definition 1 (Hoda et al. [2010]). A treeplex is recursively constructed via the following three
operations:

1. Every probability simplex is a treeplex.

2. Given treeplexes Z1, . . . ,ZK , the Cartesian product Z1 × · · · × ZK is a treeplex.

3. (Branching) Given treeplexes Z1 ⊂ RM and Z2 ⊂ RN , and any i ∈ [M ],

Z1 i Z2 =
{

(u, ui · v) ∈ RM+N : u ∈ Z1, v ∈ Z2

}
is a treeplex.

By definition, a treeplex is a tree-like structure built with simplexes, which intuitively represents the
tree-like decision space of a single player, and an element in the treeplex represents a strategy for the
player. LetHZ denote the collection of all the simplexes in treeplex Z , which following Definition 1
can be recursively defined as: HZ = {Z} if Z is a simplex; HZ =

⋃K
k=1HZi if Z is a Cartesian

product Z1×· · ·×ZK ; andHZ = HZ1 ∪HZ2 if Z = Z1 i Z2. In EFG terminology,HX andHY
are the collections of information sets for player x and player y respectively, which are the decision
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points for the players, at which they select an action within the simplex. For any h ∈ HZ , we let Ωh
denote the set of indices belonging to h, and for any z ∈ Z , we let zh be the slice of z whose indices
are in Ωh. For each index i, we also let h(i) be the simplex i falls into, that is, i ∈ Ωh(i).

In Definition 1, the last branching operation naturally introduces the concept of a parent variable for
each h ∈ HZ , which can again be recursively defined as: if Z is a simplex, then it has no parent; if
Z is a Cartesian product Z1 × · · · × ZK , then the parent of h ∈ HZ is the same as the parent of h in
the treeplex Zk that h belongs to (that is, h ∈ HZk ); finally, if Z = {(u, ui · v) : u ∈ Z1, v ∈ Z2},
then for all h ∈ HZ2 without a parent, their parent in Z is ui, and for all other h, their parents remain
the same as in Z1 or Z2. We denote by σ(h) the index of the parent variable of h, and let it be 0 if h
has no parent. For convenience, we let z0 = 1 for all z ∈ Z (so that zσ(h) is always well-defined).
Also defineHi = {h ∈ HZ : σ(h) = i} to be the collection of simplexes whose parent index is i.

Similarly, for an index i, its parent index is defined as pi = σ(h(i)), and i is called a terminal index
if it is not a parent index (that is, i 6= pj for all j). Finally, for an element z ∈ Z and an index i,
we define qi = zi/zpi . In EFG terminology, qi specifies the probability of selecting action i in the
information set h(i) according to strategy z.

4 Optimistic Regret-minimization Algorithms

There are many different algorithms for solving bilinear saddle-point problems over general con-
strained sets. We focus specifically on a family of regret-minimization algorithms, called Optimistic
Online Mirror Descent (OOMD) [Rakhlin and Sridharan, 2013], which are known to be highly
efficient. In contrast to the CFR algorithm and its variants, which minimize a local regret notion
at each information set (which upper bounds global regret), the algorithms we consider explicitly
minimize global regret. As our main results in the next section show, these global regret-minimization
algorithms enjoy last-iterate convergence, while CFR provably diverges.

Specifically, given a step size η > 0 and a convex function ψ (called a regularizer), OOMD
sequentially performs the following update for t = 1, 2, . . . ,

xt = argmin
x∈X

{
η〈x,Gyt−1〉+Dψ(x, x̂t)

}
, x̂t+1 = argmin

x∈X

{
η〈x,Gyt〉+Dψ(x, x̂t)

}
,

yt = argmin
y∈Y

{
η〈y,−G>xt−1〉+Dψ(y, ŷt)

}
, ŷt+1 = argmin

y∈Y

{
η〈y,−G>xt〉+Dψ(y, ŷt)

}
,

with (x̂1, ŷ1) = (x0,y0) ∈ Z being arbitrary. Using shorthands zt = (xt,yt), ẑt = (x̂t, ŷt),
ψ(z) = ψ(x) + ψ(y) and recalling the notation F (z) = (Gy,−G>x), the updates above can be
compactly written as OOMD with regularizer ψ over treeplex Z:

zt = argmin
z∈Z

{
η〈z, F (zt−1)〉+Dψ(z, ẑt)

}
, ẑt+1 = argmin

z∈Z

{
η〈z, F (zt)〉+Dψ(z, ẑt)

}
. (2)

Below, we discuss four different regularizers and their resulting algorithms (throughout, we use
notations Φ for regularizers based on Euclidean norm and Ψ for regularizers based on entropy).

Vanilla Optimistic Gradient Descent Ascent (VOGDA) Define the vanilla squared Euclidean
norm regularizer as Φvan(z) = 1

2

∑
i z

2
i . We call OOMD instantiated with ψ = Φvan Vanilla Opti-

mistic Gradient Descent Ascent (VOGDA). In this case, the Bregman divergence is DΦvan(z, z′) =
1
2‖z − z

′‖2 (by definition Φvan is thus 1-strongly convex with respect to the 2-norm), and the up-
dates simply become projected gradient descent. For VOGDA there is no closed-form for Eq. (2),
since projection onto the treeplex Z is required. Nevertheless, the solution can still be computed in
O(P 2 logP ) time (recall that P is the dimension of Z) [Gilpin et al., 2008].

Vanilla Optimistic Multiplicative Weight Update (VOMWU) Define the vanilla entropy regu-
larizer as Ψvan(z) =

∑
i zi ln zi. We call OOMD with ψ = Ψvan Vanilla Optimistic Multiplicative

Weights Update (VOMWU). The Bregman divergence in this case is the generalized KL divergence:
DΨvan(z, z′) =

∑
i zi ln(zi/z

′
i)− zi + z′i. Although it is well-known that Ψvan is 1-strongly convex

with respect to the 1-norm for the special case when Z is a simplex, this is not true generally on a
treeplex. Nevertheless, it can still be shown that Ψvan is 1-strongly convex with respect to the 2-norm;
see Appendix C.
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The name “Multiplicative Weights Update” is inherited from case when X and Y are simplexes,
in which case the updates in Eq. (2) have a simple multiplicative form. We emphasize, however,
that in general VOMWU does not admit a closed-form update. Instead, to solve Eq. (2), one can
equivalently solve a simpler dual optimization problem; see [Zimin and Neu, 2013, Proposition 1].

The two regularizers mentioned above ignore the structure of the treeplex. Dilated Regularizers [Hoda
et al., 2010], on the other hand, take the structure into account and allow one to decompose the update
into simpler updates at each information set. Specifically, given any convex function ψ defined over
the simplex and a weight parameter α ∈ RHZ+ , the dilated version of ψ defined over Z is:

ψdil
α (z) =

∑
h∈HZ

αh · zσ(h) · ψ
(
zh
zσ(h)

)
. (3)

This is well-defined since zh/zσ(h) is indeed a distribution within the simplex h (with qi for i ∈ Ωh
being its entries). It can also be shown that ψdil

α is always convex in z [Hoda et al., 2010]. Intuitively,
ψdil
α applies the base regularizer ψ to the action distribution in each information set and then scales

the value by its parent variable and the weight αh. By picking different base regularizers, we obtain
the following two algorithms.

Dilated Optimistic Gradient Descent Ascent (DOGDA) [Farina et al., 2019b] Define the di-
lated squared Euclidean norm regularizer Φdil

α as Eq. (3) with ψ being the vanilla squared Euclidean
norm ψ(z) = 1

2

∑
i z

2
i . Direct calculation shows Φdil

α (z) = 1
2

∑
i αh(i)ziqi. We call OOMD with

regularizer Φdil
α the Dilated Optimistic Gradient Descent Ascent algorithm (DOGDA). It is known

that there exists an α such that Φdil
α is 1-strongly convex with respect to the 2-norm [Farina et al.,

2019b]. Importantly, DOGDA decomposes the update Eq. (2) into simpler gradient descent-style
updates at each information set, as shown below.
Lemma 1 (Hoda et al. [2010]). If z′ = argminz∈Z

{
η〈z,f〉+DΦdil

α
(z, ẑ)

}
, then for every h ∈ HZ ,

the corresponding vector q′h =
z′h
z′
σ(h)

can be computed by:

q′h = argmin
qh∈∆|Ωh|

{
η〈qh,Lh〉+

αh
2
‖qh − q̂h‖2

}
, (4)

where q̂h = ẑh
ẑσ(h)

, Lh is the slice of L whose entries are in Ωh, and L is defined through:

Li = fi +
∑
h∈Hi

(
〈q′h,Lh〉+

αh
2η
‖q′h − q̂h‖2

)
.

While the definitions of q′h and L are seemingly recursive, one can verify that they can in fact be
computed in a “bottom-up” manner, starting with the terminal indices. Although Eq. (4) still does not
admit closed-form solution, it only requires projection onto a simplex, which can be solved efficiently,
see e.g. [Condat, 2016]. Finally, with q′h computed for all h, z′ can be calculated in a “top-down”
manner by definition.

Dilated Optimistic Multiplicative Weight Update (DOMWU) [Kroer et al., 2020] Finally, de-
fine the dilated entropy regularizer Ψdil

α as Eq. (3) with ψ being the vanilla entropy ψ(z) =
∑
i zi ln zi.

Direct calculation shows Ψdil
α (z) =

∑
i αh(i)zi ln qi. We call OOMD with regularizer Ψdil

α the Di-
lated Optimistic Multiplicative Weights Update algorithm (DOMWU). Similar to DOGDA, there
exists an α such that Ψdil

α is 1-strongly convex with respect to the 2-norm [Kroer et al., 2020].1
Moreover, in contrast to all the three algorithms mentioned above, the update of DOMWU has a
closed-form solution:
Lemma 2 (Hoda et al. [2010]). Suppose z′ = argminz∈Z

{
η〈z,f〉+DΨdil

α
(z, ẑ)

}
. Similarly to

the notation qi, define q′i = z′i/z
′
pi and q̂i = ẑi/ẑpi . Then we have

q′i ∝ q̂i exp
(
−ηLi/αh(i)

)
, where Li = fi −

∑
h∈Hi

αh
η

ln

∑
j∈Ωh

q̂j exp (−ηLj/αh)

 .

1Kroer et al. [2020] also show a better strong convexity result with respect to the 1-norm. We focus on the
2-norm here for consistency with our other results, but our analysis can be applied to the 1-norm case as well.
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This lemma again implies that we can compute q′i bottom-up, and then z′ can be computed top-down.
This is similar to DOGDA, except that all updates have a closed-form.

5 Last-iterate Convergence Results

In this section, we present our main last-iterate convergence results for the global regret-minimization
algorithms discussed in Section 4. Before doing so, we point out again that the sequence produced by
the well-known CFR algorithm may diverge (even if the average converges to a Nash equilibrium).
Indeed, this can happen even for a simple normal-form game, as formally shown below.

Theorem 3. In the rock-paper-scissors game, CFR (with some particular initialization) produces a
diverging sequence.

In fact, we empirically observe that all of CFR, CFR+ [Tammelin, 2014] (with simultaneous updates),
and their optimistic versions [Farina et al., 2021a] may diverge in the rock-paper-scissors game. We
introduce the algorithms and show the results in Appendix D.

On the contrary, every algorithm from the OOMD family given by Eq. (2) ensures last-iterate
convergence, as long as the regularizer is strongly convex and continuously differentiable.

Theorem 4. Consider the update rules in Eq. (2). Suppose that ψ is 1-strongly convex with respect
to the 2-norm and continuously differentiable on the entire domain, and η ≤ 1

8P . Then zt converges
to a Nash equilibrium as t→∞.

As mentioned, Φvan and Ψvan are both 1-strongly convex with respect to 2-norm, so are Φdil
α and Ψdil

α
under some specific choice of α (in the rest of the paper, we fix this choice of α). However, only
Φvan and Φdil

α are continuously differentiable in the entire domain. Therefore, Theorem 4 provides an
asymptotic convergence result only for VOGDA and DOGDA, but not VOMWU and DOMWU.
Nevertheless, below, we resort to different analyses to show a concrete last-iterate convergence rate
for three of our algorithms, which is a much more challenging task.

First of all, note that [Wei et al., 2021, Theorem 5, Theorem 8] already provide a general last-iterate
convergence rate for VOGDA over polytopes. Since treeplexes are polytopes, we can directly apply
their results and obtain the following corollary.

Corollary 5. Define dist2(z,Z∗) = minz∗∈Z∗ ‖z − z∗‖2. For η ≤ 1
8P , VOGDA guarantees

dist2(zt,Z∗) ≤ 64dist2(ẑ1,Z∗)(1 + C1)−t,

where C1 > 0 is some constant that depends on the game and η.

However, the results for VOMWU in [Wei et al., 2021, Theorem 3] is very specific to normal-form
game (that is, when X and Y are simplexes) and thus cannot be applied here. Nevertheless, we are
able to extend their analysis to get the following result.

Theorem 6. If the EFG has a unique Nash equilibrium z∗, then VOMWU with step size η ≤ 1
8P

guarantees 1
2‖ẑt − z

∗‖2 ≤ DΨvan(z∗, ẑt) ≤ C2

t , where C2 > 0 is some constant depending on the
game, ẑ1, and η.

We note that the uniqueness assumption is often required in the analysis of OMWU even for
normal-form games [Daskalakis and Panageas, 2019, Wei et al., 2021] (although [Wei et al., 2021,
Appendix A.5] provides empirical evidence to show that this may be an artifact of the analysis).
Also note that for normal-form games, [Wei et al., 2021, Theorem 3] show a linear convergence rate,
whereas here we only show a slower sub-linear rate, due to additional complications introduced by
treeplexes (see more discussions in the next section). Whether this can be improved is left as a future
direction.

On the other hand, thanks to the closed-form updates of DOMWU, we are able to show the following
linear convergence rate for this algorithm.

Theorem 7. If the EFG has a unique Nash equilibrium z∗, then DOMWU with step size η ≤ 1
8P

guarantees 1
2‖zt − z

∗‖2 ≤ DΨdil
α

(z∗, zt) ≤ C3(1 + C4)−t, where C3, C4 > 0 are constants that
depend on the game, ẑ1, and η.
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To the best of our knowledge, this is the first last-iterate convergence result for algorithms with dilated
regularizers. Unfortunately, due to technical difficulties, we were unable to prove similar results for
DOGDA (see Appendix E for more discussion). We leave that as an important future direction.

6 Analysis Overview

In this section, we provide an overview of our analysis. It starts from the following standard one-step
regret analysis of OOMD (see, for example, [Wei et al., 2021, Lemma 1]):
Lemma 8. Consider the update rules in Eq. (2). Suppose that ψ is 1-strongly convex with respect
to the 2-norm, ‖F (z1)− F (z2)‖ ≤ L‖z1 − z2‖ for all z1, z2 ∈ Z and some L > 0, and η ≤ 1

8L .
Then for any z ∈ Z and any t ≥ 1, we have

ηF (zt)
>(zt − z) ≤ Dψ(z, ẑt)−Dψ(z, ẑt+1)−Dψ(ẑt+1, zt)− 15

16Dψ(zt, ẑt) + 1
16Dψ(ẑt, zt−1).

Note that the Lipschitz condition on F holds in our case with L = P since

‖F (z1)− F (z2)‖ =
√
‖G(y1 − y2)‖2 + ‖G>(x1 − x2)‖2 ≤

√
P‖z1 − z2‖21 ≤ P‖z1 − z2‖,

which is also why the step size is chosen to be η ≤ 1
8P in all our results. In the following, we first

prove Theorem 4. Then, we review the convergence analysis of [Wei et al., 2021] for OMWU in
normal-form games, and finally demonstrate how to prove Theorem 6 and Theorem 7 by building
upon this previous work and addressing the additional complications from EFGs.

6.1 Proof of Theorem 4

For any z∗ ∈ Z∗, by optimality of z∗ we have:

F (zt)
>(zt − z∗) = x>t Gyt − x>t Gyt + x>t Gy

∗ − x∗>Gyt ≥ x∗>Gy∗ − x∗>Gy∗ = 0.

Thus, taking z = z∗ in Lemma 8 and rearranging, we arrive at

Dψ(z∗, ẑt+1) ≤ Dψ(z∗, ẑt)−Dψ(ẑt+1, zt)− 15
16Dψ(zt, ẑt) + 1

16Dψ(ẑt, zt−1).

Defining Θt = Dψ(z∗, ẑt) + 1
16Dψ(ẑt, zt−1) and ζt = Dψ(ẑt+1, zt) +Dψ(zt, ẑt), we rewrite the

inequality above as

Θt+1 ≤ Θt − 15
16ζt. (5)

We remark that similar inequalities appear in [Wei et al., 2021, Eq. (3) and Eq. (4)], but here we pick
z∗ ∈ Z∗ arbitrarily while they have to pick a particular z∗ ∈ Z∗ (such as the projection of ẑt onto
Z∗). Summing Eq. (5) over t, telescoping, and applying the strong convexity of ψ, we have

Θ1 ≥ Θ1 −ΘT ≥
15

16

T−1∑
t=1

ζt ≥
15

32

T−1∑
t=1

‖ẑt+1 − zt‖2 + ‖zt − ẑt‖2 ≥
15

64

T−1∑
t=2

‖zt − zt−1‖2.

Similar to the last inequality, we also have Θ1 ≥ 15
64

∑T−1
t=1 ‖ẑt+1 − ẑt‖2 since 2‖ẑt+1 − zt‖2 +

2‖zt− ẑt‖2 ≥ ‖ẑt+1− ẑt‖2. Therefore, we conclude that ‖zt− ẑt‖, ‖zt+1− zt‖, and ‖ẑt+1− ẑt‖
all converge to 0 as t → ∞. On the other hand, since the sequence {z1, z2, . . . , } is bounded,
by the Bolzano-Weierstrass theorem, there exists a convergent subsequence, which we denote by
{zi1 , zi2 , . . . , }. Let z∞ = limτ→∞ ziτ . By ‖ẑt − zt‖ → 0 we also have z∞ = limτ→∞ ẑiτ . Now,
using the first-order optimality condition of ẑt+1, we have for every z′ ∈ Z ,

(∇ψ(ẑt+1)−∇ψ(ẑt) + ηF (zt))
>(z′ − ẑt+1) ≥ 0.

Apply this with t = iτ for every τ and let τ →∞, we obtain

0 ≤ lim
τ→∞

(∇ψ(ẑiτ+1)−∇ψ(ẑiτ ) + ηF (ziτ ))>(z′ − ẑiτ+1) (by the first-order optimality)

= lim
τ→∞

ηF (ziτ )>(z′ − ẑiτ+1) (by ‖ẑt+1 − ẑt‖ → 0 and the continuity of ∇ψ)

= ηF (z∞)>(z′ − z∞) (by z∞ = limτ→∞ ziτ = limτ→∞ ẑiτ )
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This implies that z∞ is a Nash equilibrium. Finally, choosing z∗ = z∞ in the definition of Θt,
we have limτ→∞Θiτ = 0 because limτ→∞Dψ(z∞, ẑiτ ) = 0 and limτ→∞ ‖ẑiτ − ziτ−1‖ = 0.
Additionally, by Eq. (5) we also have that limt→∞Θt = 0 as Θt is non-increasing. Therefore, we
conclude that the entire sequence {z1, z2, . . .} converges to z∞. On the other hand, since OOMD
is a regret-minimization algorithm, it is well known that the average iterate converges to a Nash
equilibrium [Freund and Schapire, 1999]. Consequently, combining the two facts above implies that
zt has to converge to a Nash equilibrium, which proves Theorem 4.

We remark that Lemma 8 holds for general closed convex domains as shown in [Wei et al., 2021].
Consequently, with the same argument, Theorem 4 holds more generally as long as X and Y are
closed convex sets. While the argument is straightforward, we are not aware of similar results in prior
works. Also note that unlike Theorem 6 and Theorem 7, Theorem 4 holds without the uniqueness
assumption for VOMWU and DOMWU.

6.2 Review for normal-form games

To better explain our analysis and highlight its novelty, we first review the two-stage analysis of
[Wei et al., 2021] for OMWU in normal-form games, a special case of our setting when X and Y
are simplexes. Note that both VOMWU and DOMWU reduce to OMWU in this case. As with
Theorem 6 and Theorem 7, the normal-form OMWU results assume a unique Nash equilibrium z∗.
With this uniqueness assumption and [Mertikopoulos et al., 2018, Lemma C.4], Wei et al. [2021]
show the following inequality

ζt = Dψ(ẑt+1, zt) +Dψ(zt, ẑt) ≥ C5‖z∗ − ẑt+1‖2 (6)

for some problem-dependent constant C5 > 0, which, when combined with Eq. (5), implies that
if the algorithm’s current iterate is far from z∗, then the decrease in Θt is more substantial, that is,
the algorithm makes more progress on approaching z∗. To establish a recursion, however, we need
to connect the 2-norm back to the Bregman divergence (a reverse direction of strong convexity).
To do so, Wei et al. [2021] argue that ẑt+1,i can be lower bounded by another problem-dependent
constant for i ∈ supp(z∗) [Wei et al., 2021, Lemma 19], where supp(z∗) denotes the support of
z∗. This further allows them to lower bound ‖z∗ − ẑt+1‖ in terms of Dψ(z∗, ẑt+1) (which is just
KL(z∗, ẑt+1)), leading to

ζt = Dψ(ẑt+1, zt) +Dψ(zt, ẑt) ≥ C6Dψ(z∗, ẑt+1)2, (7)

for some C6 > 0. On the other hand, ignoring the nonnegative term Dψ(zt, ẑt), we also have:

ζt = Dψ(ẑt+1, zt) +Dψ(zt, ẑt) ≥ Dψ(ẑt+1, zt) ≥
1

4
Dψ(ẑt+1, zt)

2, (8)

where the last step uses the fact that ẑt+1 and zt are close [Wei et al., 2021, Lemma 17 and Lemma
18]. Now, Eq. (7) and Eq. (8) together imply 6ζt ≥ 2C6Dψ(z∗, ẑt+1)2 + Dψ(ẑt+1, zt)

2 ≥
min

{
C6,

1
2

}
Θ2
t+1. Plugging this back into Eq. (5), we obtain a recursion

Θt+1 ≤ Θt − C7Θ2
t+1 (9)

for some C7 > 0, which then implies Θt = O(1/t) [Wei et al., 2021, Lemma 12]. This can be seen
as the first and slower stage of the convergence behavior of the algorithm.

To further show a linear convergence rate, they argue that there exists a constant C8 > 0 such that
when the algorithm’s iterate is reasonably close to z∗ in the following sense:

max{‖z∗ − ẑt‖1, ‖z∗ − zt‖1} ≤ C8, (10)

the following improved version of Eq. (7) holds (note the lack of square on the right-hand side):

ζt = Dψ(ẑt+1, zt) +Dψ(zt, ẑt) ≥ C9Dψ(z∗, ẑt+1) (11)

for some constant 0 < C9 < 1. Therefore, using the 1/t convergence rate derived in the first stage,
there exists a T0 such that when t ≥ T0, Eq. (10) holds and the algorithm enters the second stage. In
this stage, combining Eq. (11) and the fact ζt ≥ Dψ(ẑt+1, zt) gives ζt ≥ C9

2 Θt+1, which, together
with Eq. (5) again, implies an improved recursion Θt+1 ≤ Θt − 15

32C9Θt+1. This finally shows a
linear convergence rate Θt = O((1 + ρ)−t) for some problem-dependent constant ρ > 0.
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6.3 Analysis of Theorem 6 and Theorem 7

While we mainly follow the steps of the analysis of [Wei et al., 2021] discussed above to prove
Theorem 6 and Theorem 7, we remark that the generalization is highly non-trivial. First of all, we
have to prove Eq. (6) for Z being a general treeplex, which does not follow [Mertikopoulos et al.,
2018, Lemma C.4] since its proof is very specific to simplexes. Instead, we prove it by writing
down the primal-dual linear program of Eq. (1) and applying the strict complementary slackness; see
Appendix E.1 for details.

Next, to connect the 2-norm back to the Bregman divergence (which is not the simple KL divergence
anymore, especially for DOMWU), we prove the following for VOMWU:

Dψ(z∗, ẑt+1) ≤
∑

i∈supp(z∗)

(z∗i − ẑt+1,i)
2

ẑt+1,i
+

∑
i/∈supp(z∗)

ẑt+1,i ≤
3P‖z∗ − ẑt+1‖

mini∈supp(z∗) ẑt+1,i
, (12)

and the following for DOMWU:

Dψ(z∗, ẑt+1)

C ′
≤

∑
i∈supp(z∗)

(z∗i − ẑt+1,i)
2

z∗i q̂t+1,i
+

∑
i/∈supp(z∗)

z∗pi q̂t+1,i ≤
‖z∗ − ẑt+1‖1

mini∈supp(z∗) z
∗
i ẑt+1,i

, (13)

where C ′ = 4P‖α‖∞ (see Appendix E.2). We then show a lower bound on zt+1,i and ẑt+1,i for all
i ∈ supp(z∗), using similar arguments of [Wei et al., 2021] (see Appendix E.3). Combining Eq. (12)
and Eq. (13) with Eq. (6), we have the counterpart of Eq. (7) for both VOMWU and DOMWU.

Showing Eq. (8) also involves extra complication if we follow their analysis, especially for VOMWU
which does not admit a closed-form update. Instead, we find a simple workaround: by applying Eq. (5)
repeatedly, we get Dψ(z∗, ẑ1) = Θ1 ≥ · · · ≥ Θt+1 ≥ 1

16Dψ(ẑt+1, zt), thus, ζt ≥ Dψ(ẑt+1, zt) ≥
C10Dψ(ẑt+1, zt)

2 for some C10 > 0 depending on Dψ(z∗, ẑ1). Combining this with Eq. (7), and
applying them to Eq. (5), we obtain the recursion Θt+1 ≤ Θt − C11Θ2

t+1 for some C11 > 0 similar
to Eq. (9), which implies Θt = O(1/t) for both VOMWU and DOMWU and proves Theorem 6.

Finally, to show a linear convergence rate, we need to show the counterpart of Eq. (11), which is
again more involved compared to the normal-form game case. Indeed, we are only able to do so for
DOMWU by making use of its closed-form update described in Lemma 2. Specifically, observe that
in Eq. (13), the term

∑
i/∈supp(z∗) z

∗
pi q̂t+1,i is the one that prevents us from bounding Dψ(z∗, ẑt+1)

by O(‖z∗ − ẑt+1‖2). Thus, our high-level idea is to argue that
∑
i/∈supp(z∗) z

∗
pi q̂t+1,i decreases

significantly as ẑt gets close enough to z∗. To do so, we use a bottom-up induction to prove that,
for any information set h ∈ HZ , indices i, j ∈ Ωh such that i /∈ supp(z∗) and j ∈ supp(z∗), L̂t,i is
significantly larger than L̂t,j when ẑt is close to z∗, where L̂t is the counterpart of L in Lemma 2
when computing of q̂t+1. This makes sure that the term

∑
i/∈supp(z∗) z

∗
pi q̂t+1,i is dominated by the

other term involving i ∈ supp(z∗) in Eq. (13), which eventually helps us show Eq. (11) and the final
linear convergence rate in Theorem 7. See Appendix E.5 for details.

7 Experiments

In this section, we experimentally evaluate the algorithms on three standard EFG benchmarks: Kuhn
poker [Kuhn, 1950], Pursuit-evasion [Kroer et al., 2018], and Leduc poker [Southey et al., 2005].
The results are shown in Figure 1. Besides the optimistic algorithms, we also show two CFR-based
algorithms as reference points. “CFR+” refers to CFR with alternating updates, linear averaging
[Tammelin, 2014], and regret matching+ as the regret minimizer. “CFR w/ RM+” is CFR with regret
matching+ and linear averaging. We provide the formal descriptions of these two algorithms in
Appendix D for completeness. For the optimistic algorithms, we plot the last iterate performance.
For the CFR-based algorithms, we plot the performance of the linear average of iterates (recall that
the last iterate of CFR-based algorithms is not guaranteed to converge to a Nash equilibrium).

For Kuhn poker and Pursuit-evasion (on the left and in the middle of Figure 1), all of the optimistic
algorithms perform much better than CFR+, and their curves are nearly straight, showing their linear
last-iterate convergence on these games.

For Leduc poker, although CFR+ performs the best, we can still observe the last-iterate convergence
trends of the optimistic algorithms. We remark that although VOGDA and DOMWU have linear
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Figure 1: Experiments on Kuhn poker (left), Pursuit-evasion (middle), and Leduc poker (right). A
description of each game is given in Appendix B. ξt = maxy x

>
t Gy −minx x

>Gyt is the duality
gap at time step t, where (xt,yt) is the approximate Nash equilibrium computed by the algorithm
at time t (for the optimistic algorithms, (xt,yt) is (xt,yt) while for the CFR-based algorithms,
(xt,yt) is the linear average). The legend order reflects the curve order at the right-most point. Due
to much higher computation overhead than all the other algorithms, we only run VOMWU on Kuhn
poker, the game with the smallest size among the three games. For each optimistic algorithm, we
fine-tune step size η to get better convergence results and show its value in the legends. There is no
hyperparameter for the CFR-based algorithms. All the experiments are run on CPU in a personal
computer and the total computation time is less than an hour. There is no random seed and the results
are all deterministic.

convergence rate in theory, the experiment on Leduc uses a step size η which is much larger than
Corollary 5 and Theorem 7 suggest, which may void the linear convergence guarantee. This is done
because the theoretical step size takes too many iterations before it starts to show improvement. It is
worth noting that CFR+ improves significantly when changing simultaneous updates (that is, CFR w/
RM+) to alternating updates. Analyzing alternation and combining it with optimistic algorithms is a
promising direction. We provide a description of each game, more discussions, and details of the
experiments in Appendix B.

8 Conclusions

In this work, we developed the first general last-iterate convergence results for solving EFGs. Our
paper opens up many potential future directions. The recent dilatable global entropy regularizer of
Farina et al. [2021b] can likely be analyzed using techniques similar to our analysis of VOMWU and
DOMWU, and it would likely lead to a linear rate as with DOMWU, due to its closed-form DOMWU-
style update. Other natural questions include whether it is possible to obtain better convergence rates
for VOMWU and DOGDA, whether one can remove the uniqueness assumption for VOMWU
and DOMWU, and finally whether it is possible to obtain last-iterate convergence rates for CFR-
like optimistic algorithms such as those in [Farina et al., 2021a]. On the practical side, optimistic
algorithms with last-iterate convergence guarantees may allow more efficient computation and better
incorporation with deep learning-based game-solving approaches.
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