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ABSTRACT

As the range of applications for Large Language Models (LLMs) continues to
grow, the demand for effective serving solutions becomes increasingly critical.
Despite the versatility of LLMs, no single model can optimally address all tasks
and applications, particularly when balancing performance with cost. This lim-
itation has led to the development of LLM routing systems, which combine the
strengths of various models to overcome the constraints of individual LLMs. Yet,
the absence of a standardized benchmark for evaluating the performance of LLM
routers hinders progress in this area. To bridge this gap, we present MARS, a
novel evaluation framework designed to systematically assess the efficacy of LLM
routing systems, along with a comprehensive dataset comprising over 405k infer-
ence outcomes from representative LLMs to support the development of routing
strategies. We further propose a theoretical framework for LLM routing, and de-
liver a comparative analysis of various routing approaches through MARS, high-
lighting their potentials and limitations within our evaluation framework. This
work not only formalizes and advances the development of LLM routing systems
but also sets a standard for their assessment, paving the way for more accessible
and economically viable LLM deployments.

Figure 1: Left: The MARS Construction Process integrates eight datasets with eleven distinct
models to develop MARS. Detailed format can be found in Appendix A.4. Right: The Model
Routing Process shows the method of routing prompts through a router to various LLMs based on
specific requests, demonstrating the dynamic allocation of resources.

1 INTRODUCTION

Large Language Models (LLMs) have exhibited remarkable capabilities in addressing a wide range
of tasks across academic and industrial scenarios Bubeck et al. (2023). This has motivated both
researchers and practitioners to introduce new LLMs, designed for both generic and specialized
use cases, on a near-daily basis 1. However, the proliferation of LLMs presents a challenge for
LLM application builders to identify the most suitable model for their applications. While some
proprietary models such as GPT-4 are distinguished by their superior performance, they often incur
high economic costs due to the expensive API prices.

1As of January 16th, 2024, there are 469,848 models listed on huggingface.com
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Many prior works focus on improving the capabilities of individual LLMs while maintaining low
costs. Techniques such as prompting Wei et al. (2023), quantization Lin et al. (2023); Kim et al.
(2023), and system optimization Kwon et al. (2023) may reduce a single model’s serving cost, yet
with new models emerging daily, these approaches may not remain feasible or scalable in long term.
Moreover, the diversity of choices of LLMs available at various price and performance tiers can be
daunting for users attempting to select and optimize an appropriate model2.

An alternative solution aims to select to optimal LLM for each input through ”routing.” Yue et al.
(2023); Shnitzer et al. (2023); Šakota et al. (2023). Routing offers several advantages over single-
LLM optimization. First, it is a lightweight process, which treats each LLM as an input-output
black box, avoiding the need to delve into intricate infrastructure details, thus making it flexible and
broadly applicable. Second, routing systems benefit from the diversity of LLMs, while single-LLM
methods may struggle to keep pace with the expanding LLMs landscape. Lastly, while single-LLM
strategies often face a compromise between performance and other factors such as per-token costs,
routing systems adeptly balance a spectrum of user demands Lee et al. (2023); Lu et al. (2023);
Chen et al. (2023).

The rise in routing-related research has improved cost-efficiency, enhanced performance, and broad-
ened accessibility. Despite these advances, a comprehensive benchmark for evaluating routing
techniques remains absent. We introduce MARS, the first comprehensive benchmark designed
specifically for assessing router mechanisms in terms of inference dollar cost and performance.
MARS encompasses a diverse array of tasks and domains, with pre-generated LLM response and
quality metrics, on which different routing mechanisms can be efficiently tested without inference.
Our experiments revealed that while some previous routing mechanisms have difficulty generalizing
to complex tasks and up-to-date models, there are several promising fields on which even simple
routing demonstrated outstanding performance.

In conclusion, we present the following key contributions:

1. We have developed a comprehensive benchmark for LLM routing covering major tasks
for LLMs, which includes a wide range of both open-source and proprietary models.
MARS enables efficient training and testing of model routers without inference, and can
be flexibly extended to cover new tasks and models.

2. We introduce a theoretical framework designed to assess the efficacy of routers across sev-
eral metrics, with a particular emphasis on inference cost (expressed in dollars) and per-
formance. This framework includes mathematical formulations that enable the seamless
integration and comparative analysis of various routers and LLMs.

3. We evaluate the efficiency of routing strategies across a broad range of tasks. Our results
provide insights into the performance of various routers in different contexts and demon-
strate that the monetary costs of LLM services can routinely vary by factors of 2-5× for
comparable levels of performance. This underscores the significance and utility of our
benchmark, highlighting promising areas for future enhancements.

2 RELATED WORK

Various strategies have been proposed to optimize the cost and performance of current LLMs. We
provide an overview of them with a focus on routing-related approaches.

2.1 SINGLE LLM ENHANCEMENT

Fine-tuning is used to improve models for specific tasks, which requires additional training
and domain-specific data Rafailov et al. (2023). Prompting mechanisms like Chain-of-Thought
(CoT) Wei et al. (2023); Zhou et al. (2023); Wang et al. (2023a), Tree of Thoughts (ToT) Yao et al.
(2023), and Algorithm of Thoughts (AOT) Sel et al. (2023) could bolster LLM performance without
additional fine-tuning. However, these single-LLM enhancements are usually model and scenario
specific, and could not benefit from the explosion of LLMs.

2As of January 29th, 2024, there are 22,177 language models with 7 billion parameters listed on hugging-
face.com
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2.2 LLM SYNTHESIS

Beyond single LLM approaches, LLM synthesis utilizes the ensemble of multiple LLMs, integrating
their outputs into an enhanced final result Jiang et al. (2023). Another approach has shown that
a strategic combination of smaller models can match or even outperform larger models Lu et al.
(2024). However, these methods require at least two steps: text generation and synthesis, which lead
to increased costs and latency and challenge the implementation of this method in production.

2.3 ROUTING

Unlike LLM Synthesis, routing can select the suitable model for specific input without performing
inference on every candidate model. Routing can be classified in two categories, non-predictive
routing and predictive routing. Non-predictive routing strategies retrieve outputs from LLMs and
directly pick one without a model-assisted synthesis step. Several studies Madaan et al. (2023);
Yue et al. (2023); Lee et al. (2023); Chen et al. (2023) have explored systems that integrate Small
Language Models (SLMs) with Large Language Models (LLMs). Another methodology involves
a layered inference framework, re-routing more complex queries to an advanced model for im-
proved results Wang et al. (2023b). Predictive routing selects the optimal LLM without requiring
to evaluate the output. Some research have implemented routers utilizing supervised learning al-
gorithms Shnitzer et al. (2023), while some other using reward model-based techniques Hari &
Thomson (2023); Lu et al. (2023). Furthermore, meta-model, trained on inputs along with a model-
specific token to predict the performance score, represents another approach to determining the most
appropriate LLM for use Šakota et al. (2023). In short, predictive router could bring substantial cost
and performance improvement without sacrificing latency, with a number of early works dedicated
to this field.

While many routers currently exist, a systematic benchmark for their evaluation has been lacking.
Our work aims to address this issue and introduces a benchmark for router evaluation.
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Figure 2: Left: linear interpolation is the process of achieving the cost-performance trade-off
between any concrete routers. Point A and B are routers with different input parameters. To achieve
the average of A and B, we build router C which routes to A or B with 50% probability each, and it
performs the average of A and B in expectation. Middle: Consider points A to E, we can construct
the non-decreasing convex hull consists of points A, B, and C. D and E as they can be replaced by
strictly superior affine combination of A, B, and C. Right: ABC and DEF are two routing systems
(already convexified with ABC extended to (0.1,0) for fair comparison). To compare, we interpolate
A and B to cmin = 0.1 and cmax = 0.8, respectively, and then calculate the area under the curve
normalized by cmax − cmin to derive AIQ.

3 MATH FORMULATION FOR ROUTER EVALUATION

The primary challenge in assessing the performance of routing systems lies in balancing two con-
flicting objectives: maximizing efficiency and minimizing cost. To effectively compare routers, we
have developed a framework that captures the multi-faceted nature with one metric.

3.1 SETUP AND BASIC OPERATIONS

Consider a set of models L = {LLM1, . . . , LLMm} a dataset D consisting of examples xi ∈
{x1, ..., x|D|}. For each model LLMj , we evaluate its performance by generating an output oji =

LLMj(xi) for each example xi. Each output oji has two associated quantities: the cost c(oji ) of
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generating that output and the quality or performance q(oji ) of the output itself. Through this process,
we establish an expected cost cm and an expected quality qm for each model LLMm across the
dataset D.

cm = E[c(LLMm(x))|x ∈ D]

qm = E[q(LLMm(x))|x ∈ D]

A router R, define as a function, takes in a prompt x and a set of parameters θ, subsequently selecting
the most suitable model LLMi from a set L to complete the prompt, i.e.

Rθ(x) 7→ LLMi ∈ L.

The parameters θ typically include maximum price the user is willing to pay, the desired latency,
or number of layers of neural networks for the router model, etc. More details of router parameters
will be elaborated and discussed in Section 5.1.

The expected cost of a router Rθ1 across dataset D is defined as

cRθ1
(D) = E[c(Rθ1(x))|x ∈ D]

and the expected performance of a router Rθ1 can be defined similarly.

By experimenting with various router parameters θ1, ..., θk, we obtain a series of data points
(cRθ1

, qRθ1
), ..., (cRθk

, qRθk
) which can be graphically represented in the cost-quality (c− q) plane

alongside the results of LLMs for comparative analysis.

Linear Interpolation The initial operation we introduce within this framework is linear interpo-
lation, which enables the computation of a weighted average between any two points on the cost-
quality (c− q) plane.

Consider two routers, Rθ1 and Rθ2 . We can formulate a third router, Rint(Rθ1 , Rθ2), based on the
following principle: given a prompt x select t ∈ [0, 1] such that:

Rint(Rθ1 , Rθ2 , t)(x) =

{
Rθ1(x), w.p. t
Rθ2(x), w.p. 1− t

Through the principle of linearity of expectation, we can deduce the expected cost of
Rint(Rθ1 , Rθ2 , t)(x) in terms of LLM1 and LLM2:

E[cRint(x)|x ∈ D] = t · cRθ1
+ (1− t) · cRθ2

and the expected performance of Rint(Rθ1 , Rθ2 , t)(x) can be defined similarly.

Notably, for two data points (c1, q1) and (c2, q2) corresponding to Rθ1 and Rθ2 respectively, Rint(t)
can precisely interpolate any point along the line segment connecting (c1, q1) and (c2, q2).

Extrapolation To ensure all router can be enrich our mathematical framework, the second operation
we introduce is extrapolation which enables the extension along the cost axis. For a given router
Rθ and a positive integer k, we can construct an extrapolated router Rext(Rθ, k). Upon receiving a
prompt x, Rext(Rθ, k)(x) executes R(x) k times, ignoring the first k−1 responses and considering
only the final output. This approach enables linear interpolation with the derived output, achieving
a desired performance level at a proportionally increased cost for sufficiently large values of k.

It is essential to note that the routers discussed are functionally analogous to LLMs within this
context, as both can be represented as coordinates in the cost-quality (c− q) plane.

3.2 NON-DECREASING CONVEX HULL

When working with multiple routers, it’s feasible to construct any affine combination of points
through linear interpolation among them. Specifically, for a set S of points in the cost-quality (c−q)
plane, these affine combinations can target any point (c, q) in R2 lying within the convex hull formed
by S. We identify Sch ⊆ S as the subset of points that delineate the vertices of this convex hull.

Furthermore, it’s possible to configure a non-decreasing convex hull from Sch, ensuring that for any
two points (c1, q1) and (c2, q2) where c2 ≥ c1, it follows that q2 ≥ q1. Intuitively, if the extra cost of
c2 − c1 does not bring any performance improvement, it is advisable to simply extrapolate (c1, q1)
to the domain of c2, and (c2, q2) could be (c2, q1).
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For a given routing system R1, constituted by LLMs and routers plotted in the c−q plane for dataset
D, we can conceptualize a new routing system R̃1. This involves constructing routers Rθ1 , ..., Rθk ,
yielding points (c1, q1), ..., (ck, qk). By establishing a non-decreasing convex hull Sndch from these
points and for any cost c within the range [cmin, cmax], optimal performance is attainable by inter-
polating between the two closest cost points. This process effectively creates a new routing system
spans the complete domain [cmin, cmax].

Given the framework established, we define the Zero Router (Rzero) as a router that selects LLMs
from {LLM1, . . . , LLMm} based on their collective non-decreasing convex hull. For a specified
cost c, Rzero provides a probabilistic mix of LLMs that maximizes expected output quality with a
simple, mathematics-driven routing strategy. Rzero serves as a basic benchmark for assessing the
efficacy of other routing systems; a router is deemed significant only if it demonstrates superior
performance compared to Rzero.

3.3 COMPARING DIFFERENT ROUTING SYSTEMS

Given the agnostic nature of our comparison framework towards the router’s structure, routing sys-
tems can produce an assorted set of points on the c−q plane that may be non-deterministic and non-
parametric, complicating direct comparisons. Leveraging the methodologies delineated previously,
we have the capacity to condense these disparate points into a streamlined function—specifically, a
non-decreasing convex hull—and subsequently distill this representation into a singular metric that
encapsulates the system’s characteristics.

Routing systems often generate multiple points on the cost-quality (c− q) plane, making it difficult
to compare the underlying systems. However, our framework allows us to transform these non-
parametric points into a simpler function, specifically a non-decreasing convex hull, which can be
characterized by a single numerical value.

Let’s consider two different routing systems (for example KNN and MLP-based routers), Rθ where
θ ∈ Θ, and Rλ where λ ∈ Λ. To compare their effectiveness, we parametrize them by sampling
from Θ,Λ to generate a set of points: Rθ1 , . . . , Rθk , and Rλ1

, . . . , Rλk
. Then, we construct non-

decreasing convex hull for both groups, R̃θ and R̃λ, defined on a shared domain [cmin, cmax].

We define AIQ (Average Improvement in Quality) for one of the routing system as follows:

AIQ(Rθ) =
1

cmax − cmin

∫ cmax

cmin

R̃θdc

With the equation above, we can calculate AIQs for any group of routing systems to get a clear
understanding of their relative performance. Rather than performing complex graphic analysis, AIQ
allows users to measure router performance in a straightforward way.

4 BENCHMARK CONSTRUCTION - MARS

To systematically assess router performance, we have developed a dataset, MARS. This comprehen-
sive dataset consists of a broad spectrum of tasks, including commonsense reasoning, knowledge-
based language understanding, conversation, math, coding and retrieval-augmented generation
(RAG). MARS is constructed by leveraging existing datasets that are widely recognized and uti-
lized in the evaluation of leading LLMs, such as GPT-4, Gemini Team et al. (2023), and Claude An-
thropic (2023). This approach ensures that MARS is representative of the diverse challenges and
requirements pertinent to mainstream LLM performance evaluation.

4.1 PRINCIPLES IN BENCHMARK CONSTRUCTION

The construction of MARS are are guided by the following principles:

• Extensive Coverage: Our selection process identified a diverse array of fields where LLMs
are widely utilized, aiming for wide-ranging applicability.

• Practical Relevance: The benchmarks chosen are of considerable significance to the indus-
try’s current applications of LLM systems, presenting a balanced challenge to the state-of-
the-art LLMs, that is not too difficult nor too simplistic.
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• Extensibility: MARSis designed for seamless integration of additional metrics, such as
latencies and throughputs, ensuring adaptability to the evolving landscape of LLM.

4.2 BENCHMARK DATASET

For the initial release, we have curated a selection of 8 representative datasets from multiple different
tasks. Detailed descriptions are in Appendix A.3.

• Commonsense Reasoning: Hellaswag Zellers et al. (2019), Winogrande Sakaguchi et al.
(2021), and ARC Challenge Clark et al. (2018)

• Knowledge-based Language Understanding: MMLU Hendrycks et al. (2021)
• Conversation: MT-Bench Zheng et al. (2023b)
• Math: GSM8K Cobbe et al. (2021)
• Coding: MBPP Austin et al. (2021)

RAG Dataset: Additionally, We gathered 4000 prompts from different news sources and generate
question with GPT-4 as an evaluation of routers on the retrieval-augmented generation tasks.

4.3 DATASET CONSTRUCTION PROCESS

For the compilation of our benchmark dataset, we perform inference with 11 different LLMs3, in-
cluding both open-source and proprietary models. This process was applied to each of the eight
datasets enumerated in Section 4.2. This is also illustrate in Figure 1. The selected LLMs are as
follows and more details are in Appendix A.1:

Open Source Model: Llama-70B-chat, Mixtral-8x7b-chat, Yi-Chat 34B, Mistral-7b-chat

Proprietary Model: GPT-4-turbo, GPT-3.5-turbo, Claude-instant-v1, Claude-v1, Claude-v2

In total, there are 405,467 samples in MARS, covering 11 models, 8 datasets, and 64 tasks.

4.4 A PILOT STUDY: THE ORACLE ROUTER

We assessed the performance of various models across the datasets, with more details in ( A.5 and
A.6) while aggregate results are illustrated in Figure 3. The oracle represents the best possible
router: the one that always route to the best-performing LLM (if there are multiple of them, then
route to the cheapest one).

Result: We observe that the oracle router has near-perfect performance with low cost, demonstrating
the high ceiling of routing among LLMs. While proprietary models like GPT-4 excel in performance,
they are significantly more expensive than open source counterparts (caveat on models refuse to
answer B). Some open source models, like Mistral-7B, are substantially cheaper, at the cost of lower
performance. The oracle router is able to combine the strength of different LLMs, achieves near-
perfect performance with low cost, thereby indicating the strong potential for lossless improvement
of LLM systems via routing.

5 EXPERIMENTS

5.1 PREDICTIVE ROUTER

We propose a novel set of predictive routers, which do not require pre-generation of LLM outputs.
Specifically, we introduce a router R : xi → LLM, constructed as follows: for an input xi, the
performance score for LLMj is calculated via:

performance scoreij = λ · Pij − costj

P denotes the predicted performance of LLMj on sample xi, with λ representing the willingness
to pay (WTP) parameter that delineates the cost-performance trade-off. A higher λ indicates a

3Model specific to the RAG task: You.com API, Perplexity-7B, Perplexity-70B

6



Under review as a conference paper at ICLR 2024

0.000 0.002 0.004 0.006 0.008 0.010
Total Cost ($)

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

 (%
)

WizardLM 13B

Claude Instant 1

Claude 1

Claude 2

GPT-3.5

GPT-4

Code Llama 34B

Llama 70B

Mistral 7b

Mixtral 8x7b

Yi 34B

Oracle

Evaluation Dataset: MARS

Figure 3: Accuracy vs Total Cost of eleven LLMs on MARS. The oracle represents the best possible
router: the one that always route to the best-performing LLM (if there are multiple of them, then
route to the cheapest one).

preference for superior performance at a higher cost. We approximate total cost using the cost per
token metric. The routing decision for the predictive router is thus formulated as selecting the LLM
that optimizes the performance score.

To estimate P for each input across models, we implemented two supervised regression approaches:
k-nearest neighbors (KNN) and multi-layer perceptron (MLP) inspired by Shnitzer et al. (2023).
We allocated a fraction of the dataset for training a performance predictor for each task, assessing
its efficacy on the remainder.

Specifically, the KNN router estimates performance scoreij by identifying the k nearest samples in
the training set Dtrain and opting for LLMi demonstrating optimal performance within this subset.

PKNN(xi) =
1

k

∑
xj∈NNk(xi,Dtrain)

q(oij)

Where NNk(xi, Dtrain) signifies the subset of k nearest neighbors to the sample xi within the
training dataset Dtrain.

Similarly, for MLP Router, we have trained a set of MLP models to predict performance

PMLP(xi) = f(Wn · σ(... · σ(W1 · xi + b1)...+ bn)

Those series of KNN and MLP routers are trained with varying hyperparameters, and we present the
experimental results derived from the optimal hyperparameter configurations.

5.2 NON-PREDICTIVE ROUTERS

This category of routers generates answers from a sequence of Large Language Models (LLMs),
evaluates these answers, and bases routing decisions on the evaluation outcomes. Drawing inspi-
ration from Chen et al. (2023); Wang et al. (2023b), we introduce a cascading router comprising
of a total cost parameter T , and a sequence of m LLMs, denoted as LLMj : text → text, ranked
from the least to the most expensive in terms of computational cost and expected accuracy. A key
component of its operation is a scoring function g : text → [0, 1] paired with a threshold t (the
”judge”). Upon receiving a request, it is initially processed by LLM1. If g(o1) > t, the output o1
is selected and the process terminates; otherwise, if the cumulative cost is still less than total cost T ,
the router proceeds to the next LLM in the sequence, and returns the current output if not.

Although developing an effective scoring function g for a specific task in a production setting
presents challenges, within the context this paper, the router possesses perfect knowledge of the
final score, enabling it to consistently select the most cost-effective model that yields a satisfactory
response (akin to an oracle). To simulate real-world performance more accurately, we introduce an
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error parameter ϵ ∈ [0, 1]. The adjusted scoring function gϵ(o) is defined as:

gϵ(o) =

{
1− g(o) with probability ϵ

g(o) with probability 1− ϵ

A variant of non-predictive router is overgenerate-and-rerank, which generates all potential out-
comes from the LLM, assesses each, and outputs the optimal one as determined by a designated
reward function. Although its practical application is limited due to significant costs, we will present
its results for demonstration.

5.3 MAIN RESULTS
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NDCH stands for non-decreasing convex hull.

Predictive Router With the KNN and MLP router design, we present the performances of predictive
routers across all tasks (other than MT-Bench). The dataset for each task is randomly partitioned
into two splits, where the routers are trained on 70% and evaluated on the rest 30%. We exclude
MT-Bench in this set of experiments due to its limited size to perform such a train-test partition.
As shown in Figure 4, both KNN routers and MLP routers achieve the level of performance to
the best individual LLMs with lower or similar costs, demonstrating the effectiveness of the pro-
posed routing solutions, despite their simplicity. However, none of the routing algorithms signifi-
cantly outperform the baseline Zero Router (The routers exhibit higher AIQ than the Zero Router for
MMLU and Winogrande, achieved comparable AIQ for Hellaswag and GSM8K, and underperform
on Arc-challenge and MBPP), the oracle router consistently exceeds all other routers and LLMs in
performance, underscoring the room for further advancements in routing algorithms design.

Cascading Router We present results for cascading routers on MMLU, MBPP, and GSM8K in
Figure 5. The results indicate that with each error rate, as the total cost T increases, the cascading
router’s performance improves due to the availability of a larger budget for selecting more appropri-
ate models. For lower error rates, the cascading router demonstrates superior performance compared
to the Zero Router, as evidenced by the higher AIQ value. The router with a zero error rate judge
quickly approximates the performance of the oracle at the same cost and achieves comparable re-
sults as the cost further increases. Figure 5 illustrates the cascading routers’ effectiveness, showing
they surpass both individual LLMs and the Zero Router by a significant margin when the router’s
judge has an error rate of up to 0.1. This indicates the routing technique’s potential when paired
with an effective judge.

However, as the judge’s error rates increase, the performance of the cascading router may deteri-
orate rapidly, particularly when the error rate exceeds 0.2. Achieving a sufficiently low error rate
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Figure 5: Total Cost vs Performance for eleven models and cascading routers on MMLU, MBPP,
and GSM8K. Different error rates are tested, and the AIQ value is computed for Zero Router and
zero error rate cascading router. The solid lines represent non-decreasing convex hull.

for certain real-world tasks to benefit from cascading routers might be challenging. Additionally,
the sequence in which LLMs are chosen plays a crucial role in performance and offers room for
optimization Chen et al. (2023). Our findings present a simulated upper limit for this method,
highlighting the significant potential and the necessity of exploring the optimal implementation of
cascading routers for specific applications.

5.4 RAG RESULTS

Given previous results on predictive and cascading routers, we conduct a comparison of all router
types simultaneously on RAG dataset. We use the same setting for KNN routers and MLP routers
while selecting error rate 0.2 for cascading routers. We randomly partitioned RAG dataset into two
splits, where the predictive routers are trained on 70% and both routers are evaluated on the rest
30%. As shown in Figure 9, all three routers significantly outperform the best individual LLM and
surpass Zero Router. KNN routers, MLP routers, and cascading routers all exhibited higher AIQ
scores than the zero router, showcasing the effectiveness of even basic routers in specific tasks such
as retrieval-augmented generation.

6 LIMITATIONS AND FUTURE WORK

MARScurrently only focuses on performance and economic cost. It is meaningful to include more
evaluation criteria, such as latency, throughput and others to capture a more comprehensive under-
standing of router capabilities and limitations. There are also many LLMs and tasks that are not
included in MARSdue to the limitation of time, and future iterations of this benchmark would in-
clude datasets that cover more tasks to effectively evaluate the ever-growing capability of LLMs,
and also to add newer LLMs as they are being released.

Our current work only evaluates the efficacy of predictive and cascading routers, but there remains
significant room for exploring additional router designs (as indicated in Section 5.3). It is important
to dive into the exploration of more sophisticated router designs to further improve routing efficiency.

7 CONCLUSION

We present MARS, a benchmark specifically designed for the evaluation of router mechanisms
within multi-LLM systems. By addressing the critical need for standardized evaluation in this do-
main, our benchmark provides a comprehensive dataset and a theoretical framework specifically
designed for the nuanced analysis of router cost-efficiency and performance. The insights from our
study shed light on the effectiveness of various routing strategies, emphasizing the necessity for
advanced LLM routing systems and refined routing methods. This work establishes a robust and
scalable benchmark for router evaluation and aims to facilitate future progress in the efficient and
cost-effective deployment of Large Language Models.
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A ADDITIONAL DATASET DETAILS

A.1 MODEL DETAILS & COST ESTIMATION

For all proprietary models, we calculate the cost of input and output results based on their API
pricing. For open-source models, we utilize Together AI 4 to obtain results and reference costs. For
the RAG experiment, we refer to the API pricing of You.com 5 and Perplexity 6 for cost estimation.

A.2 DATASET GENERATION FOR RAG

Rationale behind choosing topics for RAG dataset

• One year ago public information, Year 2023 Some of the most up-to-date LLMs might
have been trained with such web content, while others might not. This section helps qualify
LLMs among each-other, rewarding the ones that are more recently and more comprehen-
sively trained.

• Three years ago public information, Year 2020 Time sensitive public information that
was available during the training of all modern LLMs. This section helps qualify LLMs
according to the comprehensiveness of their training method, as well as their ability to
absorb information during training, as compared to web connected systems which have
dynamic access to such information.

• Specific, not too time sensitive, public information The content needed to answer those
questions is not time sensitive, yet is very specific. For example “What is the average cost
of a meal in a mid-range restaurant in Barcelona, Spain?”. This section helps quantify
the advantage of bigger LLMs over smaller ones, in their ability to retain fine grained
information about the world during training, and compare them to the information-retrieval
power of web connected systems.

A.3 DATASET DETAILS

MMLU Hendrycks et al. (2021): A benchmark that measures the knowledge acquired by models
during pretraining and evaluates models in zero-shot and few-shot settings across 57 tasks, testing
both knowledge and reasoning on different fields of human knowledge.

Hellaswag Zellers et al. (2019): A dataset that challenges models to pick the best ending choice to a
sentence given. It uses Adversarial Filtering(AF) to create a Goldilocks zone of complexity, wherein
generations are largely nonsensical to humans but always make models struggle.

GSM8K Cobbe et al. (2021): A dataset of diverse grade school math word problems, testing a
model’s ability to perform multi-step mathematical reasoning.

ARC ChallengeClark et al. (2018) A rigorous question answering dataset, ARC-Challenge includes
complex, different grade-school level questions that require reasoning beyond simple retrieval, test-
ing the true comprehension capabilities of models. Arc Challenge dataset contains those that both a
retrieval and a co-occurrence method fail to answer correctly)

Winogrande Sakaguchi et al. (2021): A large-scale and increased harness dataset inspired by the
original Winograd Schema Challenge(WSC) Levesque et al. (2012) tests models on their ability to
resolve pronoun ambiguity and their ability to understand the context with commonsense knowl-
edge.

MBPP Austin et al. (2021): The benchmark is designed to be solvable by entry level program-
mers, covering programming fundamentals, standard library functionality, and so on. Each problem
consists of a task description, code solution and 3 automated test cases.

MT-Bench Zheng et al. (2023b): This dataset contains 3.3K expert-level pairwise human prefer-
ences for model responses generated by 6 models in response to 80 MT-bench questions, multi-run

4https://www.together.ai/pricing
5https://api.you.com/
6https://docs.perplexity.ai/docs/pricing

13



Under review as a conference paper at ICLR 2024

QA. The 6 models are GPT-4, GPT-3.57, Claude-v1, Vicuna-13B Zheng et al. (2023a), Alpaca-
13B Taori et al. (2023), and LLaMA-13B Touvron et al. (2023). The annotators are mostly graduate
students with expertise in the topic areas of each of the questions.

A.4 MORE DETAILS ON DATASET CONSTRUCTION

Each sample in the benchmark dataset will have the following attributes:

• sample id: contain the information about the name of the sub-task, the split of dataset,
and the index of the data in that dataset. Example: mmlu-astronomy.val.5

• model name: the model used to perform inference for this sample. Example: GPT-4
• eval name: the source data this specific sample comes from. Example: hellaswag.dev.v0
• prompt: prompt sentence. Example: The following are multiple choice questions...
• model response: Model’s output. Example: The answer is A)
• performance: the result compared to true label. Example: True/False
• cost: for proprietary model, we use API cost to calculate; for open source model, we use

Together AI8 to call the model and use their cost as reference. Example: 0.00019
• true label: the true label or gold response for this prompt. Example: True/False

A.5 EVALUATION METRICS

We will perform 5-shot inference on MMLU, HellaSwag, GSM8K, ARC Challenge, Winogrande
and 0-shot inference on MBPP, MT-Bench and RAG.

For the datasets MMLU, HellaSwag, GSM8K, ARC Challenge, and Winogrande, we use the
exact match method to compute the final results. In contrast, for MBPP, MT-Bench, and RAG, we
use GPT-4 for answer evaluation. Results categorized as False/True are converted to a binary 0/1
format. In cases where the results are based on ratings, we normalize all outcomes to a [0, 1] scale.

A.6 INDIVIDUAL DATASET RESULT

The MARS pilot study result has been shown in Fig 3. Here are the breakdown of each dataset in
MARS.

B ISSUES WITH OVERLY-ALIGNED MODELS

Some models exhibit reluctance in responding to certain inputs, often replying with statements like
”I do not understand...” or ”I am not sure about...”. We have identified two primary reasons for
models’ refusal to respond:

Insufficient Context Perception Despite being provided with enough context, these models per-
ceive the information as inadequate. Our hypothesis is that the models’ capabilities might not be
robust enough to generate answers or perform tasks effectively under these conditions. A potential
remedy is to modify the prompting strategy to encourage output generation.

Uncertainty Avoidance Some models appear to be fine-tuned to function as ’safe’ assistants, re-
fraining from providing responses when they lack certainty. This cautious approach likely aims to
prevent potential errors stemming from uncertain answers. Claude 2 exhibits this behavior most
frequently.

LLMs have been known to have such kind of issues as documented in various previous studies Zheng
et al. (2024); Alzahrani et al. (2024). It is essential to develop methods to make LLM outputs more
controllable and structured when routing, which warrants further exploration in future research.

7https://openai.com/blog/chatgpt
8https://www.together.ai/
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Figure 6: Accuracy vs Total cost of each LLM on each sub dataset in MARS.

Figure 7: Zoom in version of Performance vs Total Cost of each LLM on RAG. Full version in Fig
9

C TRAINING DATA DISTRIBUTION

We also conduct Out-domain experiments where we train on held-out tasks in MARSfor each
dataset and evaluate on MT-Bench, MBPP and GSM8K in Figure 8. It shows the router designs
in this work are still effective in this out-domain setting.

D RAG RESULT

RAG result for Section 5.4 is in Figure 9.

15



Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6
Total Cost ($)

0.5

0.6

0.7

0.8

0.9

Pe
rfo

rm
an

ce
eval: MT-Bench

0 1 2 3 4
Total Cost ($)

0.4

0.5

0.6

0.7

0.8

eval: MBPP

0 20 40 60
Total Cost ($)

0.4

0.5

0.6

0.7

eval: GSM8k
Cost vs. Performance for Routers (Out-domain) and LLMs

knn NDCH
knn router
mlp NDCH

mlp router
WizardLM 13B
Claude Instant V1

Claude V1
Claude V2
GPT-3.5

GPT-4
Code Llama 34B
Llama 70B

Mistral 7B
Mixtral 8x7B

Oracle
Yi 34B

Figure 8: Total Cost vs Performance for eleven models and KNN, MLP routers on MT-Bench,
MBPP, GSM8K. NDCH stands for non-decreasing convex hull
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