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Abstract

Current leading methods for molecular conforma-
tion generation often rely on computationally in-
tensive diffusion models in 3D space, which strug-
gle with accurately modeling conformational man-
ifolds and rigorously maintaining SE(3) equivari-
ance. These limitations hinder both performance
and efficiency, and can complicate integration
with standard tools like RDKit. To overcome
these challenges, we introduce CoFM, a novel
generative framework that pioneers the concept of
an autoencoder-induced, fully SE(3)-invariant la-
tent space. This approach decouples SE(3) equiv-
ariance constraints from the generation process,
enabling seamless integration of RDKit’s physic-
ochemical priors. Furthermore, CoFM is the first
to integrate latent flow matching within this in-
variant geometric subspace, significantly enhanc-
ing generation efficacy with fewer iterative steps.
Experimental validation demonstrates that our
method generates high-quality results with fewer
iterations, achieving significant improvements in
key Precision metrics and ensuring greater energy
authenticity.

1. Introduction

Molecular Conformation Generation, which involves deriv-
ing low-energy stable conformations from molecular graphs,
is a key challenge in drug discovery and bioinformatics. Tra-
ditional methods, such as those based on handcrafted force
fields (Rappé et al., 1992; Halgren, 1996) or density func-
tional theory (Parr et al., 1979), often suffer from limited
precision or high computational cost. Recently, deep genera-

“Equal contribution 'School of Computing and Artificial
Intelligence, Southwest Jiaotong University, Chengdu, China
*National University of Singapore, Singapore. Correspon-
dence to: Yongquan Jiang <yqgjiang @swjtu.edu.cn>, Yatao Bian
<bianyt@comp.nus.edu.sg>.

Proceedings of the Workshop on Generative Al for Biology at the
42" International Conference on Machine Learning, Vancouver,
Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

tive models have emerged as the dominant approach, driven
by advancements in the deep learning community.

These methods can be generally divided into two categories.
Early studies (Simm & Herndndez-Lobato, 2019; Xu et al.,
2021b;a) focus on modeling interatomic distances by gener-
ating atomic distance matrices with VAE or Flow, followed
by distance geometry optimization (Liberti et al., 2014) to
derive conformations. ConfGF (Shi et al., 2021) attempts to
build a Noise Conditional Score Network (NCSN) (Song &
Ermon, 2019) on conformations, but it uses the chain rule
to shift the estimation of the conformation’s score to the
atomic distance matrix.

Although some progress has been made, the above meth-
ods are primarily constrained by the inherent limitations of
modeling atomic distance matrices, as recovering conforma-
tions from these matrices is difficult and inefficient, often
failing to restore the 3D structure. In light of these chal-
lenges, and considering the robust capabilities of diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020) along
with their successful applications in other domains (Dhari-
wal & Nichol, 2021; Rombach et al., 2022), several works
have emerged that directly construct diffusion models in
3D conformation space. GeoDiff (Xu et al., 2022) success-
fully integrates a discrete diffusion model (Ho et al., 2020)
into molecular conformation generation in coordinate space,
yielding significant results. Following this, SDEGen (Zhang
et al., 2023) extends the methodology to diffusion models
based on SDE (Song et al., 2020), while EC-Conf (Fan
et al., 2023) implements a consistency model (Song et al.,
2023) rooted in ODE to accelerate generations. Additionally,
TorDiff (Jing et al., 2022) builds diffusion on the torsional
angle hypersurface of coarse RDKit-based conformations.
MCF (Wang et al., 2023) trains a diffusion model that maps
elements from the molecular graph to points in 3D space,
whereas ETFlow (Hassan et al., 2024) trains flow matching
to align harmonic prior with the target conformation space.

While methods for constructing diffusion models in the 3D
conformational space have achieved significant performance
gains, they have established themselves as mainstream and
robust approaches while still facing inherent modeling chal-
lenges that create performance bottlenecks. Firstly, the
conformational space of molecules is highly nonlinear and
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often forms complex manifolds, which makes accurately
capturing and modeling the distribution a significant chal-
lenge. Secondly, molecular conformations exhibit SE(3)
equivariance in 3D space, requiring that the corresponding
likelihood (conditioned on the molecular graph) remains
SE(3)-invariant — remaining unaffected by rotational and
translational transformations. This fundamental require-
ment underscores the importance of establishing both an
SE(3)-invariant prior distribution for sampling procedures
and an SE(3)-equivariant Markov kernel for diffusion model
construction (Xu et al., 2022; Zhang et al., 2023; Fan et al.,
2023). Otherwise, directly sampling from a 3D Gaussian
prior poses challenges for most methods in seamlessly inte-
grating tools like RDKit (Landrum, 2006), thereby limiting
the accuracy of the generated conformations. Lastly, the
multi-step denoising process of diffusion models signifi-
cantly reduces their sampling efficiency in practical appli-
cations. Consequently, these stringent conditions signifi-
cantly amplify problem complexity, presenting formidable
obstacles in designing diffusion models that simultaneously
achieve high performance and effectiveness in conformation
generation.

To address these significant challenges, we present
CoFM (Conformational Latent Flow Matching, Figure 1),
an innovative solution inspired by recent advances in latent
diffusion paradigms (Rombach et al., 2022; Esser et al.,
2024) and flow matching techniques (Lipman et al., 2022;
Liu, 2022). Our primary technical contribution involves de-
veloping an advanced autoencoder framework that directly
induces a fully SE(3)-invariant latent space. This frame-
work facilitates seamless integration with RDKit’s physico-
chemical priors while rigorously decoupling SE(3) equivari-
ance from subsequent diffusion processes, thereby enabling
the diffusion model to more effectively and precisely learn
the distribution of geometric features. Furthermore, we
pioneer the implementation of flow matching within this
novel SE(3)-invariant latent space, achieving substantial
improvements in both generation efficiency and conforma-
tional reliability for molecular systems. The highlights of
this paper are:

* Development of an advanced autoencoder framework
that establishes a fully SE(3)-invariant latent space.
This framework effectively incorporates RDKit’s ro-
bust physicochemical priors while systematically de-
coupling SE(3) equivariance from the diffusion process.
By entirely delegating equivariance constraints to the
autoencoder, the diffusion model can focus exclusively
on learning latent geometric feature distributions.

* First application of flow matching to molecular con-
formation generation in non-coordinate space. This
innovation substantially improves both the efficiency
of conformation sampling and the physicochemical

reliability of generated structures.

¢ Introduction of CoFM, a novel algorithm for molecular
conformation generation. Comprehensive experiments
validate the method’s superiority in critical precision
metrics, demonstrating significant enhancements in
generation speed and the energetic attributes of pro-
duced conformational ensembles.

2. Related Work

Recently, generative models have seen growing adoption for
generating multiple molecular conformations. CGCF (Xu
et al., 2021a) uses a flow model to capture the distribution
of interatomic distances D given a molecular graph G. Con-
formations are generated from p(C|D, G) and refined with
a Markov Chain Monte Carlo (MCMC) procedure guided
by an Energy-based Tilting Model. ConfVAE (Xu et al.,
2021b) employs a bilevel programming framework, which
divides the task into distance prediction and distance geom-
etry optimization. A conditional variational autoencoder
(VAE) predicts interatomic distances conditioned on molec-
ular graphs, while 3D conformations are reconstructed from
these distances by distance geometry optimization (Liberti
et al., 2014). ConfGF (Shi et al., 2021) proposes first esti-
mating the gradient field of interatomic distances and then
deriving the gradient field of the log density (i.e., scores) of
atomic coordinates via the chain rule. The conformations
are subsequently sampled using an annealed Langevin dy-
namics algorithm based on the estimated scores. However,
these methods rely on modeling interatomic distances as
an intermediate variable to generate conformational coordi-
nates, a factor identified as contributing to their suboptimal
performance. To overcome the limitations of previous ap-
proaches, recent work has shifted toward direct modeling in
3D coordinate space. GeoMol (Ganea et al., 2021) focuses
on key geometric features of molecules, such as torsion
angles, bond lengths, and bond angles, and generates these
elements during inference to reconstruct complete 3D con-
formations. DMCG (Zhu et al., 2022) is the first attempt to
construct a carefully designed VAE framework directly in a
3D space, achieving promising results. Moreover, numer-
ous studies have begun to take advantage of the increasingly
popular diffusion models (Song & Ermon, 2019; Ho et al.,
2020; Song et al., 2020; 2023). GeoDiff (Xu et al., 2022)
implements the diffusion processes directly on the atomic
coordinates, recovering the desired conformation from po-
sitions sampled from the noise. TorDiff (Jing et al., 2022)
is the first to leverage RDKit’s prior knowledge, restricting
diffusion to the torsional hypersurface of RDKit-generated
molecular conformations. Recent research (Zhang et al.,
2023; Fan et al., 2023) has focused on reducing inference
steps by introducing newly proposed diffusion model accel-
eration algorithms (Song et al., 2020; 2023; Albergo et al.,
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Figure 1. Overview of the CoFM Framework. Left: The autoencoder constructs a fully SE(3)-invariant latent space while seamlessly
integrating RDKit’s prior knowledge. Right: The flow matching algorithm operates within the latent space to generate new latent
representations. The upper-right section illustrates the vector field predictor vg, while the lower-right section depicts the latent flow
matching Algorithm, which maps the prior noise distribution p(zo) ~ N (0, I) to the target data distribution p(z|G).

2023). ETFlow (Hassan et al., 2024) defines the source
distribution as the Harmonic Prior and the target distribution
as the true conformation space, then uses flow matching (Al-
bergo & Vanden-Eijnden, 2022) to connect them. These
methods result in significant improvements in both precision
and speed, while still operating within coordinate space.

3. Background
3.1. Notations and Problem Definition

Main Notations. A 3D molecule with n atoms (nodes) and
m bonds (edges) is represented as G = {x,E,C}. Here,
x € N” denotes the atom types, where x; specifies the type
of the i-th node. The connectivity of the m edges is given
by E € N™*2 where Ej, = [i, j] for 1 < k < m indicates
an edge between nodes ¢ and j. The 3D coordinates of these
nodes are denoted as C € R™*3, with C; representing the
coordinates of the ¢-th node. The relative vector between
nodes 7 and j is 7;; = C; — C;, and the squared Euclidean
distance is D;; = ||C; — C;|, where D € R™*™ is the pair-
wise distance matrix. The molecular topology, excluding
conformational information, is represented as G = {x, E}.
Additionally, D represents the dataset, while S, and S,
denote the reference and generated sets of conformations,
respectively. Other relevant notations are introduced in their
respective sections.

Problem Definition. The task of molecular conformation
generation aims to produce an ensemble of multiple poten-
tial low-energy stable conformations, {C!,C?,...}, for a

given molecular graph G. Thus, our objective is to learn a
conditional distribution p(C|G).

3.2. SE(3) Equivariance/Invariance in Atomic Systems

Formally, given two vector spaces X and Y, let Dx (g) and
Dy (g) denote the transformation matrices parameterized
by g € SE(3) in X and Y, respectively. For any input
x € X,outputy € Y, amapping f : X — Y is considered
SE(3)-equivariant if:

f(Dx(g)z) = Dy (9) [ (). M

Similarly, a mapping f : X — Y is considered SE(3)-
invariant if:

f(Dx(9)x) = f(x). )
For atomic systems represented in 3D Cartesian space (e.g.,
conformational molecules), the concepts of equivariance
and invariance under SE(3), the group of rigid transforma-
tions comprising translations and rotations in 3D space, are
fundamental. Notably, scalar properties of the atomic sys-
tem, such as energy, charge, density, and physical laws, must
be SE(3)-invariant, while vector properties, including force,
velocity and so on, should exhibit SE(3)-equivariance.

3.3. EquiformerV2

Equivariant GNNs encode the node features of 3D graphs
as irreps (irreducible representations) features and maintain
network equivariance through message passing between
nodes via equivariant operations (e.g., tensor products). Re-
cently, notable advancements (Thomas et al., 2018; Batzner
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et al., 2022; Brandstetter et al., 2021; Liao & Smidt, 2022;
Liao et al., 2023) have manifested in this field. Among
these, EquiformerV2 (Liao et al., 2023) stands out by scal-
ing the architecture to higher-degree equivariant features
while ensuring efficient speed.

The inference process of EquiformerV?2 is represented as
follows:

OEquiV2 = {007 s

Here, O; € R™**(2+1) represents the rype-I output fea-
tures of n nodes, where c is the number of channels, and [
(1=0,1,2,..., ) specifies the degree of equivariant fea-
tures. Oy is aggregated using FFN(R?*¢*1 — Rnxdx1)
followed by Pooling(R™*%*! — R%), yielding the over-
all scalar feature, where d is the feature dimension. An
equivariant graph attention (Liao & Smidt, 2022; Liao et al.,
2023) can transform Ogqy;v2 into a new set of irrep features,
where O} € R™"*1*3 represents desired vector properties:

,O,,..} = EquiV2(G). 3)

OEquiAttn = {0/0, ey OEW} = Eq_u:i.A‘t‘tIl(()Equi\/z7 G) (4)

More details are provided in Section C for reference.

3.4. Rectified Flow Matching

Given two distributions 7y and 71, Rectified Flow Match-
ing (Liu, 2022) aims to learn an ordinary differential equa-
tion (ODE) that maps samples Z, from 7y to samples 2
from 7; along a linear path that minimizes the discrepancy:

dZ, = v(Z,t)dt, te0,1]. (5)

At each time ¢, the point Z; is a linear interpolation between
Zy and Z1, defined as Z; = (1 — t)Zy + tZ;. The vector
field v : R? — R? at time ¢ directs the flow along the
direction of (Z; — Zy), guiding Z, to follow the linear path
as closely as possible. Ideally, under this vector field, Z;
moves in a straight line from Zj to Z; as t progresses from
0to 1.

In practice, the vector field v is parameterized as a neural
network vg(Z;,t), and the parameters 6 are optimized by
minimizing the following objective:

1
/EMWAWJ%*%%meWﬁ~(®
0

Once the vector field vy is trained, the ODE in Equation 5
can be solved using an ODE solver, starting from Zy ~ 7
to generate samples Z; ~ 7.

4. Method
4.1. SE(3)-Invariant Latent Space

As a core contribution, we introduce a novel autoencoder
that directly constructs a fully SE(3)-invariant latent space

while seamlessly integrating RDKit’s prior knowledge, as il-
lustrated in Figure 1 (left). The essential SE(3) equivariance
of molecular conformations is preserved throughout the au-
toencoder’s compression-reconstruction process, effectively
decoupling it from the generation process on latent space.

Encoder. The encoder ¢g,. is implemented as an
EquiformerV2 (Liao et al., 2023), which processes the en-
tire 3D molecule G, composed of C and G. Its purpose is to
extract latent geometric features {z1, zo, ...} correspond-
ing to different low-energy conformations {C!,C?,...} of
the same molecular graph G. Different molecular graphs
yield distinct collections of latent geometric features. The
output features O( from EquiformerV2 are aggregated into
the latent variable z, representing the geometric informa-
tion of molecular conformations, via an FFN and Pooling
operation. This process is formalized as follows:

{00, s Ol,nax} = ¢Enc(G) = ¢Enc(x7 E, C)a @)
z = Pooling(FFN(Qy)) € R%. ®)

Decoder. The decoder ¢p,. reconstructs the latent variable z
into the 3D conformation C. Inspired by DMCG (Zhu et al.,
2022), a stacked reconstruction approach is employed, with
the backbone consisting of multiple smaller EquiformerV?2
networks {@gec.1, Pdec.2, - - - » Pdec.p} arranged for progres-
sive reconstruction, where p denotes the total number of
cascaded networks. Initially, C;,; € R™*3 is initialized as
a coarse meta-conformation C,,.,, obtained from RDXKit.
For the same molecular graph G, C,.,, remains consistent.
This meta-conformation is then combined with G to create
an initial 3D molecule G,,;;, which serves as the decoder’s
input. The latent variable z guides the reconstruction of G
and is incorporated into the node feature encoding process
of EquiformerV2 as follows (As detailed in Section C and
illustrated in Figure 3(c)):

emb,, = Embedding(z;) + z. 9)

Subsequently, for each smaller EquiformerV?2 network, The
output features O] transformed by EquiAttn are inter-
preted as a new conformation, denoted as C,,;y. The combi-
nation of C,,;; and G forms G,,;4, which serves as the input
for the next EquiformerV2 network. The latent variable z is
repeatedly used as guidance for reconstruction, following
the approach outlined in Equation 9. Finally, the output of
the last network is taken as the reconstructed 3D molecule
G econ With its corresponding conformation Cyeco,. The com-
plete decoding process is formalized as follows:

G = Gt = Cinis G) = (Coeras G).  (10)

orqg=20,1,2,... —1:
q P B | ’p
1 1 1
Ol = {0 0} = puec 411 (G 2);

(11
clatt) — O} from EquiA‘t'.tn(O,gg:_i\l,)27 Gg%);

mid

G(q_jl) _ (C(q+1) G).

mid



Molecular Conformation Generation via Flow Matching in SE(3)-Invariant Latent Space

(Crewm g) - G(p)

mid" (12)
Training Objective. In the pre-training phase, we adopt a
loss function proposed by DMCG (Zhu et al., 2022), which
is inherently strictly SE(3)-invariant for molecular confor-
mations. We make slight modifications to the original loss
function for our specific purposes. A detailed formulation
of the loss function is provided in Section B.1. For sim-
plicity, the training objective of the entire autoencoder is
summarized as follows:

C*

recon

= p(0(Crecon)); C = Align(Cr,,,,C).  (13)

recon’

112
L5557 m(CyCreeon) = ||Chcan = €| - (14)

Loe =Egop [Ecmicrc2,. o [Lsp3-mv(C, Crecon)]]
+ 6 . £KL(Z)'

In Equation 13, p € SE(3) represents any rigid rotation-
translation operation, while o € S represents any permu-
tation operation on symmetric atoms, with .S denoting the
set of all such operations. Align(C,,Cy) refers to the align-
ment (e.g. Kabsch (Kabsch, 1976) alignment algorithm)
of C, with C,. The alignment error ||A||? is defined as

Z?:l ”Cric'oni
balance the KL regularization term Lg; (z).

15)

12
-C; H . The hyperparameter (3 is utilized to

The entire construction process of the autoencoder naturally
gives rise to two propositions that underpin our motivation.
The formal proofs are provided in Section A.

Proposition 1 (informal): We firmly believe that our latent
space is SE(3)-invariant, which constitutes our main idea.

Proposition 2 (informal): Furthermore, the entire autoen-
coder (i.e., the training objective) is also strictly SE(3)-
invariant. This makes the overall structure of the autoen-
coder simple and elegant.

4.2. Latent Flow Matching

With the successful construction of an SE(3)-invariant la-
tent space that effectively captures the geometric features
of molecular conformations, we pioneer the application of
flow matching (Lipman et al., 2022; Liu, 2022) within this
high-quality SE(3)-invariant latent space for molecular con-
formation generation.

As formulated in Section 3.4, let my represent the standard
Gaussian distribution N (0, I), and 7; denote the true data
distribution of the latent variable z conditioned on the molec-
ular graph, p(z|G). Given zg ~ N(0,1) and z; ~ p(z|G),
we define the linear interpolation as z; = (1 — t)zg + tz1,
where ¢ € [0,1]. A neural network vy (illustrated in Fig-
ure 1 ( upper-right) and detailed in Section B.3) is then
trained to approximate the true vector field vy, = z1 — Zg.

Algorithm 1 Training Algorithm of CoFM

1: Input: Dataset D, with multiple molecular graphs
G and it’s conformations set {C!,C?,...} and meta-
conformation C,,;, pre-calculated by RDK:it.
Initial: Encoder ¢g,., Decoder ¢pec, Vector field vy.
First Stage: Autoencoder Training
while {pgnc,Ppec } nOt converged do

Sample G ~ D, C ~ {C!,C?,...}, pre-calculated

Cmela of g

6: Encoding:
7: {00,01,...,01"m} :¢E,,C(Q,C).
8: z = Pooling(FFN(Qy)).

9:  Decoding:
10: G,(ﬂou)] = Ginit = (Cim'ta g) = (Cmeta; g)

11: forg=0top—1:
+1
12: Og(IluiV)Q = @dec.qul(G:SZc)iv z);
13 ) = 0} from Equikttn(O%,, GI%):;
14: Gt — (clath gy,
15: end for
16: (Cremm g) = Gy(nzzl)i

17: ‘Cue = ESE(3)-1nv(C7crecon) + BﬁKL(Z)-

18:  Update ¢guc, Ppec Using L.

19: end while

20: Second Stage: Latent Flow Matching Training

21: while vy not converged do

22:  Sample G ~D,C ~ {C},C?,...}.

23: 71 = Ggn(G,C), Sample zg ~ N(0,I),t ~
U(0,1).

24:  zy = (1 —t)z0 + t21, Vyue = 21 — Zo-

250 Lo = ||V — vo(21, 1, G)||.

26:  Update vy using Ly,.

27: end while

28: Return: ¢guc, Ppecs Vo.

Algorithm 2 Sampling Algorithm of CoFM

1: Input: Molecular graph G, C,,.., of G.

2: Initial: Pre-trained decoder ¢p,., Vector field vy, Time
steps N, At =1/N, ¢t =0.
Sampling:

Sample z;, ~ N (0,021).
zy = 2 + v (24,1, G) - At,
z%en = Zy.
Decoding:
Cgen = ¢Dec(ga zgien7 Cmem)~
Return: (Ceen, G).

fort:=0to N — 1.

R A A

The final training objective is formalized as:

Ezowﬂo,zlw‘nl,teu(o,l) ||Utrue — Vg (Zt7 t7 g) H2 . (16)

After training, we sample zo ~ N(0, o21). Notably, during
sampling, we observed that flexibly adjusting the standard
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deviation o of the Gaussian prior leads to a more effec-
tive balance in performance. The sample is then iteratively
updated using a simple Euler method:

Z: = 20 + v (2, t,G) - At. 17

This approach moves z; along the direction of the learned
vector field vy (z¢,t,G) toward the true data distribution

p(z|G), thereby generating a new latent variable z{™".

4.3. CoFM Overview

As shown in Figure 1 and detailed in Section 4.1 and Sec-
tion 4.2, the core concept of CoFM lies in the design of
an elegant and easily implementable autoencoder. This au-
toencoder induces a fully SE(3)-invariant latent space while
seamlessly integrating RDKit’s prior knowledge, effectively
capturing the geometric features of molecular conforma-
tions, which represents a key advancement of this work.
Leveraging this SE(3)-invariant latent space, the latest rec-
tified flow matching technique is applied to the molecular
conformation generation task in non-3D coordinate space
for the first time, yielding significant improvements in both
generation efficiency and outcome reliability. The com-
plete training and generation processes of the algorithm
are outlined in Algorithm 1 and Algorithm 2, offering a
comprehensive understanding of the approach.

5. Experiments
5.1. Datasets and Baselines

Datasets. Building on previous benchmark studies, we
use the Small-scale GEOM (Axelrod & Gomez-Bombarelli,
2020) dataset to evaluate molecular conformation genera-
tion. The Small-scale QM9 dataset includes small organic
molecules with up to 9 heavy atoms, while Small-scale
Drugs consists of larger drug-like molecules with up to 91
heavy atoms. To ensure fair comparisons, we follow the
ConfGF (Shi et al., 2021) and GeoDiff (Xu et al., 2022).
Both datasets have training sets of 40,000 molecules, each
with 5 low-energy conformations. The test sets contain 200
molecules, with 22,408 conformations in QM9 and 14,324
in Drugs. The remaining molecules form the validation set,
each having 5 conformations consistent with the training
set. Furthermore, we follow ETFlow (Hassan et al., 2024)
and compare our method with the latest approaches on the
large-scale QM9 data set.

It is important to note that our method relies on the initial
conformation C,,., generated by RDKit (Landrum, 2006),
which serves as the basis for subsequent optimization and
learning. RDKit is generally robust in producing reasonable
initial conformations, and in most cases, the chosen con-
formation provides a good starting point. However, poor
or atypical C,,., (e.g. with unrealistic geometry) can neg-

atively affect the model’s performance, leading to slower
convergence or inaccurate reconstruction. Nevertheless, due
to RDKit’s robustness, the risk of such issues is minimal
in practice. In our implementation, we use the ETKDG
algorithm in RDKit during data pre-processing to generate
Crera- While multiple conformations could be generated,
we run it once to ensure consistency for the same molecular
graph.

Baselines. We compare our method against several ML-
based approaches that have demonstrated excellent perfor-
mance, including CGCF (Xu et al., 2021a), ConfGF (Shi
et al., 2021), ConfVAE (Xu et al., 2021b), GeoMol (Ganea
et al., 2021), GeoDiff (Xu et al., 2022), DMCG (Zhu et al.,
2022), SDE-Gen (Zhang et al., 2023), EC-Conf (Fan et al.,
2023), TorDiff (Jing et al., 2022), MCF (Wang et al., 2023)
and ETFlow (Hassan et al., 2024).

5.2. Results and Analysis

The diversity and quality of molecular conformation gen-
eration are assessed using four indicators, as detailed in
Section B.2, with the key model setup information provided
in Section B.6.

Coverage and Matching. Table 1 presents the Recall and
Precision metrics for the Small-scale QM9 dataset. CoFM
outperforms all other methods in key Precision metrics, par-
ticularly after just 2 sampling steps. For the mean value of
COV-P, CoFM achieves an impressive 93.76%, exceeding
the second-best method, DMCG, by 6.5%. Similarly, for
the mean value of MAT-P, CoFM achieves the lowest value
of 0.2168 A after 2 sampling steps, representing a 24.51%
improvement over DMCG.These results highlight CoFM
’s remarkable capability in generating high-quality molecu-
lar conformations with fewer sampling steps compared to
diffusion-based models. Moreover, as the number of sam-
pling steps increases, CoFM maintains competitive Recall
performance compared to the best methods. If greater di-
versity is required for practical applications, increasing the
number of sampling steps for CoFM enhances diversity, as
reflected in improved Recall metrics. While the gains in
diversity may not surpass those of other methods, CoFM
still achieves the second-best performance in COV-R and
the best performance in MAT-R with 25 sampling steps.
This demonstrates CoFM ’s flexibility in balancing diversity
and quality. Table 2 presents the results on the Large-scale
QMO dataset. CoFM achieves the highest COV-P and the
second-best MAT-P using only 5 sampling steps. Notably,
it significantly outperforms TorDiff, another method that
incorporates RDKit-based physicochemical priors. The re-
sults for the Small-scale Drugs dataset are shown in Table 4
in Section B.4. CoFM achieves the best performance in
Precision metrics, particularly after 5 sampling steps. Al-
though its Recall metrics are less competitive compared to
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Table 1. Results on the Small-scall QM9 dataset.

COV-R (%) MAT-R (A) | COV-P (%) 1 MAT-P (A) |
Mean Median Mean Median Mean Median Mean Median

Methods Steps

RDKit 1 83.26 90.78 0.3447 0.2935 - - - -
GraphDG 1 73.33 84.21 0.4245 0.3973 43.90 35.33 0.5809 0.5823
ConfVAE 1 77.84 88.20 0.4154 0.3739 38.02 34.67 0.6215 0.6091
Geomol 1 71.26 72.00 0.3731 0.3731 - - - -
DMCG 1 0.2083 0.2014 87.26 91.00 0.2872  0.2926
3D Space Diffusion

CGCF 1000 78.05 82.48 0.4219 0.3900 36.49 33.57 0.6615 0.6427
ConfGF 5000 88.49 94.31 0.2673 0.2685 46.43 4341 0.5224 05124
SDEGen*® 1500 81.53 85.99 0.3568 0.3612 48.37 46.63 0.5662 0.5483

GeoDiff-A® 5000 90.54 94.61 0.2104 0.2021 52.35 50.10 0.4539 0.4399
GeoDiff-C* 5000 90.07 93.39 0.2090 0.1988 52.79 50.29 0.4448 0.4267

EcConf 2 75.89 79.71 0.4087 0.4016 79.85 82.85 0.4128 0.4176
EcConf 5 82.95 88.06 0.3475 0.3440 83.24 87.66 0.3777 0.3732
EcConf 25 82.35 86.54 0.3223 0.3196 86.30 90.88 0.3368 0.3356
SE(3)-Inv Latent Flow Matching (Ours)

CoFM 2 90.20 94.55

CoFM 5 92.25 96.64

CoFM 25 93.32 97.78

CoFM 50 93.30 97.94

Table 2. Results on the Large-scale QM9 dataset.

COV-R (%) 1 MAT-R (A) | COV-P (%) 1 MAT-P (A) |
Methods } Steps Mean Median Mean Median Mean Median Mean Median
GeoMol | 1 | 91.50 100.00 0.225 0.193 | 87.60 100.00 0.270 0.241
3D Space Diffusion
CGCF 1000 69.47 96.15 0.425 0.374 38.20 33.33 0.711 0.695
GeoDiff 5000 76.50 100.00 0.297 0.229 50.00 33.50 1.524 0.510
TorDiff 20 92.80 100.00 0.178 0.147 92.70 100.00 0.221 0.195
MCF 1000 95.00 100.00 0.103 0.044 93.70 100.00 0.119 0.055
ET-Flow 50 96.47 100.00 0.073 0.047 94.05 100.00 0.098 0.039

ET-Flow - SO(3) 50 95.98 100.00 0.076 0.030 92.10 100.00 0.110 0.047
SE(3)-Inv Latent Flow Matching (Ours)

CoFM 5 95.41 100.00 0.105 0.060 95.50 100.00 0.109 0.066
CoFM 50 95.46 100.00 0.101 0.059 95.13 100.00 0.111 0.064
Small-scale QM9 Small-scale QM9 Small-scale Drugs Small-scale Drugs
% 0.45 DMGG 851 ® DMGG
= on | — = 9o —~ 1.15 -
9> 90 .. °f£ ® CoFM 2 steps é ‘55 ® CoFM 5 steps
g g 0401 @ CoFMS5 steps g 80 1 g 1.10 1 @ CoFM 25 steps
‘» 801 K] @ CoFM 25 steps ) 01054 @ CoFM50 steps
§ § 0.35{ @ CoFM 50 steps § 75 § @ CoFM 100 steps
o 70 4 a GeoDiff o a 1.00 4 GeoDiff
& 2 0.30 & 70 2 0.95
© = © =
9 60 Eozs “>965 2 0.904
© 0.25 - q ©
3 = oo S = 0851 Lt
# °
102 103 104 102 10° 104 102 103 104 102 103 10*
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Figure 2. The performance efficiency of various methods on the Small-scale QM9 and Drugs test sets.. The x-axis represents the
overall inference time (in seconds), while the y-axis represents the COV-P, and MAT-P metrics respectively.

other methods, CoFM still attains the second-best MAT-R ~ capability to generate high-quality molecular conformations
after 100 sampling steps. These findings highlight CoFM ’s for larger molecules.
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Table 3. MAE of predicted ensemble properties (eV).

Method | E Enmin Ae Aemin Aeéma
RDKit 09233  0.6585 03698  0.8021  0.2359
GraphDG | 9.1027  0.8882 17973  4.1743  0.4776
CGCF 289661  2.8410  2.8356  10.6361  0.5954
ConfVAE | 82080  0.6100 1.6080  3.9111  0.2429
ConfGF 27886 0.1765  0.4688  2.1843  0.1433
GeoDiff 02597 01551 03091 07033  0.1909
DMCG 04324 01364 02057 13229  0.1509
CoFM | 0.0631 06478 0.0796 01508  0.1603

Properties Error. To evaluate the molecular ensemble
properties of the generated conformations as an indicator
of their quality, we follow methodologies established in
prior studies (Xu et al., 2021a; Shi et al., 2021; Zhu et al.,
2022). Specifically, thirty molecules are randomly selected
from the Small-scale QM9 test set, and 50 conformations
are generated for each molecule. Using the quantum chem-
istry software Psi4 (Smith et al., 2020), we calculate each
conformer’s energy (£) and HOMO-LUMO gap (¢). Key
ensemble metrics are then assessed, including the mean
absolute error (MAE) of the average energy (F), the low-
est energy (Fmin), the average gap (A¢), the minimum gap
(Aé€min), and the maximum gap (Aepax), relative to those of
the ground truth conformations. As shown in Table 3, CoFM
achieves the lowest errors in E, Ae, and Aémin compared
to the ground truth values. This highlights its remarkable
ability to accurately capture both the average energy and
the intricate electronic properties of the molecular ensemble.
These results underscore the model’s superior performance
in generating high-quality conformations with consistent
and reliable ensemble energy properties.

Inference Efficiency. To assess our method’s ability to gen-
erate high-quality molecular conformations with realistic en-
ergy properties while ensuring superior inference efficiency,
we measured the time taken by different methods to com-
plete inference on the entire Small-scale QM9 and Drugs
test sets, using the same batch size. For our proposed CoFM,
we evaluated inference times with 2, 5, 25, and 50 sampling
steps for QM9 (and 5, 25, 50, and 200 steps for Drugs), com-
paring the results with those of the DMCG (Zhu et al., 2022)
method and the representative 3D spatial diffusion model
algorithm GeoDiff (Xu et al., 2022). The results, shown in
Figure 2, demonstrate that DMCG achieves the fastest in-
ference time. However, CoFM remains highly competitive,
offering significant improvements in COV-P and MAT-P. In
contrast, GeoDiff requires considerably longer inference
times and shows lower performance. These findings em-
phasize CoFM’s ability to efficiently generate high-quality
molecular conformations with realistic energy properties,
while maintaining competitive inference speeds compared
to traditional 3D spatial diffusion models.

Visualization. To provide a more intuitive visualization,

several representative examples are presented. Figure 4
showcases cases from the Small-scale QM9 test set, while
Figure 5 highlights examples from the Small-scale Drugs
test set. As shown in the figures, CoFM generates numerous
conformations that closely resemble the reference confor-
mations.

6. Conclusion

We present CoFM, a novel method for molecular confor-
mation generation that combines innovation, efficiency, and
accuracy. At its core is an advanced autoencoder framework
that constructs a fully SE(3)-invariant latent space, seam-
lessly integrating RDKit’s robust prior knowledge while con-
fining SE(3) equivariance constraints to the autoencoder’s
reconstruction process. This design enables the model to
more effectively capture the intricate geometric feature dis-
tributions of conformations encoded in the latent vector.
By introducing the flow matching technique into the SE(3)-
invariant latent space for the first time, CoFM achieves
significant advancements in both generation efficiency and
the energy reliability of the resulting conformations. Our
method consistently delivers high-quality results across di-
verse and complex molecular datasets, demonstrating its
ability to balance diversity and precision while maintaining
competitive inference speed.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proofs of Propositions

Proposition A.1 (SE(3)-invariance of the latent vector). Ler G = {x, E, C} be a 3D molecular graph with n atoms, where
C € R™*3 denotes the atomic coordinates. Let p: R> — R3 be a rigid-body transformation in the special Euclidean group
SE(3), i.e., p(r) = Rr + t for some R € SO(3) and t € R3. We define the transformed conformation as p(C) € R"*3,
with p(C); = p(C;) applied row-wise. Let G = {x, E} denote the molecular topology. Let ¢g,. : (C,G) + z € R% be an
encoder composed of:

1. an SE(3)-equivariant graph network ® (e.g., EquiFormerV2 (Liao et al., 2023)) producing per-node scalar features
Op = (01,...,0,) € R**4

2. a feed-forward network FFN: R? — R? applied to each node independently,
3. a permutation-invariant pooling operator Pooling, e.g., mean or sum pooling.

Then the latent vector z is invariant under any rigid-body transformation p € SE(3), i.e.,
¢Enc(ca g) = d)Enc(p(C)a g)

Proof. Step 1 (SE(3)-invariant features). The equivariant network ® outputs scalar features for each node, which are
invariant under p € SE(3):
0 = ®(C,G) = ®(p(C),G) € R™™4,

Step 2 (Feed-forward projection). Applying FFN independently to each row preserves the equality:

FFN(Og) = FEN(®(C,G)) = FEN(®(p(C), G)).

Step 3 (Pooling). Since Pooling is permutation-invariant and coordinate-independent:

z = Pooling(FFN(Oy)) = Pooling(FFN(O})) = ¢gac(p(C), G).

Conclusion. Thus, we have
(bEnc(Ca g) = (bEnC(p(C)a g)’ Vp € SE(B)
O

Proposition A.2 (SE(3)-invariance of the full autoencoder). Let G = {x,E,C} be a 3D molecular graph with confor-
mation C € R™"*3, and let p € SE(3) be any rigid-body transformation applied row-wise to C. Let ¢, be the encoder
producing latent vector z, and ¢p,.. the decoder reconstructing a conformation from z. Then the entire objective of the
autoencoder is SE(3)-invariant:

Eae(ca C) = ﬁae(p(c)’ @)7

where

é\ - ¢Dec (g7 Cmetm (bEnc (C) ) ) 5p = ¢Dec (g7 Cmetm (bEnc (p(C) ) ) .
Proof. Encoder invariance. From Proposition A.1, we have

¢Enc(p(c)a g) = ¢Enc(cv g)v

i.e., the latent vector z is SE(3)-invariant.

Decoder equivariance. The decoder ¢p.. is composed of multiple SE(3)-equivariant layers (e.g., EquiFormerV2 (Liao
et al., 2023) blocks), each of which takes node-wise features (augmented with z) and outputs coordinate predictions. Since
the input to the decoder includes the SE(3)-invariant latent vector and the fixed topology G, and each block preserves
equivariance, the output satisfies:

é\P = p(é\)a

i.e., the reconstructed conformation transforms consistently with the input.

11
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Loss invariance. Let £, (-, -) denote the reconstruction loss, specified in Section B.1. Since the decoder is SE(3)-equivariant
and the loss function is defined in an SE(3)-invariant way, we have:

~

Eae(p(c)v p(C)) = Eae(ca C)

Conclusion. Combining the encoder invariance, decoder equivariance, and invariant loss yields the desired result:

-~

Lae(p(C), CA’P) = L4e(C,C).

B. More Details and Results of CoFM
B.1. SE(3)-Invariant Loss Function

For our autoencoder training, we employ a fully SE(3)-invariant loss function adapted from DMCG (Zhu et al., 2022). Specif-
ically, let p represents any rigid rotation-translation operation, while o represents any permutation operation on symmetric
atoms, with S denoting the set of all such operations. The primary component is the alignment 10ss, Lsg3)-im (C, Crecon), as
defined in Equation 14.

Furthermore, following DMCG (Zhu et al., 2022), an angle loss and a bond loss are introduced to enhance the training
process. Let C represent the ground truth conformation and C,..,, denote the reconstructed conformation. Define E as the
set of all bond connections and E as the set of triplets (4, j, k) satisfying (¢, j) € E, (i, k) € E, and k # j.

The coordinates of the i-th node are given by C;, and the vector between the i-th and j-th nodes is defined as:
7y = Cj — C;. (18)

Additionally, the distance matrix D € R™*" is introduced, where D;; represents the distance between nodes 4 and j,
formally defined as:

Dij = [IC; = Ci. (19)
Similarly, for the reconstructed conformation, we define C/*“*" as the coordinates of the i-th node, Fi;“"’" as the vector
between nodes 7 and j, and D" € R™*™ as the corresponding distance matrix, where:

D;;CUV! — HC;ECO”[ _ C;e(,'On”. (20)
The angle loss and bond loss are then formulated as follows:
1 . — — . —recon recon 2
Langie = @ Z ||cosme(rij,rik) — cosine (T, ", T )HF (21)
(1,4,k)EE>
1 recon 2
Lponda = E Z (Dij - Dij ) (22)
(i,J)EE

Additionally, we introduce a distance 10ss Ljsnce, defined as the MAE error between D and D, Which optimizes the
distances between non-bonded nodes. This loss has the potential to facilitate convergence.

Overall, given a ground truth conformation C and a reconstructed conformation Crecon, let A1, A2, A3, and \4 denote the
hyperparameters controlling the weights of each loss component. The reconstruction loss is then defined as:

Erecon = /\1 : ESE(j’)—lnv (C, Crecon) + /\2 : Eangle + )\3 : Ebond + /\4 : Edismnce (23)
In practical implementation, we employ a cascade decoder with outputs such as C,(n?i, C,(jg)l, .+« y Crecon- For each intermediate

output and the final reconstructed conformation, we compute the respective reconstruction losses. Additionally, a KL
divergence loss is applied as a regularization term, where z represents the latent representation produced by the encoder. Let
« and (3 be hyperparameters to balance the reconstruction loss and KL regularization. The overall loss for our autoencoder
is formulated as follows:

Eae =« [‘Crecon (C7 Cy(yiz) + Erecon (C7 Cr(riz)l) + ...+ Erecon (C; Crecan)] + 5 : £KL<Z) (24)
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Proposition B.1 (SE(3)-invariance of the training objective). Let G = {x,E,C} be a 3D molecular graph with
coordinates C € R"*3, and let p € SE(3) be any rigid-body transformation applied row-wise to C. Let ¢p,.(C,G) be the
encoder producing a latent vector z € R?, and let the reconstructed conformation be given by

5 = (ngc(g; Cmetm (ZSE}’!C(C))

Then the total training loss
Lae = EKL + Erecon + Langle + Lbond + Edistance

is strictly SE(3)-invariant, i.e.,

o~ ~

Eae(c7 C) = Eae(p(c)a p(C))

Proof. Step 1 (KL term). The latent vector z = ¢g,.(C,G) is SE(3)-invariant by Proposition A.1, and hence the KL
divergence loss L (z) is also SE(3)-invariant.

§tep 2 (Reconstruction loss). The reconstruction loss L., is defined as a comparison between the predicted conformation
C and the reference C, using an SE(3)-invariant metric such as pairwise distances or Kabsch-aligned coordinates. Thus,

~ ~

‘Crec()n (C7 C) - [frecon (P(C)a ,O(C))

Step 3 (Angle, bond, and distance losses). Each of the remaining terms:

»Cungle ) ﬁbond; »Cdismnce

is computed from internal geometric quantities such as interatomic angles, bond lengths, or pairwise distances, which are
invariant under SE(3) transformations. Therefore, each satisfies:

~ ~

L.(C,C) = L.(p(C),p(C)), =* € {angle, bond, distance}.

Conclusion. Since each term in L, is SE(3)-invariant, the total loss is also SE(3)-invariant:

-~ ~

£a6(07 C) = ﬁae(p(c)v p(C)), Vp € SE(?’)

B.2. Evaluation Metrics

RMSD. In the field of bioinformatics, RMSD is commonly utilized to quantitatively assess the dissimilarity between two
3D structures. Its calculation involves normalizing the Frobenius norm of the aligned coordinate matrices after applying the
Kabsch algorithm (Kabsch, 1976), as described by equation 25:

~ 12
Ci—Cll| - (25)

. 1Y
RMSD(C,¢) = | > ‘
=1

where C’ represents the generated conformation after alignment using the Kabsch algorithm, and n represents the number of
atoms. C; and C’; represent the coordinate vectors of the i-th atom in C and C’, respectively, in 3D space.

Coverage and Matching Metrics. C’ represents the generated conformation and C’ represents that after Kabsch align-
ment (Kabsch, 1976), and n denotes the total number of atoms. C; and C~Z’ correspond to the coordinate vectors of the ¢-th
atom in C and C’, respectively. The symbol ¢ is defined as a predetermined RMSD threshold. Additionally, S, and S, denote
the sets of reference and generated conformations, respectively. Based on these definitions, the Recall measure is formalized
as follows:

1 ~
COVR(S,.S,) = mHc € S, JRMSD(C, (") < 6,3C' € sg}‘ (26)
1 ~
MAT-R(S,,S,) = oH cInelél RMSD(C, (") (27)
T CEST g
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COV-R measures the percentage of conformations in the reference set that are covered by the generated set. Coverage is
defined such that, for each conformation in the reference set, there exists at least one conformation in the generated set with
an RMSD value smaller than the threshold J. Conversely, MAT-R calculates the average of the minimum RMSD values
between conformations in the reference set and those in the generated set.

The Precision, defined by COV-P and MAT-P, mirrors Recall but with S,. and S, swapped. Recall emphasizes diversity,
while Precision focuses on quality. Following previous works, the threshold ¢ is set to 0.5 A for QM9 and 1.25 A for Drugs.
S, is set to twice the size of S,.

B.3. The Neural Vector Field vy

As mentioned in Section 4.2, we parameterize the vector field predictor as a neural network vy to learn the true vector field
in the flow matching training phase. For any ¢ € [0, 1], with zg ~ N(0, 1) and z, ~ p(z|G), let z; = (1 — t)zg + tz;. The
true vector field v, = z1 — 2z is predicted using vg(z, t, G).

Following ETFlow (Hassan et al., 2024), vy is parameterized as an enhanced version of TorchMD-NET (Tholke &
De Fabritiis, 2022). Readers are encouraged to refer to the relevant sections of the ETFlow paper for a detailed explanation
of the network design. In the following sections, the Embedding Layer and Output Layer will be introduced to demonstrate
how z,, t, and G are integrated into the network.

Embedding Layer. For each atom in a total of n atoms, let x; denote the atomic number and h; represent the atomic
attributes (e.g., chirality). An invariant embedding, emb,,, is computed through the following process:

x; = Embedding(x;); h; = MLP(h;). (28)
Then a neighborhood embedding n; is computed to capture local atomic environment:
nei; = Z Embedding(z;) - g(dij;, li;). (29)
jed(i)

Here, 0(4) denotes the set of all neighbors of the i-th atom, d;; represents the distance between atoms 7 and j (derived
from the pre-calculated meta conformation Cy,), and l;; encodes the edge features (either from a radius-based graph or
molecular bonds). The interaction function g(d;;, ;) combines distance and edge information, as described in (Hassan
etal., 2024).

Finally, all features are combined to derive the invariant embedding Emb,,, through a linear projection:
emb,. = Linear([x;, h;, nei;, t, 24)) (30)

Where ¢ represents the time step, and |-, -] denotes concatenation. Thus, we successfully introduce z; to an invariant input,
enabling the network to predict the true vector field at time step ¢.

Output Layer. The output layer consists of Gated Equivariant Blocks (Schiitt et al., 2018). For each atom, it outputs a
scalar embedding x,; and a vector feature v;. The scalar embedding x; is pooled to form a global graph embedding, which is
then used as the predicted vector field vy:

vy = Mean-Pooling(xg, 1, ..., Tp_1) 31

B.4. Results on the Small-scale Drugs dataset

Coverage and Matching Metrics. Tab. 4 presents the Coverage and Precision metrics for the Small-scale Drugs dataset. In
particular, CoFM achieves the highest precision in all baselines with 5-step sampling, demonstrating a 3.93% improvement
in the mean COV-P value and a 10.14% improvement in the mean MAT-P value. For diversity sampling, comparative results
on Recall metrics can be observed after 100-step sampling, with CoFM achieving the second-best MAT-R mean and median
values across all baselines.

B.5. Visualization of Molecular Conformation Generation Results

For clearer visualization, the generated conformations of Small-scale QM9 and Drugs are shown in Figure 4 and Figure 5,
respectively. Input Graph refers to the topology graph of the input molecule, while Meta Conf. represents the pre-generated
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Table 4. Conformation Generation Results on the Small-scale Drugs dataset.

COV-R (%) 1 MAT-R A) | COV-P (%) + MAT-P (A) |
Mean Median Mean Median Mean Median Mean Median

Methods Steps

RDKit 1 60.91 65.70 1.2026 1.1252 72.22 88.72 1.0976 0.9539
GraphDG 1 08.27 00.00 1.9722 1.9845 02.08 00.00 2.4340 2.4100
ConfVAE 1 55.20 59.43 1.2380 1.1417 22.96 14.05 1.8287 1.8159
Geomol 1 67.16 71.71 1.0875 1.0586 - - - -
DMCG | | |pOGSIeOUOOROTZOTIG $1.05 9551 09210 08785
3D Space Diffusion

CGCF 1000 53.96 57.06 1.2487 1.2247 21.68 13.72 1.8571 1.8066
ConfGF 5000 62.15 70.93 1.1629 1.1596 23.42 15.52 1.7219 1.6863

SDEGen® 1500 56.01 56.07 1.2371 1.2303 25.07 16.11 1.7196 1.6794
SDEGen” 2000 56.59 63.58 1.2365 1.2246 26.44 17.31 1.7046 1.6997
SDEGen® 1500 26.29 10.15 1.6011 1.6030 11.73 03.02 2.0078 1.9853
SDEGen? 6000 67.27 74.20 1.1256 1.1289 32.25 25.65 1.6793 1.6587
GeoDiff*® 1000 82.96 96.29 0.9525 0.9334 48.27 46.03 1.3205 1.2724
GeoDiff” 5000 88.36 96.09 0.8704 0.8628 60.14 61.25 1.1864 1.1391
GeoDiff? 5000 89.13 97.88 0.8629 0.8529 61.47 64.55 1.1712 1.1232

EcConf 5 84.54 91.18 0.9341 0.9264 71.40 83.17 1.0971 1.0270
EcConf 15 85.94 92.55 0.9046 0.8905 71.63 83.44 1.0841 1.0176
EcConf 25 86.66 91.90 0.9016 0.8869 71.36 80.62 1.0931 1.0307
SE(3)-Inv Latent Flow Matching (Ours)

CoFM 5 81.30 88.71 0.8646 0.8479

CoFM 25 85.12 91.55 0.8293 0.7897 83.70 96.06 0.8626 0.7760
CoFM 50 85.28 92.79 0.8266 0.7866 83.45 95.26 0.8693 0.7823
CoFM 100 85.92 92.53 0.8252 0.7881 83.27 94.96 0.8725 0.7881

conformation (meta conformation) obtained using RDKit. Notably, for each molecule, only one conformation is selected
during preprocessing. Ref. denotes the reference conformations, and Gen. indicates the conformations generated by CoFM.

B.6. Model Configuration

AutoEncoder. We define the total number of Equiformer blocks in the encoder as Be,.. As outlined in Section 4.1, the
stacked decoder consists of p small EquiformerV?2 networks, with the number of Equiformer blocks in each network denoted
as Byec. Imax represents the maximum degree of the irreps features, and ¢ denotes the number of channels for each type-/
feature. d refers to the dimension of the latent vector. Other hyperparameters remain largely unchanged compared to the
original EquiformerV2 (Liao et al., 2023). For further details, please refer to the code implementation (which will be
open-sourced upon acceptance).

For both datasets, we set Beye = 8, p = 2, and Bgec = 5 (as shown in Figure 1), with l,,x = 4, ¢ = 256, and d = 48.
In the loss function, we set A\ = 3, A\a = A3 = 0.2, and Ay = 1, with @« = 1 and 8 = 0.001 for both datasets. We use
the AdamW (Loshchilov & Hutter, 2018) optimizer with a learning rate of = 5 x 10~° and other default parameters
implemented in the PyTorch toolkit. The best model checkpoint is obtained after training for 100 epochs using a cosine
learning rate schedule.

Vector Field vy. The neural vector field vy is parameterized using a TorchMD-NET (Tholke & De Fabritiis, 2022) model,
modified by ETFlow (Hassan et al., 2024), as illustrated in Figure 1 (upper-right) and further detailed in Section B.3. Model
hyperparameters are kept consistent with those used in ETFlow. The model is trained for only 100 epochs on each dataset
using the Adam optimizer (Kingma & Ba, 2015), with a learning rate of 7 = 5 x 10~%. Notably, during generation, the
standard deviation o of the Gaussian prior is set to 2.0, 1.5, and 0.8 for the Small-scale QM9, Drugs, and Large-scale QM9
datasets, respectively.
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Figure 3. The input feature embedding process of the Equiformer Network. (a). The original input feature embedding in
Equiformer (Liao & Smidt, 2022); (b). The original input feature embedding in EquiformerV2 (Liao et al., 2023); (¢). The mod-
ified input feature embedding incorporating our SE(3)-invariant latent vector z (Ours).

C. Important Details of EuiformerV2

In recent research, equivariant networks (Thomas et al., 2018; Batzner et al., 2022; Brandstetter et al., 2021; Liao &
Smidt, 2022; Liao et al., 2023) have become dominant tools for modeling 3D atomistic systems, including tasks such
as 3D molecular property prediction, pretraining, and force estimation. Among them, Equiformer, encompassing both
Equiformer (Liao & Smidt, 2022) and EquiformerV2 (Liao et al., 2023), represents a major advancement in the field. It
leverages the strengths of Transformer architectures while integrating SE(3)/E(3)-equivariant features through irreducible
representations (irreps), enabling more effective and symmetry-aware learning for molecular modeling.

Embedding. The input feature embedding process of Equiformer networks integrates atom embedding and edge-degree
embedding. The atom embedding, originally implemented as a linear layer to transform the one-hot encoding of atom
species, is redefined as a lookup table Embedding for the atom type x;. For edge-degree embedding, as illustrated in the
right branch of Figure 3(a), a constant one-vector is first transformed into messages encoding local geometry through two
linear layers and an intermediate DTP (Depth-Wise Tensor Products) (Howard, 2017) layer. The resulting information is
then aggregated using a summation operation to effectively encode the degree information. In EquiformerV2 (Liao et al.,
2023), as shown in the right branch of Figure 3(b), the original linear layers and DTP layers are replaced with a single
SO(2) linear (Passaro & Zitnick, 2023) layer followed by a rotation matrix Ri_jl, enhancing the network’s ability to capture
geometric information more efficiently. Notably, the atom embedding process serves as a fundamental mechanism for
seamlessly integrating our SE(3)-invariant latent vector z into the decoder backbone ¢p.., as illustrated in Equation 9 and
highlighted in the red block of Figure 3(c). This integration is formally represented as follows:

emb,, = Embedding(x;) + z (32)

Output Head. As detailed in (Liao et al., 2023), scalar quantities such as energy (the latent vector z € R? in our case) are
predicted using a feed-forward network (FFN) that transforms irreducible representations (irreps) features at each node
into scalar values (a scalar vector in our case), followed by sum aggregation (Pooling) over all nodes. For force prediction
(reconstructed conformation Cyeeon € R™*3 in ours case), an equivariant graph attention block is employed, where the type-I
output O is used as the predicted force for each node.

16



Molecular Conformation Generation via Flow Matching in SE(3)-Invariant Latent Space

Input i . D N
Graph N J1
Meta
Conf.

N TCR IS NP
e R e RSSO I S T 3%
oy e o L et
eSS N R o
L WA SR e e L L
no e I SVIL S S T N
oy Ly e MY Y R R
R R O A s R TR Y
M\ﬁ*ﬁﬁ‘%ﬁ»{“%w

Figure 4. Visualiz of the molecular sults on the Small-scale QM9 data
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