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Abstract

In recent years, language models (LMs) that were pretrained at scale on
diverse data have proven to be a successful approach for solving different
downstream tasks. However, new concerns about proper performance
evaluation have been raised, especially for test-data leakage caused by
accidentally including them during pretraining, or by indirectly exposing
them through API calls for evaluation. Motivated by these, in this paper,
we propose a new evaluation workflow that generates steerable synthetic
language datasets and proxy tasks for benchmarking the performance of
pre-trained LMs on sentence classification tasks. This approach allows for
better characterization of the joint analysis on the robustness and accuracy
of LMs without risking sensitive information leakage. It also provides a
more controlled and private way to evaluate LMs that avoids overfitting
specific test sets. Verified on various pretrained LMs, the proposed ap-
proach demonstrates promising high correlation with real downstream
performance.

1 Introduction

In recent years, language models (LMs) have emerged, showcasing remarkable capabilities
across a wide range of natural language processing (NLP) applications (Peters et al., 2018;
Devlin et al., 2019; Yang et al., 2019; Raffel et al., 2020; Rae et al., 2021; Thoppilan et al.,
2022; Hoffmann et al., 2022). While new opportunities present themselves with foundation
models, they also bring forth potential risks and challenges (Bommasani et al., 2021; Blodgett
& Madaio, 2021; Thieme et al., 2023; Biderman et al., 2023). For example, despite the
unprecedented publicity of LMs and beliefs in their emergent abilities (Wei et al., 2022),
some also argued the emergent abilities of LMs are a mirage (Schaeffer et al., 2023) and
a change in metric choice can lead to a different conclusion. Recently, researchers have
also expressed concerns about the potential for LMs to be trained on test sets (Li, 2023;
Zhou et al., 2023; Golchin & Surdeanu, 2024; Oren et al., 2024; Xu et al., 2024). Even
worse, private or held-out unpublished test sets may as well be vulnerable to data leakage
through querying the LMs via APIs for evaluation purposes. Extraction attacks (Carlini
et al., 2019; 2021), membership inference attacks (Hisamoto et al., 2020; Thomas et al., 2020;
Mireshghallah et al., 2022), and generative embedding inversion attack (Li et al., 2023),
caused by unintended memorization (Carlini et al., 2019; Shi et al., 2024) further deepened
our concerns about test set contamination.

To address the caveat of test set contamination, in this paper, we aim to propose a new
testbed for evaluating LMs with synthetic data. We link the design of the synthetic test set
to two fundamental skills infants must master during language acquisition: identifying
words and understanding linguistic structures (Frost et al., 2020). One intuitive approach is
to generate labeled synthetic sentences using an existing generative LM and then evaluate
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Figure 1: Overview of SynTextBench. SynTextBench generates a set of synthetic datasets
from any given lexicon with word-level labels. We test the given LM on sentence-level
tasks with these datasets and obtain robustness-accuracy characterization under a range of
steerable task difficulties. For each LM, we can plot the robustness-accuracy trade-off curve
and make model comparisons.

LMs with the constructed test sets. By this, the generated sentences would harness language
structural heuristics learned by the LM, and a decent probing result also requires the
ability to distinguish words and their associated meanings, such as semantics. However,
this workflow does not permit the active manipulation of synthetic task difficulties due
to the limited level of interpretability (Zhang et al., 2023) and intrinsic bias of specific
LMs (Acerbi & Stubbersfield, 2023). Motivated by the limitation, we explore an alternative
route by entirely eliminating the reliance on LMs for test set generation. Specifically, we
leverage existing sentiment lexicons, such as SentiWordNet 3.0 (Baccianella et al., 2010), to
generate working word lists based on the word (or synset) level labels. We build positive,
negative, and neutral word lists from the lexicon, and construct sentences following the
nesting parentheses (Papadimitriou & Jurafsky, 2020), which mimics the recursion structural
hypothesis about the narrow language faculty in humans (Hauser et al., 2002) and the
dependency tree structure in natural language (Chiang & Lee, 2022). By maneuvering the
mixing percentage of binary words (positive/negative words) and neutral words, we create
a configurable testbed for evaluating the performance of LMs on different levels of difficulty
and complexity. Finally, we benchmark and quantify the ability of each LM on sentence
classification tasks by comparing their performance on a set of our synthetic datasets with
varying difficulty levels.

We dub our evaluation framework using synthetic data by SynTextBench and present the
workflow in Figure 1, where we focus on benchmarking LM sentence embeddings in terms
of their accuracy and robustness. By accuracy, we are interested in analyzing the linear
separability of sentence representations rendered by different pretrained LMs. We note that
in learning sentence embeddings, the go-to metrics are cosine distance or linear probing
accuracy, both of which imply separability. By robustness, we refer to the decision margin
on these sentence embeddings with respect to the optimal classification strategy. We derive
both measures using only the constructed synthetic datasets, which allow for contamination-
free benchmarking of LMs. SynTextBench complements existing benchmarks by providing
a controlled environment to assess accuracy and robustness, which might be essential for
reasoning and planning tasks. SynTextBench is designed as an extendable framework for
the evaluation of language sentence representations that covers a range of controllable task
difficulties.

Our main contributions are:

• We introduce SynTextBench, a novel theoretically-grounded framework to generate
steerable synthetic datasets towards a holistic evaluation of LMs. The use of syn-
thetic datasets alleviates the risk of test-data leakage and offers new tools for LM
testing and auditing.

• SynTextBench provides a configurable lightweight testbed and a quantifiable metric
for evaluating the robustness and accuracy of LMs on different levels of difficulty
and complexity for sentence classification tasks, with no restrictions on the model
architecture.

• We conduct experiments with several state-of-the-art LMs on our testbed and
report their performance and behavior. SynTextBench, as a real-data-free evaluation
method, shows high correlation with robustness-accuracy performance evaluated
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on real data. Further study demonstrates its capability of making quick attribution
comparisons such as analyzing fine-tuning effects for LMs.

2 Methodology

2.1 Why using synthetic datasets for LM evaluation?

To reduce the reliance on real-world data, we propose to build synthetic NLP tasks by
generating synthetic sentences as model inputs at test time. This way, we no longer need to
exchange sensitive private data or label-annotated data as test sets with LM APIs. In making
a steerable and transparent evaluation framework for LMs, we first detail the desiderata of
proxy tasks and the evaluation metric.

• Task substance: Tasks should test a pretrained LM’s ability to encode sentence
representations that preserve class separability when evaluated by a linear classifier.

• Task difficulty: Tasks’ difficulty should be configurable to allow for comprehensive
analysis, i.e., one can generate tasks of various levels of difficulty.

• Task feasibility: Tasks should be feasible to solve, i.e., the sentences should be
distinguishable to a certain degree by an algorithm that works on the raw sentences
input.

• Task independence: Tasks should be independent of the LM to be evaluated, in
order to avoid biased evaluation, i.e., neither sentences nor labels should be given
by an LM.

• Task equity: Tasks should be able to be generated by anyone and affordable for any-
one without requiring any private data or favoring any party with more resources.

• Metric informativeness: The designed framework should give a quantifiable metric
that has a clear implication (e.g., the larger the better) and correlates well with the
real performance.

With these in mind, it is straightforward to see why we should not opt for synthetic datasets
generated by any LM: (1) task difficulty would not be configurable (see more evidence in
Appendix A.2), (2) the evaluation might be biased and favor the LM that generates the
synthetic sentences or labels due to the intrinsic bias of each LM, and (3) any auditor without
access to proprietary LMs or datasets cannot run independent evaluation.

In the following, we explain how we leverage sentiment lexicons, such as SentiWordNet 3.0,
to create building blocks for our framework. Then, we put together building blocks and
generate synthetic inputs to LMs by observing a nesting structure. We adjust the mixing
ratio of ingredients in the recipe to simulate tasks of different difficulties. We depict this
procedure in Figure 2. Finally, we will introduce our evaluation workflow and how we
arrive at a quantifiable metric.

2.2 Constructing synthetic datasets and tasks

Word List. Building a synthetic task requires us to define the synthetic inputs to be used.
Here, we utilize sentiment lexicons with word-level labeling. SentiWordNet labels the
synsets of WORDNET (Miller, 1995) according to the notions of “positivity”, “negativity”,
and “neutrality”. Each of the entries in SentiWordNet has PosScore and NegScore denoting
the positivity and negativity score, and ObjScore is calculated by 1 - (PosScore + NegScore),
denoting the neutrality score. When categorizing these words, we remove the sense number
associated with the words and group words into individual word list based on the following
criteria: for a word w,

• if PosScore > NegScore, we categorize w into the positive word list;

• if PosScore < NegScore, we categorize w into the negative word list;

• if PosScore = NegScore = 0, we categorize w into the neutral word list.
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b. Synthetic sentence generation with nesting parenthesis
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Figure 2: Overview of the sentence generation procedure. In block a, we generate word
lists from SentiWordNet 3.0. In block b, we generate each sentence token following nesting
parenthesis and mixing distribution D. In block c, we show a running example of sequen-
tially generating t6, t7, t8.

We give running examples in the Appendix A.3 for better understanding. In practice, we
perform the procedure on SentiWordNet 3.0 and gather a positive word list with 23147
words, a negative word list with 26440 words, and a neutral word list with 154993 words.
The same procedures can be applied to any sentiment lexicons with word-level labeling,
which will result in different word lists. To this end, we created the word lists from
SentiWordNet 3.0 as depicted in Figure 2(a).

Sentence structure. A recent literature (Papadimitriou & Jurafsky, 2020) explored the
power of music and Java code in training models that transfer to NLP tasks. It further
stated that, not only music and Jave code, non-linguistic artificial parentheses languages
can also train LMs that yield substantial gains compared to random data when testing on
natural language (Chiang & Lee, 2020; Ri & Tsuruoka, 2022; Papadimitriou & Jurafsky,
2023). Motivated by this, we follow one of the abstract structures, nesting parenthesis, when
generating the synthetic sentences in our proxy tasks. The inclusion of the parenthesis is to
guarantee we test for the linguistic structures, whose importance is repeatedly advocated
in literature from both machine learning and cognitive science (Frost et al., 2020; Wilson
et al., 2020; Manning et al., 2020). Specifically, nesting parenthesis involves paired tokens
and a recursive structure. For example, by referring to Figure 2(b), one sees that t1 and t4
are paired words, while t2 and t3 are another paired words. In our example, the words are
hierarchically nested, meaning the token to be paired with t2, which is t3 in our case, should
appear before the pairing token with t1. In other words, it observes a “last in first out” data
structure, and the arcs in Figure 2(b) do not cross.

Sentence generation and difficulty level. With the created word list from above, we will
now explain how to do sentence generation following the structure introduced. Let us
revisit the case in Figure 2(b). Assume we want to generate a positive sentence (label y = 1),
and we already generated the first five tokens t1 : t5 in the sentence with colors denoting
the picked word. Now, to decide the next token, we sample t6 from a mixing distribution D,
where

D = pe · ‘<eos>’ + pn(1 − pe) · last unpaired word + (1 − pn)(1 − pe) · Dnew. (1)

To interpret distribution D, we realize that there are essentially 3 possible outcomes for
the incoming t6 token: (1) it can be the end of sentence indicator ‘<eos>’, (2) it can be the
popped token from the stack that stores the unpaired words, i.e., the last unpaired word,
(3) it can be a new word. If it is to pick a new word, this word will be sampled from the
distribution of new words Dnew, which directly depends on the label y of the sentence to
be generated and the desired task difficulty. For a positive sentence (y = 1), Dnew|y=1 is
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described by the probability density function (PDF) p · fNEU(x) + (1 − p) · fPOS(x), where
p specifies the percentage of neutral words in a synthetic sentence, fNEU gives the PDF of
neutral words, and fPOS gives the PDF of positive words. Similarly, if we are to generate a
negative sentence (y = −1), we have Dnew|y=−1 described by p · fNEU(x)+ (1− p) · fNEG(x),
where fNEG gives the PDF of negative words.

In Figure 2(c), we show a running example of the sentence generation process, where we
flip a coin with 3 outcomes each time to decide on a new token. When the realization is
“new words” (like in t6 and t7), this word will also be pushed to the stack “Unpaired words”
that stores unpaired words. When we are deciding t8, we draw “unpaired words” and
hence t8 is determined by Unpaired words.pop(). In essence, with the generated sentence,
its label is determined by construction, which guarantees the task independence since
the label is not given by an LM. It also allows configurable task difficulty by adjusting
the percentage p of neutral words in a synthetic sentence. That is, it is easier to predict
the sentiment of sentences consisting of 90% positive words and 10% neutral words than
that of sentences constructed all by neutral words. On the whole, by fixing a mixing
ratio p, together with the fixed pe and pn given in the above, one synthetic dataset will be
constructed as well as a resulting proxy sentiment classification task. By varying the mixing
ratio p, a set of tasks with diverse difficulties can be created. In the Appendix A.4, we prove
the task feasibility by demonstrating the separability of generated synthetic datasets by
SentiWordNet sentiment analysis algorithm (Denecke, 2008). With an increasing mixing
ratio p, while the task becomes harder, we show there at least exists an algorithm that can
separate the data to a certain degree, showcasing a lower bound on the optimal classification
strategy. By our workflow of constructing synthetic datasets and tasks, we also guarantee
task equity since the generation process requires no access to any LM or private data, and
can be readily replicated by anyone with limited resources. Furthermore, we note that the
construction of synthetic datasets and tasks described herein is also extendable to other
lexicons and tasks by swapping the lexicon used for extracting word lists.

Lastly, we note that during the construction of synthetic sentences, the probability pe
associated with the special token ‘<eos>’ is determined by its frequency in the English
Wikipedia corpus. For the remaining mass 1− pe, pn portion is assigned to new words, with
its value picked following Papadimitriou & Jurafsky (2020), which is pn = 0.5. Additionally,
when there are no unpaired words in the stack (e.g., when drawing the starting token of the
sentence, or when all the unpaired words are popped), we assign its probability pn(1 − pe)
to new words. We show the length profile of our synthetic data in Appendix A.5.

A workout example. Suppose we are to generate a synthetic task with difficulty p =
0.7. Now, to generate a positive sentence for the task, we consider sampling the first
token t1 following equation 1. At the first token, the mixing distribution D = Dnew since
last unpaired word is an empty stack and the first token can not be the special token
‘<eos>’. We draw t1 from 0.7 · fNEU(x) + 0.3 · fPOS(x) and obtain t1 = ‘nice‘. At the
second token, t2 is sampled from the mixing distribution D = pe · ‘<eos>’ + pn(1 − pe) ·
last unpaired word + (1 − pn)(1 − pe) · Dnew, where last unpaired word= [‘nice‘].

Discussions. The inclusion of parenthesis in our sentence structure guarantees we test
for the linguistic structures but at the same time makes non-grammatical test sets. While
grammar might be crucial in some NLP tasks that requires more advanced reasoning.
For sentiment analysis, we believe it should not have a strong dependency on grammar
(we exclude the scenario of negation which can be detected by a rule-based method). For
example, the reviews “love love fantastic”, “love fantastic love” and their word permutations
should all be predicted as positive, regardless of their grammar. We support this intuition
by additional experiment where we noticed that 86% of the labels given by Huggingface
sentiment analysis pipeline on product reviews classification (Hu & Liu, 2004) remain
the same after removing 284 stop words from the sentences and hence making them non-
grammatical. We leave more details and sentence examples to Appendix A.6 and A.7.
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Algorithm 1 Benchmarking LMs using synthetic datasets (SynTextBench)
Input: Sentiment lexicons S, a range of difficulty levels P, an LM g, threshold accuracy aT .
Output: SynTextBench score that quantifies the robustness-accuracy performance.

1: Construct positive/negative/neutral word lists from sentiment lexicon S.
2: for p in P do
3: Generate a synthetic binary classification task and obtain training set (xtrain, ytrain)

and test set (xtest, ytest).
4: Calculate transformation T1 and T−1 from ztrain

1 = {g(x) | (x, y) ∈ (xtrain, ytrain), y = 1}
and ztrain

−1 = {g(x) | (x, y) ∈ (xtrain, ytrain), y = −1}.
5: Transform training set and test set ẑ1

train = T1(ztrain
1 ), ˆz−1

train = T−1(ztrain
−1 ) and

ẑ1
test = T1(ztest

1 ), ˆz−1
test = T−1(ztest

−1 ).
6: Derive the Bayes optimal classifier f according to sign(µ̃T(ẑ − µ1+µ2

2 )) based on
ẑ1

train and ˆz−1
train, i.e. µ1 = mean(ẑ1

train), µ2 = mean( ˆz−1
train).

7: Read out the accuracy a of f on ẑ1
test and ˆz−1

test, and calculate the average scale

margin δ := avg(∥∆̄z∥2) according to ∥∆̄z∥2 =
|(ẑ− µ1+µ2

2 )T µ̃|
∥µ̃∥2

2
for correctly-classified

sentence embeddings.
8: Denote the accuracy and average margin pair on the task by (ap, δp).
9: end for

10: Define a goodness function s(a) = 1
|P| ∑{p∈P,ap>a} δp, for a ∈ R[0, 1].

11: SynTextBench score =
∫ 1

aT
s(a)da.

2.3 Robustness-accuracy evaluation

Given an LM g, let x, y be the input sentence and its label, z be the sentence embeddings
z = g(x) ∈ Rn, we are interested in evaluating the accuracy of the sentence embedding
classifiers f , and the average distance ∆ from sentence embeddings to the linear classifiers
(i.e., decision margins). We let z1 be {z : z = g(x), y = 1} and z−1 be {z : z = g(x), y = −1}.

Preparing sentence embeddings. Recall that Bert-flow (Li et al., 2020) and Bert-
whitening (Su et al., 2021) transformed the sentence embeddings into an isotropic Gaussian
distribution to remedy the anisotropic behavior in the sentence embedding vector space.
We thereby also perform whitening on sentence representations before we draw the deci-
sion rule on the embeddings. Transforming a set of sentence embeddings of a class into
an isotropic Gaussian involves two steps: (1) model the mean by and covariance Σy of
original embeddings zy, (2) apply a transformation to the embeddings FTS−1/2zy, where
FSFT = Σy is the singular value decomposition of Σy. Nevertheless, since Σy can be ill-
conditioned, directly applying S−1/2 on embeddings zy might amplify noisy signals due
to numerical instability. Thus, we propose to reduce the dimension according to energy-
preservation (Leskovec et al., 2020) (also called variance-based methods by Falini (2022)).

We select to keep K dimensions according to arg mink
∑k

i=1 si
∑n

i=1 si
≥ 0.99, where si = diag(S)[i] is

the i-th largest singular value of S. Till now, we see that the sentence embeddings are trans-
formed to an RK vector space via FT

:,1:kS−1/2
1:k,1:kzy. We perform these operations for both classes

(y = 1 and y = −1) separately. Since we want the transformed embeddings to observe the
original relative distance between two classes, we further scale the distance between two
whitened Gaussians by dInter-class/dIntra-class, where the numerator dInter-class = ∥b1 − b−1∥
calculates the inter-class distance (the distance between two class centers b1 and b−1), and
the denominator dIntra-class =

1
m1+m2

(∑m1
i=1∥zi

1 − b1∥+ ∑m2
j=1∥zj

−1 − b−1∥) calculates the intra-
class distance (the average distance from class data to class mean) with m1 and m2 being
the number of positive sentences and negative sentences, respectively. We let Ty denote
the overall transformation operations and obtain transformed embeddings ẑ1 = T1(z1) and

ˆz−1 = T−1(z−1).
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Decision margins induced by robust Bayes optimal classifiers. Recall that robust Bayes
optimal classifiers explicitly give the optimal classification strategy for class-conditional
Gaussian distribution in the presence of data perturbations (Bhagoji et al., 2019; Dan et al.,
2020). Here, we see that (ẑ, y) are modeled as Pµ1,µ2,IK : ẑ|y = 1 ∼ N (µ1, IK), ẑ|y = −1 ∼
N (µ2, IK), and y ∈ C = {+1,−1}. While finding the robust Bayes optimal classifier
generally involves solving the optimization problem arg min∥z∥2≤ϵ(µ − z)TΣ−1(µ − z) (cf.
Appendix A.1), we can prove that, when the covariance is an identity matrix, the class
priors P(y = 1) = τ, P(y = −1) = 1 − τ, the perturbation radius ϵ, then the optimal
classifier is given as simply f : sign(wT(ẑ − µ1+µ2

2 ) − q/2), where q = log{(1 − τ)/τ},
w = µ̃(1 − ϵ/∥µ̃∥2), and µ̃ = µ1−µ2

2 . Furthermore, when the classes are balanced (i.e.,
τ = 1/2), the robust Bayes optimal classifier overlaps with the Bayes optimal classifier. That
is, the (robust) Bayes optimal classifier is plainly sign(µ̃T(ẑ − µ1+µ2

2 )), which is independent
of ϵ. We then use this given classifier to calculate the accuracy on the synthetic datasets.
In fact, we prove in Appendix A.8 that, as long as µ̃ lies completely within a degenerate
subspace of the eigenspace of the covariance matrix (i.e., with eigenpairs {(λk, vk), k ∈ [n]},
for ∀ i, j ∈{k : λk ̸= 0, µ̃Tvk ̸= 0}, λi = λj = λ), the ϵ-robust Bayes optimal classifiers
overlap for all ϵ. In the case of an identity covariance matrix, the degenerated subspace of
the eigenspace expands the whole RK, hence µ̃ lies in the space naturally.

Now that we have specified the optimal robust classification rule on the transformed
sentence embeddings, we write out the decision margin induced by the classifiers using
an informal but more intuitive statement: For any sample z, the Bayes optimal classifier f
of class-balanced class-conditional Gaussian distribution Pµ1,µ2,IK , yields a decision margin

of ∥∆∥2 =
|(ẑ− µ1+µ2

2 )T µ̃|
∥µ̃∥2

, and if we scale the margin by the distance between two Gaussian

centers ∥µ̃∥2, we obtain a scaled margin of ∥∆̄z∥2 =
|(ẑ− µ1+µ2

2 )T µ̃|
∥µ̃∥2

2
. We give the formal

results for the generic class prior in Appendix A.8. To this end, we have prepared sentence
embeddings and specified the way of calculating decision margins induced by a robust Bayes
optimal classifier. In the following, we will state the complete algorithm for characterizing
robustness-accuracy performance of LMs using synthetic datasets.

2.4 SynTextBench score and algorithm

With Section 2.2 and Section 2.3, we now can simulate synthetic tasks of a configured level
of difficulty and evaluate their accuracy and margin. In our benchmarking process, we
essentially build on this foundation to generate a sequence of tasks with different difficulty
levels and inspect how the magnitude of decision margins changes with the classifier
accuracy. In terms of robustness-accuracy characterization, it is desirable for an LM to
consistently yield high classification accuracy, while maintaining a big decision margin (that
is, less sensitive to perturbations in the embedding space). The pseudocode of the proposed
framework, SynTextBench, is given in Algorithm 1.

In practice, we let P = {0, 0.05, . . . , 0.9, 0.95}, and subsequently generate 20 synthetic
datasets with p = 0 being the easiest and p = 0.95 being the hardest (cf. Section 2.2).
Then, we perform analysis on the sentence embeddings of various synthetic datasets, and
threshold the accuracy at aT based on utility. The threshold serves as a penalty for poor
sentence embeddings that lead to an undesirable accuracy under this threshold, matching
our task substance of testing LM’s ability to preserve linear separability. By referring to
Figure 1, Line 1 in Algorithm 1 determines the word lists from a given lexicon. From
Line 2 to Line 9, the for-loop generates one synthetic dataset at one time, on which we
compute an (accuracy, average margin) pair (ap, δp) and draw one point on the margin-
accuracy 2D plot as in Figure 1. We apply Algorithm 1 on various models and obtain a
margin-accuracy curve for each model. Since we not only care about the curvature of the
curve but also how the (accuracy, average margin) pairs span on the curve, we define a
goodness function s(a) = 1

|P| ∑{p∈P,ap>a} δp on R[0, 1] in Line 10 to account for the span. By
our definition, s(a) will be a monotonically decreasing function (e.g., Appendix A.9) and
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calculate the expected margin conditioned on the accuracy level. The final SynTextBench
score is defined by the integration over the desirable range of threshold accuracy in Line 11,
i.e. SynTextBench score =

∫ 1
aT

s(a)da. We use SynTextBench as a quantifiable score to inform
the accuracy-robustness aspect of a pretrained LM. In the later section, we will demonstrate
the metric informativeness by measuring the correlation between SynTextBench scores and
the average real-world sentence classification task performance.

3 Experiments

3.1 Setups

LMs. In the experiment, we will analyze the pretrained LMs predominantly considered by
the sentence embedding literature Gao et al. (2021); Su et al. (2021); Chuang et al. (2022), and
also larger models such as LLaMA and OPT (Touvron et al., 2023a;b; Zhang et al., 2022)..
Specifically, we consider encoder models such as BERTbase, BERTlarge (Devlin et al., 2019),
RoBERTabase (Liu et al., 2019), DiffCSE-B, DiffCSE-R (Chuang et al., 2022); encoder-decoder
models such as T5base, T5large (Raffel et al., 2020), ST5 (Ni et al., 2022); and decoder models
such as DialogRPT (Gao et al., 2020)), LLaMA-7B, LLaMA-13B, LLaMA-30B (Touvron et al.,
2023a), LLaMA-2-7B, LLaMA-2-13B (Touvron et al., 2023b), OPT-13B, OPT-30B (Zhang et al.,
2022). For models that have an encoder component (encoder-only or encoder-decoder), we
use the average output from the first and the last layer as sentence embeddings. For the
decoder-only model, we use the embedding of the last token as sentence embeddings.

Baselines. We followed the open-source implementation of the literature (Whitney et al.,
2020) and fed the pretrained LMs with synthetic texts generated according to Section 2.2 and
reported the validation accuracy (Val loss), minimum description length (MDL), surplus
description length (SDL), and ϵ-sample complexity (ϵSC) as baselines (Blier & Ollivier, 2018;
Voita & Titov, 2020; Whitney et al., 2020). Since these methods take one dataset as inputs,
we choose a relatively easy synthetic proxy task generated by p = 0.2 as the input dataset.

Objectives. Through the experiments, our main aim is to verify the feasibility of making per-
formance assessments of possible downstream tasks by real-data-free evaluation methods.
To achieve this, we will compare the Pearson correlation coefficients of assessments given
by different real-data-free evaluation methods with the performance on real-world tasks.
Since SynTextBench is intended to inform the robustness-accuracy performance, we will
report both the accuracy and robustness on real-world tasks for studying correlation. We
use PWWS attack (Ren et al., 2019) through TextAttack, a Python framework for adversarial
attacks in NLP, to generate attacks. Essentially, the attacker will perturb the inputs gradually
by changing more and more words until the perturbation leads to a wrong classification
result. Therefore, we report the average number of perturbed words in a successful attack as
an indicator of the level of model robustness. We will also demonstrate how SynTextBench
can be used to do attribute comparisons. Finally, as more attentions have been drawn
to large LMs lately, we will also conduct an extended study on large LMs and include
discussions on in-context learning performance on SynTextBench synthetic data. We defer
experimental details to the appendix due to the page limit.

3.2 Performance evaluation and discussion

We evaluate encoder models listed in Section 3.1 by SynTextBench framework as well as on
real-world sentence embedding tasks. Specifically, we simulated 20 synthetic datasets as
described in Section 2.4 and obtained one goodness function s(a) for each LM. We plot these
functions together in Figure 7, from which the final SynTextBench score can be determined
by definition. We refer readers to Appendix Table 7 for the exact numbers due to the page
limit. To gauge the performance of these pretrained LMs on downstream real-world tasks,
we evaluate the given models on SentEval (the Evaluation Toolkit for Universal Sentence
Representations (Conneau & Kiela, 2018)) and show the detailed numbers in Appendix
Table 6 and Figure 8. SentEval tasks include seven semantic textual similarity tasks (denoted
by “STS tasks”), where results are given by the Spearman’s correlation with output range
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Table 1: Correlation between real-data-free
evaluation metric and real-data accuracy at
different synthetic dataset sizes.

n 4096 8192 16384 32768
Val loss 0.29±0.50 0.65±0.00 0.61±0.01 0.27±0.02
MDL 0.57±0.11 0.52±0.04 0.51±0.03 0.48±0.03
SDL, ε=1 0.57±0.11 0.51±0.04 0.43±0.02 0.31±0.01
εSC, ε=1 - - - -0.04±0.00
SynTextBench 0.94±0.01 0.97±0.01 0.96±0.00 0.93±0.00

Table 2: Aggregated correlation with real-data-
free evaluation metric and the robustness-
accuracy performance, and its breakdown.

Correlation. w/ Rob.-Acc. Rob.-STS Rob.-Transfer
Val loss -0.06±0.15 0.08±0.13 -0.13±0.24
MDL 0.64±0.06 0.55±0.08 0.62±0.03
SDL, ε=1 0.60±0.02 0.51±0.04 0.58±0.03
εSC, ε=1 - - -
SynTextBench 0.76±0.04 0.76±0.03 0.69±0.05

[−1, 1], and seven transfer learning tasks (denoted by “Transfer task”), where results are
given by the standard accuracy with range [0, 1]. We scale the former to the same range as
the latter, [0, 1], and take an average as the final accuracy indicator.

Correlation with real-world tasks. To demonstrate the informativeness of SynTextBench
score, we list the Pearson correlation coefficients between real-data-free evaluation methods
and the accuracy of SentEval tasks in Table 1. Five real-data-free metrics are considered that
includes Val loss, MDL, SDL, εSC, and the proposed SynTextBench. Since the smaller the
baseline metrics are, the better, we add a negative sign in front of them when calculating
the Pearson correlation coefficient. As we have the flexibility of generating synthetic
datasets with various sizes (number of sentences), we compare four configurations n =
{4096, 8192, 16384, 32768}. From Table 1, we observe that SynTextBench consistently gives
scores highly correlated with real-world task accuracy, with correlation coefficients that are
above 0.9. For the four baselines, the highest correlation ever achieved is when n = 8192
and evaluated by Val loss, 0.65. It is noteworthy that SynTextBench is also a stabler metric
as substantiated by the smaller standard deviation.

Ablation on the nesting structure. To showcase the effect of the nesting structure, we
see that no nesting structure is a special case of our proposed framework when pn = 0
(cf. Equation 1). In Table 1, we have SynTextBench(pn = 0.5) = 0.97. In comparison,
we run the analysis for pn = 0 and obtain SynTextBench(pn = 0) = 0.92. In conclusion,
SynTextBench, with both parameters, outperform the baselines by large margins. Between
the two, SynTextBench with the imposed structure further improves the correlation.

Robustness implications. To understand how real-data-free evaluation methods correlate
with real-world task robustness-accuracy performance, we further analyze the correlation
with the robustness indicator, the average number of perturbed words, on Transfer tasks
when n = 8192. We focus on these tasks as they are classification tasks where adversarial
attacks are well-defined. To combine robustness correlation with accuracy correlation, we
add up two ranking vectors by robustness and accuracy measures, and calculate its Pearson
correlation with the ranking by one of the real-data-free evaluation metrics (Val loss, MDL,
SDL, ϵSC, SynTextBench). This way, we effectively obtain the aggregated Spearman corre-
lation coefficient between real-data-free evaluation metrics and joint robustness-accuracy
performance. We refer readers to Appendix A.12 for more experimental details. We list
the results in Table 2. From the “Rob.-Acc.” column, we see SynTextBench has an overall
higher correlation with robustness-accuracy performance compared to other baselines. To
be more precise, SynTextBench shows a coefficient of 0.76, whereas MDL and SDL are
0.64 and 0.60. Recall that accuracy results were aggregated from STS tasks and Transfer
tasks. In Table 2, we also show how each component contributes to the correlation. In the
“Rob.-STS” and “Rob.-Transfer” columns, we use only STS or Transfer task results as the
accuracy measure when ranking the models, and the remaining steps follow. From the two
columns, we see that SynTextBench still shows a stronger correlation compared to baselines,
while having a slightly better correlation with Robustness-STS accuracy performance than
Robustness-Transfer accuracy performance.

Case study on model comparisons. Besides having high correlation with real-world task
performance, we show how SynTextBench can be used to make model comparisons. From
Table 7, one sees that, the SynTextBench score of ST5 is significantly higher than that of
T5 across all dataset sizes n, e.g., ST5’s 0.223 vs. T5’s 0.130 when n = 8192. This indicates
contrastive fine-tuning is beneficial for improving sentence embeddings. This conclusion is
in sync with the observations from real-world tasks, where we see ST5 yields both higher
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Table 4: Pearson correlation comparison between the in-context learning accuracy on Syn-
TextBench synthetic tasks and the average in-context learning accuracy on the real-world
tasks of decoder models.

n Name LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-2-7B LLaMA-2-13B OPT-13B OPT-30B Pearson
Reallife acc. 73.58 68.31 80.07 68.37 79.80 70.49 73.35 1.0

8192 SynTextBench 50.82 53.43 59.09 51.48 58.83 52.87 51.79 0.813

accuracy and robustness according to Table 7 and Table 11. Specifically, ST5 has an average
accuracy of 90.17 and robustness 13.23, whereas T5 has an average accuracy of 82.78 and
robustness 12.21.

3.3 Extended study on large LMs

Table 3: Correlation between real-
data-free evaluation metric and real-
data accuracy.

Name Pearson correlation
Val loss 0.80

MDL -0.47
SDL, ε = 1 -0.55
εSC, ε = 1 -

SynTextBench 0.87

Since SynTextBench focuses on the sentence embed-
dings of LMs, of which larger decoder models gen-
erally do not have better performance than smaller
encoder models (Ethayarajh, 2019), we have given
most of our analysis on encoder models in Gao et al.
(2021). Here, to demonstrate the generality of Syn-
TextBench to various LM types, we analyze more
large decoder LMs such as LLaMA and OPT (Tou-
vron et al., 2023a;b; Zhang et al., 2022).Similar to
Table 1, we calculated the Pearson correlation coef-
ficients between real-data-free evaluation methods
and the accuracy of SentEval tasks in Table 3. According to the table, SynTextBench also
gives scores highly correlated with real-world task accuracy on decoder models, with a
correlation coefficient of 0.87. We refer readers to Appendix Table 9 for the complete results.

In-context learning Besides evaluating linear probing performance on our SynTextBench
synthetic tasks, we also evaluate the few-shot in-context learning (ICL) performance on
SentEval transfer tasks and SynTextBench synthetic task. We do not include STS tasks
since they are typically measured by cosine distance, whose ICL prompts are less obvious
to us. We also excluded TREC as we have not found proper prompts that could lead
to reasonable accuracy. The instructions we give include two demonstrations with one
demonstration for each class. For example, in CR (customer review), we use the instruction:
“Answer the sentiment of the following review, either Positive or Negative. \n\nQ: We
tried it out christmas night and it worked great .\nA: Positive\n\nQ: very bad quality .\nA:
Negative\n\n”.

In Table 4, we calculate the correlation between the ICL accuracy on SynTextBench synthetic
tasks and the average ICL accuracy on subset SentEval tasks. We can see that the ICL
accuracy on SynTextBench synthetic tasks shows strong correlation (above 0.8) with ICL
accuracy on SentEval tasks. Future research will also be dedicated to investigate whether the
success of SynTextBench can be explained by its ability to check the compositional features
(e.g.induction head (Olsson et al., 2022)) of transformers.

4 Conclusion

In this paper, we have proposed SynTextBench, a novel framework for evaluating the
accuracy and robustness of LM sentence embeddings. SynTextBench is a configurable
real-date-free lightweight testbed that generates steerable synthetic language datasets and
proxy tasks, avoiding the risk of test-data leakage. SynTextBench is the pioneering effort
in developing synthetic benchmarking methodologies for NLP, with a primary focus on
sentence classification tasks and does not cover other NLP tasks such as question answering,
machine translation, or summarization. By concentrating on this specific aspect, we have
provided a solid foundation upon which future research can build.
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A.1 Related Work and Background

Sentence representations. To obtain performant LMs, learning universal sentence rep-
resentations that capture rich information for various downstream NLP tasks without
task-specific finetuning is an active research field and has also been studied extensively
in the past years (Kiros et al., 2015; Conneau et al., 2017; Gao et al., 2019; Li et al., 2020;
Su et al., 2021; Giorgi et al., 2021; Gao et al., 2021; Chuang et al., 2022). While learning to
extract ideal sentence embeddings, (Gao et al., 2019; Li et al., 2020; Ethayarajh, 2019) have
pinpointed the anisotropic behavior in the sentence embedding vector space as a reason
behind sentence embeddings’ poor capture of semantic information. To remedy the situa-
tion, Bert-flow (Li et al., 2020) and Bert-whitening (Su et al., 2021) transformed the sentence
embedding distribution into an isotropic Gaussian distribution through normalizing flow
and whitening post-processing. Through contrastive learning, SimCSE (Gao et al., 2021)
and DiffCSE (Chuang et al., 2022) also achieved new state-of-the-art sentence embedding
performance by promoting uniformity and alignment (Wang & Isola, 2020).

Evaluations of pretrained models. In evaluating the performance of LMs, the current de
facto evaluation paradigm is to utilize widely-used NLP benchmarks such as the General
Language Understanding Evaluation (GLUE (Wang et al., 2018)/SuperGLUE (Wang et al.,
2019)) benchmark, the Stanford Question Answering Dataset (SQuAD v1.1 (Rajpurkar
et al., 2016)/v2.0 (Rajpurkar et al., 2018)), the Situations With Adversarial Generations
(SWAG (Zellers et al., 2018)) dataset, the ReAding Comprehension from Examinations
(RACE (Lai et al., 2017)) dataset, the Evaluation Toolkit for Universal Sentence Represen-
tations (SentEval (Conneau & Kiela, 2018)), BIG-Bench (Srivastava et al., 2022), etc. In
many cases, these NLP benchmarks are supersets of datasets, e.g., GLUE is a collection
of 9 datasets for evaluating natural language understanding systems, and SentEval is a
collection of 7 Semantic Textual Similarity (STS) tasks and 7 transfer datasets that have
partial overlap with GLUE. The heavy reliance on real-world tasks can be exemplified by
broad literature. For example, Bert (Devlin et al., 2019) was evaluated on GLUE, SQuAD
v1.1/2.0, SWAG; Roberta (Liu et al., 2019) was evaluated on GLUE, SQuAD v1.1/2.0, RACE;
and T5 (Raffel et al., 2020) was evaluated on GLUE/SuperGLUE, SQuAD, CNN/Daily Mail
abstractive summarization and WMT translation. HELM (Liang et al., 2022) proposes a
holistic evaluation framework for LMs that measures 7 metrics on 42 scenarios. However,
when confronting the challenge of test-data leakage, to the best of our knowledge, there
is no real-data-free evaluation method for NLP pretrained representations. In a recent
literature (Ko et al., 2022), authors reported the validation loss (Val loss), minimum descrip-
tion length (MDL) (Blier & Ollivier, 2018; Voita & Titov, 2020), surplus description length
(SDL) and ϵ-sample complexity (ϵSC) (Whitney et al., 2020) on class-conditional Gaussian
distribution data as an effort to build task-agnostic evaluation baselines for pretrained
representations in computer vision. Our proposed framework differs from this line of work
in that we focus on the domain of natural language processing and we do not assume
the data inputs are sampled from an idealized distribution. Instead, we create synthetic
sentences and proxy tasks based on a lexical resource for LM evaluation.

Sentiment lexicons. SentiWordNet 3.0 (Baccianella et al., 2010) is a lexical resource that pro-
vides sentiment information for each word in WordNet (Miller, 1995), a widely-used lexical
database of English words and their relationships. SentiWordNet 3.0 is an improved version
of SentiWordNet 1.0 (Esuli & Sebastiani, 2006), 1.1 (Esuli & Sebastiani, 2007), 2.0 (Esuli,
2008). SentiWordNet automatically assigns synsets of WordNet according to notions of
“positivity”, “negativity”, and “neutrality”. The sentiment scores of a synset are assigned
on a scale from 0.0 to 1.0 and sum to 1, reflecting a fine-grained opinion-related word-level
labeling. SentiWordNet has been used in a variety of natural language processing tasks, such
as sentiment analysis (Denecke, 2008; Ohana & Tierney, 2009; Khan et al., 2016), opinion
mining (Husnain et al., 2021; Dadhich & Thankachan, 2021), representation learning (Ke
et al., 2020), and curriculum learning (Rao et al., 2020). Besides SentiWrodNet, other sen-
timent lexicons include Affective Norms for English Words (ANEW) (Bradley & Lang),
Warriner lexicon (Warriner et al., 2013), a new ANEW (Nielsen, 2011), and ANEW+ (Shaikh
et al., 2016). In this paper, we will demonstrate the use of sentiment lexicon with word-level
labels in constructing synthetic datasets using SentiWordNet 3.0; however, the framework
proposed in this paper can take any lexicon with word-level labels. We also envision our
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framework to benefit from a richer vocabulary and extend to other value lexicons like moral
lexicons (Rezapour et al., 2019).

Robust Bayes optimal classifier. Despite the difficulty of characterizing the optimal classi-
fier with the minimum loss for generic data, for data drawn from class-conditional Gaussian
distribution, the explicit optimal strategy is given by Fisher’s linear discriminant rule (John-
son et al., 2002; Petridis & Perantonis, 2004). Likewise, the optimal classification strategy
can also be given for such data in the presence of input perturbations (Bhagoji et al., 2019;
Dan et al., 2020). Let N (µ, Σ) denote Gaussian distribution with mean µ and variance Σ.
Generally, for binary classification problems with data pair (x, y) generated from a prob-
ability distribution Pµ,Σ: x|y = 1 ∼ N (µ, Σ), x|y = −1 ∼ N (−µ, Σ), the classifier that
minimizes the adversarial loss (Awasthi et al., 2021) maxx′ :∥x′−x∥≤ϵ 1( f (x′) ̸= y), the robust
Bayes optimal classifier (Bhagoji et al., 2019; Dan et al., 2020), is given by sign(wT

0 x), where
w0 = Σ−1 (µ − zΣ(µ)) and zΣ is the solution of the convex problem

arg min
∥z∥2≤ϵ

(µ − z)TΣ−1(µ − z) (2)

In the following sections, we will exploit robust Bayes optimal classifier in giving the explicit
optimal classifier on whitened sentence embeddings and develop our theoretical groundings
on top of it.

A.2 Generating synthetic datasets with a language model

To generate synthetic sentences with configurable difficulties with an LM, we reuse the
word lists constructed in Section 2.2 and constrain the LM vocabulary to be within the
word lists. Concretely, let V be the original tokenizer vocabulary, POS be the set of positive
words, NEU be the set of neutral words, NEG be the set of negative words, and STOP be
the set of stop words (see A.6), then we constrain the LM vocabulary to be V̄ = Ṽ ∪ STOP,
where Ṽ composes of p × 100% NEU ∩ V elements and (1 − p)× 100% POS ∩ V elements
for positive sentence generations ((1 − p)× 100% NEG ∩ V elements for negative sentence
generations). Similar to the use of the mixing ratio p in Section 2.2, we intend to create a
set of tasks with diverse difficulties herein via varying p. We generate synthetic sentences
by completing any of the starting tokens {”There”, ”I”, ”You”, ”She”, ”He”, ”It”, ”They”,
”The”}. We print some generated sentence examples below:

POSITIVE

• “She’s a sweet and kind girl.”

• “The one thing that you have to do is look for other people.”

• “There are also a number of new content that have been rolled out in recent times.”

• “I had a lot of fun with this design.”

• “She was one of several of several hundred people in the group to speak out against
the police and their use of force.”

• “You are very close to the truth.... if you are one of the first to see what is being
done, that is very much a sign of an error.... you have to be very clear that it is a
good thing that you are doing what you have to do......”

NEGATIVE

• “They were the worst of the worst.”

• “She has no other option.”

• “There’s no question that the new and aggressive international community is headed
for a bad start with its future in mind.”

• “They do not want to see you there.”

• “There’s some real bad blood out there.”
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• “I just want to make sure that we are talking about our state government.”

Discussions. Using LM-generated synthetic test sets, the rest of robustness-accuracy evalu-
ation follows Section 2.3 and 2.4. We calculate the SynTextBench scores from LM-generated
synthetic sentences and find that the Pearson correlation coefficient between these scores
and the actual downstream task performance is 0.633±0.011. This is in contrast to the higher
correlation coefficient of above 0.9 observed from the LM-free synthetic sentences discussed
in Section 2.2, as shown in Table 1.

Figure 3: The average percentage of positive/negative words in the generated labeled posi-
tive/negative synthetic sentences. With an increasing mixing ratio p, we aim at configuring
the task to be harder (data to be more mixed). While the percentage of positive/negative
words does decrease in both LM-free synthetic sentences and LM-generated synthetic
sentences, we have more control over LM-free generations in generating tasks at various
difficulty levels (various y-axis values).

A.3 SentiWordNet 3.0 synsets

We drop columns POS, ID, GLOSS in the examples for easier illustration. By performing
the procedure on synsets in Table 5, we obtain a positive word list {able, living, accurate,
concrete, active}, a negative word list {unfaithful, unable}, a neutral word list {acroscopic,
straight}.

Table 5: Examples of synsets in SentiWordNet 3.0.

SynsetTerms PosScore NegScore SynsetTerms PosScore NegScore
able#1 0.125 0 unable#1 0 0.75

acroscopic#1 0 0 unquestioning#2 0.5 0.5
living#3 0.5 0.125 concrete#1 0.625 0.25

accurate#1 0.5 0 straight#5 0 0
unfaithful#4 0 0.5 active#5 0.5 0.125
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A.4 Task feasibility

Figure 4: The reference accuracy given by SentiWordNet sentiment analysis. With an
increasing mixing ratio p, the task becomes harder and the reference accuracy also shows a
decreasing trend.

A.5 Histograms of synthetic datasets versus English Wikipedia corpus

Figure 5: The histograms of sentence lengths in the English Wikipedia corpus (stop words
removed) and the constructed synthetic corpus (positive/negative sentences).

A.6 List of stop words

{‘must’, ‘meanwhile’, ‘among’, ‘same’, ‘you’, ‘formerly’, ‘already’, ‘take’, ‘he’, ‘thereupon’,
‘done’, ‘anyhow’, ‘almost’, ‘ca’, ‘regarding’, ‘will’, ‘mostly’, ‘say’, ‘again’, ‘forty’, ‘seemed’,
‘still’, ‘they’, “re’, ‘seem’, ‘latter’, ‘why’, ‘hers’, ‘thereby’, ‘themselves’, ‘your’, ‘nine’, ‘be-
come’, ‘may’, ‘beyond’, ‘it’, ‘back’, ‘our’, ‘himself’, “m’, ‘via’, ‘we’, ‘seems’, ‘throughout’,
‘yourself’, ‘bottom’, ‘only’, ‘whereby’, ‘move’, ‘else’, ‘front’, ‘within’, ‘after’, ‘every’, ‘quite’,
‘hereby’, ‘now’, ‘since’, ‘became’, ‘herself’, ‘behind’, ‘any’, ‘those’, ‘used’, ‘indeed’, ‘’ve’,
‘first’, ‘moreover’, ‘ourselves’, ‘she’, ‘should’, ‘her’, ‘various’, ‘few’, ‘hundred’, ‘whoever’,
‘give’, ‘latterly’, ‘between’, ‘in’, ‘most’, ‘make’, ‘sixty’, ‘therefore’, ”’s”, ’hence’, ‘amount’,
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‘otherwise’, ‘’m’, ‘’re’, ‘’s’, ‘are’, ‘could’, ‘along’, ‘ours’, ‘of’, ‘that’, ‘everywhere’, ‘during’,
‘his’, ‘then’, ‘fifty’, ‘namely’, ‘when’, ‘around’, ‘all’, ‘keep’, ‘these’, ‘’ll’, ‘third’, ‘being’,
‘thus’, ‘more’, “s’, ‘is’, ‘where’, ‘further’, ‘them’, ‘towards’, ‘next’, ‘and’, ‘a’, ‘does’, ‘here’,
‘ten’, ‘whom’, ‘except’, ‘myself’, ‘somehow’, ‘ever’, ‘enough’, ‘there’, ‘mine’, ‘other’, ‘so’,
‘hereupon’, ‘who’, ‘eight’, ‘one’, ‘hereafter’, ‘amongst’, ‘seeming’, ‘its’, ‘each’, ‘sometime’,
‘this’, ‘me’, “ll’, ‘until’, ‘him’, ‘because’, ‘many’, ‘anyway’, ‘part’, ‘from’, ‘have’, ‘over’, ‘to’,
”’re”, ’becomes’, ‘too’, ‘as’, ‘name’, ‘whence’, ‘whole’, ‘herein’, ‘everything’, ‘against’, ‘call’,
‘upon’, ‘both’, ‘i’, ‘whenever’, ‘across’, ‘anywhere’, ‘six’, ‘us’, ‘thereafter’, ‘also’, ‘former’,
‘whither’, ‘whose’, ‘such’, ‘really’, ‘was’, ‘’d’, ‘someone’, “ve’, ‘eleven’, ‘wherein’, ‘yours’,
‘by’, ‘their’, ‘beside’, ‘or’, ‘re’, ‘has’, ‘off’, ‘which’, ‘put’, ‘whether’, ‘per’, ‘four’, ‘whereafter’,
‘often’, ‘doing’, ‘had’, ‘out’, ‘some’, ‘fifteen’, ‘others’, ‘once’, ‘somewhere’, ‘either’, ‘besides’,
‘though’, ‘been’, ‘do’, ‘very’, ‘thru’, ‘go’, ‘please’, ‘sometimes’, ”’ll”, ’perhaps’, ‘whereupon’,
‘whatever’, ‘about’, ‘for’, ‘itself’, ‘thence’, ‘at’, ‘how’, ‘made’, ‘three’, ‘might’, ‘another’, ‘did’,
‘alone’, ‘elsewhere’, ‘toward’, ‘were’, ‘would’, ‘due’, ‘what’, ‘an’, ‘wherever’, ‘be’, ‘can’,
‘something’, ‘side’, ”’d”, ’with’, ”’m”, ’am’, ‘therein’, ‘into’, ‘through’, ”’ve”, ’everyone’, ‘on’,
‘my’, ‘even’, ‘own’, ‘see’, ‘several’, ‘two’, ‘afterwards’, ‘show’, “d’, ‘beforehand’, ‘nowhere’,
‘becoming’, ‘last’, ‘onto’, ‘the’, ‘yourselves’, ‘five’, ‘anyone’, ‘together’, ‘before’, ‘always’,
‘get’, ‘using’}

A.7 Synthetic sentence examples and discussions

POSITIVE

• “perfectibility lotus-eater shine shine health care health care pleasant-tasting”
• “convincingly gruesomely gruesomely convincingly deserve feeder exhaust exhaust

debonaire stuffily stuffily anne sexton wholeness wholeness rarefy conformable
pretension pretension”

• “smarmily smarmily fairness covetously infuse soothing subtly subtly soothing”
• “precious grace the right way the right way absoluteness absoluteness”
• “personal relation pleasurable sleekness cryptographically cryptographically cor-

rect delineate sink in authenticated”
• “perfectibility lotus-eater shine shine health care health care pleasant-tasting”

NEGATIVE

• “unpleasant unpleasant mortal sympathetic dead dead choker nubbly fallout”
• “counterrevolutionary apprehensive thunderclap unskilled unskilled thunderclap

apprehensive cheat shanny shanny cheat counterrevolutionary smooth smooth de-
cayed decayed imagine imagine loser unpicturesque unnaturalized unnaturalized
unrelieved unrelieved unhewn”

• “unpleasant unpleasant mortal sympathetic dead dead choker nubbly fallout”
• ‘jostling weka offend engorged fouled fouled engorged intermittence space im-

paction impaction space intermittence dishonesty disgustingly”
• “blindly blindly”
• “second class criminal possession lousiness nonextensile linanthus dianthiflorus

nonarbitrary regular foolishness stabbing”

Discussions. As we mentioned earlier in the paper, the inclusion of the parenthesis is to
guarantee we test for the linguistic structures, whose importance is repeatedly advocated
in literatures from both machine learning and cognitive science. Therefore, when building
synthetic test for the linguistic structures, we also follow the parenthesis and thus have
non-grammatical test sets.

We would like to motivate their use based on the following example of sentiment analysis in
food reviews. Upon seeing the review “love love fantastic!” in a food review, a reasonable
language model should recognize the entailed positive sentiment, even though the sentence
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is non-grammatical. In our framework, to test the other basic skill for language acquisition
in a systematic and scalable manner, we put words associated with binary labels (positive
and negative) in the synthetic sentence and test sentence embeddings of LMs in identifying
the words for sentence classification. Related to our setups herein, Krishna et al. (2021) also
studies a range of summarization tasks from nonsense documents, in which a task is also
designed to classify whether there are keywords indicating positive or negative sentiments
(Krishna et al. (2021), Figure 1). Additional evidence of the usage of non-grammatical
sentences can be found in Bhatia et al. (2023), where authors also exploit non-grammartical
synthetic sentence (Bhatia et al. (2023), Appendix A) for constructing Gaussian logistic
regression problems in improving reasoning ability in LMs, which manifests the value
of non-grammatical language in learning/testing basic skills. Our high correlation with
real-world tasks further suggests that better understanding of the synthetic sentences indeed
implies better performance on real tasks. By construction, our framework is not limited
to sentiment analysis as one can readily change the base lexicon to test how LMs identify
words describing other notions. For example, if we use the moral foundation lexicon, one
can test how each LM identifies words that describe care, fairness, loyalty, authority, and
sanctity.

A.8 Robust Bayes optimal classifier and proofs

To motivate our findings, we first plot the Bayes optimal robust classifiers together with the
Bayes optimal classifier in three 2D cases in Figure 6. From the plot, we see that as long
as the direction of µ is in parallel to one of the two eigenvectors, the robust Bayes optimal
classifiers would overlap with the Bayes optimal classifier.

(a) No alignment (b) µ ∥ v1 (c) µ ∥ v2

Figure 6: Three 2D examples of the Bayes optimal classifier and robust Bayes optimal
classifiers with different magnitudes of expected perturbation ϵ. Figure 6(a) - no alignment
between the mean vector µ and the eigenvectors. Figure 6(b) and Figure 6(c) - µ is parallel
to the eigenvector corresponding to either of the two eigenvalues.

To generalize the result, we prove the following theorem that specifies a sufficient condition
for all ϵ-robust Bayes optimal classifiers to overlap with each other (including ϵ = 0, i.e.
Bayes optimal classifier). Intuitively, if the ϵ-robust Bayes optimal classifiers overlap with
the Bayes optimal classifiers, then there is no robustness-accuracy trade-off.
Result A.1. The ϵ-robust Bayes optimal classifiers overlap for all ϵ if the vector differ-
ence µ between the centers of the two gaussians lies completely within a degenerate sub-
space of the eigenspace of the covariance matrix, i.e. with eigenpairs {(λk, vk), k ∈ [n]},
for ∀ i, j ∈{k : λk ̸= 0, µTvk ̸= 0}, λi = λj = λ.

Proof. Let v1, . . . , vn and λ1, . . . , λn be the orthonormal eigenbasis and the correspond-
ing eigenvalues of the covariance matrix Σ, then we have Σ−1 = ∑n

i=1
1
λi

vivT
i . Follow-

ing Dan et al. (2020), we see that the ϵ-robust classifier is given as sign wϵ⊤x, where
wϵ = Σ−1 (µ − zϵ

Σ(µ)
)

and

zϵ
Σ(µ) = arg min

∥z∥≤ϵ

∥µ − z∥2
Σ−1 .
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Let µ = ∑n
i=1 aivi and we re-parameterize z = ∑n

i=1 bivi. Then,

zϵ
Σ(µ) =

n

∑
i=1

bϵ
i vi, where bϵ = ⟨bϵ

i ⟩n
i=1 = arg min

∑n
i=1 b2

i ≤ϵ2

n

∑
i=1

(ai − bi)
2

λi

By using the Lagrange multiplier γϵ with first-order optimality condition, we see that ∀ i

bϵ
i − ai

λi
+ γϵbϵ

i = 0 ⇐⇒
ai − bϵ

i
λi

= γϵbϵ
i ⇐⇒ bϵ

i =
ai

1 + λiγϵ
(3)

and ∑n
i=1

(
bϵ

i
)2 ≤ ϵ2. In order for all the robust classifiers to overlap we need wϵ/∥wϵ∥ to

the independent of ϵ. That is,

wϵ

∥wϵ∥ =
∑n

i=1 vi
ai−bϵ

i
λi√

∑n
i=1

(
ai−bϵ

i
λi

)2
=

∑n
i=1 γϵbϵ

i vi√
∑n

i=1 (γ
ϵ)2 (bϵ

i
)2

=
∑n

i=1 bϵ
i vi√

∑n
i=1

(
bϵ

i
)2

=
∑i∈S bϵ

i vi√
∑n

i∈S
(
bϵ

i
)2

,

where the S in the last equation denotes the set of indices for which ai ̸= 0. For ∀ i with
ai = 0, from equation 3, we clearly have bϵ

i = 0.

The condition µ lies completely within a degenerate subspace of the eigenspace of Σ is
equivalent to saying λi = λj = λ for ∀ i, j ∈ S. In this case, we see that for ∀ i ∈ S,

ϵ2 ≥
n

∑
i=1

(bϵ
i )

2 = ∑
i∈S

(bϵ
i )

2 =

(
1

1 + λγϵ

)2

∑
i∈S

a2
i ,

so 1
1+λγϵ

≤ ϵ 1√
∑i∈S a2

i
, bϵ

i ≤ ϵ√
∑i∈S a2

i
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which is independent of ϵ.

Result A.2. Consider the robust Bayes optimal classifier1, fϵ, for Pµ1,µ2,Id with class prior
P(y = 1) = τ, P(y = −1) = 1 − τ, it is in the following form

fϵ(x) = sign

{(
x − µ1 + µ2

2

)T
µ̃(1 − ϵ/∥µ̃∥2)− q/2

}
,

where µ̃ = µ1−µ2
2 and q = ln{(1 − τ)/τ}. For any sample x, fϵ gives the lower bound on

the decision margin δ(
x + δ − µ1 + µ2

2

)T
µ̃(1 − ϵ/∥µ̃∥2)− q/2 = 0

⇔ δT µ̃(1 − ϵ/∥µ̃∥2) = q/2 −
(

x − µ1 + µ2

2

)T
µ̃(1 − ϵ/∥µ̃∥2)

⇒ ∥δ∥2 ≥
|(x − µ1+µ2

2 )T µ̃(1 − ϵ/∥µ̃∥2)− q/2|
∥µ̃(1 − ϵ/∥µ̃∥2)∥2

,

which then yields the worst-case bound

∥∆∥2 = min ∥δ∥2 =
|(x − µ1+µ2

2 )T µ̃(1 − ϵ/∥µ̃∥2)− q/2|
∥µ̃(1 − ϵ/∥µ̃∥2)∥2

.

1Dobriban, E., Hassani, H., Hong, D. and Robey, A., 2020. Provable tradeoffs in adversarially
robust classification. arXiv preprint arXiv:2006.05161.
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Since the bound ∥∆∥2 is subject to the positions of two Gaussians, we scale the bound
by the distance from Gaussian centers to the classifier. We note that, since the class are
imbalanced, the distances from the two Gaussian centers to the classifier fϵ are different,

i.e. |µ̃T µ̃(1−ϵ/∥µ̃∥2)−q/2|
∥µ̃(1−ϵ/∥µ̃∥2)∥2

and |µ̃T µ̃(1−ϵ/∥µ̃∥2)+q/2|
∥µ̃(1−ϵ/∥µ̃∥2)∥2

, respectively. We hereby take their average
as the scaling factor and obtain

∥∆̄∥2 =
|(x − µ1+µ2

2 )T µ̃(1 − ϵ/∥µ̃∥2)− q/2|
∥µ̃(1 − ϵ/∥µ̃∥2)∥2

2∥µ̃(1 − ϵ/∥µ̃∥2)∥2

|µ̃T µ̃(1 − ϵ/∥µ̃∥2)− q/2|+ |µ̃T µ̃(1 − ϵ/∥µ̃∥2) + q/2|

=
2|(x − µ1+µ2

2 )T µ̃(1 − ϵ/∥µ̃∥2)− q/2|
|µ̃T µ̃(1 − ϵ/∥µ̃∥2)− q/2|+ |µ̃T µ̃(1 − ϵ/∥µ̃∥2) + q/2|

.

A.9 Goodness function

Figure 7: The goodness function s(a) of nine pretrained LMs. The SynTextBench score is
calculated by the area under the curve.
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A.10 Complete results for Section 3.2

Table 6: The detailed SentEval linear probing performance. For STS tasks, we report
Spearman’s correlation (%), and for Transfer task, we report the standard accuracy (%).

STS tasks Transfer tasks
Models STS12 STS13 STS14 STS15 STS16 STS-B SICK-R MR CR SUBJ MPQA SST TREC MRPC avg.

BERTbase 54.44 58.03 58.86 67.94 68.42 53.88 62.06 82.98 89.56 95.43 89.92 85.45 89.8 74.03 83.50
DiffCSE-B 68.88 76.21 73.88 79.76 78.84 75.51 67.70 82.2 88.11 95.44 91.03 84.46 88 75.71 86.81
BERTlarge 53.33 56.86 56.23 63.43 66.69 54.43 58.06 85.96 89.59 96.43 90.96 89.13 91.8 73.16 83.68

T5base 58.18 63.78 64.14 71.83 68.94 60.17 58.77 80.54 88.34 93.04 89.73 81.27 85.8 67.36 82.78
T5large 58.34 62.59 63.50 71.36 67.88 59.67 58.02 79.31 86.86 93.53 90.43 80.72 82.8 68.75 82.36

RoBERTabase 57.28 55.21 59.76 69.22 64.64 58.55 61.63 84.08 86.91 95.63 89.52 88.25 91.6 74.49 83.83
DiffCSE-R 69.77 78.70 76.08 81.75 80.86 81.17 70.34 84.75 90.99 95.2 89.75 87.92 89.4 77.28 88.19

GPT 44.16 23.99 34.73 40.78 55.11 41.05 43.65 81.08 88.53 92.81 87.87 86.6 93 70.49 78.01
ST5 74.32 82.83 81.50 86.14 85.95 86.04 79.76 85.88 91.81 94.4 91.09 90.88 95.8 74.26 90.17

Table 7: Pearson correlation comparison between real-data-free evaluation methods and
the average linear probing accuracy on the real-world tasks included in Table 6. Since the
smaller the Val loss, MDL, SDL and ϵSC, the better, we add a negative sign in front of them
when calculating the Pearson correlation coefficient.

n Name BERTbase DiffCSE-B BERTlarge T5base T5large RoBERTabase DiffCSE-R GPT ST5 Pearson
Reallife acc. 83.50 86.81 83.68 82.78 82.36 83.83 88.19 78.01 90.17 1.0

4096 Val loss 1.0e-06±1e-07 1.4e-06±3e-07 7.6e-07±5e-08 8.5e-08±1e-08 5.4e-08±9e-09 4.0e-06±3e-07 1.1e-06±8e-08 3.1e-03±8e-04 3.7e-03±5e-03 0.285±0.498
MDL 5002±318 4755±129 5422±357 7318±119 6724±228 5396±181 4773±296 5604±366 4433±360 0.571±0.109
SDL, ε=1 3090±318 2843±129 3510±357 5406±119 4812±228 3484±181 2861±296 3687±366 2514±368 0.570±0.110
εSC, ε=1 3686±0 3686±0 3686±0 3686±0 3686±0 3686±0 3686±0 3686±0 3686±0 -
SynTextBench 0.137±0.001 0.148±0.001 0.135±0.000 0.111±0.002 0.103±0.002 0.119±0.001 0.193±0.001 0.090±0.003 0.214±0.000 0.939±0.008

8192 Val loss 3.3e-06±3e-07 6.3e-04±9e-04 6.6e-04±9e-04 3.3e-07±9e-08 5.9e-04±8e-04 1.3e-05±1e-06 4.1e-06±2e-07 3.1e-02±1e-03 1.2e-03±5e-05 0.649±0.004
MDL 8802±99 8687±260 10107±156 14664±464 14487±426 9801±489 8902±175 10001±291 7310±175 0.519±0.043
SDL, ε=1 5262±99 5144±262 6564±155 11124±464 10944±426 6261±489 5362±175 6343±287 3766±175 0.509±0.043
εSC, ε=1 7372±0 7372±0 7372±0 7372±0 7372±0 7372±0 7372±0 7372±0 7372±0 -
SynTextBench 0.152±0.001 0.156±0.001 0.148±0.002 0.130±0.001 0.122±0.000 0.129±0.002 0.196±0.001 0.085±0.003 0.223±0.001 0.968±0.006

16384 Val loss 2.3e-03±2e-03 9.5e-04±7e-04 7.2e-04±1e-03 6.6e-04±9e-04 1.2e-03±9e-05 8.2e-04±1e-03 2.2e-03±2e-03 2.1e-01±3e-02 2.3e-02±9e-04 0.605±0.007
MDL 15840±436 15253±455 18039±778 26004±879 25606±767 16629±117 15465±349 16794±440 11895±89 0.506±0.032
SDL, ε=1 9266±429 8689±458 11477±786 19443±887 19040±767 10066±118 8891±365 8525±383 5153±93 0.425±0.021
εSC, ε=1 14745±0 14745±0 14745±0 14745±0 14745±0 14745±0 14745±0 14745±0 14745±0 -
SynTextBench 0.161±0.000 0.164±0.001 0.161±0.001 0.145±0.000 0.141±0.001 0.137±0.000 0.198±0.001 0.087±0.001 0.227±0.001 0.958±0.002

32768 Val loss 6.4e-03±8e-04 4.2e-03±2e-03 4.1e-03±3e-04 3.1e-02±1e-02 3.0e-03±7e-04 1.4e-02±2e-03 1.1e-02±1e-02 4.7e-01±2e-02 2.9e-01±1e-02 0.267±0.018
MDL 27667±294 25793±898 29577±253 43955±1616 39692±1520 27151±33 27546±646 28930±471 21999±88 0.481±0.029
SDL, ε=1 15417±282 13581±927 17367±252 31282±1860 27501±1518 14775±50 15214±489 9442±195 6076±106 0.311±0.008
εSC, ε=1 29491±0 29491±0 29491±0 29491±0 29491±0 29491±0 29491±0 12139±0 12139±0 -0.044±0.000
SynTextBench 0.170±0.001 0.169±0.000 0.173±0.001 0.158±0.001 0.156±0.000 0.140±0.001 0.202±0.000 0.092±0.001 0.230±0.000 0.934±0.002

Figure 8: The accuracy and robustness (average number of perturbed words) performance
of pretrained models on SentEval tasks.
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A.11 Complete results for Section 3.3

Table 8: The detailed SentEval linear probing performance on decoder models. For STS
tasks, we report Spearman’s correlation (%), and for Transfer tasks, we report the standard
accuracy (%).

STS tasks Transfer tasks
Models STS12 STS13 STS14 STS15 STS16 STS-B SICK-R MR CR SUBJ MPQA SST TREC MRPC avg.

LLaMA-7B 10.51 9.68 5.85 2.60 5.87 15.58 15.01 71.20 75.87 87.59 81.94 77.59 62.80 64.12 64.55
LLaMA-13B 12.08 7.05 2.86 -0.84 7.38 3.50 10.93 70.88 77.06 88.04 81.53 76.77 64.00 63.19 63.78
LLaMA-30B 7.04 16.29 5.39 3.12 5.04 16.02 14.77 71.99 78.12 88.81 82.53 76.44 61.00 60.70 64.53
LLaMA-2-7B 11.95 22.85 10.85 16.31 44.42 20.13 47.17 91.07 91.95 97.30 89.22 94.78 96.80 67.88 76.13

LLaMA-2-13B 21.80 33.07 18.79 19.31 50.67 33.84 50.83 92.03 92.32 97.70 89.72 95.61 97.20 70.38 78.51
OPT-13B 24.20 40.78 24.91 25.75 56.70 39.44 51.32 91.23 92.45 97.13 89.28 95.00 96.80 72.58 79.72
OPT-30B 24.63 38.83 22.25 26.00 57.93 39.95 52.17 91.36 92.71 97.28 89.39 95.11 97.00 68.41 79.44

Table 9: Pearson correlation comparison between real-data-free evaluation methods and
the average linear probing accuracy on the real-world tasks of decoder models. Since the
smaller the Val loss, MDL, SDL and ϵSC, the better, we add a negative sign in front of them
when calculating the Pearson correlation coefficient.

n Name LLaMA-7B LLaMA-13B LLaMA-30B LLaMA-2-7B LLaMA-2-13B OPT-13B OPT-30B Pearson
Reallife acc. 64.55 63.78 64.53 76.13 78.51 79.72 79.44 1.0

8192 Val loss 0.036141 0.149492 0.075583 0.000002 0.0 0.010351 0.00362 0.803
MDL 8114.26 7434.78 6920.22 10331.5 9331.91 7874.07 7589.82 -0.466

SDL, ε = 1 4435.77 3321.93 3090.58 6791.49 5791.91 4294.41 4035.95 -0.548
εSC, ε = 1 7372 7372 7372 7372 7372 7372 7372 -

SynTextBench 0.062 0.027 0.048 0.097 0.075 0.089 0.093 0.871

Table 10: The detailed subset SentEval in-context learning accuracy on decoder models.

Transfer tasks
Models CR MR MPQA SUBJ SST2 MRPC avg.

LLaMA-7B 85.35 90.49 74.34 48.97 88.47 53.86 73.58
LLaMA-13B 91.07 62.78 70.07 50.02 69.74 66.20 68.31
LLaMA-30B 91.97 92.60 83.77 50.01 95.83 66.26 80.07
LLaMA-2-7B 90.83 53.25 47.06 81.60 71.00 66.49 68.37

LLaMA-2-13B 91.84 91.92 80.26 52.73 95.55 66.49 79.80
OPT-13B 90.01 69.66 69.92 49.85 76.99 66.49 70.49
OPT-30B 90.78 82.04 63.56 50.00 87.10 66.61 73.35
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A.12 Experimental details

When we calculate the correlation between real-data-free evaluation methods and real-
world task robustness-accuracy performance, we need to aggregate two metrics - accuracy
and robustness. For this purpose, we can obtain a ranking of the models according to the
accuracy measure, R1, and a ranking of the models according to the robustness measure, R2.
We aggregate two rankings by the simple and commonly-used mean aggregation2 which
yields the overall ranking of models based on accuracy-robustness performance, Rref. On
the other hand, we can obtain another ranking of models based on one of the real-data-free
evaluation methods (e.g. Val loss, MDL, SDL, ϵSC, SynTextBench), R. Lastly, we calculate
the Pearson correlation coefficient between R and Rref.

Moreover, when we calculate the robustness measures, we only perform attacks on Transfer
tasks as they are classification tasks where adversarial attacks are well-defined. Since
we use the average number of perturbed words by PWWS attacks (Ren et al., 2019) as
the robustness indicator, we also excluded MPQA and TREC due to their short sentence
lengths (MPQA and TREC average sentence lengths are 3.03 and 6.48, respectively). PWWS
attacks focus on the text adversarial example generation that could guarantee little semantic
shifting and therefore rarely cause ground truth label change (also lexical and grammatical
correctness). To meet the semantic constraint, PWWS replaces words in the input texts
with synonyms and replace named entities (NEs) with similar NEs to generate adversarial
samples. Synonyms for each word can be found in WordNet, a large lexical database for
the English language. NE refers to an entity that has a specific meaning in the sample text,
such as a person’s name, a location, an organization, or a proper noun. Replacement of
an NE with a similar NE imposes a slight change in semantics but invokes no lexical or
grammatical changes.

We list the robustness results in the following table:

Table 11: The robustness (average number of perturbed words) of pretrained representations
on Transfer tasks.

Models MR CR SUBJ SST MRPC avg.
BERTbase 14.48 13.99 20.2 15.07 5.45 13.838
DiffCSE-B 14.46 14.7 18.64 15.19 6.39 13.876
BERTlarge 14.3 14.22 19.87 15.46 5.26 13.822

T5base 12.71 12.82 16.8 13.66 5.05 12.208
T5large 13.67 14.28 16.93 13.82 5.17 12.774

RoBERTabase 16.4 18.35 20.74 17.26 7.12 15.974
DiffCSE-R 15.72 16.07 18.53 16.82 5.68 14.564

GPT 12.53 13.11 15.75 13.52 5.17 12.016
ST5 13.6 13.08 18.36 14.22 6.9 13.232

We also list the ranking of models from different metrics in the following table.

Table 12: Ranking of models from different metrics at n = 8192.

Name BERTbase DiffCSE-B BERTlarge T5base T5large RoBERTabase DiffCSE-R GPT ST5
Overall accuracy 6 3 5 7 8 4 2 9 1
STS accuracy 7 3 8 4 5 6 2 9 1
Transfer accuracy 5 6 2 8 9 4 3 7 1
Robustness 4 3 5 8 7 1 2 9 6
Val loss 8 4 3 9 5 6 7 1 2
MDL 7 8 3 1 2 5 6 4 9
SDL, ε=1 7 8 3 1 2 5 6 4 9
εSC, ε=1 5 5 5 5 5 5 5 5 5
SynTextBench 4 3 5 6 8 7 2 9 1

For example, to calculate SynTextBench correlation with robustness-and-accuracy perfor-
mance, we calculate the Pearson correlation between (row “Overall accuracy” + row “Ro-

2Wald, R., Khoshgoftaar, T.M. and Dittman, D., 2012, December. Mean aggregation versus robust
rank aggregation for ensemble gene selection. In 2012 11th international conference on machine
learning and applications (Vol. 1, pp. 63-69). IEEE.
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bustness”) / 2 and “SynTextBench”. To calculate SynTextBench correlation with robustness-
and-STS accuracy performance, we calculate the Pearson correlation between (row “STS
accuracy” + row “Robustness”) / 2 and “SynTextBench”. To calculate SynTextBench cor-
relation with robustness-and-Transfer accuracy performance, we calculate the Pearson
correlation between (row “Transfer accuracy” + row “Robustness”) / 2 and “SynTextBench”.
We note that in all our results prior to Table 12, we always infer the correlation in individual
runs before we take an average over all trials. Different from that, the rankings from Val
loss, MDL, SDL, ϵSC, and SynTextBench in Table 12, are inferred from the average metric
results over 3 trails for an easier illustration. Therefore, the ranking correlation suggested
by the table might have some deviation from what is shown in Table 2.
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