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Abstract

Visual Language Models have exhibited impressive performance on new tasks
in a zero-shot setting. Language queries enable these large models to classify
or detect objects even when presented with a novel concept in a shifted domain.
We explore the limits of this capability by presenting Grounding DINO with
images and concepts from field images of marine and terrestrial animals. By
manipulating the language prompts, we found that the embedding space does not
necessarily encode scientific taxonomic organism names, but still yields potentially
useful localizations due to a strong sense of general objectness. Grounding DINO
struggled with objects in a challenging underwater setting, but improved when
fed expressive prompts that explicitly described morphology. These experiments
suggest that large models still have room to grow in domain use-cases and illu-
minate avenues for strengthening their understanding of shape to further improve
zero-shot performance. The code to reproduce these experiments is available at:
https://github.com/bioinspirlab/deepsea-foundation-2023.

1 Introduction

Recent advances in large foundation models represent a substantial leap in our ability to process image
data from new domains. The zero-shot capabilities of large foundation models like SegmentAnything
are impressive, particularly when deployed in an interactive fashion with human prompting [1]. Visual
Language Models (VLMs) like CLIP and GLIP are likewise exceeding expectations on zero-shot
tasks when prompted with language queries [2, 3]. Among many other uses, these tools have huge
potential for domain specific tasks like medical imaging [4, 5].

Biologists and ecologists are likewise eager to use these frameworks. Marine scientists in particular
are in need of tools to speed the annotation of new data, particularly for detection and segmentation
tasks; there is a huge amount of raw underwater image data but few publicly accessible annotated
datasets [6, 7]. Creating a high-quality, taxonomically correct set of labeled data for training models
remains an extremely time consuming task [8]. Highly trained annotators must spend 100s of hours
examining images and footage to identify a sufficient number of animals to appropriately tune fully
supervised, domain specific models [9]. Even high performing supervised models struggle when
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applied in out-of-distribution target environments, thus requiring continuing manual annotation efforts
as scientists seek to work in new regions or with different tools [10, 11].

The ocean science community is hoping to leverage foundation models to enrich existing marine
annotated datasets, assist in future manual labeling efforts, and enable robust model deployment in
dynamic natural environments that are subject to extreme distribution shifts on short time and spatial
scales. But the morphology of underwater biological targets is often quite different from the types of
objects found in the large image sets used to train foundation models. Likewise, the Latinate names
used in rank-based species classification are atypical in the bodies of text usually used for training
VLMs. Indeed, the space of classes of marine organisms is itself poorly constrained due to sampling
bias and underexploration of the deep sea [12].

The promise of VLMs for marine science lies in their ability to generalize well in dynamic natural
environments by manipulating prompts rather than retraining an entire model. In general, the zero-
shot generalization ability of VLMs is highly-dependent on a well-designed prompt [13]. In this work,
we probe the concept embeddings of Grounding DINO with manual prompt tuning for localizing
images of marine and terrestrial animals to explore the limits of its zero-shot capabilities [14]. The
goal is to better understand how to leverage the existing semantic space without fine tuning. The
results both underscore how domain scientists could effectively start intuitively using VLMs and
illuminate an interesting grey area in the semantic space of existing models.

Related work Most papers outlining VLM approaches include an evaluation of zero-shot per-
formance on a suite of tasks. VLMs typically perform well on zero-shot tasks that share semantic
commonalities with the corpus of text and image pairs used for training the base model. Radford et al.
[2] noted that while zero-shot CLIP worked well on many benchmarks that it is “quite weak on several
specialized, complex, or abstract tasks" like satellite and medical imagery. Li et al. [3] reported
high zero-shot performance on 13 small datasets available on Roboflow, but the model struggled on
two small test sets that contained marine organisms even after manual prompt tuning. Grounding
DINO likewise exhibited relatively weak zero-shot performance on datasets that included underwater
images or limited number of marine animal concepts [14]. In both cases, the marine-adjacent datasets
did not cover actual field images of marine organims. For example, Shellfish-OpenImage1 is largely
composed of crustaceans in kitchens at various stages of food preparation. Likewise, the Aquarium2

dataset is composed of images collected in constrained, human-made habitats that are often taken
through tank walls. To our knowledge, there have been no systematic experiments to quantify the
zero-shot capabilities of VLMs for underwater imagery, especially of diverse biological concepts
collected in their natural habitats.

2 Method

2.1 Datasets

COCO The 2017 validation split of COCO, one of the canonical computer vision competition
datasets, is used here as a baseline to compare our results against [15]. We randomly selected 992
images from COCO. If the image contained several localizations, we randomly selected just one in
the frame. This procedure resulted in testing 78 of the classes in COCO.

iNat2017 The iNaturalist Classification and Detection Dataset (iNat2017) is a fine-grained object
detection dataset drawn from the entire iNaturalist labeled image repository [16]. The dataset is
comprised of over 560,000 manually created bounding boxes of 5,000 species. Each species is
additionally sorted into a supercategory. 88% of the images only contain a single instance. For
these experiments, we split the iNat2017 dataset into two subsets. iNat-Marine (iNat-M) selected all
available imagery associated with the 199 marine animals in iNat2017 for a total of 2854 images.
iNat-Terrestrial (iNat-T) took a random subset of 57 of the non-marine organism concepts for a total
of 1030 images.

FathomNet FathomNet is a large-scale database for sorting and working with annotated and
localized underwater images [17, 18]. The images are associated with metadata including: the

1https://public.roboflow.com/object-detection/shellfish-openimages
2https://public.roboflow.com/object-detection/aquarium
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Figure 1: Example output on each dataset, indicated by column headings, from Grounding DINO.
The target concept for each dataset was ‘chair’, ‘Acris crepitans’ (frog), ‘Lepomis macrochirus’ (fish),
and ‘Liponema brevicorne’ (anemone) for COCO, iNat-T, iNat-M, and FathomNet respectively. The
prompts given to the model are: (A) ‘piano’, (B) ‘crocodile’, and (C) the target concept name. Green
boxes are model output. Red boxes in row (C) are the ground truth associated with the concept name.

full taxonomic hierarchy associated with a concept; geographic coordinates; and environmental
information. The database currently contains nearly 2400 fine-grained concepts of biologically and
morphologically diverse animals. The images, especially those collected along the sea floor, often
contain several localizations. The targets are usually small relative to the full frame image. For these
experiments, we randomly selected 30 concepts from FathomNet imaged off the coast of Central
California. From that subset, we picked 1009 random bounding boxes for an approximately uniform
distribution of concepts.

2.2 Implementation details

Model Grounding DINO is a transformer-based VLM with grounded pre-training that can identify
objects specified by human language inputs [14]. The model is a dual-encoder-single-decoder
architecture that uses an image and text backbone with a variety of task-dependent fusion layers. For
these experiments, we used the Grounding DINO-B checkpoint provided by the model developers
that leverages a Swin transformer as the image backbone [19]. The checkpoint is pretrained with
COCO, O365, GoldG, Cap4M, OpenImage, ODinW-35 and RefC [15, 20, 21, 3, 22–24].

Prompts We experimented with several prompts to explore the semantic space learned by Ground-
ing DINO for animal localization (Figure 1). All four datasets were tested with the concept name,
‘piano’, and ‘crocodile’, and ‘Caiman crocodilus’. The concept name is the label associated with
a given bounding box localization. ‘piano’ is a common human-made object, but not a category
included in COCO dataset. ‘crocodile’ is a common animal class not found in FathomNet or our
subsets of iNat2017. ‘C. crocodilus’ is the Latinate scientific classification of one particular species
in the order Crocodilia.

We also fed Grounding DINO rich prompts for three FathomNet concepts that the model struggled
with in the first round of experiments: ‘Swiftia kofoidi’, a deep sea coral; ‘Caridea’, an order of shrimp;
and ‘Liponema brevicorne’, a pom-pom shaped anemone. These three particular organisms were
selected from all the FathomNet concepts Grounding DINO struggle with for their morphological
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Table 1: mIOU and the proportion of detected objects for Grounding DINO output for each prompt
on the target datasets. The proportion of detected objects is specified in parenthesis.

Prompt

Dataset Concept ‘piano’ ‘crocodile’ ‘C. crocodilus’

COCO 2017 val 0.85 (1.0) 0.44 (0.42) 0.43 (0.87) 0.42 (0.98)
iNat-T 0.88 (1.0) 0.90 (0.63) 0.89 (0.99) 0.89 (0.99)
iNat-M 0.87 (0.99) 0.89 (0.90) 0.88 (0.95) 0.88 (0.99)
FathomNet 0.49 (0.94) 0.52 (0.43) 0.56 (0.76) 0.53 (0.96)

and taxonomic diversity. We used sentences of the form “[CONCEPT] which is [FEATURE] and has
[FEATURE]" to form the prompts:

• Swiftia kofoidi which is red or orange and has branches

• Caridea which is a red or orange and is elongated

• Liponema brevicorne which is globe shaped and has tentacles

Such expressive prompts have proven useful for improving the detectability of novel concepts in
zero-shot settings.

Metrics To evaluate the results of each prompt, we computed the Intersection Over Union (IOU)
between the region proposal from Grounding DINO and localizations identified by a human annotator.
For each frame, the proposals resulting from a given prompt are compared to all human generated
boxes associated with the target concept and the highest IOU is retained. The mean IOU (mIOU) is
computed for each box generated by a prompt across all concepts in each dataset (Table 1). We note
that the mIOU includes bounding boxes that are generated from prompts that do not match the target
concept. For example, if ‘piano’ resulted in a bounding box that overlapped with a localization in
an iNat-M image, the score will count toward the mIOU computation. The idea is to evaluate the
model’s ability to find salient objects even if the actual target concept’s name is not present in the
embedding space. The proportion of detections is used to quantify how often Grounding DINO found
an object in the frame regardless of the prompt (# detection/# boxes).

3 Results

Grounding DINO was most successful on the in-distribution test done on the subset of the COCO
2017 val split (Table 1). When prompted with the appropriate concept name, the model returned a
high mIOU and did not miss any localizations at all (Figure 1C). The model ignored the prompts for
‘piano’ more successfully than on the other datasets (Figure 1A). While the mIOU was low for both
‘crocodile’ and ‘C. crocodilus’, prompting with both a common and scientific animal name returned a
high number of detections (Figure 1B).

The mIOU was consistent across all prompts for the two iNat splits. The model found a localization
when prompted with the appropriate scientific name for every iNat-T image. Notably, Grounding
DINO returned fewer detections on iNat-T when prompted with ‘piano’(Figure 1C). Otherwise, the
model found a localization for every prompt that often overlapped with the real object(Table 1).

The model yielded low mIOU for all prompts when operating on FathomNet images, but also exhibited
a low propensity toward finding objects that do not exist in the image (Figure 1). Grounding DINO
produced better results on the three challenging classes when given expressive prompts, particularly
the anemone L. brevicorne (Table 2).

4 Discussion

Our experiments used a variety of prompts to test the zero-shot capabilities of a popular VLM when
applied to images of animals with a focus on marine species. The prompts included the scientific
name of the object, a common object, and the scientific and common name of animal not present
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Figure 2: Using richer prompts resolved ambiguity in Grounding DINO output for the three Fathom-
Net concepts named in each column. (A) Grounding DINO output using just the concept name and
(B) with richer instructions based on the organism’s morphology. Red boxes are ground truth and
green boxes are model output.

Table 2: mIOU for Grounding DINO output on three FathomNet concepts with both basic and richer
prompts.

Prompt

Concept Species Species+plain language

Swiftia kofoidi 0.04 0.05
Caridea 0.07 0.10
Liponema brevicorne 0.07 0.22

in the given zero-shot image set. The results underscore the strength of Grounding DINO’s general
understanding of objectness, regardless of the prompt, even when presented with images that are
quite unlike the original training data.

In iNat images, where there is usually a single animal that stands out from the background, the model
appears to have taken the language prompt to mean “find the foreground object" even if the word
occupies a different semantic space than the actual target. This held true for all prompts in both
iNat-T and iNat-M suggesting that using the scientific name for the target did not activate a different
region of the embedding space.

FathomNet imagery posed a challenge for Grounding DINO, regardless of the prompt. The concepts
in the dataset are morphologically strange objects that are often small relative to the frame, imaged
through water instead of air, and referred to with scientific terminology not well-represented in most
natural language datasets. This result is consistent with the observation that VLMs do not appear to
generalize well to specialized tasks [2].

Expressive prompts improved the model’s detection ability, particularly for the anemone L. brevicorne.
In particular, manual inspection of the model output revealed the additional semantic information
allowed the model to better distinguish between equipment and the target animal (Figure 2). The rich
prompts used in these experiments were limited to additional color and shape information. Further
experimentation should be done to determine what sorts of descriptors are most informative for VLMs
in zero shot deployments on scientific image datasets. Likewise, richer prompts could be designed
based on more complete descriptions of these organisms. However, collecting the necessary plain
text information for many marine concepts is quite challenging; these creatures often do not have
descriptions in free-content resources like Wikipedia or domain-specific repositories like the World
Register of Marine Species.

Overall, these experiments suggest that VLMs like Grounding DINO are not globally applicable in
zero-shot scenarios for domain tasks like animal localization in images. They are, however, potentially
useful for generating saliency maps when prompted with apparent non-sequitur labels to assist human
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annotators. The tests with expressive prompts are intriguing, suggesting that VLMs understand shape
in a manner that extends to diverse body morphologies of marine organisms. More experimentation
is needed to establish how effective such prompts are in new domains using such compositional
understanding [25]. In particular, rigorous tests to understand which morphological descriptors are
most informative to the VLM would provide valuable insght into the model’s embedding space and
suggestions for operators attempting to deploy them in a zero-shot capacity. While models like
Grounding DINO can be fine-tuned with appropriately annotated domain specific data, figuring out
how to use them with minimal additional training will be extremely valuable for scientists working in
dynamic environments like the ocean that experience dramatic distribution shifts.
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