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Abstract

Deep learning models have achieved remark-
able performance across various domains, but
are vulnerable to adversarial attacks. Existing
defences such as adversarial training face chal-
lenges when applied to NLP models due to
the computational complexity, while others are
form-specific. A prevalent practical strategy is
augmentation-based adversarial training, where
adversarial examples are included in the train-
ing set. While successful, this approach largely
only improves robustness against the specific
attack forms the model is trained on and its
training time scales linearly with the augmenta-
tion factor. We propose a simple modification
to the standard training algorithm which boosts
absolute accuracy in the presence of adversarial
examples up to 14 accuracy points, without in-
creasing model training time. Our modification
is the use of a high temperature parameter dur-
ing training to scale down predicted logits from
classification systems. We finally show that
this high temperature training approach comple-
ments existing adversarial training techniques,
further improving the adversarial robustness of
augmentation-based, adversarially trained NLP
systems against unseen adversarial attacks.'

1 Introduction

Due to their impressive performance, deep learning
models have been deployed in a range of areas in
natural language processing (NLP). However, these
models are susceptible to adversarial attacks, where
small perturbations to the input can result in large,
undesired changes in the model’s prediction. These
perturbed inputs are termed adversarial examples
(Szegedy et al., 2014). The presence of adversarial
examples is ubiquitous and a real threat to NLP
systems used in high stakes situations (Sun et al.,
2018; Tan et al., 2021; Raina et al., 2022).
Although many adversarial attack algorithms
demonstrate the ease with which adversarial exam-

'We include the code modification in Appendix E.
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Figure 1: The addition of a training temperature is a
simple modification to standard model training, where
the temperature parameter, 7" is used to scale down the
predicted model logits during training. We observe that
a higher temperature during training increases model
robustness against adversarial attacks unseen during
model training (bae, tf, pwws, dg here). The increase
in model robustness is demonstrated by the absolute
change in adversarial accuracy (accuracy when test sam-
ples are adversarially attacked) relative to the baseline
model (I = 1). An optimal training temperature can be
identified as the temperature that yields substantial gains
in robustness, with only a minor reduction in clean ac-
curacy (accuracy in the absence of adversarial attacks).

ples can be discovered, there also exist approaches
to defend against these attacks (Piktus et al., 2019;
Tan et al., 2020b; Raina and Gales, 2022). The stan-
dard approach is to use adversarial training (Good-
fellow et al., 2015; Bai et al., 2021), where the
default training scheme of deep learning systems is
modified to minimize the empirical risk associated
with the worst-case adversarial example for each
input. Implementation of adversarial training in the
computer vision domain has shown some success
in the development of more adversarially robust
models. However for NLP models, practical imple-
mentation of the min-max formulation of the adver-
sarial training paradigm is challenging: generating



the worst-case adversarial example for each textual
input in every training step is too computationally
expensive (Yoo and Qi, 2021). Various strategies
can be used to adapt the adversarial training algo-
rithm for NLP models (Wang et al., 2019b), but the
practical, de facto approach is equivalent to naive
data augmentation. Here, adversarial examples
are created from the training set of a NLP model
trained in the standard manner and then the model
is re-trained on a training set augmented with these
adversarial examples (Zhang et al., 2020).

Augmentation-based adversarial training ap-
proaches have shown some success in developing
more robust systems, but it has also been observed
that these systems develop robustness to only a
specific form of adversarial attack, i.e. the form
of adversarial attack used to generate the adver-
sarial examples for the augmentation (e.g., in Jin
et al. 2019). Therefore, the development of more
general adversarial robustness to unseen forms of
adversarial attacks is an open research question.

In this work, we make significant progress in this
research direction. We find that using a high tem-
perature parameter to scale down the predicted log-
its of a NLP classification system during standard
training boosts model robustness without added
computational cost (Figure 1). This simple modifi-
cation is independent of the form of the adversarial
attack, yet is complementary with existing NLP
adversarial training schemes (Madry et al., 2018;
Zhu et al., 2020; Dong et al., 2021). Since the
model is not exposed to any adversarial examples
during training, this makes it robust to unseen ad-
versarial attacks, by definition. We conduct exper-
iments across multiple datasets, encoder models,
and adversarial attacks to demonstrate its efficacy
at improving robustness against unseen adversar-
ial attacks. Our experiments show it is possible to
choose a checkpoint that yields substantial gains in
robustness with a relatively negligible (sometimes
no) decrease in clean accuracy. Critically, the trade-
off is often consistent across adversarial attacks for
a model finetuned on a particular dataset. This im-
plies that we can use known adversarial attacks to
select a temperature that will be robust to a future
adversarial attack of an unknown form. In summary,
we demonstrate that high temperature training is
an effective approach to boost the adversarial ro-
bustness of standard and adversarially-trained NLP
encoder models to unseen adversarial attack forms.

2 Training Methodology

The adversarial robustness literature often dis-
cusses training-time improvements in terms of the
training objective, i.e., standard training (ST) v.s.
adversarial training (AT). In this work, we posit
that the training objective is not the only dimen-
sion that can be manipulated to affect test-time
robustness, and there exists yet another: training
temperature. We specifically demonstrate that the
use of a high temperature during training can im-
prove model robustness. Table 1 summarises the
naming convention for the combination of ST and
AT systems with a high training temperature, 7.

‘ standard adversarial

T=1 ST AT
HighT | ST®T ATo®T

Table 1: Naming convention for experiments with dif-
ferent training objectives and high temperature training.

2.1 Training Objective

Standard Training (ST) methods have the objec-
tive to find model parameters, # that minimise the
empirical risk (for a dataset of (x,y) ~ p(x,y)),
[£(x,0)], ey

6 = arg min E
0 (Gy)~p(xy)

where a cross-entropy loss is used for classification
tasks,

L(x,0) = log p(y|x; 0). (2)

The objective in Adversarial Training (AT) is to
instead minimise the empirical risk associated with
the worst-case adversarial example, X,

6 = arg min E

max L(X,6)
0 (xy)~p(xy)

X

G(x,%x)<e

3)
Note that G(x,X) < € represents a constraint on
the adversarial example X to ensure it is a ‘small’
distance from the clean sample x. In the computer
vision domain, this constraint is typically the [P-
norm on the perturbation size, whilst for NLP this
constraint is more abstract as it limits the change in
semantic content of a textual input as measured by
a proxy function; e.g., embedding space distances
or pre-transformation constraints such as only al-
lowing replacements from the same part-of-speech
category (Tan et al., 2020a).



Note that in practice, for NLP models, gener-
ating textual adversarial examples for each clean
input x at every iteration step of training is too
slow. Therefore the de facto solution is to gener-
ate adversarial examples once on a model trained
with the standard objective (Equation 1). Then
these adversarial examples are used to augment
the training dataset. Standard training can then be
followed with the augmented training dataset to
simulate AT for NLP models. Nevertheless, there
are embedding-based NLP AT approaches such as
PGD (Madry et al., 2018) and FreeLLB (Zhu et al.,
2020), as well as region-based approaches such as
ASCC (Dong et al., 2021) that aim to follow the
AT training process of Equation 3 more directly -
these approaches are included for comparison in
the experiments (Section 3.2).

2.2 Training Temperature

The cross-entropy loss (Equation 2) is used to char-
acterize the empirical risk during training. This
loss function uses the model’s predicted probabil-
ity of the true class, y. For a model’s predicted
logits, l1, . .., lc for classes 1 to C, the probability
of the true class y is typically given by the softmax
function,

_ exp(ly)

The training algorithm can be adjusted to include
a training temperature 7', such that the probability
distribution used to compute the loss function L is
manipulated,

p(ylx) =

C))

exp(ly/T)
Soiexp (Li/T)
Intuitively, a larger temperature 1" encourages a flat-
ter probability distribution over classes and may be
viewed as making it more challenging for the model
to minimize the empirical loss during training. In
this work, we show that a high training tempera-
ture 7" boosts model robustness. Note that using a
high training temperature makes no assumptions
about the nature of the adversarial attack as no spe-
cific attack form is used during training. Therefore,
this is an effective approach to build robustness
against unseen adversarial attack forms since no
adversarial examples are seen during training time.

(&)

3 Experiments

We now study the effect of high temperature train-
ing on robustness against four common adversarial

attacks using five NLP classification datasets.

3.1 Experimental Setup

Data. We conduct experiments across five stan-
dard NLP classification datasets to ensure our find-
ings are robust (statistics summarised in Table 2).
Rotten Tomatoes (rt; Pang and Lee, 2005) is a
binary sentiment classification task for movie re-
views. The Emotion Dataset (emotion; Saravia
et al., 2018) categorizes Twitter tweets into one
of six emotions: love, joy, surprise, fear, sad-
ness or anger. The remaining three datasets are
sourced from the the General Language Under-
standing Evaluation (GLUE) benchmark (Wang
et al., 2019a).? The Corpus of Linguistic Accept-
ability (cola) dataset comprises English acceptabil-
ity judgments sourced from books and journal arti-
cles on linguistic theory. Each instance consists of
a word sequence annotated to indicate if it is gram-
matically correct. The Question-answering NLI
(gnli) dataset assesses the task of sentence pair clas-
sification, where one sentence is a question and the
other a context. The goal is to ascertain whether the
context sentence contains the answer to the ques-
tion. The Microsoft Research Paraphrase Corpus
(mrpc) consists of pairs of sentences automatically
extracted from online news sources. Human an-
notations identify if the sentences in each pair are
semantically equivalent.

Dataset \ #classes Train  Validation Test
rt 2 8.53k 1.07k 1.07k
emotion 6 16k 2k 2k

cola 2 8.55k 1.04k 1.06k
qnli 2 105k 5.46k 5.46k
mrpc 2 3.67k 408 1.73k

Table 2: Dataset statistics
Models. We finetune state-of-the-art pretrained

encoder-based Transformer (Vaswani et al., 2017)
models on each task. We present results on the
DeBERTa base (110M parameters) model (He
et al., 2020) here, but note that we observe iden-
tical trends for BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019). Results for the BERT
and RoBERTa models are given in Appendix B.

Adversarial Attacks. We explore four widely
used off-the-shelf adversarial attack methods.
Firstly, the BERT Adversarial Example (bae; Garg

%For datasets where the provided test set is not labeled, we
used the validation set.



and Ramakrishnan, 2020) operates as a word-level
blackbox attack, where the adversary only pos-
sesses access to the model inputs and predicted
logits. Subsequently, we incorporate more effec-
tive approaches: Textfooler (¢#f; Jin et al., 2019) and
Probability Weighted Word Saliency (pwws; Ren
et al., 2019). These also operate as word-level,
blackbox adversarial attacks. As the fourth attack,
we consider the DeepWordBug (dg; Gao et al.,
2018) attack, functioning as a whitebox approach
at the character level. Each of these adversarial at-
tacks adheres to default configurations as outlined
in the TextAttack Library (Morris et al., 2020). In
this work, we consider an adversarial attack as seen
when the model developer has access to that spe-
cific attack during training; otherwise an attack is
considered unseen. It is desirable to have robust-
ness to both seen and unseen attack forms. To
assess the impact of these diverse adversarial at-
tacks, we measure the adversarial accuracy. This
metric is the target model’s accuracy when pre-
sented with adversarial examples as the input for
each test sample.

Adversarial Training Methods. The experi-
ments in this work explore the impact of com-
bining the high temperature training (Section 2.2)
approach with various standard NLP Adversar-
ial Training (AT) baseline approaches. Specifi-
cally, we explore PGD-K (Madry et al., 2018) and
FreeLB (Zhu et al., 2020) as embedding-space AT
schemes, alongside ASCC (Dong et al., 2021) as
a combined text-embedding AT approach. Addi-
tionally, we investigate the widely used NLP AT
technique: augmenting the training set with adver-
sarial examples. Here, adversarial examples are
generated by training the target model convention-
ally (as per Equation 1) and then subjecting the
trained model to the DeepWordBug adversarial at-
tack. This process aims to find an adversarial exam-
ple for each clean training sample. Subsequently,
the target model architecture is re-trained on the
augmented training set, which includes the gener-
ated adversarial examples. In this augmentation-
based AT model, DeepWordBug is a seen attack,
while the other attacks are still unseen. It is ex-
pected that this AT model has relatively higher
robustness to the seen DeepwordBug attack.

Evaluation. anonymous (2023)° demonstrated
that highly overconfident models display an i//u-

3 Abstract in Appendix D.

sion of robustness (IOR), where off-the-shelf ad-
versarial attacks struggle to identify adversarial
examples for these models, causing them to appear
robust. However, they showed that an adversary
can perform simple post-hoc calibration to remove
this illusion and enable adversarial examples to be
found. Therefore, following anonymous (2023),
we apply temperature calibration in our robustness
evaluations to ensure any observed robustness gains
are genuine and not an illusion.

Hyperparameters. We train the Transformer-
base models (training as defined by Equation
1), using standard hyper-parameter configurations
from (He et al., 2020). These include an initial
learning rate of le — 5, a batch size of 8, a to-
tal of 5 epochs, and no warm-up steps, following
TextDefender (Li et al., 2021a). It is worth noting
that, despite experimentation with warm-up steps
at 50 and 100, the validation accuracy remained
consistent. For optimization, we use the ADAMW
optimizer with a weight decay of 0.01 and specific
parameters: 51 = 0.9, 8o = 0.999, ¢ = 1le — 8.
Notably, our findings suggest that global gradient
normalization enhances the robustness of the rt,
emotion, and cola datasets. However, we experi-
enced loss explosion when using global gradient
normalization for the gnli and mrpc datasets, and
switched to clipped gradient normalization for the
experiments on gnli and mrpc.

In the case of Adversarial Training (AT) methods
(described by Equation 3), we maintain the same
hyperparameters as the training of the ST model.
Specific to AT, we adhere to hyperparameters out-
lined in Li et al. (2021b). The default settings for
AT approaches PGD, ASCC, and FreeLLB include
5 adversarial iterations, an adversarial learning rate
of 0.03, an adversarial initialization magnitude of
0.05, an adversarial maximum norm of 1.0, an 12
adversarial norm type, o = 10.0 for ASCC, and
6 = 40.0 for ASCC.

All experimental results in this work are reported
as an average across 3 seeds.

3.2 Results

Standard Training. For each dataset, Figure 2
presents the change in clean and adversarial ac-
curacy of a ST model trained as per the standard
training objective (Equation 1), with different tem-
peratures 1" used during training. We present the
detailed breakdown of the clean and adversarial
accuracies for each training temperature, for each
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Figure 2: The use of a training temperature, 7', is a simple adjustment in standard model training (ST), where the
temperature parameter, 7', is used to scale down predicted model logits. Higher training temperatures enhance
model robustness against unseen adversarial attacks (bae, tf, pwws, dg) without requiring prior knowledge of these
attack forms during training. This increased robustness is quantified by the absolute change in adversarial accuracy

compared to the baseline 7' = 1 ST model.

adversarial attack and each dataset, in Appendix A.

We first observe a general increase in adversarial
accuracy (robustness) with the training temperature
and then a decrease in the accuracy with extremely
large training temperatures,* across all datasets. In

*The drop in robustness for extremely large training tem-
peratures may be attributed to large temperatures excessively
smoothing the predicted probability distribution during train-

some datasets (e.g., qnli and mrpc) there is a slight
decrease in robustness before the sudden rise in
robustness. Nevertheless, there exists a consistent
robustness profile for each dataset, where robust-
ness peaks at similar temperatures for all tested ad-

ing, which makes it too challenging for the model to learn, as
is reflected by the significant decrease in clean accuracy.



Method | Clean | bae tf pWWs dg
ST 88.96 | 31.39 17.82 20.42 20.11
~o030 | £1.20 +0.49 F0.62  +0.94
eT 87.55 | 35.83 26.83 31.49 35.18
+0.44 | "fo.84  £4.57 £3.07 +4.71
PGD 88.59 | 33.71 17.73 2520 25.74
~o064 | £0.20 +0.86 E£180  +1.46
eT 87.77 | 34.77 24.55 31.46 31.77
+0.43 | "£0.33 £1.76  +£1.08 +2.64
FreeLB | 88.74 | 32.52 19.51 24.55 24.52
“o032 | +052  F170  H0.70  £0.73
T 88.02 | 35.15 25.17 29.96 31.49
+0.52 | "£0.80 +£0.96 +£0.68 +1.04
ASCC 87.77 | 33.61 15.13 23.50 26.80
10.36 | +0.64 £2.17 077  +2.11
e T 86.36 | 34.93 27.36 30.93 33.46
+0.80 | "f1.12  +0.72  +£1.38  +1.65
dg-aug 87.12 | 34.74 22.36 26.11 37.43
1030 | *£1.59  *183  *25357  Tgo7s
e T 87.09 | 36.99 26.92 31.43 36.40
+0.22 | "f264 t2.86 +l.67 *+1.90

Table 3: Adversarial Training (AT) combined with a
training temperature of 7' = 200 (& T'). For each adver-
sarial attack, the higher adversarial accuracy between
the AT model and the AT & 7" model is underlined. In al-
most all cases, the higher training temperature improves
adversarial accuracy. Dataset: Rotten Tomatoes.

versarial attack types (bae, tf, pwws, and dg). This
is particularly useful, as a model developer, with
access to only one form of adversarial attack, can
tune the training temperature for optimal robust-
ness on that specific attack form, yet be confident
that the robustness gains will also transfer to the
other unseen/unknown attack forms.

Temperature Selection. A further observation
is that increasing temperature can lead to a small
drop (between 1% and 4%) in clean accuracy. This
is perhaps expected as the model can be viewed
as being trained in a mode further from the op-
timal hyper-parameter setting. However, across
all the datasets, the optimal temperature (aligned
with the peak in adversarial accuracy) results in a
maximal drop in clean accuracy of 1% (apart from
for the emotion dataset). Given the gains in ad-
versarial accuracy can be between 4% and 14%,
this trade-off for clean accuracy can be acceptable.
Further, a model developer can choose to operate
at a different operating point, by selecting a train-
ing temperature that gives a smaller drop in clean
accuracy (and settle for a less significant gain in
the model robustness).

Adversarial Training Combination. As indi-
cated in Table 1, beyond considering just the ST
model’s training modified with a high training tem-
perature, we consider adversarially trained (AT)

Method | Clean | bae tf pWWs dg
ST 93.13 | 30.17 5.77 11.80 8.32
o024 | +0.85 £0.55 F2.01  £2.98
T 92.83 | 32.10 6.42 12.68 8.45
+0.89 | "f0.905 +1.58 +1.20  +1.37
PGD 93.48 | 28.83 4.88 9.95 5.45
003 | +0.43 £i24 +£0.69  +£1.08
eT 93.40 | 30.58 5.43 10.78 6.33
+0.10 | "f0.65 +0.25 +0.99  *+1.51
FreeLB | 93.67 | 29.15 4.93 10.15 5.48
+0.23 | +1.00 £1725 +0.30  1o.73
eT 93.72 | 30.23 5.58 10.78  5.23
+0.10 | +0.53 +0.03 +0.96  +0.98
ASCC 91.15 | 34.65 4.60 12.15 11.28
1057 | +0.23 £1.05 +0.22  £140
eT 91.78 | 34.78 7.57 14.08 11.55
£0.24 | £0.03 +0.45 +0.64  +1.48
dg-aug | 92.58 | 31.52 4.68 9.33  29.45
o011 | +2.82 4025 £011 oo
eT 91.98 | 31.88 5.38 9.40 23.63
+0.13 | "t0.85 +0.28 +0.87 +1.26

Table 4: Adversarial Training (AT) combined with a
training temperature of 7' = 20 (¢ T'). For each ad-
versarial attack column the higher adversarial accuracy
between the AT model and the AT & T model is under-
lined. In almost all cases, a higher training temperature
improves adversarial accuracy. Dataset: Emotion.

models: we explore the impact of combining the
high temperature training approach with popular
NLP AT methods. As outlined in Section 3.1,
we consider four popular adversarial training ap-
proaches: dg-aug, which performs augmentation
with deepwordbug adversarial examples; PGD and
FreeLLB, which augment iteratively following a
gradient-based approach for the min-max formu-
lation of AT (Equation 3) in the embedding space;
and ASCC (AT approach with adversarial exam-
ple augmentation in the embedding-space guided
by text-space substitutions). Table 3 and Table 4
give the ST results and AT results combined with
the temperature training approach on the rt and
emotion datasets, respectively.

Although more significant for rt than emotion,
for both datasets, combining with the high train-
ing temperature approach improves the adversarial
accuracy for all adversarial attack forms (bae, tf,
pwws, and dg) for the different adversarial training
approaches PGD, FreeLLB, and ASCC. This demon-
strates that high temperature training is complemen-
tary with such adversarial training approaches and
thus consistently encourages a gain in robustness.
Interestingly, we observe that for dg-aug, high tem-
perature training is able to consistently improve
adversarial accuracy for bae, tf, and pwws adver-
sarial attacks, but can cause a drop in adversarial
accuracy for the dg attack. It should be emphasized



that dg in this context behaves as a seen attack form,
as the training uses augmentation with dg adver-
sarial examples, whilst the other attacks (bae, tf,
and pwws) can be considered unseen attack forms
that the model developer has no knowledge of dur-
ing training. This suggests that for augmentation-
based NLP adversarial training approaches, a high
training temperature does not necessarily increase
robustness to seen attack forms, but is successful in
boosting robustness to unseen attack forms. Over-
all, the high training temperature approach is effec-
tive in boosting adversarial robustness of both ST
models (standard training objective of Equation 1)
and AT models (adversarial training objective of
Equation 3).

Transferability. It is shown that training with a
high temperature leads to a consistent gain in ad-
versarial robustness to unseen adversarial attack
forms. However, an adversary may attempt to ex-
ploit attack transferability when looking to attack
the target model trained with high temperature. To
explore this notion of a transfer attack, with the
rt dataset, Table 5 shows the impact of finding
adversarial examples for the source ST model and
assessing their efficacy on the target ST & T" model.
It is evident from the significant increase in the ad-
versarial accuracy for all the attack forms (bae, tf,
pwws, and dg), that a transfer attack is not able to
degrade the observed robustness gains for models
trained with high temperatures.

Source Target \ bae tf pwws dg
ST ST 31.39 17.82 20.42 20.11
+1.20 4049  +0.62  +0.94
STeT STeT | 3583 2683 3149 35.18
+0.84  +4.57  £3.07  +4.71
ST STeT ‘ 50.13 46.90 47.53 46.09
4030  +0.38  +1.22  £1.13

Table 5: Transferability: adversarial examples are found
for the source model and evaluated on the farget model
on the rt test set. The results here demonstrate that the
standard trained, high temperature (ST & T') model’s
robustness gains relative to the ST model cannot be
compromised by a transferability attack, i.e. the per-
formance of the ST @ T model are not degraded by
adversarial examples generated from the ST model.

4 Related Work and Discussion

Adversarial Defence. In the last decade, a range
of adversarial attack approaches (Alzantot et al.,
2018; Garg and Ramakrishnan, 2020; Li et al.,
2020; Gao et al., 2018; Wang et al., 2019¢c; Ren

et al., 2019; Jin et al., 2019; Li et al., 2018; Tan
and Joty, 2021; Tan et al., 2020a) and adversar-
ial defence approaches have emerged for Natural
Language Processing (NLP) systems. Adversarial
defence approaches can be broadly classed as: de-
tectors that identify adversarial inputs (Zhou et al.,
2019; Raina and Gales, 2022; Mozes et al., 2021);
form-specific a priori defences (Jones et al., 2020;
Tan et al., 2020b); or adversarial training (Madry
et al., 2018; Zhu et al., 2020; Li and Qiu, 2020;
Wang et al., 2020; Dong et al., 2021; Zhou et al.,
2020; Nguyen Minh and Luu, 2022), where a
model is trained to explicitly encourage model
robustness. Each new defence approach aims to
protect models against the latest attacks, whilst
new attack approaches aim to circumvent the lat-
est defences. This has led to increasingly com-
plex and computationally expensive defence ap-
proaches (e.g., Nguyen Minh and Luu (2022)). Fur-
ther, many defences, such as the de-facto use of
augmentation-based adversarial training (Jin et al.,
2019; Wang and Bansal, 2018; Kang et al., 2018)
or detectors tailored to specific attack forms (Zhou
et al., 2019), are vulnerable to unknown/unseen
attack approaches. To begin to address these chal-
lenges, we demonstrated that by simply training
with a higher temperature, some model robustness
can be developed against unknown attack forms,
with no greater computational cost than that of
standard training. To further develop this line of
research, we encourage future research to also ex-
plore computationally efficient and attack-agnostic
adversarial defence approaches.

Training Temperature. The use of temperature
during training has not previously been discussed
in literature in the context of adversarial training
and model robustness. However, the temperature
parameter is often exploited in other areas of re-
search and understanding its success there can per-
haps give some explanation for its success in boost-
ing model robustness. In knowledge distillation
(Hinton et al., 2015), temperature is a parameter
that is often used in the softmax function during
the training process (Jafari et al., 2021). Knowl-
edge distillation is a model compression technique
where a smaller model (student) is trained to repli-
cate the behavior of a larger, more complex model
(teacher). A high temperature is often used during
the training of the student model. This softens the
probability distribution, making the training signal
more informative and providing the student model
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Figure 3: Probability Density (histogram plot) of predicted class logits’ range (smallest logit subtracted from largest
logit value) on rt test set with and without a high training temperature for the ST DeBERTa model. The higher
temperature training setting (7" = 100) has a larger class logits’ range, suggesting that an adversarial attack has to
make a greater change in the logit space to be successful in changing the predicted class.

with additional information from the teacher model.
The idea is that the teacher model’s softened output
helps the student model learn a smoother and more
generalized decision boundary. Although the tem-
perature parameter is not used to soften the teacher
distribution in our context, Agarwala et al. (2020)
find that model generalization depends strongly on
the training temperature and so it is unsurprising
that the temperature parameter also influences ro-
bustness. More specifically, the success of high
temperature training for adversarial robustness can
perhaps be explained by considering the size of the
class margin (Robey et al., 2023). A high temper-
ature smooths the probability distribution across
classes, such that the probabilities of the differ-
ent classes are closer together. To minimize the
cross entropy loss (Equation 2), during the train-
ing, the model’s parameters learn to compensate
for this smoothing by pushing the logits of the dif-
ferent classes further apart (we see this in Figure
3, where the range of logits substantially increases
with higher training temperatures). Intuitively, this
can be viewed as increasing the distance to the class
boundary in the logit space and thus making it more
difficult for an adversarial attack to change the pre-
dicted class, giving rise to the observed increase
in adversarial robustness. Future work will aim to
rigorously understand and explain the observed ro-
bustness gains of training with a high temperature.

5 Conclusion

While adversarial training has proven effective in
enhancing robustness, its practical implementation

for NLP models poses challenges due to computa-
tional costs. Additionally, the effectiveness of the
commonly employed augmentation-based adver-
sarial training approach in NLP tends to be limited
to the specific attack forms used for augmentation.
To address these limitations, we propose a straight-
forward modification to the standard training al-
gorithm, involving the use of a high temperature
parameter to scale down predicted logits in NLP
classification systems. Experiments across multi-
ple datasets, models, and classification tasks show
this simple approach boosts adversarial robustness
to various unseen attack forms, and does so with-
out incurring additional computational costs dur-
ing training. Our experiments also demonstrate
that our high temperature training approach is com-
plementary with existing NLP adversarial training
schemes, yielding a further increase in model ro-
bustness to unseen adversarial attacks.

6 Limitations

In our experiments, we used a constant temper-
ature during training for simplicity. It would be
interesting to consider the impact of other temper-
ature schedules, e.g., temperature annealing (Cai,
2021) where the temperature is slowly decreased.
Further, our experiments are limited to NLP classifi-
cation systems and it would therefore be interesting
to explore how a high training temperature influ-
ences the robustness of generative NLP models.
Finally, in this work, we empirically demonstrated
the usefulness of high temperature training but do
not claim to formally investigate the theory behind



its efficacy. A promising future direction would be
to uncover the theory behind this phenomenon and
potential connections to model generalization.

7 Risks & Ethics

This work presents findings on the topic of adver-
sarial attack defence. We do not propose any new
attack algorithms and instead propose a training
modification to increase model robustness to ad-
versarial attacks. Therefore, there are no perceived
risks or ethical concerns associated with this work.
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A Detailed Performance Breakdown

Figure 2 presents the adversarial accuracy of ST
models trained with different training temperatures.
In this section, for reference, we provide the de-
tailed breakdown (average across 3 seeds and stan-
dard deviation) of performances for the different
training temperatures for each dataset: rt (Table 6),
emotion (Table 7), cola (Table 8), gnli (Table 9),
and mrpc (Table 10). These results are given for
the DeBERTa model as in the main paper.

Temp | clean | bae tf pwWWws dg
1 88.56 | 32.40 18.79 21.36 21.11
£019 | #0114  £0.48 £1.22  £0.66
10 88.18 | 34.12 23.23 24.71 26.52
1049 | *0.82 4265 £1.22  £2.10
20 88.46 | 34.24 23.14 26.70 29.49
+0.52 | *197 +218  *l.28  +1.69
100 88.21 | 34.83 24.82 26.36 29.49
+070 | *0.81  £3.79  +2.86  +4.36
200 87.55 | 35.83 26.83 31.49 35.18
1044 | F0.84  H£457  £3.07 2471
2000 | 86.40 | 35.46 25.02 29.99 30.81
+0.89 | *£1.79 +0.76  +£138  +1.05

Table 6: rt: The use of a training temperature, 7', is
a simple adjustment in standard model training (ST),
where the temperature parameter, 7', is used to scale
down predicted model logits. Higher training tempera-
tures enhance model robustness against unseen adver-
sarial attacks (bae, tf, pwws, dg) without requiring prior
knowledge of these attack forms during training. Re-
sults here report the clean and adversarial accuracy.

Temp | clean | bae tf pwWWs dg
1 92.72 | 31.55 6.53 11.85  8.20
£0.10 | 020 +£1.30 £1.31 122
2 92.72 | 31.33  6.45 12.60  8.95
£036 | £083  L£il.66 £2.26 +£2.43
20 92.83 | 32.10 6.42 12.68  8.45
1089 | ¥0.95 +£1.58  £1.20  £1.37
100 90.98 | 31.50  7.55 14.43  9.23
1015 | ¥079  +0.10 +0.74  L£i.87
200 85.67 | 32.87 11.82 16.28 10.90
fo24 | Foar Lot 066 144

Table 7: emotion: The use of a training temperature,
T, is a simple adjustment in standard model training
(ST), where the temperature parameter, 7', is used to
scale down predicted model logits. Higher training
temperatures enhance model robustness against unseen
adversarial attacks (bae, tf, pwws, dg) without requiring
prior knowledge of these attack forms during training.
Results here report the clean and adversarial accuracy.

In Table 11, we further include results on a 6th
dataset AGNews (Zhang et al., 2015), where there
are four news classes, 96k training samples, 24k
validation samples and 7.6k test samples. For this
dataset, it can be observed that a high training tem-
perature is not a successful method unless a fraction
of the dataset (10k training samples) is used during
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Temp | clean | bae tf pWWs dg
1 83.70 | 3.39 5.43  10.23 11.63
$053 | £0.59 043 £0.73  £1.49
10 84.21 | 6.30 9.17 1198 13.45
T072 | £083 X048 E042  £1.75
100 82.68 | 7.41 9.04 11.89 13.04
T0.91 | +£234 322 F1.08  +4.96

Table 8: cola: The use of a training temperature, 7', is
a simple adjustment in standard model training (ST),
where the temperature parameter, 7', is used to scale
down predicted model logits. Higher training tempera-
tures enhance model robustness against unseen adver-
sarial attacks (bae, tf, pwws, dg) without requiring prior
knowledge of these attack forms during training. Re-
sults here report the clean and adversarial accuracy.

Temp | clean | bae tf pwws dg
1 93.17 | 35.71 20.71 19.79 17.92
1026 | +1.88  £3.17  £2.38  £4.39
10 92.92 | 35.00 1892 17.38 16.38
£0.94 | $0.66 £1.56 +£1.02  £2.76
20 92.75 | 35.75 20.17 19.29 16.75
£0.66 | +0.38 154  £0.90 £1.19
50 93.00 | 36.67 23.46 22.54 19.79
£0.75 | £1.39  E1.70 026 +£1.56
100 92.75 | 37.83 2296 22.00 21.63
+0.33 +1.19 +0.38 +1.44 +1.11
150 92.38 | 35.54 22.08 19.71 18.29
£070 | *200 F2i2  £232  £359
200 92.96 | 35.92 21.33 21.04 19.75
$047 | F121  E3B1 248 £3.06

Table 9: gnli: The use of a training temperature, 7', is
a simple adjustment in standard model training (ST),
where the temperature parameter, 7', is used to scale
down predicted model logits. Higher training tempera-
tures enhance model robustness against unseen adver-
sarial attacks (bae, tf, pwws, dg) without requiring prior
knowledge of these attack forms during training. Re-
sults here report the clean and adversarial accuracy.

Temp | clean | bae tf pwws dg
1 87.46 | 46.42 38.83 28.63 33.50
+£0.26 | +£1.94 £3.92  £3.25  +6.11
5 87.79 | 46.17 38.88 30.42 31.50
+£0.44 | 305  E£4.58  £2.20  £1.11
10 88.21 | 48.67 43.92 32.75 35.04
1031 | +3.62 45.63  +£3.69  +5.03
50 86.92 | 45.54 31.88 24.63 29.21
10290 | 1475  E8.15  £5.00  4£7.22
100 86.21 | 48.25 35.63 26.08 27.96
+£0.94 | +£258 £6.39  £5.59 474

Table 10: mrpc: The use of a training temperature,
T, is a simple adjustment in standard model training
(ST), where the temperature parameter, 7', is used to
scale down predicted model logits. Higher training
temperatures enhance model robustness against unseen
adversarial attacks (bae, tf, pwws, dg) without requiring
prior knowledge of these attack forms during training.
Results here report the clean and adversarial accuracy.

training. Future work is necessary to understand
the nature of this specific dataset or other similar
datasets that led to such a different behaviour for
the temperature training approach.
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Temp | clean | bae tf pwWWws dg
1 ‘ 93.88 | 81.50 29.46 43.00 39.08
fo22 | X025 F0.19  F2.19  £2.89
1.5 93.75 | 80.92 29.08 42.13 38.58
$0.13 | X051  £3.26 £520 £3.19
2 93.92 | 80.04 25.00 40.38 38.54
1007 | £0.56 +3.80 +3.19  45.69
20 93.83 | 79.25 23.50 37.58 34.58
1036 | £1.02 £2.07 1260 +4.56

Table 11: agnews: The use of a training temperature,
T, is a simple adjustment in standard model training
(ST), where the temperature parameter, 7', is used to
scale down predicted model logits. Higher training
temperatures enhance model robustness against unseen
adversarial attacks (bae, tf, pwws, dg) without requiring
prior knowledge of these attack forms during training.
Results here report the clean and adversarial accuracy.

Temp | clean | bae tf pwws dg
1 93.17 | 78.00 32.33 42.08 40.54
038 | +0.54 X233 £0.47 253
10 92.08 | 79.00 38.33 50.42 46.54
+£0.40 | +£0.66  +£2.89  +£2.09  +0.63
20 92.46 | 77.92 38.33 49.21 45.67
£019 | £069 £263 +£2589  £1.61
100 92.13 | 77.50 30.33 41.46 40.38
£0.38 | £000 +2.81  +£0.76  +2.34

Table 12: agnews: The use of a training temperature,
T, is a simple adjustment in standard model training
(ST), where the temperature parameter, 7', is used to
scale down predicted model logits. Higher training
temperatures enhance model robustness against unseen
adversarial attacks (bae, tf, pwws, dg) without requiring
prior knowledge of these attack forms during training.
Results here report the clean and adversarial accuracy.
Training with 10k samples - 1/10th of default agnews
training set size.

B Reproducing with Other Models

The main paper presents results using the DeBERTa
model. Here we repeat the core experiments on
other popular base models: BERT (Table 13) and
RoBERTa (Table 14). The results here are pre-
sented for the r¢ dataset.

C Other Ablations

Augmentation based adversarial training ap-
proaches, such as dg-aug in the main paper, have
twice as many training steps (due to there being
double the training set size). To match the standard
training setting, in Table 15 we evaluated the train-
ing with high temperature approach combined with
dg-aug at half the number of training steps. Simi-
larly, in Table 16 we consider the inverse setting,
where we double the number of training iterations
for the ST model (in standard training), as well as
linearly scaling the learning rate scheduler across



Temp | clean | bae tf pwws dg Method  Epochs | clean | bae tf pWWs dg
1 85.08 | 30.52 21.01 21.20 23.14 ST 5 88.96 | 31.39 17.82 20.42 20.11
+0.50 +0.76 +0.32 +0.34 +2.14 +0.30 +1.20 +0.49 +0.62 +0.94
10 84.79 | 32.16 25.88 23.96 27.48 10 88.34 | 33.61 18.76 22.39 23.45
+0.58 +0.66 +1.23 +1.89 +1.67 +0.62 +0.52 +0.50 +0.61 +0.86
100 8;%?? %:309% %:71%3 %t%%? %t%%g eT 5 87.55 | 35.83 26.83 31.49 35.18
+0.44 +0.84 +4.57 +3.07 +4.71
o 10 87.55 | 34.43 2548 30.11 33.40
Table 13: BERT: The use of a training temperature, $£0.33 | #1.31 4216 4219 +4.60
T, is a simple adjustment in standard model training dg-aug - 87.12 | 34.74 2236 26.11 37.43
. +0.39 +1.59 +1.83 +2.57 +0.75
(ST), where the temperature parameter, 7', is used to oT - 87.09 | 36.99 26.92 31.43 36.40
+0.22 +2.64 +2.86 +1.67 +1.90

scale down predicted model logits. Higher training
temperatures enhance model robustness against unseen
adversarial attacks (bae, tf, pwws, dg) without requiring
prior knowledge of these attack forms during training.
Results here report the clean and adversarial accuracy.
Result for rt dataset.

Temp | clean | bae tf pwws dg
1 88.27 | 32.46 17.01 21.23 24.30
1047 | ¥0.74  H0.72  £0.05 171
10 88.25 | 33.17 2196 24.32 28.85
+£0.65 | £0.86 +1.86 £1.15  +3.02
100 88.26 | 33.55 23.20 26.03 29.66
+072 | F0.92 F2o4 212 E355

Table 14: RoBERTa: The use of a training temperature,
T, is a simple adjustment in standard model training
(ST), where the temperature parameter, 7', is used to
scale down predicted model logits. Higher training
temperatures enhance model robustness against unseen
adversarial attacks (bae, tf, pwws, dg) without requiring
prior knowledge of these attack forms during training.
Results here report the clean and adversarial accuracy.
Result for rt dataset.

the increased number of iterations.

Method iters | clean | pwws dg
ST &T default ‘ 87.55 ‘ 31.49 35.18
+0.44 | *3.07  E471

dg-aug @7 default | 87.09 | 31.43 36.40
+£0.22 | *1.67  £1.90

half 86.05 | 37.02 43.00

+0.44 | 521  £2.36

Table 15: Matched number of iterations for ST and high
temperature training with dg-aug by halving the number
of training steps for dg-aug.

D Illusion of Robustness

anonymous (2023) is an anonymous preprint. The
abstract is provided here for reference:

Deep learning-based Natural Language Process-
ing (NLP) models are vulnerable to adversarial
attacks, where small perturbations can cause a
model to misclassify. Adversarial Training (AT) is
often used to increase model robustness. Despite
the challenging nature of textual inputs, numer-

13

Table 16: Doubling training iterations for the ST model
with scaled scheduler decay to match number of itera-
tions in augmentation based AT.

ous AT approaches have emerged for NLP mod-
els. However, we have discovered an intriguing
phenomenon: deliberately miscalibrating models
such that they are extremely overconfident or under-
confident in their predictions, disrupts adversarial
attack search methods, giving rise to an illusion of
robustness (IOR). This extreme miscalibration can
also arise implicitly as part of existing AT schemes.
However, we demonstrate that an adversary aware
of this miscalibration can perform temperature cal-
ibration to modify the predicted model logits, al-
lowing the adversarial attack search method to
find adversarial examples whereby obviating IOR.
Consequently, we urge adversarial robustness re-
searchers to incorporate adversarial temperature
scaling approaches into their evaluations to miti-
gate IOR.



E Base Class Definition with Temperature Training

class BaseClassifier (nn.Module):
def __init__(self, model_name=’bert-base-uncased’, num_labels=2, pretrained=True, temperature=1):

super (). __init__ ()

self.model_name = model_name

self.temperature = temperature

if pretrained:
self .model = AutoModelForSequenceClassification.from_pretrained (model_name, num_labels=num_labels)
self.tokenizer = AutoTokenizer.from_pretrained (model_name)

else:
config = AutoConfig.from_pretrained (model_name, num_labels=num_labels) # returns config and not pretrained weights
self.model = AutoModelForSequenceClassification.from_config(config)
self.tokenizer = AutoTokenizer.from_pretrained (model_name)

self.config = AutoConfig.from_pretrained (model_name, num_labels=num_labels)

def forward(self, input_ids=None, attention_mask=None, inputs_embeds=None):
logits = self.model(input_ids , attention_mask=attention_mask , inputs_embeds=inputs_embeds)[0]
logits = logits / self.temperature

return logits
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