
Under review as a conference paper at ICLR 2023

MGMA: MESH GRAPH MASKED AUTOENCODERS FOR
SELF-SUPERVISED LEARNING ON 3D SHAPE

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a self-supervised learning model to extract face nodes and global
graph embeddings on meshes. We define a model with graph masking on a mesh
graph composed of faces to pre-train on self-supervised tasks. We evaluate our
pre-trained model on shape classification and segmentation benchmarks. The re-
sults suggest that our model outperforms prior state-of-the-art mesh encoders: In
ModelNet40 classification task, it achieves an accuracy of 89.8%, and in ShapeNet
segmentation task, it performs a mean Intersection-over-Union (mIoU) of 78.5.
Further, we explore and explain the correlation between test and training masking
ratios on Mesh Graph Masked Autoencoders (MGMA). And we find best per-
formances are obtained when mesh graph masked autoencoders are trained and
evaluated under different masking ratios. Our work may open up new opportunities
to address label scarcity and improve the learning power in geometric deep learning
research.

1 INTRODUCTION

Mesh is a data format widely used in computer graphics and is used more and more frequently in
computer vision tasks as additional supervision or inference targets. It provides an accurate, efficient,
and irregular representation of three-dimensional shapes. These properties make it a popular format
for capturing continuous underlying surfaces.

Many commonly used datasets, such as ModelNet (Wu et al., 2015), ShapeNet (Chang et al., 2015),
ScanNet (Dai et al., 2017), and Pix3D (Sun et al., 2018), utilize meshes as the core or intermediate
agent. A number of 3D data formats can be derived from the mesh structure, such as voxel grids,
point clouds, and implicit surfaces. Researchers customize a series of methods to analyze those
regular data formats using deep learning, like using 3D convolution to parse 3D voxel grids (Wu
et al., 2016), using symmetric functions (Qi et al., 2017a) to process point clouds, and using signed
distance fields to represent the implicit surfaces (Cruz et al., 2021; Park et al., 2019).

Mesh representation itself could provide excellent quality and computational efficiency while preserv-
ing sharp shape features. Deep learning with data formats extracted from meshes have gained more
and more success in 3D shape analysis, while analyzing their original data format with deep learning
approaches is still an open problem. So studies on developing deep learning methods on mesh data
attract lots of interest. Traditional approaches treat a mesh as a graph with vertices as nodes (Hanocka
et al., 2019b; Verma et al., 2018) and develop methods akin to CNN, which contains convolution and
pooling operations, to learn shared filters to extract features from edges in meshes. However, such
approaches ignore the rich manifold structure meshes can represent, such as topology and Riemannian
metric. On the other hand, most of the current mesh-based networks validate themselves on small or
synthetic datasets. The dearth of studies that demonstrate the effectiveness of mesh on large datasets
limits the development of deep learning applications on meshes. Moreover, the compact and efficient
essence of mesh data representation should also be well utilized in ongoing geometric deep learning
research. A powerful tool to analyze 3D meshes would benefit computer graphics and computer
vision researchers.

There are significant challenges in developing mesh-based geometric deep learning methods. The
first challenge is passing mesh, an irregular data format, forward in a neural network. In our work,
we take the mesh as a graph composed of multiple faces as nodes of the graph. The emergence of
success in graph processing provides us with a model to handle graph data. Thus, the mesh is another

1



Under review as a conference paper at ICLR 2023

data format that a graph model naturally processes. Further, we design an attention mechanism along
graph convolution on meshes to leverage its excellent feature extraction ability.

MGMA

Face Node
Embedding

Graph
Embedding

Car
Bag

Phone
Lamp

Figure 1: Data and applications of MGMA. We propose
a new deep net architecture that analyzes meshes as a graph
composed of faces using an attention mechanism. It is pre-
trained with self-supervisions and provides face node embed-
dings and global graph embeddings for 3D recognition tasks
like classification and part segmentation.

Meanwhile, because of the high cost
and high variability associated with
manual data labeling, there are more
and more unlabeled 3D data. Tradi-
tional studies do not consider unla-
beled data, which induces a huge sac-
rifice of untapped information. There-
fore, unsupervised learning attracts
more attention and has become an im-
portant concept for extracting informa-
tion from unlabeled data. When we
review the trend and development of
artificial intelligence, self-supervised
training on large datasets and pro-
ducing pre-trained models for down-
stream tasks is becoming a predom-
inant power in processing and ex-
tracting important features from bil-
lions and millions of data (Chen et al.,
2020b;a; Dosovitskiy et al., 2021;
Brown et al., 2020). Training an au-
toencoder with masking (Devlin et al., 2019) on the input data during training has been proved to be
an effective method for image classification (He et al., 2022). In this paper, benefiting from using
the mesh data representation, we propose to apply graph masking and point cloud reconstruction to
support our self-supervised learning architecture and advance 3D deep learning research.

In our paper, we present a mesh-based framework, Mesh Graph Masked Autoencoder (MGMA),
which is pre-trained on self-analyzing the mesh data, and apply the pre-trained model to large-scale 3D
imaging datasets. Our network is designed to be suitable for different kinds of mesh representations
to increase flexibility and support a variety of available data. MGMA exhibits state-of-the-art
performance on supervised tasks. Furthermore, it could perform unsupervised and semi-supervised
classification and segmentation tasks. We show in Figure 1 that a mesh could be considered as
a graph with faces as nodes and pre-trained to have a model which could be applied to multiple
tasks in recognition tasks. To demonstrate the effectiveness of our method, we perform a variety of
experiments and show state-of-the-art performance among the mesh-based shape feature extractors.
The key contributions of our work are as follows: 1. We introduce a mesh graph autoencoder and
train it with graph masking. 2. With our novel MGMA encoder, our self-supervised learning model
incorporates unlabeled data into the training stage and enhances the 3D data learning power. 3. We
comprehensively evaluate our model under various learning benchmarks on SHREC11, ModelNet40
supervised and unsupervised classification, and ShapeNetPart semi-supervised segmentation tasks and
show that our model achieves state-of-the-art results w.r.t prior mesh-based neural network models.
4. We explore and explain the correlation between test and training masking ratios on MGMA.
And we find best performances are obtained when mesh graph masked autoencoders are trained
and evaluated under different masking ratios. This gained insight may guide future self-supervised
learning algorithm development.

2 RELATE WORK

Deep Learning on Meshes Treating a polygon mesh as a graph would accordingly apply graph-
based methods on it. There are two existing categories for graph methods: spectral methods (Bruna
et al., 2013; Henaff et al., 2015; Defferrard et al., 2016; Kipf & Welling, 2016; Levie et al., 2019)
and spatial methods (Micheli, 2009; Atwood & Towsley, 2016; Niepert et al., 2016; Gilmer et al.,
2017; Fey et al., 2018; Masci et al., 2015; Monti et al., 2017; Huang et al., 2019). Moreover, the
convolution in the spectral domain is non-localized filtering (Defferrard et al., 2016). Chebyshev
polynomial expansion is a method to solve the non-localization problem (Defferrard et al., 2016).

2



Under review as a conference paper at ICLR 2023

On the other hand, there is no easy way to induce the weight sharing across different locations
of the graph due to the difficulty of matching local neighborhoods in the spatial domain (Bruna
et al., 2013). Nevertheless, Atwood & Towsley (2016) proposed a spatial filtering method that
assumes information is transferred from a vertex to its adjacent vertex with a specific transition
probability. The power of the transition probability matrix implies that farther adjacent vertices
provide little information for the central vertex. Furthermore, Geodesic CNN (Masci et al., 2015),
MoNet (Monti et al., 2017), and SplineCNN (Fey et al., 2018) deal with the weight sharing problem
by designing local coordinate systems for the central vertex in a local patch. They apply a set of
weighting functions to aggregate the characteristics at the adjacent vertices. Next, they calculate
a weighted mean of these aggregates. However, these methods are informatically expensive and
require pre-defined local coordinate systems. In addition, Neural3DMM (Bouritsas et al., 2019)
introduces the spiral convolution operation by enforcing a local ordering of vertices through the
spiral operator. An initial point for each spiral is a vertex with the shortest geodesic path to a fixed
reference point on a template shape. The remaining vertices of the spiral are ordered in the clockwise
or counterclockwise directions inductively. However, finding a reference point for an arbitrary shape
is challenging. Moreover, the initial point is not unique once two adjacent vertices have the same
shortest path to the reference point.

FeaStNet (Verma et al., 2018) proposes a graphical neural network in which the neighborhood of
each peak for the convolution operation is not preset but instead calculated dynamically. Tangent
convolution is introduced in (Tatarchenko et al., 2018), where a small neighborhood around each
vertex is used to reconstruct the local function upon which convolution is applied. Some generative
models have also been tried on the mesh. Litany et al. (2018) perform shape completion via a graph
autoencoder. MeshCNN (Hanocka et al., 2019b) utilizes the particular property of edge in a triangle
mesh to extract edge features. Yang et al. (2021) apply continuous convolution on a geodesic region
of mesh.

Self-Supervised Learning Self-supervised learning is to define some tasks from the data itself, and
those human-defined tasks are used to pre-train the model. It is used in computer vision with proxy
tasks such as predicting order in time (Wei et al., 2018), finding missing pixels (Pathak et al., 2016),
location of patches (Doersch et al., 2015), image orientations (Gidaris et al., 2018), human-made
artifacts (Jenni & Favaro, 2018), clusters of images (Caron et al., 2018), camera locations (Agrawal
et al., 2015), jaggle puzzle (Noroozi & Favaro, 2016), color of videos (Vondrick et al., 2018), and
tracking of image patches(Wang & Gupta, 2015). These works demonstrate promising results in
transferring visual features from proxy tasks to other tasks.

Thus, defining proxy tasks that are related enough to the downstream task is quite important (Jenni
& Favaro, 2018). On the other hand, supervisions, like density estimation or clustering, are not
domain-specific (Caron et al., 2018). Deep clustering models(Aljalbout et al., 2018; Min et al., 2018;
Yang et al., 2017; Hershey et al., 2016; Xie et al., 2016; Ghasedi Dizaji et al., 2017; Shaham et al.,
2018; Yang et al., 2016; Hsu & Lin, 2018) come up to jointly train with a network-specific loss.

There are many works exploring self-supervised learning on point clouds. They use multi-tasks
learning (Hassani & Haley, 2019), reconstruction (Achlioptas et al., 2018; Yang et al., 2018;?) contrast
learning (Zhang & Zhu, 2019), restoring point cloud (Shi et al., 2020), point cloud autoregression (Sun
et al., 2019b), the orientation prediction (Poursaeed et al., 2020; Han et al., 2019), and approximating
convex decomposition (Gadelha et al., 2020) to pre-train the model and achieve state-of-the-art results
on point cloud classification and segmentation tasks. Recently, masked autoencoders are used for
self-supervised learning on image classification tasks(He et al., 2022).

Transformer Applications Transformer, which is proposed by Vaswani et al. (2017), has been widely
used in natural language processing (NLP) and then computer vision. In NLP, large Transformer-based
models are often pre-trained on large datasets and then fine-tuned for the downstream tasks, like BERT
(Devlin et al., 2019) and GPT (Radford et al., 2018; 2019; Brown et al., 2020). In computer vision,
applying Transformer on image processing experiences the local-to-global and low-to-high resolution
process. Image Transformer (Parmar et al., 2018) applies self-attention to local neighborhoods. And
this local attention replaces convolutions (Hu et al., 2019; Ramachandran et al., 2019; Zhao et al.,
2020). Sparse Transformers (Child et al., 2019) use scalable approximations to global self-attention
for images. Another way to apply attention to blocks of varying sizes (Weissenborn et al., 2019), in
this particular case, along individual axes (Ho et al., 2019; Wang et al., 2020).

3



Under review as a conference paper at ICLR 2023

Some models (Cordonnier et al., 2020; Dosovitskiy et al., 2021; Bello et al., 2019; Wu et al., 2020;
Chen et al., 2020a) extract patches of size 2 × 2 or 7 × 7 from the input image then apply CNN
and Transformer sequentially. These works make Transformer achieve state-of-the-art results on
small and medium resolution images. Instead of just classification, Transformer is also used in video
processing(Wang et al., 2018; Sun et al., 2019a), object detection(Hu et al., 2018; Carion et al., 2020),
unsupervised object discovery(Locatello et al., 2020), and unified text-vision tasks(Chen et al., 2020c;
Lu et al., 2019; Li et al., 2019). Recently, Liang et al. (2022) use Transformer as an autoencoder
network for mesh reconstruction and self-supervised learning.

3 METHOD

MGMA is a masked autoencoder that interprets the mesh as a graph, and each graph node is a face on
the mesh. The features on the face nodes are randomly masked first and passed through multiple face
graph attention layers. Then max-pooling is applied to obtain the global graph embedding, which is
passed to a point cloud decoder for reconstruction pre-train tasks.

Face Graph

𝑓𝑉

𝑓𝐾

𝑓𝑄 MatMul

Scale

SoftMax

Face Node 
Embedding

Graph
Embedding

MatMul

Face Graph 

Attention Layer

𝑓𝐷

MaxPool

Chamfer Loss

Face Graph 

Masking
Removed Face

Preserved Face

Empty Toke Node

Value, Key, Query

Non-empty Node

Neighbor

Lookup

Figure 2: Architecture of MGMA. MGMA is a masked autoencoder structure that extracts global
information from mesh and decodes the information into a point cloud. The structure interprets the
mesh as a graph, and each node of the graph is a face on the mesh. For the node that is selected
as a masked node, its feature is replaced with the mask embedding. The features on the face node
are passed through multiple face graph attention layers. The layer aggregates the information from
neighing nodes to the center node using an attention mechanism (detailed in Section 3). MatMul,
Scale, and SoftMax is defined in Equation 1. Then max-pooling is applied across each face node and
passes the global graph embedding to a point cloud decoder. Chamfer distance is computed between
the decoded point cloud and the points sampled from the surface of the mesh to train the autoencoder.
For detail structure of the network, see Section A.2

Masking on face graph is achieved by randomly selecting nodes on the graph according to the
masking ratio. After one node is selected as the masked node, a learnable masking embedding takes
the place of the original embedding, which is adopted from (He et al., 2022; Devlin et al., 2019).

Face graph attention layer is the core of our network, as shown in Figure 2. The layer takes a graph
and the features on each node of the graph as input. For each node in the graph, the layer first gathers
its neighbors according to an adjacency matrix which could be an n-ring neighbor adjacency matrix
in our architecture. We denote r as the feature of the root node and n as the gathered features of the
root node and its neighbors. Three linear layers fV , fQ, and fK take n, r, and n as input to compute
V , Q, and K. In our work, we keep the output dimension of key, value, and query fixed to 64.

FaceNodeEmbedding = softmax(
QKT

√
dk

)V (1)

After obtaining V , Q, and K, we use Equation 1to get the embedding of each face node. In Equation
1, dk stands for the dimensional size of K. Details of composing the layers into an encoder are in
Section A.2.

4



Under review as a conference paper at ICLR 2023

Method: SHREC11
Split 16 Split 10

MeshGraphNet(Song et al., 2020) 28.9% 16.0%
MeshNet(Feng et al., 2019) 55.6% 44.7%

MeshCNN(Hanocka et al., 2019b) 98.6% 91.0%
PD-MeshNet(Milano et al., 2020) 99.7% 99.1%
MeshWalker(Lahav & Tal, 2020) 98.6% 97.1%
MeshNet++(Singh et al., 2021b) 100% 99.8%

ExMeshCNN(Kim & Chae, 2022) 100% 99.3%
SubdivNet(Hu et al., 2022) 100% 100%

MGMA(Ours) 100% 100%

Table 1: Classification accuracy for SHREC11
dataset.

Method: ModelNet40

MeshNet(Feng et al., 2019) 88.9%
MeshWalker(Lahav & Tal, 2020) 88.9%
MeshGraphNet(Song et al., 2020) 89.8%

MVCNN(Su et al., 2015) 90.1%
PointNet++(Qi et al., 2017b) 90.7%

MeshNet++(Singh et al., 2021b) 91.6%
SDMC(Singh et al., 2021a) 92.2%

MeshMAE(Liang et al., 2022) 92.5%
ExMeshCNN(Kim & Chae, 2022) 93.0%

MGMA(Ours) 92.95%

Table 2: Classification accuracy for ModelNet40
dataset.

Reconstruction loss In the reconstruction loss function, we create a reconstruction decoder for this
function. The input to this decoder is the graph embedding of the mesh. The expected output is the
point cloud sampled from the mesh. Like the paper(Achlioptas et al., 2018), we use a similar network
architecture fD for decoding a point cloud. So we choose the point cloud as the target for the decoder
to generate. And the loss function is the Chamfer Distance (CD), as shown in Equation 2.

LCD =
1

N

N∑
n=1

min
p̂∈ŝ

∥pn − p̂∥22 +
1

M

M∑
m=1

min
p∈s

∥p̂m − p∥22 (2)

where s and ŝ are the ground truth and predicted point sets. M and N denote the number of points in
the ground truth and predicted point sets. pn and p̂m are points in point set s and ŝ.

4 EXPERIMENTS AND RESULTS

In this section, we introduce experiments to validate the effectiveness of our neural networks. First,
we demonstrate the effectiveness of the encoder part of our networks on two supervised classification
tasks. Then, we verify our work by pre-training the network for an unsupervised classification task.
Finally, we conduct a semi-supervised experiment for part segmentation on 3D shapes.

4.1 SUPERVISED CLASSIFICATION

we first verify that our network’s encoder could outperform other networks. By using the designed
mesh graph attention encoder, we achieve state-of-the-art performance on SHREC11 and ModelNet40
when the mesh is the input data modality.

SHREC11 is a dataset introduced in (Lian et al., 2011) that contains 30 classes, with 20 3D objects
in each class. We follow the setup in which split 16 and 10 are the numbers of training 3D objects in
each class, making split 10 a harder classification task than split 16. We use the meshes processed
by, (Hanocka et al., 2019a) and each mesh contains 500 faces. Our results are reported in Table 1.
We train our encoder 300 epochs with Adam optimizer, (Kingma & Ba, 2015) which is with β equal
to 0.9 and 0.999, ϵ equal to 1−8, learning rate 0.0002 and weight decay equal to 0.0. We compare
our mesh graph attention encoder against eight methods that also take meshes as the input to their
networks. It turns out that our encoder is able to get 100% accuracy on both setups.

Because SHREC11 is a relatively small dataset for supervised classification and some methods have
reached 100% accuracy, we further validate our mesh graph attention encoder on ModelNet40 (Wu
et al., 2015).

ModelNet40 is a dataset that contains 40 classes, and there are 9840 meshes for training and 2468
meshes for testing. Because the meshes in ModelNet40 have different numbers of faces. To fit
the meshes onto GPU and to improve the GPU utilization, we follow the method in (Huang et al.,
2018) to first make the mesh watertight, then simplify the meshes into 2048 faces. We train our
encoder 300 epochs with the same optimizer settings as for SHREC11. The learning rate is decayed
by a multiplicative factor of 0.1 at steps 30 and 60. Our method achieved 92.95% test accuracy on

5



Under review as a conference paper at ICLR 2023

ModelNet40. The results are reported in Table 2. We compare our encoder with other night methods.
Our results are on par with state-of-the-art classification on ModelNet40.

These experiments validate that our encoder could get state-of-the-art performances on 3D shape
classification tasks. The next experiments are to validate the model’s performance on unsupervised
tasks.

4.2 UNSUPERVISED CLASSIFICATION

We pre-train the model across all the provided training data in ModelNet40. We keep the pre-trained
model’s weight and use it for the classification tasks. We do not perform fine-tuning when using the
pre-trained model for downstream tasks. After obtaining the graph embedding, we use a linear SVM
as the unsupervised tool for classification on ModelNet40.

The process of our unsupervised learning is stated as follows. We first pre-train the masked au-
toencoder with training data with the same training hype-parameter setting as in Section 4.1. After
pre-training the model, we pick the model with the lowest Chamfer Distance on provided test data.
Because the data used for pre-training do not contain label information, we do not consider comput-
ing test data’s Chamfer Distance as information leaking. We use the best model to extract global
embeddings from the training and test data, a vector with dimension 1024. Once we obtain the global
embeddings, we use linear SVMs to train on ModelNet40 training data’s global embeddings. We use
5-fold cross-validation to compute the average validation accuracy on the data split from training
data. We also perform a logarithm search on the regularization parameter C of SVM from 1 to 1000
with the number of steps equal to 10. Then we pick the SVM model with the best average accuracy
on validation data to compute the test accuracy. In Section A.1, we visualize graph embeddings using
t-SNE(Van der Maaten & Hinton, 2008).

Method Modality Accuracy

LGAN(Achlioptas et al., 2018) Point 84.5
PointDistShi et al. (2020) Point 84.7
PointGrowSun et al. (2019b) Point 85.8
MRTNetGadelha et al. (2018) Point 86.4
PCGANLi et al. (2018) Point 87.8
FoldingNetYang et al. (2018) Point 88.4
NSamplerRemelli et al. (2019) Point 88.7
3D-PointCapsNetZhao et al. (2019) Point 88.9
Multi-taskHassani & Haley (2019) Point 89.1
ACDGadelha et al. (2020) Point 89.8
MAP-VAEHan et al. (2019) Point 90.2
GSIRChen et al. (2021) Point 90.4
PointOEPoursaeed et al. (2020) Point 90.8
ContrastNetZhang & Zhu (2019) Voxel 86.8
AnyPoint(Zhang et al., 2021) Point+Voxel 86.4

SPH Kazhdan et al. (2003) Mesh 68.2
FeaStNetVerma et al. (2018) Mesh 74.4
MeshCNNHanocka et al. (2019b) Mesh 76.8
ContConvYang et al. (2021) Mesh 76.5
MeshMAE(Liang et al., 2022) Mesh 89.2

MGMA(Ours) Mesh 89.8

Table 3: Accuracy of unsupervised methods for classification on
ModelNet40. We compare with multiple methods taking different
modalities of 3d data, including point cloud, voxel, and mesh as
the input.

In Table 3, our method performs
best compared with other mesh-
based neural networks on un-
supervised learning on Model-
Net40. There are two reasons
our method outperforms other
mesh-based methods. The first
reason is our encoder utilizes
an attention mechanism to pick
important points while ignoring
the noisy information by assign-
ing lower weight to the noisy
neighboring. The second reason
could contribute to the masking
mechanism. It provides more
data augmentation to our model
and forces the model to focus
less on the details of the shapes
than the general information in
the graph. And three methods
(Han et al., 2019; Chen et al.,
2021; Poursaeed et al., 2020)
that outperform our methods are
point cloud-based methods. The
possible reason could be that
data augmentation, like rotation
(Han et al., 2019), is not consid-
ered when designing our frame-
work. Adding such design com-
ponents to our framework will
be explored in future work.

6



Under review as a conference paper at ICLR 2023

In Figure 3, we show the reconstruction results on ModelNet40 test data. To some extent, the
autoencoder ignores the input mesh’s detailed features while preserving the input mesh’s overall
structure. Those detailed features, like the airplane’s engine, the chair’s arm, and the leg style of a
table, are ignored during the reconstruction. Ignoring those detailed features means that the encoder
encodes the information that is good for decoding into an average shape in the class but forgets the
detail. For reconstruction tasks, this is not desired. But for classification, this process is like cleaning
redundant information from the input shape. More reconstruction visualization results are shown in
Figure 10.

4.3 PART SEGMENTATION

Part segmentation is a fine-grained point-wise classification task that aims to predict each point’s
part category label in a given shape. In our work, we need to predict the part category label for each
face in a mesh. We evaluate the learned point features on the ShapeNetPart dataset (Yi et al., 2016),
which contains 16,881 objects from 16 categories (12149 for training, 2874 for testing, and 1858 for
validation). Each object consists of 2 to 6 parts with a total of 50 distinct parts among all categories.
We use the mean Intersection-over-Union (mIoU) as the measurement calculated by averaging the
IoUs of the different parts occurring in one shape.

For the segmentation result, we follow the protocol from (Hassani & Haley, 2019). The results are
shown in Table 4. In the original dataset, only point clouds and their corresponding point-wise labels
are provided. To get ground truth for meshes, we need to first align the mesh with the point cloud
by sampling points on the mesh and align the centers of the sampled point clouds with the provided
point clouds. After the alignments, we first sample points on the face uniformly for each face on the
mesh. Then we compute the nearest point in the ground truth point cloud. After that, the face’s label
is determined by the major vote of all the sampled points’ labels.

Acc: 92.6 IoU: 86.2

Acc: 95.6 IoU: 91.6

Acc: 96.8 IoU: 93.8

Acc: 93.3 IoU: 87.4

Acc: 95.7 IoU: 91.7

Acc: 97.9 IoU: 96.0

Acc: 91.2 IoU: 83.9

Acc: 97.6 IoU: 95.3

Figure 3: Visual results. The top part shows the training results of the semi-supervised part
segmentation task. For each object, the label of the face is computed from the face embedding. Then
we project the face label from mesh to the provided point cloud to compute accuracy and IoU. The
predicted label for each point is in the middle, and the ground truth is on the right. The bottom part
shows the reconstruction results of objects in the test dataset. From left to right, each object is the
input mesh, the ground truth point cloud, and the predicted point cloud.

After the processing, we follow (Zhao et al., 2019) to randomly use 5% and 1% of the ShapeNetPart
training data to evaluate the segment part task in a semi-supervised setting. We use the same pre-
trained model to extract the face features of the sampled training data, along with validation and test
samples without any finetuning. Following (Hassani & Haley, 2019), We then train a 4-layer MLP
[2048, 4096, 1024, 50] on the sampled training sets and evaluate it on all test data. The input feature
to the MLP is the concatenation of face node embeddings and global graph embeddings which makes
the input features have a dimension size of 2048. We train the model with Adam optimizer with a
fixed learning rate of 0.002. This training process takes 30 epochs and converges very fast. Because
the features are clear for the MLP to distinguish, the entire process takes about 15 minutes, including
the testing after each epoch’s training.

7



Under review as a conference paper at ICLR 2023

Model %train data Cat.mIoU Ins. mIoU Aero Bag Cap Car Chair

Multi-Task 5% 72.1 77.7 78.4 67.7 78.2 66.2 85.5
MGMA-5 5% 69.5 78.5 77.8 66.4 46.8 69.4 81.7
MGMA-1 1% 49.3 72.5 77.5 31.3 0.0 61.6 80.1

Earphone Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table

52.6 87.7 81.676.3 93.7 56.1 80.1 70.9 44.7 60.7 73.0
50.4 83.8 66.5 70.2 92.5 57.0 80.4 74.2 47.0 65.4 81.9
28.3 84.3 36.3 55.2 91.6 0.0 65.9 61.5 34.2 0.0 80.2

Table 4: Comparison between our semi-supervised model and other model (Hassani & Haley, 2019)
on ShapeNetPart segmentation task. Average mIoU over instances (Ins.) and categories (Cat.)
are reported. MGMA-5 stands for training the appended MLP with 5% of the training data. And
MGMA-1 stands for 1%.

During testing, we project the label computed on mesh’s faces back to the provided point clouds
according to the distance between the points and faces. Results shown in Table 4 suggest that our
method is able to perform on par with the point cloud baselines and on ShapeNetPart semi-supervised
learning segmentation task. In Figure 3, we show the visualization result of our semi-supervised
learning segmentation. More segmentation visualization results are shown in Figure 9.

5 DISCUSSION

5.1 Is 0 masking ratio the Best Choice for Evaluating MGMA

In He et al. (2022), the masking ratio at testing is fixed at 0. This is under the assumption that
providing as much information to the trained masked autoencoder is the best choice. We explore
the effect of test masking ratios on the unsupervised classification task. In our experiments, the
test masking ratio is not fixed but also variable when evaluating the pre-trained model. In Figure 4
(a), we fix the test masking ratio to 0.0 and vary the training masking ratio from 0.1 to 0.9. And it
demonstrates that varying training masking ratios could change the performance on unsupervised
learning tasks. In Figure 4 (b) and (c), we vary the masking ratio not only during training but also
during testing and validation. It turns out that the maximum test accuracy is obtained when the
training masking ratio is 0.6 and the test masking ratio is 0.1 or 0.3. This result suggests that choosing
0 as the test masking ratio is not the only choice for evaluating a model trained with masking.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

89

88

87

86

85

84

83

82

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0

89

88

87

86

85

84

83

90
90.5

90.0

89.5

89.0

88.5

88.0

87.0

87.5

5.1

5.0

4.9

4.8

4.7

4.5

4.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

90.273
90.140

90.273 90.364

89.805
89.957

89.530

88.909

88.299

89.303
89.182

89.708
89.627

89.141
89.344

88.533

87.804

86.71

4.494

4.447 4.452

4.492 4.508
4.551

4.620

4.742

5.123

validation accuracy

test accuracy

validation loss

(a) (b) (c)

89.
303

89.
100

89.
060

89.
425

89.
303

88.
857

88.
695

87.
318

84.
765

81.
402

89.
182

89.
303

88.
857

89.
587

89.
668

89.
100

88.
776

86.
791

85.
656

82.
091

89.
708

89.
344

89.
344

89.
384

88.
938

89.
060

88.
857

87.
480

86.
710

82.
942

89.
627

89.
627

89.
384

89.
425

88.
655

88.
614

88.
655

87.
844

86.
791

84.
238

89.
141

89.
303

89.
019

89.
303

88.
695

88.
006

88.
574

88.
290

87.
034

84.
198

89.
344

89.
830

89.
668

89.
830

89.
425

89.
019

88.
614

88.
250

87.
156

85.
413

88.
533

88.
695

89.
100

89.
546

89.
303

89.
546

89.
263

89.
506

87.
844

86.
224

87.
804

88.
574

88.
493

88.
857

88.
898

88.
412

88.
088

88.
412

87.
520

85.
656

86.
710

86.
710

87.
034

87.
480

87.
156

87.
480

87.
601

87.
156

87.
885

86.
224

90.
273

90.
364

90.
303

90.
100

89.
743

89.
184

88.
909

87.
820

86.
762

82.
906

90.
140

90.
069

90.
039

90.
039

89.
855

89.
509

88.
726

88.
533

87.
230

84.
096

90.
273

90.
374

90.
232

90.
303

90.
059

89.
713

89.
235

88.
808

87.
403

85.
165

90.
364

90.
090

89.
967

89.
805

89.
510

89.
418

89.
469

89.
408

88.
380

86.
101

89.
805

89.
937

90.
089

90.
069

90.
110

89.
774

89.
805

89.
062

88.
665

85.
857

89.
957

89.
947

90.
303

89.
967

89.
937

89.
855

89.
744

89.
041

88.
950

86.
559

89.
530

89.
743

89.
805

89.
733

89.
713

89.
601

89.
744

89.
134

89.
357

86.
874

88.
909

89.
102

89.
459

89.
326

89.
459

89.
489

89.
377

89.
408

89.
143

87.
597

88.
299

87.
963

88.
085

88.
176

88.
726

88.
848

88.
970

88.
675

89.
062

87.
699

test

train
train

test

Acc

Mask Ratio

Figure 4: Visualization of test and validation accuracy under different training and test masking
ratio on the graph. (a) plots the curve of test accuracy, validation accuracy, and validation loss (with
unit 10−3 ) by fixing the masking ratio at testing to 0 and varying the training masking ratio from 0.1
to 0.9. (b) and (c) are the heat maps of test accuracy and validation accuracy. The lighter the color,
the higher the accuracy. The highest test accuracy (89.830%) is masked in bold in (b).

For the convenience of delivery, we denote a 2D coordinate (a, b) as the situation when the training
masking ratio is a, and the test masking ratio is b. In Figure 5, we investigate why the best test
accuracy happens at (0.6, 0.1) and (0.6, 0.3). We compute the difference between validation accuracy

8



Under review as a conference paper at ICLR 2023

and test accuracy. This difference is usually taken as the symbol of overfitting or underfitting. It turns
out that in most cases, our model overfitted the task. But those maximum test accuracy points happen
to points less overfitting. Another point that exhibits such property is (0.7, 0.7) in the difference
map. But at that point, more information about the mesh is lost. There are totally three regions on
the heat map in Figure 5 exhibiting the less overfitting property. The last one is at (0.2, 0.6). But
the testing ratio is too high that the model is not overfitting but also extracts less useful information.
Even though in MaskMAE, 0.75 is the best choice for masking, our 3D mesh dataset differs from
the image dataset. In 3D space, this masking ratio becomes lower, which means a face in a mesh
participating in classification plays a more important role than each pixel in an image.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.970 1.264 1.243 0.675 0.440 0.327 0.214 0.502 1.997 1.504

0.958 0.766 1.182 0.452 0.187 0.409 -0.05 1.742 1.574 2.005

0.565 1.030 0.888 0.919 1.121 0.653 0.378 1.328 0.693 2.223

0.737 0.463 0.583 0.380 0.855 0.804 0.814 1.564 1.589 1.863

0.664 0.634 1.070 0.766 1.415 1.768 1.231 0.772 1.631 1.659

0.613 0.117 0.635 0.137 0.512 0.836 1.130 0.791 1.794 1.146

0.997 1.048 0.705 0.187 0.410 0.055 0.481 -0.37 1.513 0.650

1.105 0.528 0.966 0.469 0.561 1.077 1.289 0.996 1.623 1.941

1.589 1.253 1.051 0.696 1.570 1.368 1.369 1.519 1.177 1.475

Train

Validation Accuracy
Test

Train

Test AccuracyTrain
Test

Test

Test

Train

Test ratio 0.3

Train Ratio 0.6

Figure 5: Analysis of masking ratio. The test and validation accuracy heat map on the left is
visualized as a 3D patch. In the middle, the difference between validation and test accuracy is
visualized in a heat map. The difference heat map is visualized on the right in a 3D patch. And two
sub-graphs show the curve of test accuracy (in blue) and validation accuracy (in yellow) by fixing
different test and training masking ratios.

Also, the point at position (0.5, 0.5) makes the model most overfitting. There are two possible reasons.
First, training with a masking ratio of 0.5 gives the input model the most freedom, making validation
easier and testing harder. Second, having the same masking ratio could make the model rely on
finding masking information from the mesh. An opposite example is (0.6, 0.1) points. The model
is trained at a masking ratio of 0.6 but tested at a masking ratio of 0.1. At this time, the masking
still helps purge out the redundant information unrelated to the classification. But also, the training
and test difference make the model force itself to discard information on masking but find common
details. For more accuracy curves under different training and test masking ratios, see Section A.3.

6 CONCLUSION

We propose a self-supervised mesh encoding approach to learn point and shape features on meshes that
use three self-supervised losses, including context, COD, and autoencoding multi-scale graph-based
encoder. We thoroughly evaluated our model on mesh classification and segmentation benchmarks.
The results suggest that the learned block-level and class-level features outperform prior state-of-the-
art models in self-supervised representation learning. For instance, in ModelNet40 shape classification
tasks, our model achieved the state-of-the-art (among self-supervised mesh encoders) accuracy of
89.8%. We also find that different combinations of test and training masking ratios in MGMA could
provide varying information to downstream tasks. In the ShapeNetPart segmentation task, it achieved
a mIoU of 78.5, which outperforms the state-of-the-art mesh encoders. We hope our work could
provide a new direction at mesh deep learning analysis and self-supervised learning on mesh data.

REFERENCES

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations
and generative models for 3d point clouds, 2018.

Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by moving. In The IEEE
International Conference on Computer Vision (ICCV), pp. 37–45, December 2015.

Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, and Daniel Cremers. Clustering with deep learning:
Taxonomy and new methods. arXiv preprint arXiv:1801.07648, 2018.

9



Under review as a conference paper at ICLR 2023

James Atwood and Donald F. Towsley. Diffusion-convolutional neural networks. In NIPS, 2016.

I. Bello, B. Zoph, Q. Le, A. Vaswani, and J. Shlens. Attention augmented convolutional networks. In
ICCV, 2019.

Giorgos Bouritsas, Sergiy V. Bokhnyak, Stylianos Ploumpis, Michael M. Bronstein, and Stefanos
Zafeiriou. Neural 3d morphable models: Spiral convolutional networks for 3d shape representation
learning and generation. ICCV, 2019.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv, 2020.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. CoRR, 2013.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsuper-
vised learning of visual features. In The European Conference on Computer Vision (ECCV), pp.
132–149, September 2018.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
Shapenet: An information-rich 3d model repository, 2015.

Haolan Chen, Shitong Luo, Xiang Gao, and Wei Hu. Unsupervised learning of geometric sampling
invariant representations for 3d point clouds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 893–903, 2021.

Mark Chen, Alec Radford, Rewon Child, Jeff Wu, and Heewoo Jun. Generative pretraining from
pixels. In ICML, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Hal Daumé III and Aarti Singh (eds.), Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1597–1607. PMLR, 13–18 Jul 2020b. URL https://proceedings.
mlr.press/v119/chen20j.html.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. UNITER: UNiversal Image-TExt Representation Learning. In ECCV, 2020c.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv, 2019.

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-
attention and convolutional layers. In ICLR, 2020.

Rodrigo Santa Cruz, Leo Lebrat, Pierrick Bourgeat, Clinton Fookes, Jurgen Fripp, and Olivier
Salvado. Deepcsr: A 3d deep learning approach for cortical surface reconstruction. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 806–815, 2021.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proc. Computer Vision
and Pattern Recognition (CVPR), IEEE, 2017.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

10

https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html


Under review as a conference paper at ICLR 2023

Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual representation learning
by context prediction. In The IEEE International Conference on Computer Vision (ICCV), pp.
1422–1430, December 2015.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021.

Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. Meshnet: Mesh neural network
for 3d shape representation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 8279–8286, 2019.

M. Fey, J. E. Lenssen, F. Weichert, and H. Müller. Splinecnn: Fast geometric deep learning
with continuous b-spline kernels. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018.

Matheus Gadelha, Rui Wang, and Subhransu Maji. Multiresolution tree networks for 3d point cloud
processing, 2018.

Matheus Gadelha, Aruni RoyChowdhury, Gopal Sharma, Evangelos Kalogerakis, Liangliang Cao,
Erik Learned-Miller, Rui Wang, and Subhransu Maji. Label-efficient learning on point clouds
using approximate convex decompositions, 2020.

Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai, and Heng Huang. Deep
clustering via joint convolutional autoencoder embedding and relative entropy minimization. In
The IEEE International Conference on Computer Vision (ICCV), pp. 5736–5745, Oct 2017.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. In International Conference on Learning Representations (ICLR),
2018.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. ArXiv, 2017.

Zhizhong Han, Xiyang Wang, Yu-Shen Liu, and Matthias Zwicker. Multi-angle point cloud-vae:
Unsupervised feature learning for 3d point clouds from multiple angles by joint self-reconstruction
and half-to-half prediction, 2019.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or.
Meshcnn: a network with an edge. ACM Trans. Graph., 2019a.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or.
Meshcnn. ACM Transactions on Graphics, 38(4):1–12, Jul 2019b. ISSN 1557-7368. doi:
10.1145/3306346.3322959. URL http://dx.doi.org/10.1145/3306346.3322959.

Kaveh Hassani and Mike Haley. Unsupervised multi-task feature learning on point clouds, 2019.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 16000–16009, 2022.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on graph-structured data.
CoRR, 2015.

John R Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji Watanabe. Deep clustering: Discriminative
embeddings for segmentation and separation. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 31–35, March 2016.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidi-
mensional transformers. arXiv, 2019.

C. Hsu and C. Lin. Cnn-based joint clustering and representation learning with feature drift com-
pensation for large-scale image data. IEEE Transactions on Multimedia, 20(2):421–429, Feb
2018.

11

http://dx.doi.org/10.1145/3306346.3322959


Under review as a conference paper at ICLR 2023

Han Hu, Jiayuan Gu, Zheng Zhang, Jifeng Dai, and Yichen Wei. Relation networks for object
detection. In CVPR, 2018.

Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local relation networks for image recognition.
In ICCV, 2019.

Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong Cai, Jiahui Huang, Tai-Jiang Mu, and
Ralph R Martin. Subdivision-based mesh convolution networks. ACM Transactions on Graphics
(TOG), 41(3):1–16, 2022.

Jingwei Huang, Hao Su, and Leonidas Guibas. Robust watertight manifold surface generation method
for shapenet models. arXiv preprint arXiv:1802.01698, 2018.

Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser, Matthias Nießner, and Leonidas J Guibas.
Texturenet: Consistent local parametrizations for learning from high-resolution signals on meshes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

Simon Jenni and Paolo Favaro. Self-supervised feature learning by learning to spot artifacts. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2733–2742, June
2018.

Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz. Rotation invariant spheri-
cal harmonic representation of 3d shape descriptors. In Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing, SGP ’03, pp. 156–164, Aire-la-
Ville, Switzerland, Switzerland, 2003. Eurographics Association. ISBN 1-58113-687-0. URL
http://dl.acm.org/citation.cfm?id=882370.882392.

Seonggyeom Kim and Dong-Kyu Chae. Exmeshcnn: An explainable convolutional neural network
architecture for 3d shape analysis. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 795–803, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
ArXiv, 2016.

Alon Lahav and Ayellet Tal. Meshwalker: Deep mesh understanding by random walks. ACM
Transactions on Graphics (TOG), 39(6):1–13, 2020.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. Cayleynets: Graph con-
volutional neural networks with complex rational spectral filters. IEEE Transactions on Signal
Processing, 2019.

Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poczos, and Ruslan Salakhutdinov. Point
cloud gan, 2018.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. VisualBERT: A
Simple and Performant Baseline for Vision and Language. In Arxiv, 2019.

Z Lian, A Godil, B Bustos, M Daoudi, J Hermans, S Kawamura, Y Kurita, G Lavoua, P Dp Suetens,
et al. Shape retrieval on non-rigid 3d watertight meshes. In Eurographics workshop on 3d object
retrieval (3DOR). Citeseer, 2011.

Yaqian Liang, Shanshan Zhao, Baosheng Yu, Jing Zhang, and Fazhi He. Meshmae: Masked
autoencoders for 3d mesh data analysis. arXiv preprint arXiv:2207.10228, 2022.

Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. Deformable shape completion
with graph convolutional autoencoders. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1886–1895, 2018.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention.
arXiv, 2020.

12

http://dl.acm.org/citation.cfm?id=882370.882392


Under review as a conference paper at ICLR 2023

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
representations for vision-and-language tasks. Advances in neural information processing systems,
32, 2019.

Jonathan Masci, Davide Boscaini, Michael M. Bronstein, and Pierre Vandergheynst. Geodesic
convolutional neural networks on riemannian manifolds. In ICCVW, 2015. doi: 10.1109/ICCVW.
2015.112.

A. Micheli. Neural network for graphs: A contextual constructive approach. IEEE Transactions on
Neural Networks, 2009.

Francesco Milano, Antonio Loquercio, Antoni Rosinol, Davide Scaramuzza, and Luca Carlone.
Primal-dual mesh convolutional neural networks. Advances in Neural Information Processing
Systems, 33:952–963, 2020.

Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jianjing Cui, and Jun Long. A survey of clustering
with deep learning: From the perspective of network architecture, 2018.

F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda, and M. M. Bronstein. Geometric deep learning
on graphs and manifolds using mixture model cnns. In CVPR, 2017. doi: 10.1109/CVPR.2017.576.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. ArXiv, 2016.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European Conference on Computer Vision (ECCV), pp. 69–84. Springer, 2016.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174, 2019.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. In ICML, 2018.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros. Context
encoders: Feature learning by inpainting. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2536–2544, June 2016.

Omid Poursaeed, Tianxing Jiang, Han Qiao, Nayun Xu, and Vladimir G. Kim. Self-supervised
learning of point clouds via orientation estimation, 2020.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing systems, 30,
2017b.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing with unsupervised learning. Technical Report, 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. Technical Report, 2019.

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jon Shlens.
Stand-alone self-attention in vision models. In NeurIPS, 2019.

Edoardo Remelli, Pierre Baque, and Pascal Fua. Neuralsampler: Euclidean point cloud auto-encoder
and sampler, 2019.

Uri Shaham, Kelly Stanton, Henry Li, Ronen Basri, Boaz Nadler, and Yuval Kluger. Spectral-
net: Spectral clustering using deep neural networks. In International Conference on Learning
Representations (ICLR), 2018.

13



Under review as a conference paper at ICLR 2023

Yi Shi, Mengchen Xu, Shuaihang Yuan, and Yi Fang. Unsupervised deep shape descriptor with
point distribution learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9353–9362, 2020.

Vinit Veerendraveer Singh, Shivanand Venkanna Sheshappanavar, and Chandra Kambhamettu. Mesh
classification with dilated mesh convolutions. In 2021 IEEE International Conference on Image
Processing (ICIP), pp. 3138–3142. IEEE, 2021a.

Vinit Veerendraveer Singh, Shivanand Venkanna Sheshappanavar, and Chandra Kambhamettu. Mesh-
net++: A network with a face. In Proceedings of the 29th ACM International Conference on
Multimedia, pp. 4883–4891, 2021b.

An Ping Song, Xin Yi Di, Xiao Kang Xu, and Zi Heng Song. Meshgraphnet: An effective 3d
polygon mesh recognition with topology reconstruction. IEEE Access, 8:205181–205189, 2020.
doi: 10.1109/ACCESS.2020.3037236.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convolutional
neural networks for 3d shape recognition. In Proceedings of the IEEE international conference on
computer vision, pp. 945–953, 2015.

Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. Videobert: A joint
model for video and language representation learning. In ICCV, 2019a.

Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Tianfan Xue, Joshua B
Tenenbaum, and William T Freeman. Pix3d: Dataset and methods for single-image 3d shape
modeling. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Yongbin Sun, Yue Wang, Ziwei Liu, Joshua E. Siegel, and Sanjay E. Sarma. Pointgrow: Autoregres-
sively learned point cloud generation with self-attention, 2019b.

Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou. Tangent convolutions for dense
prediction in 3d, 2018.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feastnet: Feature-steered graph convolutions
for 3d shape analysis. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2598–2606, 2018.

Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama, and Kevin Murphy. Tracking
emerges by colorizing videos. In The European Conference on Computer Vision (ECCV), pp.
391–408, September 2018.

Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam, Alan Yuille, and Liang-Chieh Chen.
Axial-deeplab: Stand-alone axial-attention for panoptic segmentation. In ECCV, 2020.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos. In
The IEEE International Conference on Computer Vision (ICCV), pp. 2794–2802, December 2015.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
CVPR, 2018.

Donglai Wei, Joseph J. Lim, Andrew Zisserman, and William T. Freeman. Learning and using the
arrow of time. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
8052–8060, June 2018.

Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit. Scaling autoregressive video models. In
ICLR, 2019.

14



Under review as a conference paper at ICLR 2023

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Masayoshi Tomizuka, Kurt
Keutzer, and Peter Vajda. Visual transformers: Token-based image representation and processing
for computer vision. arxiv, 2020.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Freeman, and Joshua B Tenenbaum. Learning a
probabilistic latent space of object shapes via 3d generative-adversarial modeling. In Proceedings
of the 30th International Conference on Neural Information Processing Systems, pp. 82–90, 2016.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes, 2015.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In Proceedings of The 33rd International Conference on Machine Learning (ICML), volume 48,
pp. 478–487. PMLR, June 2016.

Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, and Mingyi Hong. Towards k-means-friendly spaces:
Simultaneous deep learning and clustering. In Proceedings of the 34th International Conference
on Machine Learning (ICML), volume 70, pp. 3861–3870. PMLR, August 2017.

Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsupervised learning of deep representations and
image clusters. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
5147–5156, June 2016.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via deep
grid deformation, 2018.

Zhangsihao Yang, Or Litany, Tolga Birdal, Srinath Sridhar, and Leonidas Guibas. Continuous
geodesic convolutions for learning on 3d shapes. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pp. 134–144, 2021.

Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in
3d shape collections. ACM Trans. Graph., 35(6):210:1–210:12, November 2016.

Ling Zhang and Zhigang Zhu. Unsupervised feature learning for point cloud by contrasting and
clustering with graph convolutional neural network, 2019.

Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan Misra. Self-supervised pretraining of
3d features on any point-cloud. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 10252–10263, 2021.

Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring self-attention for image recognition. In
CVPR, 2020.

Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico Tombari. 3d point capsule networks,
2019.

A APPENDIX

A.1 T-SNE VISUALIZATION

We visualize graph embeddings obtained by fixing the test masking ratio to 0 using t-SNE (Van der
Maaten & Hinton, 2008). We could observe that plant and chair are two classes clustering close
but easy to distinguish. The reason could be that both of them are tall cuboids. But chairs have a
more regular appearance than plants. The piano and range hood are also the same cases. They have a
similar outlook but are different when looking in detail. Usually, the mesh of the range hood has a
hole inside its body. Another confusion to the model is the nightstand and dresser, two potentially
similar objects. The t-SNE plot at ratios 0.3 and 0.6 are quite similar in clustering. While the plot at a
ratio of 0.9 begins to confuse objects like desks and pianos (see the bed category move from corner
to the center).

15



Under review as a conference paper at ICLR 2023

nightstand 

range hood

plant

chair

tent

curtain

piano

dresser

desk

bed

(a) Train mask ratio 0.3 (b) Train mask ratio 0.6 (c) Train mask ratio 0.9

Figure 6: Visualization of t-SNE on ModelNet40. We fix the test masking ratio to 0 and choose 10
random classes for rendering the figures.

A.2 NETWORK ARCHITECTURE

The overall architecture of our network is shown in Figure 7. It has a heavier encoder than the decoder.
It follows the design logic in MaskMAE since, after pre-training, we no longer need the decoder.
The reason we did not use batch normalization in the decoder is to follow (Achlioptas et al., 2018).
And decoder is not the mean focus of our paper. The input features to the graph are computed using
descriptors defined in (Singh et al., 2021b), which are 320-dimension vectors for face nodes. For the
first two mesh graph attention blocks, we use 1-ring neighbors for neighboring lookup. For the third
mesh graph attention block, we use 2-ring neighbors.

M
es

h
 G

ra
p
h
 A

tt
en

ti
o
n
 L

ay
er

,
6
4

M
es

h
 G

ra
p
h
 A

tt
en

ti
o
n
 L

ay
er

,
6
4

M
es

h
 G

ra
p
h
 A

tt
en

ti
o
n
 L

ay
er

,
6
4

N
 X

 3
2
0

M
es

h
 G

ra
p
h
 A

tt
en

ti
o
n
 L

ay
er

,
6
4

M
es

h
 G

ra
p
h
 A

tt
en

ti
o
n
 L

ay
er

,
6
4

M
es

h
 G

ra
p
h
 A

tt
en

ti
o
n
 L

ay
er

,
6
4

M
es

h
 G

ra
p
h
 A

tt
en

ti
o
n
 L

ay
er

,
6
4

M
es

h
 G

ra
p
h
 A

tt
en

ti
o
n
 L

ay
er

,
6
4

M
es

h
 G

ra
p
h
 A

tt
en

ti
o
n
 L

ay
er

,
6
4

M
es

h
 G

ra
p
h
 A

tt
en

ti
o
n
 L

ay
er

,
6
4

M
es

h
 G

ra
p
h
 A

tt
en

ti
o
n
 L

ay
er

,
6
4

M
ax

P
o
o
li

n
g

1
0
2
4

L
in

ea
r,

 1
0
2
4
, 
E

L
U

L
in

ea
r,

 2
0
4
8
, 
E

L
U

L
in

ea
r,

 6
1
4
4

Figure 7: Neural Network Architecture. N stands for the number of face nodes. The number
after each layer stands for the dimension of the output embedding. The orange dot stands for
concatenating the forward embeddings from previous layers. Each mesh graph attention layer has
batch normalization and ReLU layer following.

A.3 MASKING RATIO ANALYSIS

In Figure 8, we plot the accuracy curve under different training and test masking ratio. Three patterns
of accuracy curve are found when the test masking ratios are fixed.

The first happens at test masking ratios of 0.0, 0.1, and 0.2. The accuracy goes up and down. The
second one is at test masking ratios of 0.3, 0.4, 0.5, and 0.6. The accuracy goes up and done and up
again. The last one happened at test masking ratios of 0.7, 0.8, and 0.9. The accuracy goes up. The
reason is straightforward for the first and third patterns. For the first pattern, the models are trained
with low masking ratios. When the training masking ratio increases, the models focus on extracting
information other than just masking, which explains why there is an increasing curve at the beginning.
And when the ratio is too high, there is not enough information. Thus, the curve begins to drop.

The third pattern is caused by test masking ratios being too high such that the models trained with
low masking ratios could efficiently capture the information of testing meshes. And only models
trained under high masking ratios could capture information from testing meshes.

The second pattern is generated when the first and third patterns merge.

One pattern of accuracy curve is found when the training masking ratios are fixed.

16



Under review as a conference paper at ICLR 2023

Test Ratio 0.0 Test Ratio 0.1 Test Ratio 0.2 Test Ratio 0.3 Test Ratio 0.4

Test Ratio 0.5 Test Ratio 0.6 Test Ratio 0.7 Test Ratio 0.8 Test Ratio 0.9

Train Ratio 0.1 Train Ratio 0.2 Train Ratio 0.3 Train Ratio 0.4 Train Ratio 0.5

Train Ratio 0.6 Train Ratio 0.7 Train Ratio 0.8 Train Ratio 0.9

Figure 8: Masking ratio’s effect on accuracy curves. The validation accuracy curve (in yellow) and
test accuracy curve (in blue) are plotted by fixing different test and training masking ratios.

A.4 SEGMENTATION VISUALIZATION RESULTS

More segmentation results are shown in Figure 9

A.5 RECONSTRUCTION VISUALIZATION RESULTS

More reconstruction results are shown in Figure 10.

17



Under review as a conference paper at ICLR 2023

Figure 9: Segmentation results.

18



Under review as a conference paper at ICLR 2023

Figure 10: Reconstruction results.

19


	Introduction
	Relate Work
	Method
	Experiments and Results
	Supervised Classification
	Unsupervised Classification
	Part Segmentation

	Discussion
	Is 0 masking ratio the Best Choice for Evaluating MGMA

	Conclusion
	Appendix
	t-SNE visualization
	network architecture
	masking ratio analysis
	Segmentation Visualization Results
	Reconstruction Visualization Results


