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ABSTRACT

We introduce a self-supervised learning model to extract face nodes and global
graph embeddings on meshes. We define a model with graph masking on a mesh
graph composed of faces to pre-train on self-supervised tasks. We evaluate our
pre-trained model on shape classification and segmentation benchmarks. The re-
sults suggest that our model outperforms prior state-of-the-art mesh encoders: In
ModelNet40 classification task, it achieves an accuracy of 89.8%, and in ShapeNet
segmentation task, it performs a mean Intersection-over-Union (mloU) of 78.5.
Further, we explore and explain the correlation between test and training masking
ratios on Mesh Graph Masked Autoencoders (MGMA). And we find best per-
formances are obtained when mesh graph masked autoencoders are trained and
evaluated under different masking ratios. Our work may open up new opportunities
to address label scarcity and improve the learning power in geometric deep learning
research.

1 INTRODUCTION

Mesh is a data format widely used in computer graphics and is used more and more frequently in
computer vision tasks as additional supervision or inference targets. It provides an accurate, efficient,
and irregular representation of three-dimensional shapes. These properties make it a popular format
for capturing continuous underlying surfaces.

Many commonly used datasets, such as ModelNet (Wu et al., 2015), ShapeNet (Chang et al., 2015),
ScanNet (Dai et al., 2017), and Pix3D (Sun et al., 2018]), utilize meshes as the core or intermediate
agent. A number of 3D data formats can be derived from the mesh structure, such as voxel grids,
point clouds, and implicit surfaces. Researchers customize a series of methods to analyze those
regular data formats using deep learning, like using 3D convolution to parse 3D voxel grids (Wu
et al.| 2016), using symmetric functions (Q1 et al.| 2017a) to process point clouds, and using signed
distance fields to represent the implicit surfaces (Cruz et al., 2021 Park et al., 2019).

Mesh representation itself could provide excellent quality and computational efficiency while preserv-
ing sharp shape features. Deep learning with data formats extracted from meshes have gained more
and more success in 3D shape analysis, while analyzing their original data format with deep learning
approaches is still an open problem. So studies on developing deep learning methods on mesh data
attract lots of interest. Traditional approaches treat a mesh as a graph with vertices as nodes (Hanocka
et al., 2019b; Verma et al., 2018)) and develop methods akin to CNN, which contains convolution and
pooling operations, to learn shared filters to extract features from edges in meshes. However, such
approaches ignore the rich manifold structure meshes can represent, such as topology and Riemannian
metric. On the other hand, most of the current mesh-based networks validate themselves on small or
synthetic datasets. The dearth of studies that demonstrate the effectiveness of mesh on large datasets
limits the development of deep learning applications on meshes. Moreover, the compact and efficient
essence of mesh data representation should also be well utilized in ongoing geometric deep learning
research. A powerful tool to analyze 3D meshes would benefit computer graphics and computer
vision researchers.

There are significant challenges in developing mesh-based geometric deep learning methods. The
first challenge is passing mesh, an irregular data format, forward in a neural network. In our work,
we take the mesh as a graph composed of multiple faces as nodes of the graph. The emergence of
success in graph processing provides us with a model to handle graph data. Thus, the mesh is another
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data format that a graph model naturally processes. Further, we design an attention mechanism along
graph convolution on meshes to leverage its excellent feature extraction ability.

Meanwhile, because of the high cost
and high variability associated with
manual data labeling, there are more
and more unlabeled 3D data. Tradi-
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Dosovitskiy et all, 2021} like classification and part segmentation.

Brown et al.,[2020). Training an au-

toencoder with masking (Devlin et al} [2019) on the input data during training has been proved to be
an effective method for image classification 2022). In this paper, benefiting from using
the mesh data representation, we propose to apply graph masking and point cloud reconstruction to
support our self-supervised learning architecture and advance 3D deep learning research.

In our paper, we present a mesh-based framework, Mesh Graph Masked Autoencoder (MGMA),
which is pre-trained on self-analyzing the mesh data, and apply the pre-trained model to large-scale 3D
imaging datasets. Our network is designed to be suitable for different kinds of mesh representations
to increase flexibility and support a variety of available data. MGMA exhibits state-of-the-art
performance on supervised tasks. Furthermore, it could perform unsupervised and semi-supervised
classification and segmentation tasks. We show in Figure [I] that a mesh could be considered as
a graph with faces as nodes and pre-trained to have a model which could be applied to multiple
tasks in recognition tasks. To demonstrate the effectiveness of our method, we perform a variety of
experiments and show state-of-the-art performance among the mesh-based shape feature extractors.
The key contributions of our work are as follows: 1. We introduce a mesh graph autoencoder and
train it with graph masking. 2. With our novel MGMA encoder, our self-supervised learning model
incorporates unlabeled data into the training stage and enhances the 3D data learning power. 3. We
comprehensively evaluate our model under various learning benchmarks on SHREC11, ModelNet40
supervised and unsupervised classification, and ShapeNetPart semi-supervised segmentation tasks and
show that our model achieves state-of-the-art results w.r.t prior mesh-based neural network models.
4. We explore and explain the correlation between test and training masking ratios on MGMA.
And we find best performances are obtained when mesh graph masked autoencoders are trained
and evaluated under different masking ratios. This gained insight may guide future self-supervised
learning algorithm development.

2 RELATE WORK

Deep Learning on Meshes Treating a polygon mesh as a graph would accordingly apply graph-
based methods on it. There are two existing categories for graph methods: spectral methods
et all, 2013} [Henaff et al.l, 2015} [Defferrard et al.l 2016} Klpf E Welling| 2016} [Levie et al.,[2019)
and spatial methods (Micheli, [2009; |Atwood & Towsley, [2016; Niepert et al., [2016; |Gilmer et al.,
2017} [Fey et al, 2018}, [Masci et al.,[2015} [Monti et al., [2017; [Huang et al., 2019). Moreover, the
convolution in the spectral domain is non-localized filtering (Defferrard et al.,[2016). Chebyshev
polynomial expansion is a method to solve the non-localization problem (Defferrard et al.l 2016).
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On the other hand, there is no easy way to induce the weight sharing across different locations
of the graph due to the difficulty of matching local neighborhoods in the spatial domain (Bruna
et al., |2013). Nevertheless, |Atwood & Towsley| (2016)) proposed a spatial filtering method that
assumes information is transferred from a vertex to its adjacent vertex with a specific transition
probability. The power of the transition probability matrix implies that farther adjacent vertices
provide little information for the central vertex. Furthermore, Geodesic CNN (Masci et al., [2015),
MoNet (Monti et al.,|2017), and SplineCNN (Fey et al.,|2018) deal with the weight sharing problem
by designing local coordinate systems for the central vertex in a local patch. They apply a set of
weighting functions to aggregate the characteristics at the adjacent vertices. Next, they calculate
a weighted mean of these aggregates. However, these methods are informatically expensive and
require pre-defined local coordinate systems. In addition, Neural3DMM (Bouritsas et al., 2019)
introduces the spiral convolution operation by enforcing a local ordering of vertices through the
spiral operator. An initial point for each spiral is a vertex with the shortest geodesic path to a fixed
reference point on a template shape. The remaining vertices of the spiral are ordered in the clockwise
or counterclockwise directions inductively. However, finding a reference point for an arbitrary shape
is challenging. Moreover, the initial point is not unique once two adjacent vertices have the same
shortest path to the reference point.

FeaStNet (Verma et al.| 2018) proposes a graphical neural network in which the neighborhood of
each peak for the convolution operation is not preset but instead calculated dynamically. Tangent
convolution is introduced in (Tatarchenko et al., 2018)), where a small neighborhood around each
vertex is used to reconstruct the local function upon which convolution is applied. Some generative
models have also been tried on the mesh. [Litany et al.[(2018)) perform shape completion via a graph
autoencoder. MeshCNN (Hanocka et al., | 2019b) utilizes the particular property of edge in a triangle
mesh to extract edge features. [Yang et al.|(2021)) apply continuous convolution on a geodesic region
of mesh.

Self-Supervised Learning Self-supervised learning is to define some tasks from the data itself, and
those human-defined tasks are used to pre-train the model. It is used in computer vision with proxy
tasks such as predicting order in time (Wei et al., [2018)), finding missing pixels (Pathak et al., [2016),
location of patches (Doersch et al.,[2015), image orientations (Gidaris et al., [2018]), human-made
artifacts (Jenni & Favaro, [2018), clusters of images (Caron et al.,|2018)), camera locations (Agrawal
et al., 2013)), jaggle puzzle (Noroozi & Favarol 2016)), color of videos (Vondrick et al., 2018]), and
tracking of image patches(Wang & Guptal 2015). These works demonstrate promising results in
transferring visual features from proxy tasks to other tasks.

Thus, defining proxy tasks that are related enough to the downstream task is quite important (Jenni
& Favaro, [2018). On the other hand, supervisions, like density estimation or clustering, are not
domain-specific (Caron et al.,|2018)). Deep clustering models(Aljalbout et al., 2018; Min et al., [2018];
Yang et al.,[2017; Hershey et al.,[2016; Xie et al., [2016; |Ghasedi Dizaji et al.,|2017;|Shaham et al.}
2018 |Yang et al.,2016; |Hsu & Lin, |2018) come up to jointly train with a network-specific loss.

There are many works exploring self-supervised learning on point clouds. They use multi-tasks
learning (Hassani & Haley}|2019), reconstruction (Achlioptas et al.,[2018;|Yang et al.,|2018?) contrast
learning (Zhang & Zhu,,[2019)), restoring point cloud (Shi et al.}[2020)), point cloud autoregression (Sun
et al.,|2019b), the orientation prediction (Poursaeed et al.| [2020; Han et al.| 2019), and approximating
convex decomposition (Gadelha et al., 2020) to pre-train the model and achieve state-of-the-art results
on point cloud classification and segmentation tasks. Recently, masked autoencoders are used for
self-supervised learning on image classification tasks(He et al.|[2022).

Transformer Applications Transformer, which is proposed by|Vaswani et al.[(2017)), has been widely
used in natural language processing (NLP) and then computer vision. In NLP, large Transformer-based
models are often pre-trained on large datasets and then fine-tuned for the downstream tasks, like BERT
(Devlin et al., 2019) and GPT (Radford et al., 2018 2019; Brown et al.,|2020). In computer vision,
applying Transformer on image processing experiences the local-to-global and low-to-high resolution
process. Image Transformer (Parmar et al.,[2018)) applies self-attention to local neighborhoods. And
this local attention replaces convolutions (Hu et al., |2019; Ramachandran et al.,|2019; Zhao et al.,
2020). Sparse Transformers (Child et al.,[2019)) use scalable approximations to global self-attention
for images. Another way to apply attention to blocks of varying sizes (Weissenborn et al.|[2019), in
this particular case, along individual axes (Ho et al., 2019; Wang et al., |2020).
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Some models (Cordonnier et al.,[2020; [Dosovitskiy et al., 2021} [Bello et al.| [2019; Wu et al.| |2020;
Chen et al., 2020a)) extract patches of size 2 X 2 or 7 x 7 from the input image then apply CNN
and Transformer sequentially. These works make Transformer achieve state-of-the-art results on
small and medium resolution images. Instead of just classification, Transformer is also used in video
processing(Wang et al.|[2018; Sun et al., 2019a)), object detection(Hu et al., 2018; |Carion et al., 2020),
unsupervised object discovery(Locatello et al.,|2020), and unified text-vision tasks(Chen et al.|[2020c;
Lu et al.| 2019; |L1 et al., 2019). Recently, [Liang et al.| (2022 use Transformer as an autoencoder
network for mesh reconstruction and self-supervised learning.

3 METHOD

MGMA is a masked autoencoder that interprets the mesh as a graph, and each graph node is a face on
the mesh. The features on the face nodes are randomly masked first and passed through multiple face
graph attention layers. Then max-pooling is applied to obtain the global graph embedding, which is
passed to a point cloud decoder for reconstruction pre-train tasks.
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Figure 2: Architecture of MGMA. MGMA is a masked autoencoder structure that extracts global
information from mesh and decodes the information into a point cloud. The structure interprets the
mesh as a graph, and each node of the graph is a face on the mesh. For the node that is selected
as a masked node, its feature is replaced with the mask embedding. The features on the face node
are passed through multiple face graph attention layers. The layer aggregates the information from
neighing nodes to the center node using an attention mechanism (detailed in Section [3). MatMul,
Scale, and SoftMax is defined in Equation[I} Then max-pooling is applied across each face node and
passes the global graph embedding to a point cloud decoder. Chamfer distance is computed between
the decoded point cloud and the points sampled from the surface of the mesh to train the autoencoder.
For detail structure of the network, see Section@

Masking on face graph is achieved by randomly selecting nodes on the graph according to the
masking ratio. After one node is selected as the masked node, a learnable masking embedding takes
the place of the original embedding, which is adopted from (He et al.| 2022} [Devlin et al.,[2019).

Face graph attention layer is the core of our network, as shown in Figure[2] The layer takes a graph
and the features on each node of the graph as input. For each node in the graph, the layer first gathers
its neighbors according to an adjacency matrix which could be an n-ring neighbor adjacency matrix
in our architecture. We denote r as the feature of the root node and n as the gathered features of the
root node and its neighbors. Three linear layers fy, fo, and fx take n, 7, and n as input to compute
V, @, and K. In our work, we keep the output dimension of key, value, and query fixed to 64.

FaceN ode Embeddi ft (QKT)V (1)
aceiN oaer.moe an = soJjtmaxr\ ——
Vdy

After obtaining V', @, and K, we use Equation|[T}o get the embedding of each face node. In Equation
[1] dj, stands for the dimensional size of K. Details of composing the layers into an encoder are in
Section
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Method: | ModelNet40

Method: o1 o MeshNet(Feng et al 2019) 88.9%

P P MeshWalker(Lahav & Tal, [2020) 88.9%

MeshGraphNet(Song et al.|[2020) | 28.9% 16.0% MeshGraphNet(Song et al.,[2020) 89.8%

MeshNet(Feng et al.[[2019) 55.6% 44.7% MVCNN(Su et al ] [2015)) 90.1%
MeshCNN(Hanocka et al.|[2019b) | 98.6%  91.0% - = i

PD-MeshNei(Milano ot al./2020) | 99.7%  99.1% Mpolllrl‘\tll\]tet”s( Qi flt *11"12021072% g?gg"

MeshWalker(Lahav & Tall2020) | 98.6%  97.1% eshNet++(Singh et al} ) 6%

MeshNet++(Singh et al.J2021b) | 100%  99.8% SDMC(Singh et al., 2021a) 92.2%

ExMeshCNN(Kim & Chael2022) | 100%  99.3% MeshMAE(Liang et al.,2022) 92.5%

SubdivNet(Hu et al.|[2022} 100% 100% ExMeshCNN(Kim & Chael [2022) 93.0%

MGMA(Ours) | 100% 100% MGMA (Ours) | 92.95%

Table 1: Classification accuracy for SHREC11 Table 2: Classification accuracy for ModelNet40
dataset. dataset.

Reconstruction loss In the reconstruction loss function, we create a reconstruction decoder for this
function. The input to this decoder is the graph embedding of the mesh. The expected output is the
point cloud sampled from the mesh. Like the paper(Achlioptas et al., |2018)), we use a similar network
architecture fp for decoding a point cloud. So we choose the point cloud as the target for the decoder
to generate. And the loss function is the Chamfer Distance (CD), as shown in Equation 2]

N M
1 . 2 1 i 2
Lon = 2 uiulon =PI + 37 3wl — 1 *

where s and § are the ground truth and predicted point sets. M and N denote the number of points in
the ground truth and predicted point sets. p,, and p,, are points in point set s and S.

4 EXPERIMENTS AND RESULTS

In this section, we introduce experiments to validate the effectiveness of our neural networks. First,
we demonstrate the effectiveness of the encoder part of our networks on two supervised classification
tasks. Then, we verify our work by pre-training the network for an unsupervised classification task.
Finally, we conduct a semi-supervised experiment for part segmentation on 3D shapes.

4.1 SUPERVISED CLASSIFICATION

we first verify that our network’s encoder could outperform other networks. By using the designed
mesh graph attention encoder, we achieve state-of-the-art performance on SHREC11 and ModelNet40
when the mesh is the input data modality.

SHREC11 is a dataset introduced in (Lian et al., 2011)) that contains 30 classes, with 20 3D objects
in each class. We follow the setup in which split 16 and 10 are the numbers of training 3D objects in
each class, making split 10 a harder classification task than split 16. We use the meshes processed
by, (Hanocka et al.,|2019a) and each mesh contains 500 faces. Our results are reported in Tablem
We train our encoder 300 epochs with Adam optimizer, (Kingma & Ba, |[2015) which is with 3 equal
t0 0.9 and 0.999, ¢ equal to 18, learning rate 0.0002 and weight decay equal to 0.0. We compare
our mesh graph attention encoder against eight methods that also take meshes as the input to their
networks. It turns out that our encoder is able to get 100% accuracy on both setups.

Because SHRECI1 is a relatively small dataset for supervised classification and some methods have
reached 100% accuracy, we further validate our mesh graph attention encoder on ModelNet40 (Wu
et al.l[2015).

ModelNet40 is a dataset that contains 40 classes, and there are 9840 meshes for training and 2468
meshes for testing. Because the meshes in ModelNet40 have different numbers of faces. To fit
the meshes onto GPU and to improve the GPU utilization, we follow the method in (Huang et al.,
2018) to first make the mesh watertight, then simplify the meshes into 2048 faces. We train our
encoder 300 epochs with the same optimizer settings as for SHREC11. The learning rate is decayed
by a multiplicative factor of 0.1 at steps 30 and 60. Our method achieved 92.95% test accuracy on
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ModelNet40. The results are reported in Table 2] We compare our encoder with other night methods.
Our results are on par with state-of-the-art classification on ModelNet40.

These experiments validate that our encoder could get state-of-the-art performances on 3D shape
classification tasks. The next experiments are to validate the model’s performance on unsupervised
tasks.

4.2 UNSUPERVISED CLASSIFICATION

We pre-train the model across all the provided training data in ModelNet40. We keep the pre-trained
model’s weight and use it for the classification tasks. We do not perform fine-tuning when using the
pre-trained model for downstream tasks. After obtaining the graph embedding, we use a linear SVM
as the unsupervised tool for classification on ModelNet40.

The process of our unsupervised learning is stated as follows. We first pre-train the masked au-
toencoder with training data with the same training hype-parameter setting as in Section After
pre-training the model, we pick the model with the lowest Chamfer Distance on provided test data.
Because the data used for pre-training do not contain label information, we do not consider comput-
ing test data’s Chamfer Distance as information leaking. We use the best model to extract global
embeddings from the training and test data, a vector with dimension 1024. Once we obtain the global
embeddings, we use linear SVMs to train on ModelNet40 training data’s global embeddings. We use
5-fold cross-validation to compute the average validation accuracy on the data split from training
data. We also perform a logarithm search on the regularization parameter C' of SVM from 1 to 1000
with the number of steps equal to 10. Then we pick the SVM model with the best average accuracy
on validation data to compute the test accuracy. In Section[A.T] we visualize graph embeddings using
t-SNE(Van der Maaten & Hintonl [2008)).

In Table[3] our method performs

best compared with other mesh-

based neural networks on un- Method ‘ Modality ‘ Accuracy
supervised learning on Model- LGAN(Achlioptas et al.,|2018)) Point 84.5
Net40. There are two reasons PointDistShi et al.| (2020) Point 84.7
our method outperforms other  PointGrowSun et al.| (2019b) Point 85.8
mesh-based methods. The first MRTNetGadelha et al.| (2018) Point 86.4
reason is our encoder utilizes PCGANLI et al.| (2018)) Point 87.8
an attention mechanism to pick  FoldingNetYang et al.|(2018) Point 88.4
important points while ignoring ~ NSamplerRemelli et al.|(2019) Point 88.7
the noisy information by assign-  3D-PointCapsNetZhao et al.[(2019) Point 88.9
ing lower weight to the noisy = Multi-taskHassani & Haley| (2019) Point 89.1
neighboring. The second reason ~ ACDGadelha et al.| (2020) Point 89.8
could contribute to the masking ~ MAP-VAEHan et al.[(2019) Point 90.2
mechanism. It provides more GSIRChen et al.[(2021) Point 90.4
data augmentation to our model PointOEPoursaeed et al.| (2020) Point 90.8
f‘nd f"f‘fs c;he .rln"‘}elhto lfl"cus ContrastNe(Zhang & Zhu| (2019) Voxel 86.8
ess on the detatls of the shapes AnyPoint(Zhang et al.,[2021) Point+Voxel 86.4
than the general information in

the graph. And three methods SPH |[Kazhdan et al.| (2003) Mesh 68.2
(Han et all, 2019; [Chen et al|  FeaStNef{Verma et al.|(2018) Mesh 74.4
2021} [Poursaeed et al., 20200 MeshCNNHanocka et al.| (2019b) Mesh 76.8
that outperform our methods are ~ ContConv Yang et al.| (2021) Mesh 76.5
point cloud-based methods. The =~ MeshMAE(Liang et al.,[2022) Mesh 89.2
possible reason could be that —yr5m A(Ours) | Mesh | 89.8

data augmentation, like rotation

Table 3: Accuracy of unsupervised methods for classification on
ModelNet40. We compare with multiple methods taking different
modalities of 3d data, including point cloud, voxel, and mesh as
the input.

(Han et al., [2019), is not consid-
ered when designing our frame-
work. Adding such design com-
ponents to our framework will
be explored in future work.
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In Figure EI, we show the reconstruction results on ModelNet40 test data. To some extent, the
autoencoder ignores the input mesh’s detailed features while preserving the input mesh’s overall
structure. Those detailed features, like the airplane’s engine, the chair’s arm, and the leg style of a
table, are ignored during the reconstruction. Ignoring those detailed features means that the encoder
encodes the information that is good for decoding into an average shape in the class but forgets the
detail. For reconstruction tasks, this is not desired. But for classification, this process is like cleaning
redundant information from the input shape. More reconstruction visualization results are shown in

Figure[10]

4.3 PART SEGMENTATION

Part segmentation is a fine-grained point-wise classification task that aims to predict each point’s
part category label in a given shape. In our work, we need to predict the part category label for each
face in a mesh. We evaluate the learned point features on the ShapeNetPart dataset 2016),
which contains 16,881 objects from 16 categories (12149 for training, 2874 for testing, and 1858 for
validation). Each object consists of 2 to 6 parts with a total of 50 distinct parts among all categories.
We use the mean Intersection-over-Union (mlIoU) as the measurement calculated by averaging the
IoUs of the different parts occurring in one shape.

For the segmentation result, we follow the protocol from (Hassani & Haley}, [2019). The results are
shown in Tabled] In the original dataset, only point clouds and their corresponding point-wise labels
are provided. To get ground truth for meshes, we need to first align the mesh with the point cloud
by sampling points on the mesh and align the centers of the sampled point clouds with the provided
point clouds. After the alignments, we first sample points on the face uniformly for each face on the
mesh. Then we compute the nearest point in the ground truth point cloud. After that, the face’s label
is determined by the major vote of all the sampled points’ labels.

g’ Acc: 92.6 lou: 86.2 /Acc:QG.BIoU:Bs.S P /:?\ ‘,%’\
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@ @ Acc: 95.7 loU: 91.7
i v, v
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Figure 3: Visual results. The top part shows the training results of the semi-supervised part
segmentation task. For each object, the label of the face is computed from the face embedding. Then
we project the face label from mesh to the provided point cloud to compute accuracy and IoU. The
predicted label for each point is in the middle, and the ground truth is on the right. The bottom part
shows the reconstruction results of objects in the test dataset. From left to right, each object is the
input mesh, the ground truth point cloud, and the predicted point cloud.

After the processing, we follow to randomly use 5% and 1% of the ShapeNetPart
training data to evaluate the segment part task in a semi-supervised setting. We use the same pre-
trained model to extract the face features of the sampled training data, along with validation and test
samples without any finetuning. Following (Hassani & Haley, 2019), We then train a 4-layer MLP
[2048, 4096, 1024, 50] on the sampled training sets and evaluate it on all test data. The input feature
to the MLP is the concatenation of face node embeddings and global graph embeddings which makes
the input features have a dimension size of 2048. We train the model with Adam optimizer with a
fixed learning rate of 0.002. This training process takes 30 epochs and converges very fast. Because
the features are clear for the MLP to distinguish, the entire process takes about 15 minutes, including
the testing after each epoch’s training.
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Model %train data | Cat.mloU Ins. mloU Aero Bag Cap Car Chair
Multi-Task 5% 72.1 77.7 784 67.7 782 662 855
MGMA-5 5% 69.5 78.5 77.8 664 468 694 81.7
MGMA-1 1% 49.3 72.5 775 313 00 61.6 80.1

Earphone Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table

52.6 87.7 81.676.3 93.7 56.1 80.1 709 44.7 60.7  73.0
50.4 83.8 66.5 70.2 92.5 570 804 742 47.0 654 819
28.3 84.3 36.355.2 91.6 0.0 65.9 615 342 0.0 80.2

Table 4: Comparison between our semi-supervised model and other model (Hassani & Haleyl, 2019)
on ShapeNetPart segmentation task. Average mloU over instances (Ins.) and categories (Cat.)
are reported. MGMA-5 stands for training the appended MLP with 5% of the training data. And
MGMA-1 stands for 1%.

During testing, we project the label computed on mesh’s faces back to the provided point clouds
according to the distance between the points and faces. Results shown in Table ] suggest that our
method is able to perform on par with the point cloud baselines and on ShapeNetPart semi-supervised
learning segmentation task. In Figure [3] we show the visualization result of our semi-supervised
learning segmentation. More segmentation visualization results are shown in Figure[9]

5 DISCUSSION

5.1 Is O masking ratio the Best Choice for Evaluating MGMA

In He et al,| (2022), the masking ratio at testing is fixed at 0. This is under the assumption that
providing as much information to the trained masked autoencoder is the best choice. We explore
the effect of test masking ratios on the unsupervised classification task. In our experiments, the
test masking ratio is not fixed but also variable when evaluating the pre-trained model. In Figure 4]
(a), we fix the test masking ratio to 0.0 and vary the training masking ratio from 0.1 to 0.9. And it
demonstrates that varying training masking ratios could change the performance on unsupervised
learning tasks. In Figure ] (b) and (c), we vary the masking ratio not only during training but also
during testing and validation. It turns out that the maximum test accuracy is obtained when the
training masking ratio is 0.6 and the test masking ratio is 0.1 or 0.3. This result suggests that choosing
0 as the test masking ratio is not the only choice for evaluating a model trained with masking.
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Figure 4: Visualization of test and validation accuracy under different training and test masking
ratio on the graph. (2) plots the curve of test accuracy, validation accuracy, and validation loss (with
unit 1073 ) by fixing the masking ratio at testing to 0 and varying the training masking ratio from 0.1
to 0.9. (b) and (c) are the heat maps of test accuracy and validation accuracy. The lighter the color,
the higher the accuracy. The highest test accuracy (89.830%) is masked in bold in (b).

For the convenience of delivery, we denote a 2D coordinate (a, b) as the situation when the training
masking ratio is a, and the test masking ratio is b. In Figure[5] we investigate why the best test
accuracy happens at (0.6,0.1) and (0.6, 0.3). We compute the difference between validation accuracy
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and test accuracy. This difference is usually taken as the symbol of overfitting or underfitting. It turns
out that in most cases, our model overfitted the task. But those maximum test accuracy points happen
to points less overfitting. Another point that exhibits such property is (0.7,0.7) in the difference
map. But at that point, more information about the mesh is lost. There are totally three regions on
the heat map in Figure [5|exhibiting the less overfitting property. The last one is at (0.2,0.6). But
the testing ratio is too high that the model is not overfitting but also extracts less useful information.
Even though in MaskMAE, 0.75 is the best choice for masking, our 3D mesh dataset differs from
the image dataset. In 3D space, this masking ratio becomes lower, which means a face in a mesh
participating in classification plays a more important role than each pixel in an image.
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Figure 5: Analysis of masking ratio. The test and validation accuracy heat map on the left is
visualized as a 3D patch. In the middle, the difference between validation and test accuracy is
visualized in a heat map. The difference heat map is visualized on the right in a 3D patch. And two
sub-graphs show the curve of test accuracy (in blue) and validation accuracy (in yellow) by fixing
different test and training masking ratios.

Also, the point at position (0.5, 0.5) makes the model most overfitting. There are two possible reasons.
First, training with a masking ratio of 0.5 gives the input model the most freedom, making validation
easier and testing harder. Second, having the same masking ratio could make the model rely on
finding masking information from the mesh. An opposite example is (0.6, 0.1) points. The model
is trained at a masking ratio of 0.6 but tested at a masking ratio of 0.1. At this time, the masking
still helps purge out the redundant information unrelated to the classification. But also, the training
and test difference make the model force itself to discard information on masking but find common
details. For more accuracy curves under different training and test masking ratios, see Section[A.3]

6 CONCLUSION

We propose a self-supervised mesh encoding approach to learn point and shape features on meshes that
use three self-supervised losses, including context, COD, and autoencoding multi-scale graph-based
encoder. We thoroughly evaluated our model on mesh classification and segmentation benchmarks.
The results suggest that the learned block-level and class-level features outperform prior state-of-the-
art models in self-supervised representation learning. For instance, in ModelNet40 shape classification
tasks, our model achieved the state-of-the-art (among self-supervised mesh encoders) accuracy of
89.8%. We also find that different combinations of test and training masking ratios in MGMA could
provide varying information to downstream tasks. In the ShapeNetPart segmentation task, it achieved
a mloU of 78.5, which outperforms the state-of-the-art mesh encoders. We hope our work could
provide a new direction at mesh deep learning analysis and self-supervised learning on mesh data.
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A APPENDIX

A.1 T-SNE VISUALIZATION

We visualize graph embeddings obtained by fixing the test masking ratio to 0 using t-SNE (Van der|
Maaten & Hinton| 2008). We could observe that plant and chair are two classes clustering close
but easy to distinguish. The reason could be that both of them are tall cuboids. But chairs have a
more regular appearance than plants. The piano and range hood are also the same cases. They have a
similar outlook but are different when looking in detail. Usually, the mesh of the range hood has a
hole inside its body. Another confusion to the model is the nightstand and dresser, two potentially
similar objects. The t-SNE plot at ratios 0.3 and 0.6 are quite similar in clustering. While the plot at a
ratio of 0.9 begins to confuse objects like desks and pianos (see the bed category move from corner
to the center).
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Figure 6: Visualization of t-SNE on ModelNet40. We fix the test masking ratio to 0 and choose 10
random classes for rendering the figures.

A.2 NETWORK ARCHITECTURE

The overall architecture of our network is shown in Figure[7] It has a heavier encoder than the decoder.
It follows the design logic in MaskMAE since, after pre-training, we no longer need the decoder.
The reason we did not use batch normalization in the decoder is to follow (Achlioptas et al.l 2018).
And decoder is not the mean focus of our paper. The input features to the graph are computed using
descriptors defined in (Singh et al} 2021}, which are 320-dimension vectors for face nodes. For the
first two mesh graph attention blocks, we use 1-ring neighbors for neighboring lookup. For the third
mesh graph attention block, we use 2-ring neighbors.

AT

Figure 7: Neural Network Architecture. N stands for the number of face nodes. The number
after each layer stands for the dimension of the output embedding. The orange dot stands for
concatenating the forward embeddings from previous layers. Each mesh graph attention layer has
batch normalization and ReL.U layer following.

MaxPooling

A.3 MASKING RATIO ANALYSIS

In Figure[8] we plot the accuracy curve under different training and test masking ratio. Three patterns
of accuracy curve are found when the test masking ratios are fixed.

The first happens at test masking ratios of 0.0, 0.1, and 0.2. The accuracy goes up and down. The
second one is at test masking ratios of 0.3, 0.4, 0.5, and 0.6. The accuracy goes up and done and up
again. The last one happened at test masking ratios of 0.7, 0.8, and 0.9. The accuracy goes up. The
reason is straightforward for the first and third patterns. For the first pattern, the models are trained
with low masking ratios. When the training masking ratio increases, the models focus on extracting
information other than just masking, which explains why there is an increasing curve at the beginning.
And when the ratio is too high, there is not enough information. Thus, the curve begins to drop.

The third pattern is caused by test masking ratios being too high such that the models trained with
low masking ratios could efficiently capture the information of testing meshes. And only models
trained under high masking ratios could capture information from testing meshes.

The second pattern is generated when the first and third patterns merge.

One pattern of accuracy curve is found when the training masking ratios are fixed.
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Figure 8: Masking ratio’s effect on accuracy curves. The validation accuracy curve (in yellow) and
test accuracy curve (in blue) are plotted by fixing different test and training masking ratios.

A.4 SEGMENTATION VISUALIZATION RESULTS

More segmentation results are shown in Figure[9]

A.5 RECONSTRUCTION VISUALIZATION RESULTS

More reconstruction results are shown in Figure [T0}
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Figure 9: Segmentation results.
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Figure 10: Reconstruction results.
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