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Abstract

Deep learning based question answering (QA) models are neither robust nor interpretable in
many cases. For example, a multiple-choice QA model, tested without any input of question,
is surprisingly “capable” to predict most of correct answers. In this paper, we inspect such
“shortcut capability” of the QA model using causal inference. We find the crux behind is the
shortcut correlation (learned in the model), e.g., simply word alignment between passage and
options. To address the issue, we propose a novel inference approach called Counterfactual
Variable Control (CVC) that explicitly mitigates any shortcut correlations and preserves
only comprehensive reasoning to do robust QA. To enable CVC inference, we first leverage
a multi-branch network architecture |Cadene et al.| (2019)) based on which we disentangle
shortcut correlations and comprehensive reasoning in the trained model. Then, we introduce
two variants of CVC inference approach to capture only the causal effect of comprehensive
reasoning as the model prediction. To evaluate CVC, we conduct extensive experiments
using three neural network backbones (BERT-base, BERT-large and RoBERTa-large) on
both multi-choice and span-extraction QA benchmarks (MCTest, DREAM, RACE and
SQuAD). Our results show that CVC can achieve consistently high robustness against
various adversarial attacks in QA tasks, and its results are easy to interpret.

1 Introduction

Question answering (QA) is an important task in natural language processing that has been attracting much
attention in recent years |Seo et al.| (2016)); |Chen et al.|(2017)); [Yu et al.| (2018); [Kwiatkowski et al.| (2019);
Karpukhin et al.|(2020); [Yasunaga et al.| (2021]). Although tremendous progress has been made with QA
models, especially with the help of pre-trained language models such as BERT Devlin et al. (2019)) and
RoBERTa |Liu et al.| (2019)), top-performing models often lack interpretability Feng et al.| (2018); [Kaushik &
Lipton| (2018]), nor are they robust to adversarial attacks Ribeiro et al.| (2018]); [Szegedy et al.| (2013); [Wallace
et al.| (2019)); Niu & Zhang (2021)); [Kiela et al.| (2021). For example, adding one more question mark at
the end of the input question, which is a simple adversarial attack, may decrease the performance of QA
models |Ribeiro et al.| (2018). This vulnerability will raise security concerns when the model is deployed in
real-world applications, e.g., intelligent shopping assistants and web search engines. It is thus desirable to
figure out why this happens and how to improve the robustness of QA models.

Existing methods for robust QA models mainly resort to robust training. One straightforward way is
to generate adversarial examples for training [Jia & Liang| (2017); Ribeiro et al| (2018)); [Si et al.| (2021)).
However, sometimes it is expensive and time-consuming to manually generate adversarial examples, and QA
models are still not robust to unseen attacks. On the other hand, recent works focus on regularizing QA
models via additional losses to prevent the model from learning the superficial correlation. For example,
QAlInformax [Yeh & Chen| (2019) maximizes the mutual information between the passage and the question to
achieve regularization. However, so far, robust QA against adversarial samples has not been fully exploited.

In this paper, we carefully inspect both the training and the test processes for QA models. We find the
aforementioned vulnerability is caused by the fact that the model tends to exploit the shortcut correlations in
the training data. To illustrate this, we show some example results of the BERT-Base MCQA model [Devlin
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Figure 1: We observe multi-choice QA models are “capable” to answer a question without any question data
in input (question-muted) during test (b), or during both training and test (c¢). We conduct these experiments
using the BERT-base model Devlin et al.| (2019) on the multi-choice QA benchmark DREAM [Sun et al.
(2019). (a) shows the normal case for reference. (d) show a training sample on DREAM.

et al.| (2019) in Figure |1} Supposedly, the model should predict the answer based on the passage, the question,
and the options. Surprisingly, the absence of the question during only the test stage (Figure[l| (b)) or during
both the training and the test stages (Figure [1| (¢)) leads to a limited performance drop. Our hypothesis
is that the BERT-Base MCQA model uses a huge amount of network parameters to learn the shortcut
correlation between the no-question inputs (i.e., passage and options) and the ground-truth answer in a
brute-force manner. Figure d) shows an example where this shortcut could be realized by simply aligning
the words appearing in both the passage and options. Can we just conclude from this example that questions
have little effect on answers? We must say no, as this violates our common sense about the causality in QA —
the question causes the answer.

With the observation above in mind, we take a step further
towards robust and interpretable QA systems by figuring out °
the causality in QA based on causal inference |Pearl et al.| (2009));

()
Pearl & Mackenzie| (2018). We begin by analyzing the causal \
relationships in QA, i.e., associating any two variables based a’&” Q 0
on the causal effect. Inspired by the recent success of causal S / /
inference in applications |Qi et al.| (2020)); [Tang et al.| (2020); Q Q
Niu et al.| (2021, we represent the causal relationships in QA (a) (b)
using the Structural Causal Model (SCM) |Pearl et al.| (2009). SCM shortcut
Figure a) shows the SCM for MCQA as an example, where
each node denotes a variable (e.g., @ for question and A for Figure 2:  The SCM of MCQA. P is for
answer) and the directed edge from one node to another repre- passage, Q for question, O for options and
sents their causal relation (e.g., @— A denotes question causes A for answer- Particularly, R denotes the
answer). Besides the input and output variables, we introduce comprehensive reasoning.
an intermediate variable R to reflect the expected comprehen-
sive reasoning among all the inputs. SCM illustrates that not only comprehensive reasoning but also shortcut
correlations have effects on the output answer. As highlighted in Figure b), P and O can directly reach A,
leading to a success rate 24% higher than the random guess shown in Figure b). These shortcut correlations
are “distractors” against our goal of robust QA, i.e., the prediction should be caused by the comprehensive
reasoning.

According to the above causality-based analysis, we expect the robust QA systems to conduct comprehensive
reasoning and exclude the shortcut effects for unbiased inference. To alleviate the effects of shortcuts, we
propose a novel approach called Counterfactual Variable Control (CVC) based on the causality theory. CVC
in essence includes counterfactual analysis Pearl et al.| (2009); [Pearl & Mackenzie| (2018]); [Pearl (2001) and
variable control. The former allows us to evaluate the effect of an event by modifying it in a counterfactual
scenario. The latter, motivated by controlling for variables, aims to explicitly separate the effects of different
variables. In this way, we can avoid any interference from controlled variables. To implement CVC in deep
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models, we realize the SCM as a multi-branch architecture |Cadene et al.| (2019)); |Clark et al|(2019) that
is composed of a robust branch reflecting the comprehensive reasoning and several shortcut branches. We
highlight that CVC training exactly follows the multi-branch training |Cadene et al| (2019), while CVC
inference is based on counterfactual analysis to capture the indirect effects of only the comprehensive reasoning.
Furthermore, according to our causality-based analysis, we point out that existing ensemble-based debiasing
methods |Clark et al. (2019) can be regarded as special cases of CVC, which serves as a theoretical explanation
from a perspective of causality. To evaluate the robustness of CVC comprehensively, we propose four
adversarial attacks for MCQA and one human-annotated adversarial set for SEQA. For example, we propose
to add one sentence in passage as additional option to fool the MCQA model. Experiments are conducted on
four QA benchmarks with different backbone networks, e.g., BERT Devlin et al. (2019) and RoBERTa
. The experimental results validate the effectiveness and generalizability of our proposed CVC
approach. As shown in the case studies, our CVC can not only achieve robust performance, but also conduct
interpretable and reasonable inference processes due to the theoretical foundation of causal inference. Our
main contributions are summarized as follows: (i) We analyze the vulnerability of QA model from a novel
causal perspective and point out that the the robust prediction actually equals to the indirect effects of the
input variables on answers. (ii) Based on the theory of causal inference, we propose counterfactual variable
control (CVC) to measure the indirect effects, i.e., mitigating the shortcut correlations while preserving
the robust comprehensive reasoning in QA, and implement it in the deep models. Interestingly, our CVC
method also cover the popular ensemble-based debiasing methods and provide interpretability for them. (iii)
For a comprehensive evaluation, we propose several adversarial attacks for both MCQA and SEQA. The
experimental results with different backbones on these adversarial sets for four QA benchmarks show the
effectiveness and generality of CVC.

2 Related Work

Question Answering. Question answering (QA) is an important application in natural language under-
standing. QA aims to evaluate machines’ reading comprehension abilities. Basically, the QA task requires
machines to answer a question based on a given passage. Several QA settings have been proposed to inspect
various aspects of language understanding. For example, CoQA Reddy et al.| (2019) and DREAM
(2019) are based on conversations, HotpotQA [Yang et al. (2018) focuses on multi-hop reasoning,
and RACE [Lai et al. looks at the challenges with the multiple-choice QA setting. Meanwhile, the
development of QA models has been rapid. Early QA models only relied on word embedding techniques such
as Word2vec Mikolov et al.| (2013)) or GloVe |[Pennington et al.| (2014). Inspired by the success of attention
mechanism in machine translation [Bahdanau et al.| (2014)), recent works further adopted this mechanism as
core component, e.g., BIDAF [Seo et al.| (2016) and Match-LSTM [Wang & Jiang| (2016). Nowadays, large-scale
pre-training becomes indispensable in QA models, such as BERT [Devlin et al| (2019) and RoBERTa
(2019)). However, robustness and interpretability of QA models are still challenging problems for practical
applications Ribeiro et al.| (2018); [Wallace et al| (2019). In this paper, we focus on how to improve the
robustness and interpretability of QA models. We take two types of QA datasets, multiple-choice question
answering and span-extraction question answering, as study cases.

Robustness in NLP. Large-scale pre-trained language models have shown their strength in language
understanding, however, it has been shown that many of them can be easily fooled by simple adversarial
attacks, e.g., using distractor sentences [Zhang et al.| (2020b). Recent works used generated adversarial
examples to augment training data explicitly, such as to train more robust models against adversarial
attacks [Ribeiro et al.| (2018); [Liu et al.| (2020al); |Jia & Liang| (2017); [Wang & Bansal (2018)). They achieved
fairly good performance but they have their limitations. First, they need the prior knowledge of the specific
adversarial attack, i.e., “in what way to generate adversarial examples”, which is often not available in real
applications. Second, their model performance strongly relies on the quality of adversarial examples and is
sensitive to training hyperparameters, e.g., augmentation ratios. Alternative methods include using advanced
regularizer [Yeh & Chen| (2019); [Liu et al.| (2020b); [Ye et al.| (2020)), training loss |Jia et al.| (2019); Huang
let al| (2019)); Jiang et al. (2020), sample filtering [Yaghoobzadeh et al| (2019)); [Le Bras et al.| (2020) and
model ensembling (Clark et al. (2019); [Cadene et al/| (2019); He et al.| (2019); |[Utama et al. (2020a); |Ghaddar]
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(2021)). However, it remains unexplained why and how these methods are capable to achieve robust QA
models.

In terms of model implementation, our CVC training process is close to ensemble-based methods. Our key
difference is that we introduce a systematic and explainable causal formulation of QA that potentially opens
principled directions to understanding the critical challenges of QA. Our technical contribution lies in the
new CVC inference methods (after the QA model is trained).

Adversarial Attacks in QA. Adversarial attack is an indirect way to evaluate the robustness of machine
models Zhang et al.| (2020b). The works on adversarial attack in NLP can be roughly divided into two groups:
word /sentence-level attack and character-level attack. The first group includes text paraphrasing [Ribeiro et al.
(2018); |Zhang et al|(2019b); Iyyer et al.|(2018) and word substitution Ren et al. (2019)); Zhang et al.| (2019al);
|Alzantot et al.| (2018), whereas the second one is mainly based on character-wise perturbation [Ebrahimi et al.
'2018aD. Our proposed adversarial attack methods belong to the former. Besides, most of the previous
works focus on how to “attack” but rarely care about how to “defend”. Differently, we consider both and
further propose a defending approach which is validated robust against unseen attacks.

Causal Inference in Deep Learning. Causal inference Pearl et al.| (2009); Pearl & Mackenzie| (2018));
is based on the causal assumption made in each specific task, e.g., QA task in this paper. It
has been widely applied to epidemiology Rothman & Greenland| (2005), computer science [Van der Laan &
(2011)), and social science (2004). Recently, it has been incorporated in a variety of deep learning
applications such as image classification|Goyal et al.| (2019)), image parsing|Zhang et al.| (2020a)), representation
learning (Wang et al.| (2020), scene graph generation [Tang et al.| (2020), and vision-language tasks [Qi et al.
(2020); |Chen et al.| (2020); Niu et al.| (2021); |Abbasnejad et al.| (2020). In NLP, counterfactual methods are

also emerging recently in natural language inference [Kaushik et al.| (2020]), semantic parsing

Riezler] (2018), story generation [Qin et al| (2019), dialog systems Zhu et al| (2020), gender bias |Vig et al.|
(2020); Shin et al.| (2020), and sentiment bias Huang et al.| (2020). In this paper, we take the first step towards

improving the robustness of QA models based on causality.

3 Counterfactual Variable Control (CVC)

CVC aims to conduct unbiased inference by excluding the shortcut effects, e.g., aligning words in passage
and options. In this section, we use multi-choice question answering (MCQA) as a case study of QA tasks,
and introduce our proposed Counterfactual Variable Control (CVC). Given a natural language paragraph
as passage p, the models for MCQA are expected to answer the related question ¢ by selecting the correct
answer a from the candidate options o. In the following, we use uppercase letters to denote the variables
(e.g., Q for question) and lowercase letters for the specific value of a variable (e.g., ¢ for a specific question).

3.1 Normal Prediction and Counterfactual Prediction

We introduce counterfactual notations, i.e., the imagined values of variables as if their ancestors had existed
(i.e., uncontrolled) in a counterfactual world [Pearl et al.| (2009); Tang et al.| (2020)); [Pearl (2001); Roese|
(1997). For example, input variables (P, @ and O) are set to the be available for A while R would attain the
value when the input variables had been unavailable. We call this “counterfactual” as the variables cannot be
simultaneously set as different statuses in the factual world.

Normal Prediction (NP) means that the model makes predictions when the variables are all controlled or
uncontrolled. We use the function format Y (X =x), abbreviated as Y, to represent the effect of X =2 on Y.
We use this notation to formulate any path on the SCM, and further derive the prediction as:

Ap,q,o,r:A(P:p> @=gq, O=o, RZT)) (1)

where r=R(P=p, @=gq, O=0) denotes the normal value of comprehensive reasoning, and A, ;. , denotes
the inference logits of the model with realistic inputs values. If all the inputs are controlled (e.g., muting
their values as null), the value that A would obtain can be represented as:

AP*#I*,O*J“* :A(P:p*? Q:q*a OZO*a R:T*)a (2)
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where r* = R(P=p*, Q=¢*, O=0%), and Ap- 4= o~ r+ is the inference logits of the model with null values of
input variables, which are denoted as p*, ¢*, and o*.

Counterfactual Prediction (CP) means that the model predicts the answer when some variables are
controlled, but the others are assigned counterfactual values obtained when these variables are uncontrolled.
This is a key operation in the counterfactual analysis |Pearl et al.| (2009)); |[Pearl & Mackenzie| (2018]); [Pearl
(2001)). For example, we can control the input variables P, @), and O with their values to null (denoted as p*,
q*, and 0*), and assign their child node R with a counterfactual value r = R(P=p, Q=q, O=0) obtained
when the inputs P, @), and O were valid. Similarly, we can control R as r* while assigning its parent nodes P,
@, and O with counterfactual values p, ¢, and o.

To conduct CVC inference, we propose two variants of counterfactual control: (i) controlling only input
variables; and (ii) controlling only the mediator variable. For (i), we formulate the value of 4 as:

AP*#*»O*J’:A(P:p*v Q:q*a 0:0*7 R:T), (3)

For (ii), we have:
A;,a’q’O,T*:A(P:p7 Q=q, OZO,R:T*)_ (4)

3.2 CVC Inference

Recall that CVC is to preserve only the robust prediction derived by comprehensive reasoning and exclude
shortcut correlations. Motivated by the theory of causality Morgan & Winship| (2015)), CVC can be realized
by comparing the fact and its counterpart, i.e., estimating the difference between the normal prediction (NP)
and the counterfactual prediction (CP). Intuitively, the importance of a variable can be revealed by controlled
experiments. If the difference between the experimental group and control group is large, this variable may
have a significant effect on the output. We utilize this conclusion from another view. If we have the prior
that a variable is essential, we expect the difference to be large corresponding to this variable. In our case,
we expect the difference corresponded to the comprehensive reasoning R is large, i.e., the model should rely
on R for inference. Following the definition in Section the idea can be realized by controlling on either
inputs (e.g., @) or mediator variables (e.g., R). Therefore, CVC can be realized in two ways corresponding to
the controlled variables: CVC on Input Variables (CVC-IV) and CVC on Mediator Variables (CVC-MV).

CVC on Input Variables (CVC-IV) is derived as:
CVC-IV = Ap+ g 0% r — Ap q= 07 1 (5)

where in Ay« g« o+ » the input variables are controlled to be null (e.g., p*) while the mediator variable is set
as its counterfactual value, which is obtained by imaging a counterfactual world where the inputs had not
been controlled (i.e., 7 = R(p, q,0)).

CVC on Mediator Variable (CVC-MYV) is derived as:
CVC-MV = Ap g0 — Apgor=s (6)

where in A, 4, -+ the input variables are set as their observed values (e.g., p) while the mediator variable is
controlled by imagining a counterfactual world where all inputs had been set to null (i.e., r* = R(p*, ¢*, 0*)).

Note that both CVC-IV and CVC-MV aim to capture the causal effect of comprehensive reasoning in QA.
The main difference lies in on which variables to apply the control. The surgery is on the input variables in
CVC-1V and the mediator variable in CVC-MV. The former aims to remove all the shortcut correlations,
while the latter preserves only the effect of comprehensive reasoning on answer after the subtraction.

4 The Implementation of CVC

In this section, we introduce how to implement CVC using deep neural networks, including multi-task training
and counterfactual inference strategies. Multi-task training explicitly decouples the robust path and shortcut
paths by multi-branch architecture, while counterfactual inference conducts unbiased inference based on
CVC-IV or CVC-MYV in Section |3} We take MCQA and its corresponding SCM in Figure [2 as example in
this section.
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Figure 3: Multi-task training framework in our CVC using MCQA as example. It shows a robust branch and
two shortcut branches (N =2). The complete input (e.g., X = {P, @, O} for MCQA) are fed to the robust
branch, while a subset to the shortcut branch (e.g., X1 = {P, O} to the first shortcut branch). Solid arrows
indicate feedforward, and dashed arrows for backpropagation.

4.1 Multi-task Training

As illustrated in Figure [3] our overall framework implements the SCM in Figure a) as multiple neural
network branches. The main branch takes all the input variables (i.e., complete input) to learn the causal
effect corresponding to the robust path of SCM (i.e., P, Q, O— R— A), which we call comprehensive reasoning
branch (or robust branch). The other branches, we call shortcut branches, take a subset of inputs (i.e., part
of the variables are muted) to explicitly learn the shortcut correlations corresponding to the shortcut paths
of SCM (e.g., P, O— A as @ is muted). We deploy each branch as the standard QA model with pre-trained
backbone Devlin et al.| (2019) where the pre-trained backbone consists of bottom shared layers and top layers.
The model is trained via multi-task training, i.e., each branch is optimized using an individual objective.
Only the robust branch gradients are propagated to update the bottom shared layers in the backbone. In the
following, we introduce the details of how we implement each path in SCM (Figure [2).

P, Q,0— R— A. This path is implemented by the robust branch F", which takes the complete input
X ={P, Q, O}, e.g., the realistic values of question, passage and options in MCQA. The network body, with
parameters denoted as 6", consists of a pre-trained backbone (e.g., BERT) and a classifier (e.g., one FC
layer). Since this branch learns the causal effect from R to A, we denote its output logits as:

A" = Fr(Xx;0"). (7)

P— A, Q— A and O— A. These paths are implemented by shortcut branches F? (n=1,2,---,N),
which learn the shortcut correlations between incomplete (controlled) input and the ground truth answer.
Each shortcut branch takes a subset of variables X,, C X as input (e.g., X1 = {P, O}) and sets the other
variables (e.g., @) as null. The shortcut branch has the same architecture with the robust branch but different
parameters 6. We denote the outputs as:

A =F(Xp;02), n=1,2,--- N. (8)

Fusion combines all causal effects from any variables X directed linked to A4, e.g., R— A in robust branch and
O— A in shortcut branch. Another functionality of the fusion is to facilitate the training of multi-branches.
We fuse the logits from the robust branch and shortcut branches as:

AS =80 Bhas (9)

N s

where p] = softmax(A}), p;, ; = softmax(A}, ;) and i is the i-th dimension of the prediction. Here we use
probabilities instead of logits because probabilities are non-negative and can work as normalization.

Objective adopts the standard cross-entropy loss to optimize all the branches. For the n-th shortcut branch,
we directly minimize the cross-entropy loss over its logits AJ:

LY =— Zpi log softmax(A3, ;), (10)
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where ¢ denotes the i-th dimension of the prediction, and the one-hot vector p denotes the encoding of ground
truth answer.

For the robust branch, directly optimizing over the robust prediction A" cannot avoid the model to learn
the correlations as in the conventional QA models, and cannot guarantee the model to learn the pure
comprehensive reasoning. We tackle this problem by fusing robust logits A" with shortcut logits A . In
this way, we can force A" to only preserve the prediction that can never be achieved by shortcuts, i.e.,
the comprehensive reasoning prediction with the complete input variables as input. We then optimize the
cross-entropy loss over the adjustment A€ i.e., overall effects on A, for robust branch as:

L° =~ p;logsoftmax(AS). .

In pre-experiments, we empirically found that the robust branch may focus on only hard samples and ignore
easy samples by fusing the branches at the level of predictions. When outputs of shortcut branches are correct
with high confidence, logits-level fusion may lead to a very small value in Eq. We further propose two
variants of losses to tackle this issue:

e 1 AT A8
£ =~ Z - Zp, log softmax(p; - by, ;)

L% = — Z Wy Z p; log softmax(p; - 95, ;),
n %
where w,, = softmax(L$) = —menr Ef(;g oy lsa weight to explicitly enhance the effect of the n-th shortcut

m=1

branch on the robust branch. We formulate the overall loss used in multi-task training as:

Lt =L+ L, (13)

where £¢ can be replaced with £¢! or £°2. Ablation studies empirically show that £¢? achieves better
performances. Noted that the optimization of robust branch will not affect the parameters on the shortcut
branches.

4.2 Counterfactual Inference

Different from conventional inference that is based on the posterior probability Devlin et al| (2019), we
propose to use counterfactual inference based on causal effects |Pearl & Mackenzie| (2018]); [Pearl (2001). In
this section, we introduce how to conduct CVC-IV and CVC-MYV inferences given the robust branch and
shortcut branches.

Following the notation formats of normal prediction (NP) and counterfactual prediction (CP) in Eq.
and Eq. [4] along with the notation of output for each branch in Eq. [7| and Eq. [8) we can (i) denote the
prediction of the n-th shortcut branch as af = F2(p, 0; 62) and its value with null input as a5* = F2(p*, 0*;0%);
and (ii) denote the prediction of the robust branch as a” = F"(p, g, 0;0") and its value with null input as
a™ =F"(p*,q*,0%;0"). In this case, we denote Ags= ... azrar+ a8 Apr g« or v

For the CVC-IV inference in Eq. @ we obtain NP as Ap- ¢+ o« 7+ and CP as Ap« 4= o+ ». Combining Eq. |§|
and @ we can derive the CVC-1IV inference result as:
CVC-IV = Ap g 0n.r — Ape g= 0% o=

= S* S* —_— 8% S*
Aqs S asEar Aqs A am

_ AT s T s
_E p‘cn_E:Cn'Cna
n n

where each element in ¢], or ¢f is the same constant in [0, 1]. We highlight that CVC-IV inference corresponds
to computing Natural Indirect Effect (NIE) in causal inference [Pearl & Mackenzie (2018); [Pearl (2001). It is

(14)
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equivalent to the normal inference on the robust model, similar to existing works such as Learned-Mixin [Clark
et al| (2019) and RUBI |Cadene et al.| (2019). Differently, CVC-1IV is totally derived from the systematical
causal analysis in QA and is thus more ezplainable than Learned-Mixin which is heuristic.

For the CVC-MV inference in Eq. [6} we denote NP as A, 4., and CP as A, 4, Combining Eq. [6 and [9}
we can derive the CVC-MYV inference result as:

CVC-MV = Ay 400 — Apgor

AaS s T‘_AS s Tk
$,ena,a as,...,ay,a
(15)
~S r as
E p pn E Cn " Pn>s
n

which is an indirect way of making inference using only the robust branch. This result corresponds to
computing Controlled Indirect Effect (CIE) in causal inference [Pearl & Mackenzie| (2018)); [Pearl (2001)).

Since the optimal value for ¢], varies across each sample, we train a c-adaptor F;° with a two-layer MLP to
adaptively estimate ¢],. This can be formulated as:

= FS(p",p;,, Distance; 0y,), (16)

where F¢(x1, %o, x3;05)=W?2 tanh(W1 [z1; 29; 23]), [;] is the concatenation operation, and 65 ={WL W2}
are learnable parameters. We implement Distance as the Jensen-Shannon divergence |Lin (1991 ) IS[p"||p:]
between p” and pJ,. Specifically, we train a c-adaptor after the multi-task training in Figure |§| by fixing
the other parameters. The training objective is the same as the downstream task, e.g., computing the
cross-entropy loss with the logits of CVC-MV (Eq. @ and ground-truth label:

Leadapter — Zpi log softmax(z < Z cr Py (17)

n

4.3 Summary

Our approach consists of two stages: multi-task training (Section and counterfactual inference (Section
4.2)) summarized in Algorithm (in Appendix). Multi-task training aims to train a robust branch F” and N
shortcut branches { F$}V_;. Counterfactual inference performs the robust and interpretable reasoning for QA.
We highlight that CVC tralnlng follows the supervised training on multi-task networks |Cadene et al.| (2019);
Clark et al.|(2019). CVC differs from the inference process described in Section 4.B. Normal prediction will
use the overall trained model directly for the inference. Some debiasing method [Cadene et al.| (2019)); |Clark
et al.[(2019) adopt the prediction only from the robust branch and discard the bias branch. The inference
process of CVC is derived from the causal analysis of the shortcut problems in QA model. Furthermore,
the inference process in |[Cadene et al.| (2019); Clark et al.| (2019) (directly using the robust branch) can be
regarded as a special case of CVC-IV while lacks interpretability.

5 Experiments

5.1 Experimental Settings

We evaluate the robustness of CVC for both MCQA and SEQA, using a variety of adversarial attacks [Zhang
et al.| (2020b). Below we introduce the base datasets followed by the adversarial sets for each base datasets.
We conduct multi-task training on the training split of base datasets and conduct inference on original
development /test splits of base datasets and adversarial sets.

5.1.1 Base Datasets

MCQA aims to select the correct answer from several input options given a passage and a question. We
conduct experiments on the following benchmark datasets: M CTest [Richardson et al.| (2013]) is generated
from fictional stories and aims at open-domain machine comprehension. The questions are limited to the
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level that young children can understand. MCTest consists of two subsets, MC500 and MC160. We use the
combination of them in our experiments. DREAM [Sun et al.| (2019) is a dialogue-based dataset designed by
experts to evaluate the comprehensive ability of foreign learners. In addition to simply matching questions,
DREAM also contains more challenging questions that requires commonsense reasoning. RACE [Lai et al.
(2017) is a dataset of English exam from middle and high school reading comprehension. RACE covers a
variety of topics and the proportion of questions that requires reasoning is much larger than other reading
comprehension datasets.

Compared to MCQA, options are not provided on the SEQA task. SEQA locates the answer span in a
passage given a question. We use the SQUAD dataset for SEQA. SQuAD [Rajpurkar et al.| (2016]) is adopted
as the benchmark for SEQA where passages are from a set of Wikipedia articles. SQuAD requires several
types of reasoning like lexical variation, syntactic variation, etc.

5.1.2 Adversarial Sets

Adversarial Attacks on MCQA. To further evaluate the robustness of QA models, we propose four kinds
of grammatical adversarial attacks to generate adversarial examples.

e Add1Truth20pt and Add2Truth20pt (Adv1 and Adv2): We replace one (or two) of the wrong options with
another one (or two) answers that are correct in other samples with the same passage.

e Add1Pas20pt (Adv3): We replace one of the wrong options with a random distracting sentence extracted
from the passage. This distractor does not contain any word that appears in the ground truth option.

o Add1Ent2Pas (Adv4): We first choose one of the wrong options with at least one entity, e.g., person name
and time, and then replace each entity with another entity of the same type. Then, we add this modified
sentence to the end of the passage.

Adversarial Attacks on SEQA. For the SEQA task, we utilize three kinds of grammatical adversarial
attacks. AddSent (Adv1l), AddOneSent (Adv2) and AddVerb (Adv3).

e AddSent and AddOneSent released by |Jia & Liang (2017)) add distracting sentences to the passage. The
generating process is: firstly perturb the question (e.g., asking another entity) and create a fake answer,
then convert the perturbed question into a distracting sentence. The final distracting sentences were
filtered by crowdworkers. AddSent is similar to AddOneSent but much harder than AddOneSent. These
two settings can be used to measure the model robustness against entity or noun attacks.

e AddVerb was inspired by above two sets which aims to evaluate the model robustness against verb attacks
instead of noun. we hire expert linguists to annotate the AddVerb following |Jia & Liang] (2017)). Examples
are as follows. For the question “What city did Tesla move to in 188077, AddSent sample could be
“Tadakatsu moved to the city of Chicago in 1881.”, and AddVerb sample could be “Tesla left the city of
Chicago in 1880.” o

5.2 Implementation Details

We illustrate the general implementation here and more details for MCQA-specific and SEQA-specific
are placed in the appendix. We deploy the pre-trained BERT and RoBERTa backbones provided by
HuggingFace [Wolf et al.| (2019). The learning rates are fixed to 3e-5, 2e-5 and le-5 for BERT-base, BERT-
large, and RoBERTa-large respectively. A linear warm-up strategy for learning rates is used with the first
10% steps in the whole multi-branch training stage. The batch size is selected amongst {16, 24,32} for the
three backbones. The number of bottom shared layers is fixed to 5/6 of the total number of layers in the
backbone language model for parameter-efficiency, e.g., sharing 10 layers in bottom shared layers when the
BERT-base (12 layers) is adopted as the backbone. The overall experiments are conducted on two pieces
of Tesla V100 or two pieces of RTX 2080Ti (depending on the usage of memory). Gradient accumulation
and half precision are used to relieve the issue of memory usage. Following |Clark et al.[ (2019)); |Grand &
Belinkov] (2019); [Ramakrishnan et al.| (2018]), we perform model selection for CVC-IV (i.e., choosing the
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hyperparameters of training epochs) based on the model performance in the development/test sets on the
used dataset. We report the average performance with four random seeds.

BERT-base BERT-large RoBERTa-large

Set Method Test Advl Adv2 Adv3 Adv4 A.G. Test Advl Adv2 Adv3 Adv4d A.G. Test Advl Adv2 Adv3 Adv4 A.G.

CT 68.9 63.9 59.4 20.2 54.8 - 72.3 70.0 66.8 35.5 57.6 - 88.9 88.2 86.6 72.6 84.2 -
CVC-MV 68.1 69.1 65.6 26.8 61.0 +6.1 73.2 74.3 73.5 384 68.4 +6.2 88.5 89.3 89.6 82.4 83.4 +43.3
CVC-IV 694 70.0 65.4 28.7 59.9 +6.4 74.4 75.5 75.1 40.4 69.5 47.6 87.4 88.1 88.2 82.6 84.2 +2.9

cT 61.5 47.5 39.2 209 418 - 65.9 50.6 43.0 25.6 48.2 - 84.1 78.2 76.3 57.1 71.8 -
CVC-MV 60.1 49.6 39.9 23.7 45.6 +2.3 64.0 51.9 46.5 26.3 51.3 +2.2 82.8 77.9 80.2 66.6 71.4 +3.2
CVC-IV 60.0 49.2 40.7 25.0 47.1 +3.1 64.5 52.0 46.2 26.6 51.1 +2.1 81.7 783 79.7 66.7 72.3 +3.4

cT 64.7 56.0 50.1 36.6 58.3 - 67.9 61.9 579 51.0 61.7 - 78.4 72.4 67.9 65.9 72.1 -
CVC-MV 64.4 56.7 51.7 39.1 59.2 +1.4 68.6 63.1 58.0 52.4 65.3 +1.6 77.9 75.1 72.0 68.1 72.6 +2.4
CVC-IV 64.1 57.0 52.2 38.8 58.6 +1.4 68.4 62.9 58.7 51.8 65.6 +1.6 77.4 75.7 73.8 69.1 72.1 43.1

RACE DREAM | MCTest

Table 1:  Accuracies (%) on three MCQA datasets. Models are trained on original training data. BERT-
base, BERT-large and RoBERTa-large are backbones. “A.G. denotes the average improvement over the
conventional training (CT) [Devlin et al.| (2019) for Adv* sets.

BERT-base BERT-large RoBERTa-large
Method Dev Advl Adv2 Adv3 A.G. Dev Advl Adv2 Adv3 A.G. Dev Advl Adv2 Adv3 A.G.
CT 88.4 499 59.7 44.6 - 90.6 60.2 70.0 50.0 - 93.5 77.0 82.8 61.3 -
QAlInformax 88.6 54.5 64.9 - +4.9 - - -

CVC-MV 87.2 55.7 65.3 51.3 +6.0 90.2 62.6 724 525 +24 926 794 841 63.2 +1.9
CVC-1IV 86.6 56.3 66.2 51.5 +46.6 89.4 62.6 71.8 5H4.1 +2.8 922 79.6 85.0 64.1 +2.5

Table 2: SEQA Fl-measure (%) on the SQuAD Dev set (Test set is not public) and adversarial sets. Models
are trained on original training data. BERT-base, BERT-large and RoBERTa-large are backbones. “-”: not
applicable from original paper. “A.G.: our average improvement over the conventional training (CT) Devlin
et al.| (2019)) for Advx*.

5.3 Results and Analyses

Comparison with Baselines and State-of-the-Arts. Table |l and Table [2[ show the overall results for
MCQA and SEQA, respectively. Note that the adversarial sets Adv are used to evaluate the robustness of
QA models. We report the average gain on Adv, denoted as A.G., to compare CVC with the conventional
training methods (CT). From Table 1} we can see that both CVC-MV and CVC-IV can surpass the baseline
method Devlin et al| (2019) for defending against adversarial attacks, e.g., by average increase of 7.6% with
BERT-large and 3.3% with RoBERTa-large on MCTest. It is worth highlighting the example that CVC-IV on
BERT-base gains 8.5% on the most challenging Adv3 set of MCTest. Besides, our methods are applicable to
different backbones like BERT and RoBERTa-large. The results on SEQA in Table [2|show similar observation.
These results empirically demonstrate that our CVC strategy is general and model-agnostic.

Compared to state-of-the-art method, our CVC is more robust to adversarial attacks. As shown in Table [2]
CVC outperforms the state-of-the-art QAInformax [Yeh & Chenl (2019) by an average of 1.7% F1l-measure
with the same BERT-base backbone. As shown in Table [3] and Table 4] CVC also outperforms ensemble
based methods Clark et al.| (2019)) on MCTest and DREAM datasets. Besides, all the approach achieve less
improvement on RACE compared to other two datasets. The possible reason is that RACE is designed for
reading comprehension that highlights comprehensive reasoning. Thus, the training data is more debiased.
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Set Method Test Adv1 Adv2 Adv3 Adv4 A.G.
CT Devlin et al.| (2019) 68.9 63.9 59.4 20.2 54.8 -

2 DRi%ym 2019 69.6 66.0 61.9 23.0 54.8 +1.9

& Bias Product (Clark et al|(2019) 71.0 66.7 63.6 22.8 65.5 +5.1

O Learned-Mixin [Clark et al|(2019) 70.5 66.2 60.4 20.2 58.8 +1.8

= Unknown Bias |[Utama et al. !2020bE 68.1 64.5 62.7 20.7 59.1 +2.2
Self-Debiasing |(Ghaddar et al.| (2021)) 69.2 64.9 61.5 22.2 57.2 +1.9
CVC-MV 68.1 69.1 65.6 26.8 61.0 +6.1
CVC-1V 69.4 70.0 65.4 28.7 59.9 +6.4
CT Devlin et alJ{QOlQ) 61.5 47.5 39.2 20.9 41.8 -

= DRIFt He et al[ (2019 60.1 48.5 42.2 23.9 44.7 +2.5

;ﬁq Bias Product |Clark et al| (2019) ~ 58.6 47.5 38.8 22.6 40.2 -0.1

¢ Learned-Mixin Clark et al[(2019)  60.9 49.2 41.7 20.0 42.3 +1.0

A Unknown Bias Utama et al. (2020b)) 59.3 48.7 40.3 24.5 43.2 +1.8
Self—Debiasing"Wm%ﬂm%GlQ 47.3 39.7 22.9 44.1 +1.2
CVC-MV 60.1 49.6 39.9 23.7 45.6 +2.3
CVC-1vV 60.0 49.2 40.7 25.0 47.1 +3.1
CT Devlin et alJ 2019 64.7 56.0 50.1 36.6 58.3 -

. DRi\ﬁ]m (2019) 62.0 56.1 53.3 39.3 58.3 +1.7

O Bias Product Clark et al| (2019) 62.3 56.7 53.3 37.0 56.8 +1.0

é Learned-Mixin |Clark et al. (2019)  64.3 56.5 51.9 38.0 60.1 +1.4
Unknown Bias |[Utama et al. !2020b£ 63.3 57.1 52.5 37.5 58.1 +1.1
Self-Debiasing |Ghaddar et al.| (2021) 63.5 56.6 52.7 38.2 58.9 +1.4
CVC-MV 64.4 56.7 51.7 39.1 59.2 +1.4
CVC-1V 64.1 57.0 52.2 38.8 58.6 +1.4

Table 3: Comparison of ours and related ensembling methods on MCQA with BERT-base. We implement
these methods by replacing Eq. [0] with their adjustment functions for known bias methods. “A.G.”: our
average improvement over the conventional training method (CT) Devlin et al.| (2019) for Adv*.

Method Dev Advl Adv2 Adv3 A.G.
CT Devlin et alJ 2019 88.4 499 59.7 446 -

DRiFt [He et al] (2019 85.7 53.7 65.7 485 +4.5
Bias Product |Clark et al| (2019) 87.8 53.6 65.7 473 +4.1

Learned-Mixin |Clark et al. (2019) 87.2 53.1 639 455 +2.1
Unknown Bias |Utama et al|(2020b)  88.2 50.3 62.7 478 +2.2
Self-Debiasing |Ghaddar et al.| (]2021[) 89.3 52.7 64.1 46.0 +42.9
CVC-MV 87.2 55.7 653 51.3 +46.0
CVC-1V 86.6 56.3 66.2 51.5 +6.6

Table 4: Comparison of ours and related ensembling methods on SEQA with BERT-base. We implement
DRiFt by directly changing our adjustment function (Eq. E[) to its. For Bias Product and Learned-Mixin, we
first use the corresponding adjustment functions in |Clark et al.| (2019)), then we use the TF-IDF released by
original paper as the shortcut branch in our implementation for known bias methods. “A.G.”: our average
improvement over the conventional training method (CT) Devlin et al| (2019) for Adv*.

Note that our counterfactual analysis can regard these ensemble based methods as implementation of our
CVC-IV. Also, we notice that CVC-MV often performs worse than CVC-IV on Adv sets but better on
in-domain Test (or Dev) sets. The possible reason is that the important hyperparameter of CVC-MV ¢!,
is learned from in-domain data. We will show that augmenting in-domain data with Adv examples greatly
improves the performance of CVC-MV in Table [0

11
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Ablation Study. Table[5|shows the SEQA results

in 10 ablative settings to evaluate the importance Ablative Setting Dev Advl Adv2 Adv3
of shortcut branches, loss functions, and inference (1) w/o first Shct.br. 85.5 52.6 62.5 50.8
strategies: (1) removing the first shortcut branch  (2) w/o second Shct.br. 86.1 57.7 66.1  42.1
(E muted) from the multi-task training; (2) remov-  (3) use £° 724 459 549 426
ing the second shortcut branch (V muted) from  (4) use cet 86.5 53.5 63.2 46.7
the multi-task training; (3) using £° to replace vy (ours) 86.6 563 662 515
L2 (4) using £ to replace £?; (5) setting % to

the same constant (tuned in {0.2,0.4,0.6,0.8,1})  (5) same ¢, 85.7 543 641 51.0
for all input samples; (6) setting ¢}, = JS[p Hpn] (6) cp, *JS 85.9 543 642 511
where JS denotes Jensen—-Shannon divergence; (7) (7) ¢, = Euc 86.0 544 641 512
setting ¢, as the euclidean distance between p" (8) W/O distance 86.9 553 65.0 513
and pg; (8) removing the distance item in Eq. (9) w/o p, and p,, 84.0 532 626 494
and (9) removing p" and p;, in Eq. [16] Compared  CVC-MV (ours) 87.2 557 653 513

to the ablative results, we can see that our full
approach achieves the overall top performance on
SEQA. There is one exception. A higher score on
Adv1 is achieved (57.7 vs. 55.7) if we do not use the

Table 5: The ablation study on SQuAD (BERT-base).
(1)-(4) are ablative settings for multi-task training (using

second shortcut branch (V' muted), i.e., the second CVC-1V); (5)-(9) are ablative settings related to CVC-

ablative. However, this setting achieves much lower MV.

performance on Adv3 (42.1 vs. 51.3). This observation indicates that this setting without all the shortcut
branches cannot make a good trade-off on different adversarial attacks. The ablation study for MCQA is
shown in Appendix.

Case Studies. We show two examples as case studies to show the interpretability of our approach from two
aspects: (1) the disentanglement of robust paths and shortcut in multi-branch architecture, (2) human-like
counterfactual inference. Figure [5|and Figure |§| (in Appendix) illustrate two samples from MCQA and SEQA
respectively to demonstrate the underlying mechanism of CVC-IV and CVC-MV inference. In Figure[5] the
conventional training method CT [Devlin et al.| (2019) merely aligns the words between passage and options.
This action leads to the wrong choice C, which is a confusing choice generated by Adv1i. In contrast, both
CVC-1V and CVC-MYV pick the right answer D. On the bottom blocks, we demonstrate the calculation on
prediction logits during CVC-IV (Eq. |5)) and CVC-MV (Eq. @, respectively. We take the CVC-MV as an
example to interpret this calculation. Both Normal Prediction (NP) A 4, and Counterfactual Prediction
(CP) Ap g0+ contain the logits of A, B, C' and D. The logit value of C is from the word alignment shortcut
and it is high in both NP and CP. It thus can be counteracted after the subtraction in CVC-MV. In contrast,
the logit value of D is from the comprehensive reasoning. When muting the corresponding variable R (denoted
by r* in CP A q.0.7+), this value must be reduced. Then it becomes evident after the subtraction in CVC-MV.
The sample in Figure S1 on SEQA can be interpreted in the same way. The only differences is that the
“options” for SEQA are tokens, e.g., which token is the start position for answer span). Note that we normalize
the bar chart (the result of the subtraction) for a clear visualization.

6 Conclusions

We inspect the problem of fragility in QA models, and leverage the structural causal model to show that the
crux is from shortcut correlations. To train robust QA models, we propose a novel training approach called
Counterfactual Variable Control (CVC) and realize it based on a multi-task training pipeline. We conduct
extensive experiments on multiple QA benchmarks, and show that CVC can achieve high robustness while
being easy to interpret. Our future work is to enhance the structural causal model by considering subjective
factors, e.g., the preference of dataset annotators and the source of passages. These factors could be the
confounders which may have the effects on the input variables and answer prediction simultaneously. For
example, the tendency of the annotators or the crowdsourced workers. Such confounders may guide the model
to conduct bias inference. Some intervention techniques can be applied to remove the effect of confounders.
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A Algorithm

In Algorithm [I} we summarize the overall process of the proposed Counterfactual Variable Control (CVC)
approach.

Algorithm 1 Counterfactual Variable Control (CVC) algorithm
Stage One: Multi-task Training
Input: complete train set data X and N different subsets of train set data {X,,}N_;
Output: F" with parameters " and {F3}N_| with parameters {03},

1: for batch in X and {X,,}_; do
2:  fornin{1,..,N} do
3 optimize 0; with batch of X,, by Eq. equation [10}
4: end for
5
6:

optimize 6" with batch of X by Eq. equation [11| for MCQA (by £¢? in Eq. equation [12|for SEQA);
end for

Stage Two: Counterfactual Inference
Input: F" with parameters 6", {F$}_, with parameters {03 }_,, complete target test data X’ along with
its subsets {X’}>_, and a boolean USE_IV.
Output: CVC inference result ({F<}N_, with parameters {6¢}Y_,)

1. if USE_IV then

2:  compute CVC-1V inference result with target data by Eq. equation

3: else
4:  optimize {6¢}N_, with X and {X,,}_, by Eq. equation |15} Eq. equation [16{and cross-entropy loss for
QA task;

5. compute CVC-MV inference result with target data X’ and {X’})_, by Eq. equation [15|and Eq. equa-

n=1
tion [I6}

6: end if

B MCQA-Specific Implementation

MCTest DREAM RACE

Random guess  25.0 33.3 25.0
Complete input  68.9 61.5 64.7
No P 24.2 32.8 41.6
No @ 52.5 57.1 51.0
No P, @ 22.4 33.4 34.7

Table 6: Accuracies (%) of conventional training BERT-base MCQA models tested with complete input. “No
X7 means the value of input variable X is muted.

MCQA has two shortcut correlations (see Figure , ie., @— A and P— Aﬂ We present the muting
experiment results of MCQA in Table [6] that can reflect the strength of corresponding direct cause-effects.
For example, the results on the row of “No Q” represent the performance of only using P— A and O— A
shown in Figure 2| (b). We inspect them and notice that the effect from the former one is trivial and negligible
compared to the latter. One may argue that @) is an important cue to predict the answer. Actually, annotators
intentively avoid any easy question-answer pairs when building MCQA datasets. For example, they include
a person name in all options of questions about who. We thus assume — A has been eliminated during
well-designed data collection and utilize one shortcut branch (i.e., muting @). Therefore, Eq. equation
and equation [12] are equivalent for MCQA (N =1 and w, =1). Other MCQA-specific implementation details
are the same with the official code of |Devlin et al.| (2019)).

10— A is not discussed here as O is mandatory and can not be muted.
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SQuAD
Complete input  88.1
No E 59.4
No V 55.1
No E, V 15.3
No @ 124

Table 7: F1 scores (%) of conventional training BERT-base SEQA models tested with complete input. “No
X7 means the value of input variable X is muted.

C SEQA-Specific Implementation

Do

7

(a) (b)
SCM shortcut

Figure 4: The SCM for SEQA task where @ is decomposed to S, V and FE.

Different from MCQA, we propose to manually separate the question (Q) of SEQA into corresponding parts:
entities & nouns (E); verbs & adverbs (V); and the remaining stop words & punctuation marks (.S). As shown
in Figure [4f the SCM of SEQA contains four input variables as P (passage), E, V and S. The comprehensive
reasoning variable R mediates between these four variables and answer A. The reason why we conduct this
partition is twofold: (1) P is mandatory for SEQA. The lack of P will result in an invalid prediction. To
study the effects of @— A, what we can do is to split the variable @ into partitions. (2) Our resulting @
partitions are intuitive. £ and V contain the most important semantic meanings. We inspect the empirical
effects of all shortcut paths as shown in Table [7] and build shortcut branches with N =2 to represent all
shortcut paths in Figure (b) The first shortcut branch takes X; = {P, S, V} as input and aims to learn
P, S, V— A. The second shortcut branch takes X> = {P, S, E} as input and learns P, S, E— A. We empirically
use £°2 to train SEQA models. Other SEQA-specific implementation details are the same with the official
code of |Devlin et al.| (2019)).

D Ablations on MCQA

Table |8 shows the MCQA results in 10 ablative settings. Specifically, we (1) use X; = {@, O} as the input
of the only shortcut branch; (2) use two shortcut branches, where the first one takes Xy = {P, O} as input
and the second one takes X5 = { @, O} as input, and deploy the £¢ in Eq. equation (3) use the same two
shortcut branches as (2), but deploy the £¢! in Eq. equation (4) use the same two shortcut branches as
(2), but £¢? in Eq. equation [12]is used; The ablative setting of (5)-(9) on MCQA are the same as those used
for SEQA.

Results on (1)-(4) show that considering the shortcut branch with input {Q,O} is not effective for the
robustness of model. The reason is that this shortcut branch is hard to train, i.e., not easy to converge (please
refer to “MCQA-specific” and Table @ Our empirical conclusions are as follows. Firstly, the shortcut branch
with negligible effect magnitude can be ignored when designing the multi-branch architecture. Secondly, if
no prior knowledge of the effect magnitude on each shortcut path (of SCM), using £? is the best choice.
Results on (5)-(9) show the efficiency of our proposed c-adaptor.
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Ablative Setting Test Advl Adv2 Adv3 Adv4

(1) one modified Shct.br. 68.3 63.1 58.0 24.8 56.5
(2) two Shet.br. with £¢ 70.1 66.8 61.0 24.6 57.1
(3) two Shct.br. with £¢! 70.2 66.7 62.1 25.6 56.5
(4) two Shct.br. with £°? 70.8 66.6 61.8 27.1 62.2

CVC-1V (ours) 69.4 70.0 65.4 28.7 59.9
(5) same ¢ 68.1 69.3 644 25.6 59.3
(6) ¢h=JS 70.1 67.0 61.9 20.8 62.2
(7) ¢h =Euc 69.8 67.7 61.9 22.3 60.5
(8) w/o distance 66.1 67.9 65.2 27.8 61.0
(9) w/o p, and p, 65.6 66.3 64.8 27.4 59.9
CVC-MV (ours) 68.1 69.1 65.6 26.8 61.0

Table 8: The ablation study on MCTest (BERT-base). (1)-(4) are ablative settings for multi-task training
(using CVC-IV inference). “Average” means the average performance on Adv* test sets; (5)-(9) are ablative
settings related to CVC-MV inference.

Test Advl Adv2 Adv3 Adv4d A.G.

CT 71.0 70.6 72.1 425 60.5 -
Advl CVC-IV 717 733 749 492 638 +3.9
CVC-MV 716 729 748 48.0 62.7 +3.2

CT 72.3 73.0 75.1 50.1 63.3 -
Adv2 CVC-IV 71.8 73.8 76.2 59.8 655 +3.5
CVC-MV 718 742 76.6 61.1 655 +3.9

CT 67.5 62.7 59.9 709 57.1 -
Adv3 CVC-IV 67.6 64.5 624 70.2 61.6 +2.0
CVC-MV 66.8 63.7 623 70.3 60.5 +1.5

CT 69.8 654 60.2 27.7 63.3 -
Adv4 CVC-IV 69.9 66.2 624 327 61.0 +1.4
CVC-MV 675 65.6 624 254 66.7 +0.9

CT 70.5 721 741 725 634 -
All CVC-IV 727 735 764 719 684 420
CVC-MV 73.1 74.6 76.6 73.3 73.5 +4.0

Table 9: Accuracies (%) on the MCTest dataset, using different kinds of data augmentation in training
with BERT-base. The leftmost column shows which type of adversarial attack for MCQA is used as data
enhancement.

E Data Augmentation

Data augmentation with adversarial examples is an intuitive method to improve the model robustness Ribeiro
et al. (2018)); |Jia & Liang (2017). We conduct experiments on the MCTest dataset to show the effect of
augmentation adversarial data on CT, CVC-IV, and CVC-MV. Specifically, we augment the training data
by generating adversarial samples following our adversarial attacks Adv. The results are shown in Table [0
Comparing Table |§| to the results without data augmentation (Table , we can observe that models get
consistently improved via data augmentation. Comparing the results between CT and CVC, we find that
CVC achieves further performance boosts for augmented models. For example, CVC-MV gains an average
accuracy increase of 4.0% to “Add All” models when the training data are augmented with all the four kinds
of adversarial examples. Note that it is high-cost and time consuming to conduct the data augmentation
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experiments for SEQA, because the adversarial attacks for SEQA require a lot of human annotations and
proofreading.

F Extension to Natural Language Inference

Matched Dev HANS

CT 84.2 62.4
Reweight |Clark et al| (2019) 83.5 69.2
Bias Product |Clark et al[(2019) 83.0 67.9
Learned-Mixin |Clark et al. (2019) 84.3 64.0
Learned-Mixin+H |Clark et al.| (]2019[) 84.0 66.2
DRiFt-HYPO [He et al] (2019 84.3 67.1
DRiFt-HAND He et al| (2019 81.7 68.7
DRiFt-CBOW [He et al. (2019) 82.1 65.4
Self-debias+Conf-reg [Utama et al. 12020bi 84.5 69.1
Self-debias+Reweight |Utama et al.| (2020b 82.3 69.7
Mind the Trade-off [Utama et al.| (2020a) 84.3 70.3
Forgettableg ans |Yaghoobzadeh et al. 2019[) 84.3 70.4
Forgettable gow [Yaghoobzadeh et al.| (2019) 83.4 71.2
Forgettablep;r sy [Yaghoobzadeh et al.| (]2019[) 83.3 71.3
CVC-1V 82.9 70.0
CVC-MV 83.0 71.5

Table 10: NLI accuracies (%) on Matched Dev and HANS. Our CVC methods are trained only on the
original training data (MNLI) with BERT-base.

Our CVC method can also work on other NLP tasks like Natural Language Inference (NLI) task. Following
the setting in previous works Clark et al.| (2019), we train the model on MNLI Williams et al.| (2018) and
evaluate it on a adversarial set, HANS McCoy et al. (2019). We use the overlapped tokens in hypothesis and
premise as the only bias branch in implementation of CVC. From the results shown in Table we observe
that CVC-MV outperforms CT by over 9% on the adversarial set, and achieves comparable performance
compared to state-of-the-art methods.

We have 2 dogs and 3 cats. Jim and Linda have an old dog named Reggie.
One day they wanted us to watch Reggie for them. When Jim and Linda
dropped Reggie off, Jim picked up mom's guitar and played us a song with|

Linda.

Question: What did Jim and Linda do when they dropped Reggie off?
A. Linda played piano and Jim sang. * Distracted option
B. Linda danced and Jim told jokes. i% CT result

C. 2 dogs and 3 cats.* A CVC-IV result

{* CVC-MV result
D. Jim played guitar and they, both sang, 3% $¢ rest

llII---.-=IIII DDHH-HTH =DUH,
Aprgrorr Apgrorrr CVCIV Apg.om Ap,gor+  CVC-MV
CP NP Prediction NP CP Prediction

Figure 5: A case study of CVC on MCTest trained on official data. The ground truth is underlined.
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On the other hand, Luther also points out that the Ten Commandments when considered not as God's condemning
judgment but as an expression of his eternal will, that is, of the natural law also positively teach how the Christian
ought to live. This has traditionally been called the "third use of the law." For Luther, also Christ's life, when
understood as an example, is nothing more than an illustration of the Ten Commandments, which a Christian
ishould follow in his or her vocations on a daily basis. Luther denied Christ's life a dark story.

Question: What did Luther consider Christ's life?

Ground-truth answer: illustration of the Ten Commandments
CT result: a dark story

CVC-IV result: an illustration of the Ten Commandments,
CVC-MV result: an illustration of the Ten Commandments,

CVC-1V inference for start token CVC-MV inference for start token
Agsx ... gs* qr s s gr
aj ;0N ,a Aal,A..,aN,a
N T I e R R T I N TR Sy R S
& & TS S S ® L I TS S S ¢ S
N R 4
- -
A. S* .. asS*.aT* A s s T
aj ,an»,a aj,...,ay,a
RO e O N Y R I O e I N N G )
Qe&« & ¢ 5\{'\‘ @&» ¢ & ¢ PO Q&.& & 4“&’ ‘\&5 @sq, & & S &
& o K R
— —
— —
CVC-IV prediction CVC-MV prediction
R R I S W IR SN T R S I T N R P )
&S s’\@ T vS @‘&& & &S S S &S & ¢S *‘,f & & ¥ S
o o & R

Figure 6: A case study of CVC on SQuAD trained on official data. The distracting sentence from AddVerb
is underlined. Only bold tokens in passage are shown in bar chart due to limited page size.
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