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Abstract

Deep learning models have achieved remark-001
able performance across various domains, but002
are vulnerable to adversarial attacks. Existing003
defences such as adversarial training face chal-004
lenges when applied to NLP models due to005
the computational complexity, while others are006
form-specific. A prevalent practical strategy is007
augmentation-based adversarial training, where008
adversarial examples are included in the train-009
ing set. While successful, this approach largely010
only improves robustness against the specific011
attack forms the model is trained on and its012
training time scales linearly with the augmenta-013
tion factor. We propose a simple modification014
to the standard training algorithm which boosts015
absolute accuracy in the presence of adversarial016
examples up to 14 accuracy points, without in-017
creasing model training time. Our modification018
is the use of a high temperature parameter dur-019
ing training to scale down predicted logits from020
classification systems. We finally show that021
this high temperature training approach comple-022
ments existing adversarial training techniques,023
further improving the adversarial robustness of024
augmentation-based, adversarially trained NLP025
systems against unseen adversarial attacks.1026

1 Introduction027

Due to their impressive performance, deep learning028

models have been deployed in a range of areas in029

natural language processing (NLP). However, these030

models are susceptible to adversarial attacks, where031

small perturbations to the input can result in large,032

undesired changes in the model’s prediction. These033

perturbed inputs are termed adversarial examples034

(Szegedy et al., 2014). The presence of adversarial035

examples is ubiquitous and a real threat to NLP036

systems used in high stakes situations (Sun et al.,037

2018; Tan et al., 2021; Raina et al., 2022).038

Although many adversarial attack algorithms039

demonstrate the ease with which adversarial exam-040

1We include the code modification in Appendix E.

Figure 1: The addition of a training temperature is a
simple modification to standard model training, where
the temperature parameter, T is used to scale down the
predicted model logits during training. We observe that
a higher temperature during training increases model
robustness against adversarial attacks unseen during
model training (bae, tf, pwws, dg here). The increase
in model robustness is demonstrated by the absolute
change in adversarial accuracy (accuracy when test sam-
ples are adversarially attacked) relative to the baseline
model (T = 1). An optimal training temperature can be
identified as the temperature that yields substantial gains
in robustness, with only a minor reduction in clean ac-
curacy (accuracy in the absence of adversarial attacks).

ples can be discovered, there also exist approaches 041

to defend against these attacks (Piktus et al., 2019; 042

Tan et al., 2020b; Raina and Gales, 2022). The stan- 043

dard approach is to use adversarial training (Good- 044

fellow et al., 2015; Bai et al., 2021), where the 045

default training scheme of deep learning systems is 046

modified to minimize the empirical risk associated 047

with the worst-case adversarial example for each 048

input. Implementation of adversarial training in the 049

computer vision domain has shown some success 050

in the development of more adversarially robust 051

models. However for NLP models, practical imple- 052

mentation of the min-max formulation of the adver- 053

sarial training paradigm is challenging: generating 054
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the worst-case adversarial example for each textual055

input in every training step is too computationally056

expensive (Yoo and Qi, 2021). Various strategies057

can be used to adapt the adversarial training algo-058

rithm for NLP models (Wang et al., 2019b), but the059

practical, de facto approach is equivalent to naive060

data augmentation. Here, adversarial examples061

are created from the training set of a NLP model062

trained in the standard manner and then the model063

is re-trained on a training set augmented with these064

adversarial examples (Zhang et al., 2020).065

Augmentation-based adversarial training ap-066

proaches have shown some success in developing067

more robust systems, but it has also been observed068

that these systems develop robustness to only a069

specific form of adversarial attack, i.e. the form070

of adversarial attack used to generate the adver-071

sarial examples for the augmentation (e.g., in Jin072

et al. 2019). Therefore, the development of more073

general adversarial robustness to unseen forms of074

adversarial attacks is an open research question.075

In this work, we make significant progress in this076

research direction. We find that using a high tem-077

perature parameter to scale down the predicted log-078

its of a NLP classification system during standard079

training boosts model robustness without added080

computational cost (Figure 1). This simple modifi-081

cation is independent of the form of the adversarial082

attack, yet is complementary with existing NLP083

adversarial training schemes (Madry et al., 2018;084

Zhu et al., 2020; Dong et al., 2021). Since the085

model is not exposed to any adversarial examples086

during training, this makes it robust to unseen ad-087

versarial attacks, by definition. We conduct exper-088

iments across multiple datasets, encoder models,089

and adversarial attacks to demonstrate its efficacy090

at improving robustness against unseen adversar-091

ial attacks. Our experiments show it is possible to092

choose a checkpoint that yields substantial gains in093

robustness with a relatively negligible (sometimes094

no) decrease in clean accuracy. Critically, the trade-095

off is often consistent across adversarial attacks for096

a model finetuned on a particular dataset. This im-097

plies that we can use known adversarial attacks to098

select a temperature that will be robust to a future099

adversarial attack of an unknown form. In summary,100

we demonstrate that high temperature training is101

an effective approach to boost the adversarial ro-102

bustness of standard and adversarially-trained NLP103

encoder models to unseen adversarial attack forms.104

2 Training Methodology 105

The adversarial robustness literature often dis- 106

cusses training-time improvements in terms of the 107

training objective, i.e., standard training (ST) v.s. 108

adversarial training (AT). In this work, we posit 109

that the training objective is not the only dimen- 110

sion that can be manipulated to affect test-time 111

robustness, and there exists yet another: training 112

temperature. We specifically demonstrate that the 113

use of a high temperature during training can im- 114

prove model robustness. Table 1 summarises the 115

naming convention for the combination of ST and 116

AT systems with a high training temperature, T . 117

standard adversarial

T = 1 ST AT
High T ST ⊕ T AT ⊕ T

Table 1: Naming convention for experiments with dif-
ferent training objectives and high temperature training.

2.1 Training Objective 118

Standard Training (ST) methods have the objec- 119

tive to find model parameters, θ that minimise the 120

empirical risk (for a dataset of (x, y) ∼ p(x, y)), 121

θ̂ = argmin
θ

E
(x,y)∼p(x,y)

[L(x, θ)], (1) 122

where a cross-entropy loss is used for classification 123

tasks, 124

L(x, θ) = log p(y|x; θ). (2) 125

The objective in Adversarial Training (AT) is to 126

instead minimise the empirical risk associated with 127

the worst-case adversarial example, x̃, 128

θ̂ = argmin
θ

E
(x,y)∼p(x,y)

 max
x̃:

G(x,x̃)≤ϵ

L(x̃, θ)

 .

(3) 129

Note that G(x, x̃) ≤ ϵ represents a constraint on 130

the adversarial example x̃ to ensure it is a ‘small’ 131

distance from the clean sample x. In the computer 132

vision domain, this constraint is typically the lp- 133

norm on the perturbation size, whilst for NLP this 134

constraint is more abstract as it limits the change in 135

semantic content of a textual input as measured by 136

a proxy function; e.g., embedding space distances 137

or pre-transformation constraints such as only al- 138

lowing replacements from the same part-of-speech 139

category (Tan et al., 2020a). 140
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Note that in practice, for NLP models, gener-141

ating textual adversarial examples for each clean142

input x at every iteration step of training is too143

slow. Therefore the de facto solution is to gener-144

ate adversarial examples once on a model trained145

with the standard objective (Equation 1). Then146

these adversarial examples are used to augment147

the training dataset. Standard training can then be148

followed with the augmented training dataset to149

simulate AT for NLP models. Nevertheless, there150

are embedding-based NLP AT approaches such as151

PGD (Madry et al., 2018) and FreeLB (Zhu et al.,152

2020), as well as region-based approaches such as153

ASCC (Dong et al., 2021) that aim to follow the154

AT training process of Equation 3 more directly -155

these approaches are included for comparison in156

the experiments (Section 3.2).157

2.2 Training Temperature158

The cross-entropy loss (Equation 2) is used to char-159

acterize the empirical risk during training. This160

loss function uses the model’s predicted probabil-161

ity of the true class, y. For a model’s predicted162

logits, l1, . . . , lC for classes 1 to C, the probability163

of the true class y is typically given by the softmax164

function,165

p(y|x) = exp(ly)∑
i exp (li)

. (4)166

The training algorithm can be adjusted to include167

a training temperature T , such that the probability168

distribution used to compute the loss function L is169

manipulated,170

p(y|x) = exp(ly/T )∑
i exp (li/T )

. (5)171

Intuitively, a larger temperature T encourages a flat-172

ter probability distribution over classes and may be173

viewed as making it more challenging for the model174

to minimize the empirical loss during training. In175

this work, we show that a high training tempera-176

ture T boosts model robustness. Note that using a177

high training temperature makes no assumptions178

about the nature of the adversarial attack as no spe-179

cific attack form is used during training. Therefore,180

this is an effective approach to build robustness181

against unseen adversarial attack forms since no182

adversarial examples are seen during training time.183

3 Experiments184

We now study the effect of high temperature train-185

ing on robustness against four common adversarial186

attacks using five NLP classification datasets. 187

3.1 Experimental Setup 188

Data. We conduct experiments across five stan- 189

dard NLP classification datasets to ensure our find- 190

ings are robust (statistics summarised in Table 2). 191

Rotten Tomatoes (rt; Pang and Lee, 2005) is a 192

binary sentiment classification task for movie re- 193

views. The Emotion Dataset (emotion; Saravia 194

et al., 2018) categorizes Twitter tweets into one 195

of six emotions: love, joy, surprise, fear, sad- 196

ness or anger. The remaining three datasets are 197

sourced from the the General Language Under- 198

standing Evaluation (GLUE) benchmark (Wang 199

et al., 2019a).2 The Corpus of Linguistic Accept- 200

ability (cola) dataset comprises English acceptabil- 201

ity judgments sourced from books and journal arti- 202

cles on linguistic theory. Each instance consists of 203

a word sequence annotated to indicate if it is gram- 204

matically correct. The Question-answering NLI 205

(qnli) dataset assesses the task of sentence pair clas- 206

sification, where one sentence is a question and the 207

other a context. The goal is to ascertain whether the 208

context sentence contains the answer to the ques- 209

tion. The Microsoft Research Paraphrase Corpus 210

(mrpc) consists of pairs of sentences automatically 211

extracted from online news sources. Human an- 212

notations identify if the sentences in each pair are 213

semantically equivalent. 214

Dataset #classes Train Validation Test

rt 2 8.53k 1.07k 1.07k
emotion 6 16k 2k 2k
cola 2 8.55k 1.04k 1.06k
qnli 2 105k 5.46k 5.46k
mrpc 2 3.67k 408 1.73k

Table 2: Dataset statistics

Models. We finetune state-of-the-art pretrained 215

encoder-based Transformer (Vaswani et al., 2017) 216

models on each task. We present results on the 217

DeBERTa base (110M parameters) model (He 218

et al., 2020) here, but note that we observe iden- 219

tical trends for BERT (Devlin et al., 2019) and 220

RoBERTa (Liu et al., 2019). Results for the BERT 221

and RoBERTa models are given in Appendix B. 222

Adversarial Attacks. We explore four widely 223

used off-the-shelf adversarial attack methods. 224

Firstly, the BERT Adversarial Example (bae; Garg 225

2For datasets where the provided test set is not labeled, we
used the validation set.
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and Ramakrishnan, 2020) operates as a word-level226

blackbox attack, where the adversary only pos-227

sesses access to the model inputs and predicted228

logits. Subsequently, we incorporate more effec-229

tive approaches: Textfooler (tf ; Jin et al., 2019) and230

Probability Weighted Word Saliency (pwws; Ren231

et al., 2019). These also operate as word-level,232

blackbox adversarial attacks. As the fourth attack,233

we consider the DeepWordBug (dg; Gao et al.,234

2018) attack, functioning as a whitebox approach235

at the character level. Each of these adversarial at-236

tacks adheres to default configurations as outlined237

in the TextAttack Library (Morris et al., 2020). In238

this work, we consider an adversarial attack as seen239

when the model developer has access to that spe-240

cific attack during training; otherwise an attack is241

considered unseen. It is desirable to have robust-242

ness to both seen and unseen attack forms. To243

assess the impact of these diverse adversarial at-244

tacks, we measure the adversarial accuracy. This245

metric is the target model’s accuracy when pre-246

sented with adversarial examples as the input for247

each test sample.248

Adversarial Training Methods. The experi-249

ments in this work explore the impact of com-250

bining the high temperature training (Section 2.2)251

approach with various standard NLP Adversar-252

ial Training (AT) baseline approaches. Specifi-253

cally, we explore PGD-K (Madry et al., 2018) and254

FreeLB (Zhu et al., 2020) as embedding-space AT255

schemes, alongside ASCC (Dong et al., 2021) as256

a combined text-embedding AT approach. Addi-257

tionally, we investigate the widely used NLP AT258

technique: augmenting the training set with adver-259

sarial examples. Here, adversarial examples are260

generated by training the target model convention-261

ally (as per Equation 1) and then subjecting the262

trained model to the DeepWordBug adversarial at-263

tack. This process aims to find an adversarial exam-264

ple for each clean training sample. Subsequently,265

the target model architecture is re-trained on the266

augmented training set, which includes the gener-267

ated adversarial examples. In this augmentation-268

based AT model, DeepWordBug is a seen attack,269

while the other attacks are still unseen. It is ex-270

pected that this AT model has relatively higher271

robustness to the seen DeepwordBug attack.272

Evaluation. anonymous (2023)3 demonstrated273

that highly overconfident models display an illu-274

3Abstract in Appendix D.

sion of robustness (IOR), where off-the-shelf ad- 275

versarial attacks struggle to identify adversarial 276

examples for these models, causing them to appear 277

robust. However, they showed that an adversary 278

can perform simple post-hoc calibration to remove 279

this illusion and enable adversarial examples to be 280

found. Therefore, following anonymous (2023), 281

we apply temperature calibration in our robustness 282

evaluations to ensure any observed robustness gains 283

are genuine and not an illusion. 284

Hyperparameters. We train the Transformer- 285

base models (training as defined by Equation 286

1), using standard hyper-parameter configurations 287

from (He et al., 2020). These include an initial 288

learning rate of 1e − 5, a batch size of 8, a to- 289

tal of 5 epochs, and no warm-up steps, following 290

TextDefender (Li et al., 2021a). It is worth noting 291

that, despite experimentation with warm-up steps 292

at 50 and 100, the validation accuracy remained 293

consistent. For optimization, we use the ADAMW 294

optimizer with a weight decay of 0.01 and specific 295

parameters: β1 = 0.9, β2 = 0.999, ϵ = 1e − 8. 296

Notably, our findings suggest that global gradient 297

normalization enhances the robustness of the rt, 298

emotion, and cola datasets. However, we experi- 299

enced loss explosion when using global gradient 300

normalization for the qnli and mrpc datasets, and 301

switched to clipped gradient normalization for the 302

experiments on qnli and mrpc. 303

In the case of Adversarial Training (AT) methods 304

(described by Equation 3), we maintain the same 305

hyperparameters as the training of the ST model. 306

Specific to AT, we adhere to hyperparameters out- 307

lined in Li et al. (2021b). The default settings for 308

AT approaches PGD, ASCC, and FreeLB include 309

5 adversarial iterations, an adversarial learning rate 310

of 0.03, an adversarial initialization magnitude of 311

0.05, an adversarial maximum norm of 1.0, an l2 312

adversarial norm type, α = 10.0 for ASCC, and 313

β = 40.0 for ASCC. 314

All experimental results in this work are reported 315

as an average across 3 seeds. 316

3.2 Results 317

Standard Training. For each dataset, Figure 2 318

presents the change in clean and adversarial ac- 319

curacy of a ST model trained as per the standard 320

training objective (Equation 1), with different tem- 321

peratures T used during training. We present the 322

detailed breakdown of the clean and adversarial 323

accuracies for each training temperature, for each 324
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(a) rotten tomatoes (b) emotion

(c) cola (d) qnli

(e) mrpc

Figure 2: The use of a training temperature, T , is a simple adjustment in standard model training (ST), where the
temperature parameter, T , is used to scale down predicted model logits. Higher training temperatures enhance
model robustness against unseen adversarial attacks (bae, tf, pwws, dg) without requiring prior knowledge of these
attack forms during training. This increased robustness is quantified by the absolute change in adversarial accuracy
compared to the baseline T = 1 ST model.

adversarial attack and each dataset, in Appendix A.325

We first observe a general increase in adversarial326

accuracy (robustness) with the training temperature327

and then a decrease in the accuracy with extremely328

large training temperatures,4 across all datasets. In329

4The drop in robustness for extremely large training tem-
peratures may be attributed to large temperatures excessively
smoothing the predicted probability distribution during train-

some datasets (e.g., qnli and mrpc) there is a slight 330

decrease in robustness before the sudden rise in 331

robustness. Nevertheless, there exists a consistent 332

robustness profile for each dataset, where robust- 333

ness peaks at similar temperatures for all tested ad- 334

ing, which makes it too challenging for the model to learn, as
is reflected by the significant decrease in clean accuracy.
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Method Clean bae tf pwws dg

ST 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

⊕ T 87.55
±0.44

35.83
±0.84

26.83
±4.57

31.49
±3.07

35.18
±4.71

PGD 88.59
±0.64

33.71
±0.20

17.73
±0.86

25.20
±1.80

25.74
±1.46

⊕ T 87.77
±0.43

34.77
±0.33

24.55
±1.76

31.46
±1.08

31.77
±2.64

FreeLB 88.74
±0.32

32.52
±0.52

19.51
±1.70

24.55
±0.70

24.52
±0.73

⊕ T 88.02
±0.52

35.15
±0.80

25.17
±0.96

29.96
±0.68

31.49
±1.04

ASCC 87.77
±0.36

33.61
±0.64

15.13
±2.17

23.50
±0.77

26.80
±2.11

⊕ T 86.36
±0.80

34.93
±1.12

27.36
±0.72

30.93
±1.38

33.46
±1.65

dg-aug 87.12
±0.39

34.74
±1.59

22.36
±1.83

26.11
±2.57

37.43
±0.75

⊕ T 87.09
±0.22

36.99
±2.64

26.92
±2.86

31.43
±1.67

36.40
±1.90

Table 3: Adversarial Training (AT) combined with a
training temperature of T = 200 (⊕ T ). For each adver-
sarial attack, the higher adversarial accuracy between
the AT model and the AT ⊕ T model is underlined. In al-
most all cases, the higher training temperature improves
adversarial accuracy. Dataset: Rotten Tomatoes.

versarial attack types (bae, tf, pwws, and dg). This335

is particularly useful, as a model developer, with336

access to only one form of adversarial attack, can337

tune the training temperature for optimal robust-338

ness on that specific attack form, yet be confident339

that the robustness gains will also transfer to the340

other unseen/unknown attack forms.341

Temperature Selection. A further observation342

is that increasing temperature can lead to a small343

drop (between 1% and 4%) in clean accuracy. This344

is perhaps expected as the model can be viewed345

as being trained in a mode further from the op-346

timal hyper-parameter setting. However, across347

all the datasets, the optimal temperature (aligned348

with the peak in adversarial accuracy) results in a349

maximal drop in clean accuracy of 1% (apart from350

for the emotion dataset). Given the gains in ad-351

versarial accuracy can be between 4% and 14%,352

this trade-off for clean accuracy can be acceptable.353

Further, a model developer can choose to operate354

at a different operating point, by selecting a train-355

ing temperature that gives a smaller drop in clean356

accuracy (and settle for a less significant gain in357

the model robustness).358

Adversarial Training Combination. As indi-359

cated in Table 1, beyond considering just the ST360

model’s training modified with a high training tem-361

perature, we consider adversarially trained (AT)362

Method Clean bae tf pwws dg

ST 93.13
±0.24

30.17
±0.85

5.77
±0.55

11.80
±2.01

8.32
±2.98

⊕ T 92.83
±0.89

32.10
±0.95

6.42
±1.58

12.68
±1.20

8.45
±1.37

PGD 93.48
±0.03

28.83
±0.43

4.88
±1.24

9.95
±0.69

5.45
±1.08

⊕ T 93.40
±0.10

30.58
±0.65

5.43
±0.25

10.78
±0.99

6.33
±1.51

FreeLB 93.67
±0.23

29.15
±1.00

4.93
±1.25

10.15
±0.30

5.48
±0.73

⊕ T 93.72
±0.10

30.23
±0.53

5.58
±0.03

10.78
±0.96

5.23
±0.98

ASCC 91.15
±0.57

34.65
±0.23

4.60
±1.05

12.15
±0.22

11.28
±1.40

⊕ T 91.78
±0.24

34.78
±0.03

7.57
±0.45

14.08
±0.64

11.55
±1.48

dg-aug 92.58
±0.11

31.52
±2.82

4.68
±0.25

9.33
±0.11

29.45
±0.64

⊕ T 91.98
±0.13

31.88
±0.85

5.38
±0.28

9.40
±0.87

23.63
±1.26

Table 4: Adversarial Training (AT) combined with a
training temperature of T = 20 (⊕ T ). For each ad-
versarial attack column the higher adversarial accuracy
between the AT model and the AT ⊕ T model is under-
lined. In almost all cases, a higher training temperature
improves adversarial accuracy. Dataset: Emotion.

models: we explore the impact of combining the 363

high temperature training approach with popular 364

NLP AT methods. As outlined in Section 3.1, 365

we consider four popular adversarial training ap- 366

proaches: dg-aug, which performs augmentation 367

with deepwordbug adversarial examples; PGD and 368

FreeLB, which augment iteratively following a 369

gradient-based approach for the min-max formu- 370

lation of AT (Equation 3) in the embedding space; 371

and ASCC (AT approach with adversarial exam- 372

ple augmentation in the embedding-space guided 373

by text-space substitutions). Table 3 and Table 4 374

give the ST results and AT results combined with 375

the temperature training approach on the rt and 376

emotion datasets, respectively. 377

Although more significant for rt than emotion, 378

for both datasets, combining with the high train- 379

ing temperature approach improves the adversarial 380

accuracy for all adversarial attack forms (bae, tf, 381

pwws, and dg) for the different adversarial training 382

approaches PGD, FreeLB, and ASCC. This demon- 383

strates that high temperature training is complemen- 384

tary with such adversarial training approaches and 385

thus consistently encourages a gain in robustness. 386

Interestingly, we observe that for dg-aug, high tem- 387

perature training is able to consistently improve 388

adversarial accuracy for bae, tf, and pwws adver- 389

sarial attacks, but can cause a drop in adversarial 390

accuracy for the dg attack. It should be emphasized 391
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that dg in this context behaves as a seen attack form,392

as the training uses augmentation with dg adver-393

sarial examples, whilst the other attacks (bae, tf,394

and pwws) can be considered unseen attack forms395

that the model developer has no knowledge of dur-396

ing training. This suggests that for augmentation-397

based NLP adversarial training approaches, a high398

training temperature does not necessarily increase399

robustness to seen attack forms, but is successful in400

boosting robustness to unseen attack forms. Over-401

all, the high training temperature approach is effec-402

tive in boosting adversarial robustness of both ST403

models (standard training objective of Equation 1)404

and AT models (adversarial training objective of405

Equation 3).406

Transferability. It is shown that training with a407

high temperature leads to a consistent gain in ad-408

versarial robustness to unseen adversarial attack409

forms. However, an adversary may attempt to ex-410

ploit attack transferability when looking to attack411

the target model trained with high temperature. To412

explore this notion of a transfer attack, with the413

rt dataset, Table 5 shows the impact of finding414

adversarial examples for the source ST model and415

assessing their efficacy on the target ST ⊕ T model.416

It is evident from the significant increase in the ad-417

versarial accuracy for all the attack forms (bae, tf,418

pwws, and dg), that a transfer attack is not able to419

degrade the observed robustness gains for models420

trained with high temperatures.421

Source Target bae tf pwws dg

ST ST 31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

ST ⊕ T ST ⊕ T 35.83
±0.84

26.83
±4.57

31.49
±3.07

35.18
±4.71

ST ST ⊕ T 50.13
±0.30

46.90
±0.38

47.53
±1.22

46.09
±1.13

Table 5: Transferability: adversarial examples are found
for the source model and evaluated on the target model
on the rt test set. The results here demonstrate that the
standard trained, high temperature (ST ⊕ T ) model’s
robustness gains relative to the ST model cannot be
compromised by a transferability attack, i.e. the per-
formance of the ST ⊕ T model are not degraded by
adversarial examples generated from the ST model.

4 Related Work and Discussion422

Adversarial Defence. In the last decade, a range423

of adversarial attack approaches (Alzantot et al.,424

2018; Garg and Ramakrishnan, 2020; Li et al.,425

2020; Gao et al., 2018; Wang et al., 2019c; Ren426

et al., 2019; Jin et al., 2019; Li et al., 2018; Tan 427

and Joty, 2021; Tan et al., 2020a) and adversar- 428

ial defence approaches have emerged for Natural 429

Language Processing (NLP) systems. Adversarial 430

defence approaches can be broadly classed as: de- 431

tectors that identify adversarial inputs (Zhou et al., 432

2019; Raina and Gales, 2022; Mozes et al., 2021); 433

form-specific a priori defences (Jones et al., 2020; 434

Tan et al., 2020b); or adversarial training (Madry 435

et al., 2018; Zhu et al., 2020; Li and Qiu, 2020; 436

Wang et al., 2020; Dong et al., 2021; Zhou et al., 437

2020; Nguyen Minh and Luu, 2022), where a 438

model is trained to explicitly encourage model 439

robustness. Each new defence approach aims to 440

protect models against the latest attacks, whilst 441

new attack approaches aim to circumvent the lat- 442

est defences. This has led to increasingly com- 443

plex and computationally expensive defence ap- 444

proaches (e.g., Nguyen Minh and Luu (2022)). Fur- 445

ther, many defences, such as the de-facto use of 446

augmentation-based adversarial training (Jin et al., 447

2019; Wang and Bansal, 2018; Kang et al., 2018) 448

or detectors tailored to specific attack forms (Zhou 449

et al., 2019), are vulnerable to unknown/unseen 450

attack approaches. To begin to address these chal- 451

lenges, we demonstrated that by simply training 452

with a higher temperature, some model robustness 453

can be developed against unknown attack forms, 454

with no greater computational cost than that of 455

standard training. To further develop this line of 456

research, we encourage future research to also ex- 457

plore computationally efficient and attack-agnostic 458

adversarial defence approaches. 459

Training Temperature. The use of temperature 460

during training has not previously been discussed 461

in literature in the context of adversarial training 462

and model robustness. However, the temperature 463

parameter is often exploited in other areas of re- 464

search and understanding its success there can per- 465

haps give some explanation for its success in boost- 466

ing model robustness. In knowledge distillation 467

(Hinton et al., 2015), temperature is a parameter 468

that is often used in the softmax function during 469

the training process (Jafari et al., 2021). Knowl- 470

edge distillation is a model compression technique 471

where a smaller model (student) is trained to repli- 472

cate the behavior of a larger, more complex model 473

(teacher). A high temperature is often used during 474

the training of the student model. This softens the 475

probability distribution, making the training signal 476

more informative and providing the student model 477

7



(a) T = 1 (b) T = 100

Figure 3: Probability Density (histogram plot) of predicted class logits’ range (smallest logit subtracted from largest
logit value) on rt test set with and without a high training temperature for the ST DeBERTa model. The higher
temperature training setting (T = 100) has a larger class logits’ range, suggesting that an adversarial attack has to
make a greater change in the logit space to be successful in changing the predicted class.

with additional information from the teacher model.478

The idea is that the teacher model’s softened output479

helps the student model learn a smoother and more480

generalized decision boundary. Although the tem-481

perature parameter is not used to soften the teacher482

distribution in our context, Agarwala et al. (2020)483

find that model generalization depends strongly on484

the training temperature and so it is unsurprising485

that the temperature parameter also influences ro-486

bustness. More specifically, the success of high487

temperature training for adversarial robustness can488

perhaps be explained by considering the size of the489

class margin (Robey et al., 2023). A high temper-490

ature smooths the probability distribution across491

classes, such that the probabilities of the differ-492

ent classes are closer together. To minimize the493

cross entropy loss (Equation 2), during the train-494

ing, the model’s parameters learn to compensate495

for this smoothing by pushing the logits of the dif-496

ferent classes further apart (we see this in Figure497

3, where the range of logits substantially increases498

with higher training temperatures). Intuitively, this499

can be viewed as increasing the distance to the class500

boundary in the logit space and thus making it more501

difficult for an adversarial attack to change the pre-502

dicted class, giving rise to the observed increase503

in adversarial robustness. Future work will aim to504

rigorously understand and explain the observed ro-505

bustness gains of training with a high temperature.506

5 Conclusion507

While adversarial training has proven effective in508

enhancing robustness, its practical implementation509

for NLP models poses challenges due to computa- 510

tional costs. Additionally, the effectiveness of the 511

commonly employed augmentation-based adver- 512

sarial training approach in NLP tends to be limited 513

to the specific attack forms used for augmentation. 514

To address these limitations, we propose a straight- 515

forward modification to the standard training al- 516

gorithm, involving the use of a high temperature 517

parameter to scale down predicted logits in NLP 518

classification systems. Experiments across multi- 519

ple datasets, models, and classification tasks show 520

this simple approach boosts adversarial robustness 521

to various unseen attack forms, and does so with- 522

out incurring additional computational costs dur- 523

ing training. Our experiments also demonstrate 524

that our high temperature training approach is com- 525

plementary with existing NLP adversarial training 526

schemes, yielding a further increase in model ro- 527

bustness to unseen adversarial attacks. 528

6 Limitations 529

In our experiments, we used a constant temper- 530

ature during training for simplicity. It would be 531

interesting to consider the impact of other temper- 532

ature schedules, e.g., temperature annealing (Cai, 533

2021) where the temperature is slowly decreased. 534

Further, our experiments are limited to NLP classifi- 535

cation systems and it would therefore be interesting 536

to explore how a high training temperature influ- 537

ences the robustness of generative NLP models. 538

Finally, in this work, we empirically demonstrated 539

the usefulness of high temperature training but do 540

not claim to formally investigate the theory behind 541

8



its efficacy. A promising future direction would be542

to uncover the theory behind this phenomenon and543

potential connections to model generalization.544

7 Risks & Ethics545

This work presents findings on the topic of adver-546

sarial attack defence. We do not propose any new547

attack algorithms and instead propose a training548

modification to increase model robustness to ad-549

versarial attacks. Therefore, there are no perceived550

risks or ethical concerns associated with this work.551
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A Detailed Performance Breakdown 811

Figure 2 presents the adversarial accuracy of ST 812

models trained with different training temperatures. 813

In this section, for reference, we provide the de- 814

tailed breakdown (average across 3 seeds and stan- 815

dard deviation) of performances for the different 816

training temperatures for each dataset: rt (Table 6), 817

emotion (Table 7), cola (Table 8), qnli (Table 9), 818

and mrpc (Table 10). These results are given for 819

the DeBERTa model as in the main paper. 820

Temp clean bae tf pwws dg

1 88.56
±0.19

32.40
±0.14

18.79
±0.48

21.36
±1.22

21.11
±0.66

10 88.18
±0.49

34.12
±0.82

23.23
±2.65

24.71
±1.22

26.52
±2.10

20 88.46
±0.52

34.24
±1.97

23.14
±2.18

26.70
±1.28

29.49
±1.69

100 88.21
±0.70

34.83
±0.81

24.82
±3.79

26.36
±2.86

29.49
±4.36

200 87.55
±0.44

35.83
±0.84

26.83
±4.57

31.49
±3.07

35.18
±4.71

2000 86.40
±0.89

35.46
±1.79

25.02
±0.76

29.99
±1.38

30.81
±1.05

Table 6: rt: The use of a training temperature, T , is
a simple adjustment in standard model training (ST),
where the temperature parameter, T , is used to scale
down predicted model logits. Higher training tempera-
tures enhance model robustness against unseen adver-
sarial attacks (bae, tf, pwws, dg) without requiring prior
knowledge of these attack forms during training. Re-
sults here report the clean and adversarial accuracy.

Temp clean bae tf pwws dg

1 92.72
±0.10

31.55
±0.20

6.53
±1.30

11.85
±1.31

8.20
±1.22

2 92.72
±0.36

31.33
±0.83

6.45
±1.66

12.60
±2.26

8.95
±2.43

20 92.83
±0.89

32.10
±0.95

6.42
±1.58

12.68
±1.20

8.45
±1.37

100 90.98
±0.15

31.50
±0.79

7.55
±0.10

14.43
±0.74

9.23
±1.87

200 85.67
±0.24

32.87
±0.47

11.82
±0.64

16.28
±0.66

10.90
±1.44

Table 7: emotion: The use of a training temperature,
T , is a simple adjustment in standard model training
(ST), where the temperature parameter, T , is used to
scale down predicted model logits. Higher training
temperatures enhance model robustness against unseen
adversarial attacks (bae, tf, pwws, dg) without requiring
prior knowledge of these attack forms during training.
Results here report the clean and adversarial accuracy.

In Table 11, we further include results on a 6th 821

dataset AGNews (Zhang et al., 2015), where there 822

are four news classes, 96k training samples, 24k 823

validation samples and 7.6k test samples. For this 824

dataset, it can be observed that a high training tem- 825

perature is not a successful method unless a fraction 826

of the dataset (10k training samples) is used during 827
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Temp clean bae tf pwws dg

1 83.70
±0.53

3.39
±0.59

5.43
±0.43

10.23
±0.73

11.63
±1.49

10 84.21
±0.72

6.30
±0.83

9.17
±0.48

11.98
±0.42

13.45
±1.75

100 82.68
±0.91

7.41
±2.34

9.04
±3.22

11.89
±1.08

13.04
±4.96

Table 8: cola: The use of a training temperature, T , is
a simple adjustment in standard model training (ST),
where the temperature parameter, T , is used to scale
down predicted model logits. Higher training tempera-
tures enhance model robustness against unseen adver-
sarial attacks (bae, tf, pwws, dg) without requiring prior
knowledge of these attack forms during training. Re-
sults here report the clean and adversarial accuracy.

Temp clean bae tf pwws dg

1 93.17
±0.26

35.71
±1.88

20.71
±3.17

19.79
±2.38

17.92
±4.39

10 92.92
±0.94

35.00
±0.66

18.92
±1.56

17.38
±1.02

16.38
±2.76

20 92.75
±0.66

35.75
±0.38

20.17
±1.54

19.29
±0.90

16.75
±1.19

50 93.00
±0.75

36.67
±1.39

23.46
±1.70

22.54
±0.26

19.79
±1.56

100 92.75
±0.33

37.83
±1.19

22.96
±0.38

22.00
±1.44

21.63
±1.11

150 92.38
±0.70

35.54
±2.00

22.08
±2.12

19.71
±2.32

18.29
±3.59

200 92.96
±0.47

35.92
±1.21

21.33
±3.54

21.04
±2.48

19.75
±3.06

Table 9: qnli: The use of a training temperature, T , is
a simple adjustment in standard model training (ST),
where the temperature parameter, T , is used to scale
down predicted model logits. Higher training tempera-
tures enhance model robustness against unseen adver-
sarial attacks (bae, tf, pwws, dg) without requiring prior
knowledge of these attack forms during training. Re-
sults here report the clean and adversarial accuracy.

Temp clean bae tf pwws dg

1 87.46
±0.26

46.42
±1.94

38.83
±3.92

28.63
±3.25

33.50
±6.11

5 87.79
±0.44

46.17
±3.05

38.88
±4.58

30.42
±2.20

31.50
±1.11

10 88.21
±0.31

48.67
±3.62

43.92
±5.63

32.75
±3.69

35.04
±5.03

50 86.92
±0.29

45.54
±4.15

31.88
±8.15

24.63
±5.00

29.21
±7.22

100 86.21
±0.94

48.25
±2.58

35.63
±6.39

26.08
±5.59

27.96
±4.74

Table 10: mrpc: The use of a training temperature,
T , is a simple adjustment in standard model training
(ST), where the temperature parameter, T , is used to
scale down predicted model logits. Higher training
temperatures enhance model robustness against unseen
adversarial attacks (bae, tf, pwws, dg) without requiring
prior knowledge of these attack forms during training.
Results here report the clean and adversarial accuracy.

training. Future work is necessary to understand828

the nature of this specific dataset or other similar829

datasets that led to such a different behaviour for830

the temperature training approach.831

Temp clean bae tf pwws dg

1 93.88
±0.22

81.50
±0.25

29.46
±0.19

43.00
±2.19

39.08
±2.89

1.5 93.75
±0.13

80.92
±0.51

29.08
±3.26

42.13
±5.20

38.58
±3.19

2 93.92
±0.07

80.04
±0.56

25.00
±3.80

40.38
±3.19

38.54
±5.69

20 93.83
±0.36

79.25
±1.02

23.50
±2.07

37.58
±2.60

34.58
±4.56

Table 11: agnews: The use of a training temperature,
T , is a simple adjustment in standard model training
(ST), where the temperature parameter, T , is used to
scale down predicted model logits. Higher training
temperatures enhance model robustness against unseen
adversarial attacks (bae, tf, pwws, dg) without requiring
prior knowledge of these attack forms during training.
Results here report the clean and adversarial accuracy.

Temp clean bae tf pwws dg

1 93.17
±0.38

78.00
±0.54

32.33
±2.32

42.08
±0.47

40.54
±2.53

10 92.08
±0.40

79.00
±0.66

38.33
±2.89

50.42
±2.09

46.54
±0.63

20 92.46
±0.19

77.92
±0.69

38.33
±2.63

49.21
±2.89

45.67
±1.61

100 92.13
±0.38

77.50
±0.00

30.33
±2.81

41.46
±0.76

40.38
±2.34

Table 12: agnews: The use of a training temperature,
T , is a simple adjustment in standard model training
(ST), where the temperature parameter, T , is used to
scale down predicted model logits. Higher training
temperatures enhance model robustness against unseen
adversarial attacks (bae, tf, pwws, dg) without requiring
prior knowledge of these attack forms during training.
Results here report the clean and adversarial accuracy.
Training with 10k samples - 1/10th of default agnews
training set size.

B Reproducing with Other Models 832

The main paper presents results using the DeBERTa 833

model. Here we repeat the core experiments on 834

other popular base models: BERT (Table 13) and 835

RoBERTa (Table 14). The results here are pre- 836

sented for the rt dataset. 837

C Other Ablations 838

Augmentation based adversarial training ap- 839

proaches, such as dg-aug in the main paper, have 840

twice as many training steps (due to there being 841

double the training set size). To match the standard 842

training setting, in Table 15 we evaluated the train- 843

ing with high temperature approach combined with 844

dg-aug at half the number of training steps. Simi- 845

larly, in Table 16 we consider the inverse setting, 846

where we double the number of training iterations 847

for the ST model (in standard training), as well as 848

linearly scaling the learning rate scheduler across 849
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Temp clean bae tf pwws dg

1 85.08
±0.50

30.52
±0.76

21.01
±0.32

21.20
±0.34

23.14
±2.14

10 84.79
±0.58

32.16
±0.66

25.88
±1.23

23.96
±1.89

27.48
±1.67

100 84.76
±0.54

33.01
±0.78

27.12
±1.99

25.88
±2.45

28.92
±2.02

Table 13: BERT: The use of a training temperature,
T , is a simple adjustment in standard model training
(ST), where the temperature parameter, T , is used to
scale down predicted model logits. Higher training
temperatures enhance model robustness against unseen
adversarial attacks (bae, tf, pwws, dg) without requiring
prior knowledge of these attack forms during training.
Results here report the clean and adversarial accuracy.
Result for rt dataset.

Temp clean bae tf pwws dg

1 88.27
±0.47

32.46
±0.74

17.01
±0.72

21.23
±0.05

24.30
±1.71

10 88.25
±0.65

33.17
±0.86

21.96
±1.86

24.32
±1.15

28.85
±3.02

100 88.26
±0.72

33.55
±0.92

23.20
±2.04

26.03
±2.12

29.66
±3.55

Table 14: RoBERTa: The use of a training temperature,
T , is a simple adjustment in standard model training
(ST), where the temperature parameter, T , is used to
scale down predicted model logits. Higher training
temperatures enhance model robustness against unseen
adversarial attacks (bae, tf, pwws, dg) without requiring
prior knowledge of these attack forms during training.
Results here report the clean and adversarial accuracy.
Result for rt dataset.

the increased number of iterations.850

Method iters clean pwws dg

ST ⊕T default 87.55
±0.44

31.49
±3.07

35.18
±4.71

dg-aug ⊕T default 87.09
±0.22

31.43
±1.67

36.40
±1.90

half 86.05
±0.44

37.02
±5.21

43.00
±2.36

Table 15: Matched number of iterations for ST and high
temperature training with dg-aug by halving the number
of training steps for dg-aug.

D Illusion of Robustness851

anonymous (2023) is an anonymous preprint. The852

abstract is provided here for reference:853

854

Deep learning-based Natural Language Process-855

ing (NLP) models are vulnerable to adversarial856

attacks, where small perturbations can cause a857

model to misclassify. Adversarial Training (AT) is858

often used to increase model robustness. Despite859

the challenging nature of textual inputs, numer-860

Method Epochs clean bae tf pwws dg

ST 5 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

10 88.34
±0.62

33.61
±0.52

18.76
±0.50

22.39
±0.61

23.45
±0.86

⊕T 5 87.55
±0.44

35.83
±0.84

26.83
±4.57

31.49
±3.07

35.18
±4.71

10 87.55
±0.33

34.43
±1.31

25.48
±2.16

30.11
±2.19

33.40
±4.60

dg-aug - 87.12
±0.39

34.74
±1.59

22.36
±1.83

26.11
±2.57

37.43
±0.75

⊕T - 87.09
±0.22

36.99
±2.64

26.92
±2.86

31.43
±1.67

36.40
±1.90

Table 16: Doubling training iterations for the ST model
with scaled scheduler decay to match number of itera-
tions in augmentation based AT.

ous AT approaches have emerged for NLP mod- 861

els. However, we have discovered an intriguing 862

phenomenon: deliberately miscalibrating models 863

such that they are extremely overconfident or under- 864

confident in their predictions, disrupts adversarial 865

attack search methods, giving rise to an illusion of 866

robustness (IOR). This extreme miscalibration can 867

also arise implicitly as part of existing AT schemes. 868

However, we demonstrate that an adversary aware 869

of this miscalibration can perform temperature cal- 870

ibration to modify the predicted model logits, al- 871

lowing the adversarial attack search method to 872

find adversarial examples whereby obviating IOR. 873

Consequently, we urge adversarial robustness re- 874

searchers to incorporate adversarial temperature 875

scaling approaches into their evaluations to miti- 876

gate IOR. 877
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E Base Class Definition with Temperature Training878

879
c l a s s B a s e C l a s s i f i e r ( nn . Module ) :880

d e f _ _ i n i t _ _ ( s e l f , model_name = ’ b e r t −base − uncased ’ , n u m _ l a b e l s =2 , p r e t r a i n e d =True , t e m p e r a t u r e = 1 ) :881
s u p e r ( ) . _ _ i n i t _ _ ( )882
s e l f . model_name = model_name883
s e l f . t e m p e r a t u r e = t e m p e r a t u r e884
i f p r e t r a i n e d :885

s e l f . model = A u t o M o d e l F o r S e q u e n c e C l a s s i f i c a t i o n . f r o m _ p r e t r a i n e d ( model_name , n u m _ l a b e l s = n u m _ l a b e l s )886
s e l f . t o k e n i z e r = Au toToken i ze r . f r o m _ p r e t r a i n e d ( model_name )887

e l s e :888
c o n f i g = AutoConf ig . f r o m _ p r e t r a i n e d ( model_name , n u m _ l a b e l s = n u m _ l a b e l s ) # r e t u r n s c o n f i g and n o t p r e t r a i n e d w e i g h t s889
s e l f . model = A u t o M o d e l F o r S e q u e n c e C l a s s i f i c a t i o n . f r o m _ c o n f i g ( c o n f i g )890
s e l f . t o k e n i z e r = Au toToken i ze r . f r o m _ p r e t r a i n e d ( model_name )891

s e l f . c o n f i g = AutoConf ig . f r o m _ p r e t r a i n e d ( model_name , n u m _ l a b e l s = n u m _ l a b e l s )892
893

d e f f o r w a r d ( s e l f , i n p u t _ i d s =None , a t t e n t i o n _ m a s k =None , i n p u t s _ e m b e d s =None ) :894
l o g i t s = s e l f . model ( i n p u t _ i d s , a t t e n t i o n _ m a s k = a t t e n t i o n _ m a s k , i n p u t s _ e m b e d s = i n p u t s _ e m b e d s ) [ 0 ]895
l o g i t s = l o g i t s / s e l f . t e m p e r a t u r e896
r e t u r n l o g i t s897
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