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Abstract
We propose a modified VAE (variational autoen-
coder) as a denoiser to remove adversarial pertur-
bations for image classification. Vanilla VAE’s
purpose is to make latent variables approximat-
ing normal distribution, which reduces the latent
inter-class distance of data points. Our proposed
VAE modifies this problem by adding a latent vari-
able cluster. So the VAE can guarantee inter-class
distance of latent variables and learn class-wised
features. Our Feature Clustering VAE performs
better on removing perturbations and reconstruct-
ing the image to defend adversarial attacks.

1. Introduction
Adversarial examples become a major challenge for the task
of image classification and recognition (Yuan et al., 2019).
Several countermeasures have been proposed against adver-
sarial examples, mainly including model-specific harden-
ing strategies and model-agnostic defenses. Typical model-
specific solutions like “adversarial training” (Kurakin et al.,
2017a; Papernot et al., 2016; Xie et al., 2020; Wong et al.,
2020; Shafahi et al., 2019) can rectify the model parameters
to mitigate the attacks by using the iterative retraining pro-
cedure or modifying the inner architecture. Model-agnostic
solutions like input dimensionality reduction or direct lossy
image compression (Dziugaite et al., 2016; Das et al., 2017),
which attempt to remove adversarial perturbations by input
transformations before feeding them into neural network
classifiers.

In this paper, we focus on looking for an effective model-
agnostic defense strategy (1) can aggressively remove the
adversarial perturbations from input images, (2) can reserve
sufficient features in input images to ensure the classifica-
tion accuracy, (3) is still robust to those adversaries which
have information about the defense strategy being used. Be-
cause the autoencoder are learning to extract useful features
and discards useless features to reconstruct the data point.
This process gives the autoencoder the potential to remove
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the adversarial perturbations. In this paper, we augment the
autoencoder with feature clustering. We show that our modi-
fied autoencoder can not only defend adversarial attacks but
also improve the classification accuracy on clean images.

2. Related Work
2.1. Autoencoder

Variational autoencder (VAE) (Kingma & Welling, 2014)
provides a probabilistic manner for describing an observa-
tion in latent space. Thus, rather than building an encoder
which outputs a single deterministic value to describe each
latent state attribute, VAE formulate the encoder to describe
a probability distribution for each latent attribute. With this
approach, each latent attribute for a given input will be a
probability distribution. When generating output, the en-
coder is dropped and the decoder randomly samples from la-
tent state distribution to generate a variable as input. Such a
randomly sampling process is non-differentiable, so that the
training process includes a reparameterization trick. VAE
minimizes the negative evidence low bound of log pθ(x):

φ, ψ = argmax
φ,ψ

Ez∼qφ [log pψ(x|z)]︸ ︷︷ ︸
Reconstruction Loss

−KL(qφ(z|x) ‖ p(z))︸ ︷︷ ︸
KL Regularizer

(1)

Different from the generating process of traditional VAE
during test, in our work, we preserve the encoder to achieve
the goal of removing the perturbation.

2.2. Adversarial Attacks

One of the first and simple but quite effective attack is
the Fast gradient sign method (FGSM (Goodfellow et al.,
2015)). It simply takes the sign of the gradient of loss
function J (e.g., cross-entropy loss) w.r.t the input image x
and multiplies with magnitude ε as perturbations,

xadv = x+ ε · sign(5xL(θ, x, y)) (2)

where θ is the parameters set of neural network and y is the
ground truth label of x. The parameter ε is the magnitude
of perturbation which controls the similarity of adversarial
examples and original image.

By trying to find a high success rate adversarial example
but having as small dissimilarity with original image as
possible, (Kurakin et al., 2017b) proposed an iterative ver-
sion of FGSM, I-FGSM. It iteratively applies FGSM in
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Figure 1. Strucure overview of the proposed Cluster VAE. Where
the c is the number of classes, and µ(c) is the mean of the cluster
index c, the p(c) is the probability of z belonging to cluster index
c classified by our latent classifier.
every iteration and clips the value to ensure per-pixel per-
turbation below the attack magnitude. PGD (Madry et al.,
2018) is short for Projected Gradient Descent. Adversarial
examples generated by PGD are restarted from different
starting point (e.g. by adding tiny random noise to the initial
input) for each iteration. MI-FGSM (Dong et al., 2018)
is called Momentum Iterative Fast Gradient Sign Method
which leverages momentum during optimization process.
The authors argued that the use of momentum helps to sta-
bilize the update directions for perturbations, and helps to
escape from weak local maxima. BPDA (Athalye et al.,
2018) works by finding a differentiable approximation for
non-differentiable pre-processing transformation g(·) or a
non-differentiable network layer, possibly via an engineered
guess.

3. Unsupervised Clustering VAE
Recall the loss function of VAE is simply minimizing the
Kullback-Leibler divergence between Q(z|x) and P (z|x),
where Q(z|x) is a variational distribution parameterized by
the encoder and P (z|x) denotes the true posterior. Q(z|x)
is optimized to approximate the P (z|x). Generally, VAE
for images generates blurred images, so the VAE is often
used as feature extractor. (Ilyas et al., 2019) proposed that
adversaries are features, not bugs and there exists robust
features and non-robust features in images. That gives us
the intuition that we could use a clustering VAE to extract
robust features (CVA, 2018; Xie et al., 2016). In addition
to the latent coding variables z, we add a discrete value y
as the cluster index. The cluster index is obtained through
training by clustering the features in the latent space, which
represents that the representation of the input having the
same characteristics is close to each other, benefiting the
feature extraction and generation for images of different
classes. Thus our Clustering VAE’s loss becomes:

KL
(
Q(z, y|x)

∥∥∥P (z, y|x)
)

= Ez,y∼Q
logQ(z, y|x)

logP (z, y|x)
(3)

For simplicity, we make two assumptions: (1) the encoder

Figure 2. Reconstruction results of clean image clustered by our
latent variable classifier.

Figure 3. Sampling by means of each cluster by our Cluster VAE.

encodes the input x to latent variables z, and clustering the
input depends only on z; (2) the decoder only uses the latent
variable z without the index y. This can be mathematically
expressed as follows:

Q(z, y|x) = Q(y|z)Q(z|x), P (x|z, y) = P (x|z) (4)

Applying the Eq. 4 to Eq. 3, with the Bayes rule, we get:

KL
(
Q(z, y|x)

∥∥∥P (z, y|x)
)

=

Ez,y∼Q log
Q(y|z)Q(z|x)

P (x|z)P (z|y)P (y)
+ logP (x)

(5)

Separating the function inside log, our Clustering VAE loss
function will be:

Loss = − logP (x|z)︸ ︷︷ ︸
MSE loss

+
∑
y

Q(y|z) log
Q(z|x)

P (z|y)︸ ︷︷ ︸
Cluster loss

+KL
(
Q(y|z)

∥∥P (y)
)︸ ︷︷ ︸

KL loss

(6)

The first term corresponds to MSE error. The term Q(y|z)
can be regarded as a classifier to classify the latent to the
corresponding cluster. The P (z|y) in the second term can
be seen as a distribution of the latent variable for a cluster
index y. As in vanilla VAE,Q(z|x) takes the form of normal
distribution with mean µ(x) and standard deviation σ(x)
that can be learned from data. Here we set the P (z|y) as
a normal distribution with mean of µ(y). Based on our
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assumption, we have:

Q(z|x) =

√
1

(2π)ddet(Σ(x))
exp

{
−1

2

∥∥∥∥z − µ(x)

σ(x)

∥∥∥∥2
}

P (z|y) =

√
1

(2π)d/2
exp

{
−1

2
‖z − µ(y)‖2

}
(7)

Because of the reparameterization trick during training pro-
cess, we know:

z = µ(x) + Σ
1
2 (x) ∗ ε, ε ∼ N (0, 1) (8)

Substituting the Eq. 8 to Eq. 7 and Eq. 6, the second term of
Eq.6 becomes:∑
y

Q(y|z)·[−1

2
log det(Σ(x))−1

2
‖ z−µ(y) ‖2]+C (9)

where the C is a random value that has nothing to do with
the parameters. The second term in Eq. 6 plays the role
of making the encoder’s clustering of inputs with similar
features in the latent space. The third term can be seen
as a regularization to make the distribution of each cluster
is approximated to prior P (y). We can just set the prior
P (y) the uniform distribution. The network structure of our
proposed Cluster VAE is shown in Fig. 1.

4. Experiment
4.1. Clustering Experiment

Firstly, we select the digits from MNIST validation set as
the input of encoder, and separate the outputs generated by
decoder depending on the cluster results of the latent cluster
index. Results are shown in Fig. 2. We can see the clustering
results are quite good, except some ‘3’ and ‘8’, ‘4’ and ‘9’
which share similar features. So our Cluster VAE indeed
learns to extract the useful features of digits, thus providing
the potential for our following work, i.e. removing adversar-
ial perturbations. Note that our clustering training process is
different from a basic MNIST classifier. This because that
our Cluster VAE is an unsupervised training process, and it
forces to extract typical features from training set without
the information of labels. Secondly, after the training of
our Cluster VAE, we get a normal distribution with mean of
µ(y) for each cluster. We sample the latent variables from
each distribution as the input to the decoder and generate
outputs using only the decoder. Results are shown in Fig. 3,
as we can see, the distribution of each cluster do work to
some extent. However, the vertical and slanted ‘1’ are not
in same cluster, and ‘4’ and ‘9’ are sharing the similar mean.
That is understandable because our Cluster VAE is designed
to extract similar features not to classify the digits acting as
a classifier. Besides, our purpose is to reconstruct the digits
and remove adversarial features, so this will not be an issue.

Adversarial
   example

DAE

VAE

  VAE+
Gaussian

C-VAE

C-VAE+
Gaussian

Figure 4. Reconstruction of MNIST adversarial examples by dif-
ferent Autoencoders..

4.2. Defending Adversaries

4.2.1. REMOVING ADVERSARIAL PERTURBATIONS

We introduce the idea of the DAE training process, i.e.
adding Gaussian noise in input to mimic the adversarial
perturbations, to force autoencoder to extract clean features.
That is, we separate the training process into two phrases:
first, we train the VAE and Cluster VAE with clean images
in training set, and we can get the VAE and C-VAE models.
Here we expect the encoder learn to extract robust features
from clean image and decoder learn to decodes the robust
features to input. Then, we freeze the parameters of the
decoder, and train them again with the images added by
Gaussian noise, but evaluate the loss between the outputs
and clean images. Here, in the second phrase, we expect
the encoder learns to extract robust features from noised
images. Afterwards, we obtain two trained models, i.e.,
VAE+G (VAE with Gaussian noised input), CVAE+G (Clus-
ter VAE with Gaussian noised input). Combined with DAE,
VAE, and CVAE, we have a total of five models. In the fol-
lowing, we compare the digit results generated for ablation
study. The visual reconstructed results are shown in and
Fig. 4. When reconstruct from adversarial examples, the
visual results of Cluster VAE are better than DAE, and VAE
shows the worst results. However, after applying training
with Gaussian noised images mentioned above, the VAE
and Cluster VAE both show very good visual results.

4.2.2. GRAY-BOX ATTACK

In our gray-box setting, the adversary has access to the
model architecture and the model parameters, but is un-
aware of the defense strategy that is being used. We generate
adversarial examples using classic and effective attacks men-
tioned in Section. 2.2. Results are shown in Table. 1. In our
experiments, we build a simple CNN classifier for MNIST
and adopt ResNet-34 (He et al., 2016) for CIFAR-10 as the
model to be attacked. The attack parameters ε of FGSM are
0.2 for MNIST and 0.03 for CIFAR-10. Parameters for other
four iterative attacks are ε = 0.2, stepsize = 0.05 with 10
iterations for MNIST and ε = 0.03, stepsize = 0.008 with
10 iterations for CIFAR-10. As can be seen in the results,
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Table 1. Summary of model accuracy (in %) for all defenses in Gray-box setting.

MNIST CIFAR-10
None FGSM I-FGSM PGD MI-FGSM None FGSM I-FGSM PGD MI-FGSM

No defense 99.43 25.71 0.60 0.50 0.60 82.1 15.2 10.1 10.1 10.5
DAE 93.54 93.38 92.85 93.85 92.72 51.8 48.0 50.2 50.0 49.4
VAE 96.71 24.78 66.68 66.75 49.70 63.2 52.7 56.9 57.9 55.4

VAE+G 96.27 56.33 86.34 86.82 77.92 68.6 57.4 61.8 61.5 59.2
C-VAE 97.24 84.28 90.79 91.48 85.18 79.3 48.6 58.8 58.5 53.2

C-VAE+G 96.72 94.93 94.93 95.82 94.43 79.2 51.6 61.2 60.4 57.4

Table 2. Accuracy results (in %) in white-box setting.

None DAE VAE VAE+G C-VAE C-VAE+G

MNIST Accraw 99.80 96.50 97.80 97.80 98.00 97.50
Accae 0.00 1.10 19.60 28.40 33.20 37.20

CIFAR-10 Accraw 82.10 51.80 63.20 68.60 79.30 79.20
Accae 0.10 0.60 13.50 27.30 30.10 35.30

Table 3. Standard and robust performance(in %) of various adver-
sarial training methods on CIFAR-10 for ε = 8/255 and their
corresponding training times.

Methods VAE C-VAE PGD-7 Free Fast
Std acc 68.6 79.2 82.46 78.38 71.14
PGD 61.5 60.4 38.86 46.18 50.69

Time(min) 14.5 22.1 68.8 20.91 7.89

our C-VAE training with Gaussian noise can achieve the
best accuracy for reconstructing the clean image and best
accuracy when defending all the adversarial examples in
MNIST dataset. In experiments on CIFAR dataset, our
C-VAE can also achieve relatively higher performance in
reconstructing the clean image. However, C-VAE shows
similar performance when defending adversarial examples
with VAE.

4.2.3. WHITE-BOX ATTACK

In our white-box setting, the adversary has access to the
model architecture and the model parameters, is also aware
of the defense strategy that is being used. Since reconstruc-
tion using VAE has the random sampling operation which
is non-differentiable, and all those five attacks in gray-box
setting need to compute the gradients to generate adversarial
examples. So we adopt the adaptive attack BPDA (Athalye
et al., 2018) in our white-box setting. We implement the
evaluation experiment on the released code at GitHub (Atha-
lye et al., 2018), using ResNet-34 (He et al., 2016) as test
model, and 1000 iterations and 0.1 learning rate as attack
parameters with 1000 images in validation set. The accu-
racy of various methods on adversarial examples (Accae )
and benign images (Accraw) are reported in Table. 2. Com-
pared to gray-box setting, DAE can defend gray-box attack
to large extent while can not defend the adaptive white-
box attack. Further, as we can see, all the autoencoders

can hardly defend the BPDA attack, however, our CVAE
performs relatively better.

4.3. Training Time

Except concerning the defense efficiency of our defense
methods, the training time is another indicator we concern.
Traditional adversarial training could be extremely time
consuming (Madry et al., 2018). Recent works (Shafahi
et al., 2019; Wong et al., 2020) proposed several methods to
decrease the computational complexity of adversarial train-
ing. We compared our training time with those adversarial
training, the results of which are shown in Table. 3. Our
proposed C-VAE has lower complexity compared to PGD-7
and significantly higher defense efficiency. Compared to
Fast and Free adversarial training, our method still exhibits
higher efficiency, but brings moderate time increase.

5. Conclusion
The experimental results in this paper shows that VAE has
the potential to remove the adversarial perturbations and
preserve the robust features at the same time. Our proposed
Cluster VAE has two merits:

1. Like VAE, Cluster VAE has the random sampling opera-
tion which is non-differentiable, which makes the gradient-
based adversaries much more difficult to find an adversarial
perturbation. Besides, VAE-based defenses have better gen-
eralization than adversarial training methods since they are
model-agnostic.

2. Our proposed Cluster VAE has the unsupervised clus-
tering operation inside, which can ensure that the encoder
extracts robust and label-wised features. Those robust fea-
tures are important for classification neural networks to
make the correct prediction.
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