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Abstract
Gesture recognition based on surface electromyo-
graphy (sEMG) has been gaining importance in
many 3D Interactive Scenes. However, sEMG
is easily influenced by various forms of noise in
real-world environments, leading to challenges in
providing long-term stable interactions through
sEMG. Existing methods often struggle to en-
hance model noise resilience through various pre-
defined data augmentation techniques. In this
work, we revisit the problem from a short-term
enhancement perspective to improve precision
and robustness against various common noisy
scenarios with learnable denoise using sEMG in-
trinsic pattern information and sliding-window
attention. We propose the Short Term Enhance-
ment Module(STEM), which can be easily inte-
grated with various models. STEM offers several
benefits: 1) Noise-resistant, enhanced robustness
against noise without manual data augmentation;
2) Adaptability, adaptable to various models; and
3) Inference efficiency, achieving short-term en-
hancement through minimal weight-sharing in an
efficient attention mechanism. In particular, we
incorporate STEM into a transformer, creating the
Short-Term Enhanced Transformer (STET). Com-
pared with best-competing approaches, the im-
pact of noise on STET is reduced by more than
20%. We report promising results on classifica-
tion and regression tasks and demonstrate that
STEM generalizes across different gesture recog-
nition tasks. The code is available at https:
//github.com/guoweiyu/short-term-semg.
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1. Introduction
Surface Electromyographic (sEMG) is a non-invasive tech-
nique for monitoring muscle neuron firing, which is an effec-
tive way to capture human motion intention and has shown
great application potential in the field of human-computer
interaction (HCI) (Xiong et al., 2021; Liu et al., 2021c; Guo
et al., 2024). A schematic diagram of the EMG-based HCI
System is shown in Figure 1. Compared to traditional HCI
channels, sEMG has the advantages of being generated prior
to actual motion (50-150 ms), containing rich motion inten-
tion information, and being easy to collect (Sun et al., 2020).
Therefore, increasing interest has been in exploring EMG-
based motion track (Liu et al., 2021b; Guo et al., 2023) and
pathological analysis.
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Figure 1: Schematic Diagram of EMG-based Human-Computer
Interaction System.

Recently, deep learning models for time series have devel-
oped rapidly and are widely used (Dai et al.; Zhang et al.,
2023a; Xu et al.; Zhang et al., 2021). By treating sEMG
as time series, deep sequential models (Bi et al., 2019;
Tsinganos et al., 2019; Becker et al., 2018; Li et al., 2021;
Du et al., 2017; Zhang et al., 2021) have been applied to
sEMG modeling. For example, Zhang et al. (2022) employ
a multi-task encoder-decoder framework to improve the ro-
bustness of sEMG-based Sign Language Translation (SLT),
while Rahimian et al. (2021) employ a Vision Transformer
(ViT)-based architecture (TEMGNet) to enhance the accu-
racy of sEMG-based myocontrol for prosthetics. Although
these methods show improved performance over traditional
approaches, they process sEMG signals as generic time-
series data, without tailoring their designs to the unique
characteristics of sEMG—such as high variability and sensi-
tivity to external noise and interference. This oversight leads
to challenges in handling low signal-to-noise ratios caused
by skin condition changes and interference, and limits the
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ability to capture subtle but critical motion information. As
a result, the robustness and accuracy of existing models
remain significantly constrained.

Processing sEMG signals is challenging due to the complex
noise mixed in the skin’s surface and the presence of pat-
terns across various time scales. Existing works, mainly
focusing on long-term sequences, have used transformers to
treat sEMG as a typical time series, aiming to enhance long-
term dependencies. These approaches overlook the critical
features that are present on short-term scales. Short-time
scale features are important in sEMG analysis, as they aid in
distinguishing subtle movements and facilitate the removal
of variable noise. For example, gestures like Index Finger
Extension (IFE) and Middle Extension (ME), while simi-
lar in global sEMG patterns, can be differentiated through
localized short-term signal variations.

To this end, in this paper, we present a lightweight but pow-
erful module called Short-Term Enhanced Module (STEM)
which utilizes sliding window attention with weight sharing
to capture short-term features. Building on STEM, we fur-
ther propose the Short-Term Enhanced Transformer (STET).
STET leverages STEM to capture local signal changes, enhanc-
ing noise resistance, and then combines STEM with long-term
features, further improving accuracy for downstream pre-
dictions. Furthermore, to enhance model robustness with
minimal annotation, we propose a self-supervised paradigm
based on sEMG Signal Masking to leverage the inherent
variability in sEMG signals.

Finally, we conducted extensive experiments on the largest
public sEMG datasets. The experimental results show that
STET surpasses existing methods by a significant margin
in both gesture classification and joint angle regression
tasks for single-finger, multi-finger, wrist, and rest gestures.
Meanwhile, STET achieves strong robustness even when
trained on pure data and tested on noisy data. Compared
with best-competing approaches, the impact of noise on
STET is reduced by more than 20%. Moreover, through
visualizations, we show that the long-term and short-term
features are complementary in sEMG-based gesture recog-
nition tasks, and the fusion of the two features can make the
classification boundary more obvious. This clearly demon-
strates that short-term information is critical for sEMG-
based gesture recognition and will provide a new design
paradigm for future sEMG model design. In particular, we
have deployed STET as an important functional component
in our HCI system, which can offer a more intuitive and
effective experience. Our real-world deployment is shown
in Figure 5 in the appendix.

To the best of our knowledge, we are the first to explic-
itly emphasize short-term features in sEMG-based gesture
recognition. Our main contributions are as follows:

• We propose STEM, a learnable, adaptable, and noise-
resistant module to enhance short-term features. Integrat-
ing STEM into various neural network architectures yields
consistent and significant performance improvements;

• We introduce sEMG Signal Masking into the self-
supervised Intrinsic Pattern Capture module, enabling
the model to exploit sEMG variability;

• We conduct comprehensive experiments on the largest
available wrist sEMG dataset, demonstrating that our
method outperforms existing approaches in both accuracy
and robustness. Furthermore, short-term enhancement
can generalize to other architectures such as Informer.

2. Related Work
The EMG-based Intention Prediction of Human Motion
can be broadly divided into model-based and data-driven
methods. Model-based methods typically combine disci-
plines such as kinesiology, biomechanics, and human dy-
namics to explicitly model the relationship between EMG
and outputs (such as joint angles and forces). The model
often includes specific parameters, such as joint positions
and bone-on-bone friction, that need to be repeatedly exper-
imented with and adjusted until the desired performance is
achieved. In terms of parameter selection and determination,
model-based methods can be further divided into kinematic
models (Borbély & Szolgay, 2017), dynamic models (Koike
& Kawato, 1995; Koirala et al., 2015; Liu et al., 2015), and
muscle-bone models (Wang & Buchanan, 2002; Zhao et al.,
2020; Yao et al., 2018). Clancy et al. (2012) used a non-
linear dynamics model to identify the relationship between
constant posture electromyography and torque at the elbow
joint. Hashemi et al. (2012) used the Parallel Cascade Iden-
tification method to establish a mapping between forearm
muscles and wrist forces. However, model-based methods
have a large number of parameters that are difficult to mea-
sure directly. Currently, only simple motion estimation with
a limited number of joints and degrees of freedom is pos-
sible. In contrast to model-based approaches, data-driven
methods do not require the measurement of various parame-
ters. Recently, some researchers have begun to use temporal
deep learning models to extract motion information from
sEMG (Lin et al., 2022; Zhang et al., 2022; Guo et al., 2021;
Lin et al., 2024; Chen et al., 2024; Jiang et al., 2025). Lin
et al. (2022) proposed a BERT-based structure to predict
hand movement from the Root Mean Square (RMS) fea-
ture of the sEMG signal. Rahimian et al. (2021) proposed a
novel Vision Transformer (ViT)-based neural network archi-
tecture to classify and recognize upper-limb hand gestures
from sEMG for use in myocontrol of prostheses. However,
these methods have neglected the modeling of short-term
dependencies and have not considered the inherent variabil-
ity in sEMG signals. Furthermore, there is a lack of research
in this field aimed at improving noise robustness.
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Figure 2: Overview of STET. The sEMG signal is encoded using the sEMG Intrinsic Pattern Capture module, which is first pre-trained
via sEMG signal Masking. A long-term and short-term enhanced module improves sEMG representations. An asymmetric optimization
strategy addresses biases and imbalances in gesture recognition through an asymmetric classification loss.

3. Preliminaries
3.1. Dataset
We conduct the experiments on the GRABMyo (Pradhan
et al., 2022) and the Ninapro DB2 (Atzori et al., 2014)
datasets, which are the largest and most widely used sEMG
datasets and have great potential for developing new genera-
tion human-machine interaction based on sEMG signals.

Data processing. The subjects performed 17 gestures of
hand and wrist (including a rest period sEMG) according
to the prompts on the computer screen. Each gesture was
repeated 7 times, each lasting 5 seconds. To avoid muscle
fatigue, rest 10s between repetitions. In the following ex-
periments, we use five repetitions as the training set and
two repetitions as the test set. Bandpass filtered between 10
Hz and 500 Hz with a gain of 500 was adopted to the raw
signal. We use the difference between the corresponding
electrodes in the two loops as the input signal for our model.
To improve the convergence speed of the model, we use two
methods (Max-Min normalization, µ-law normalization) to
normalize the data (Rahimian et al., 2020; Recommendation,
1988). After normalization, we use a time-sliding window
to split samples. We set the window size as 200ms, and
the overlap of adjacent windows is 10ms. µ-law normaliza-
tion can logarithmically amplify the outputs of sensors with
small magnitudes, which results in better performance than
linear normalization.

Definition 3.1 (sEMG Signal Sequence). An sEMG signal
sequence is defined as a temporal signal sequence sampled
by multiple sensors from a human wrist, which can be for-
mulated as X = [x1,x2, ..,xt], where t is the time window

and xi = [xi,1, xi,2, ...xi,c] represents the signal, vector of
c sensors, where xi,j is the signal value of the j-th sensor in
the i-th time step.

4. Technical Details
4.1. Model Overview
Figure 2 illustrates the overview of our proposed framework
for gesture recognition, which contains three components:
(1) The sEMG Intrinsic Pattern Capture module encodes
the sEMG signal sequence into the hidden sEMG repre-
sentations. A pre-training model with a segment masking
strategy and MSE reconstructing loss is proposed to learn
inherent variability from the sEMG signals into the model’s
parameters. f (2) The Long-term and Short-term Enhanced
module uses two decoupling heads to extract the long-term
and short-term context information separately, which im-
proves the sEMG representations in preserving both the
global sEMG structure and multiple local signal changes
of the sEMG. (3) The Asymmetric Optimization strategy
addresses the problems of sample biases and imbalance in
gesture recognition via an asymmetric classification loss,
which can make the model focus on hard and positive sam-
ples to improve the recognition.

4.2. sEMG Intrinsic Pattern Capture Module

4.2.1. SEMG SIGNAL ENCODING

Given the sEMG signal sequence X = [x1,x2, ..,xt], we
first project each signal xi ∈ Rc into a hidden embedding
via a transformation matrix and add each signal embed-
ding with an absolute position embedding. Then, we feed
the output sequence into a L-layer Transformer and obtain

3



Revisiting Noise Resilience Strategies in Gesture Recognition: Short-Term Enhancement in sEMG Analysis

the output signal embeddings X(L) = [x
(L)
1 ,x

(L)
2 , ..,x

(L)
t ],

which incorporate temporal context signal information for
each position in the sequence.

4.2.2. SEMG SIGNAL MASKING

After the sEMG signal-extracting module is constructed, we
aim to use pre-training to exploit the intrinsic pattern and
temporal semantics disclosed by the unlabeled sEMG sig-
nals (labeling sEMG is time-consuming and labor-intensive)
and give a good initialization for the model parameters, then
avoid the model focusing on some noisy features in the
supervised learning task to over-fitting on some local mini-
mums. Thus, we propose a sEMG Intrinsic Pattern Capture
based on a signal masking strategy detailed in Algorithm 1.

Specifically, given a transformed signal embedding se-
quence X = [x1,x2, ..,xt], instead of adding masks on the
sequence in terms of time steps like BERT, we add sensor-
wise masks for the signal sequence of each sensor similar
with (Zerveas et al., 2021), which can encourage the model
to learn more fine-grained temporal context dependency on
the signal sequence of multiple electrodes. For the signal se-
quence of the i-th sensor, formulated as [x1,i, x2,i, ..., xt,i],
i.e, the i-th column of X, we generate a binary mask vec-
tor mi ∈ Rt, where average r radio of elements in mi

should be 0.15. Randomly generating mi may cause a lot of
isolated-masked signals, meaning one masked signal whose
adjacent signals are unmasked. However, a single signal
can be easily predicted by its immediately preceding or suc-
ceeding signals, making self-supervised learning easy to fit
on ineffective patterns and poor for learning temporal se-
mantic information. Considering this, we introduce a more
complex masking strategy that aims to generate multiple
masked segments on the sequence with an average length
lm, which means mi is composed of contiguous masked
segments and unmasked segments. The length of masked
segments follows a geometric distribution with mean lm,
and the length of unmasked segments follows a geometric
distribution with mean lu. Also, lm/lu = r/(1− r) so that
the number of masked elements would follow the proportion
r. While Miao et al. (2022) inspired our use of geometric
distribution for segment lengths, we extend this concept by
applying the masking strategy in a sensor-wise manner and
employing different sequence reconstruction methods.

Then, we can mask the input sEMG signal sequence X by
X̂ = X⊙M, where⊙ is elementwise multiplication and X̂
is the masked input. With the proposed Transformer-based
sEMG signal encoder, we can obtain the output X̂(L) =

[x̂
(L)
1 , x̂

(L)
2 , ..., x̂

(L)
t ]. For self-supervised learning, we add

a linear layer on the top of masked output to reconstruct
each sEMG signal x̂(L)

i as x̃i ∈ Rc, the reconstructed sEMG
signal in the i-th time step generated from the masked input.
Then, we minimize the Mean Squared Error (MSE) of the
reconstructed signals and original signals on the masked

positions for each sample: The optimization objective Lpt

of pre-training can be written as follows:

min
1

|M|

t∑
i=0

c∑
j=0

1(Mi,j = 0)(x̃i,j − xi,j)
2, (1)

where 1(·) is the indicator function, x̃i,j and xi,j are the
reconstructed value and original value of j-th sensor in x̃i

and xi respectively, and Mi,j is the element in the i-th row
and the j-th column of M. Thus, we can pre-train the sEMG
Intrinsic Pattern Capture via the above strategy to obtain
well-initialized model parameters for the downstream task.
In practice, we empirically set the masking proportion r as
0.15 and the average length of masked segments as 3. The
pre-training procedure is illustrated in Figure 2 (a).

Sensor-wise Mask: Each electrode has distinct conditions
(e.g., moisture level, coating thickness), resulting in varying
signal quality. In real-world scenarios, many types of noise
are sensor-specific (e.g., signal loss from certain electrodes
or poor electrode contact).

Contiguous Masked Segments: The primary frequency
range of sEMG signals is 20–500 Hz, while dataset sampling
rates are typically around 2000 Hz. This results in similar
values for adjacent sampling points. Contiguous masking
prevents the model from relying on adjacent sampling points
to predict the masked values.

The Length of Masked Segments Follows a Geometric Dis-
tribution: The effective frequency range of sEMG signals
varies within 20–500 Hz. Frequency changes manifest as
variations in the number of effective sampling points in the
time domain. Using dynamic-length masked segments bet-
ter captures these variations. Geometric distribution aligns
with the characteristics of electrode distribution and the
frequency dynamics of sEMG signals.

4.3. Long-term and Short-term Decoding
Based on the pre-trained sEMG Intrinsic Pattern Capture, we
develop two decoder heads to extract long-term and short-
term dependency on the signal sequences, respectively. Intu-
itively, the long-term and short-term information on signal
sequences is significant in the gesture recognition problem.
Long-term information refers to the global context of an
sEMG sequence, which provides a signal’s overall struc-
ture to help interpret the gesture. Short-term information
refers to the movement signal in a short time interval of the
whole sequence, which can provide specific local character-
istics for accurate recognition when the overall structures
of sEMGs are ambiguous. For example, distinguishing be-
tween Index Finger Extension (IFE) and Middle Extension
(ME) movements requires a closer examination of the local
signal changes in sEMG, whereas differentiating gestures
with large variations, such as hand gestures and wrist ges-
tures, necessitates a focus on the global sEMG information.
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4.3.1. PRESERVING LONG-TERM SEMG SIGNAL

Given the hidden output X(L) = [x
(L)
1 ,x

(L)
2 , ...,x

(L)
t ] of a

sEMG signal sequence, we first build a long-term decoder
to extract the long-term dependency on the complete output.
Specifically, the long-term decoder is defined as a multi-
head self-attention layer.

The global context signal information is collected to the
embeddings of t timesteps with different attention weights
through the self-attention layer. The detailed equation is
shown in Equation 4a in the appendix.

4.3.2. PRESERVING SHORT-TERM SEMG SIGNAL

We introduce a slide-window self-attention layer to model
the local context information within a short time interval
to extract the short-term dependency on the signal outputs.
Similarly, we stack multiple attention heads and calculate
the attention of context signals to sum them into the final
representations. The difference is we only calculate the
attention of its nearest w context for each time step. Specifi-
cally, we can rewrite the Attention(·) in Equation 4b as:

AttentionS(Q,K,V) =

[
Softmax

(
QiK

w
i
T

√
h

)
Vw

i

]t
i=1

,

(2a)

[Kw
i ]

t
i=1 = Unfold(K, w), (2b)

[Vw
i ]

t
i=1 = Unfold(V, w), (2c)

where w is the sliding windows size, Qi ∈ Rh as the i-th
query is the i-th row of Q, Kw

i ∈ Rw×h and Vw
i ∈ Rw×h

are the keys and values in a window around the i-th query.
We utilize the Unfold(·) operation for the key and value
matrix to generate the sliding windows for each timestep.
Note that we omit the index of attention head in the above
equation to avoid confusion.

Thus, by stacking multiple sets of parameters in
AttentionS(·) to constitute different attention heads, we
can obtain the short-term sEMG embeddings Hs ∈ Rt×h by
Hs = MultiHeadS(X

(L)). Using sliding windows, each
row in Hs preserves the local context information of the
corresponding timestep, representing the movement from
the past w/2 timesteps to the next w/2 timesteps.

In contrast to Focal Transformer (Yang et al., 2021), which
processes long- and short-term features sequentially, we
handle them in parallel. While Zhang et al. (2023b) adopts
patch-based segmentation, our method uses sliding-window
attention to enable fine-grained feature extraction and bet-
ter sensitivity to boundary variations. Zhu et al. (2021)
combine long-range low-rank attention with short-range
sliding-window attention via unified key/value sets. In com-
parison, our model uses two decoupled heads to separately
capture long- and short-term dependencies.

4.3.3. FUSION

Obtained the long-term embeddings Hl and the short-term
embeddings Hs of an sEMG signal sequence, we first con-
catenate them in terms of the hidden dimension, then in-
troduce a 1-D convolution to summarize the t-step sEMG
embedding sequence into the final sEMG representation,
which is fed into a Feed Forward Layer with a Sigmoid
Layer to obtain the final classification probability of which
gesture the sEMG belonging to, which can be written as:
h = uT · [Hl : Hs] and ŷ = σ(FC(h)), where h ∈ R2h

is the final sEMG representation, u ∈ Rt is the weight
parameters to weighted sum up the sEMG embeddings in
each time steps, FC(·) is a two-layer fully connected layer,
σ(·) is the activation function, and ŷ ∈ RC is the output
classification probability of the sEMG signals.

4.4. Asymmetric Optimization
Following common practice in multi-label classification,
we decompose gesture recognition into a series of binary
classification tasks. However, two key challenges arise
under this formulation. First, due to temporal instability
in the sampled signals, the sEMG sequences may exhibit
significant sample-wise bias. Some samples with strong
signals are easily predicted, while others with ambiguous
or noisy signals are much harder to classify. Second, the
sEMG dataset contains 17 gesture classes with balanced
sample counts per class. However, for each binary task,
the number of negative samples significantly exceeds that
of positives. This class imbalance can suppress gradients
from positive instances during training, degrading model
performance (Liu et al., 2021a).

To address these issues, we adopt the Asymmetric Loss (Rid-
nik et al., 2021) for gesture classification. This loss, a vari-
ant of focal loss, (1) applies focusing parameters to down-
weight easy samples and emphasize harder ones; and (2)
introduces asymmetric focusing and probability shifting to
reduce the dominance of abundant easy negatives while pre-
serving the contribution of positives. We define the loss
function as follows:

LSTET = −
N∑
i=1

C∑
j=1

(
yi,j (1− ŷi,j)

γ+

log (ŷi,j)
)

+ (1− yi,j)
(
ŷmi,j
)γ−

log
(
1− ŷmi,j

)
,

(3)

and ŷmi,j = max (ŷi,j −m, 0), where yi,j and ŷi,j is the
ground-truth and probability of the i-th sEMG signal se-
quence belonging to the j-th gesture. (1− ŷi,j)

γ+

and(
ŷmi,j
)γ−

are two terms to make the weights of hard pre-
dicted samples bigger than those easily predicted samples,
γ+, and γ− are two focusing parameters and γ+ > γ− lead
to asymmetric focusing that help the optimization pay more
focus on positive samples of each class. ŷmi,j is the shifted
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Table 1: The table presents the accuracy (ACC, %) and standard deviation (STD) of various models evaluated on Single-finger,
Multi-finger, Wrist, Rest, and Overall gesture categories. The proposed STET model shows the highest performance across all categories.

Model Single-finger Multi-finger Wrist Rest Overall
ACC STD ACC STD ACC STD ACC STD ACC STD

Asif et al. (Asif et al., 2020) 83.44 0.02 83.58 0.01 89.40 0.01 90.86 0.01 85.34 0.01
TCN (Tsinganos et al., 2019) 78.78 0.02 79.10 0.02 87.27 0.01 88.57 0.02 81.50 0.02
GRU (Chen et al., 2021) 84.45 0.02 84.88 0.01 90.06 0.01 89.42 0.02 86.30 0.02
TEMGNet (Rahimian et al., 2021) 77.70 0.02 74.00 0.03 84.04 0.02 87.46 0.01 78.02 0.02
Zerveas et al. (Zerveas et al., 2021) 78.45 0.02 77.20 0.02 87.28 0.02 86.76 0.02 80.43 0.02
Informer (Zhou et al., 2021) 86.88 0.02 86.54 0.02 91.90 0.01 83.56 0.02 87.71 0.02
LST-EMG-Net (Zhang et al., 2023b) 87.21 0.01 83.16 0.01 88.36 0.02 82.52 0.02 85.31 0.02

TEMGNet+STEM (ours) 84.57 0.02 81.23 0.02 88.12 0.02 88.74 0.01 84.07 0.02
Informer+STEM (ours) 87.42 0.02 88.39 0.02 92.07 0.01 90.33 0.01 89.14 0.02
STET (ours) 88.27 0.01 89.93 0.02 93.77 0.01 95.33 0.01 90.76 0.01

probability and m is shifting margin. The probability shift-
ing for negative samples encourages the optimizer to further
reduce their contribution.

5. Experiment
5.1. Settings
Implementation Details STET is implemented in
PyTorch (Paszke et al., 2019) and is trained using one
RTX 3090 GPU. During training, we use the RAdam (Liu
et al., 2019), which is a theoretically sound variant of
the Adam optimizer with a weight decay of 1e-3. For
classification tasks, we conduct user-specific pretraining
on the GRABMyo dataset, and for regression tasks, we
carry out user-specific pretraining on the NinaPro DB2
dataset. In the decoder, we use two layers of full attention
in the long-term decoder and two layers of sliding window
attention in the short-term decoder. The short-term
decoder’s window size is 41 and 21, and the window’s move
step is set to 1. In both the pre-training and fine-tuning
periods, we set the batch size to 16 and set drop out to 0.2.

5.1.1. EVALUATION METRICS

Following the prior works (Guo et al., 2021; Wang et al.,
2020a; Chen et al., 2021; Rahimian et al., 2021), we choose
the below metrics to evaluate the model’s performance:
Pearson Correlation Coefficient (CC) is a widely used
measure of the linear relationship between two variables.
It ranges from -1 to 1, where a larger CC value indicates
greater similarity between the predicted and estimated joint
angles curve, indicating improved estimation.
Root Mean Square Error (RMSE) is a common metric
for evaluating the deviation between predicted and observed
values. As the range of fluctuations in the curves of different
joint angles can vary significantly, it is difficult to fairly
evaluate the performance of models using RMSE alone.
Normalization of RMSE addresses this issue, resulting in
the Normalized RMSE (NRMSE).

Average curvature (κ) of all points for each joint is used to
measure the smoothness of an estimated curve. A smaller
κ indicates a smoother curve. Details above are covered in
appendix Appendix G.3.

5.2. Comparison with Baselines
We evaluate the accuracy (ACC) and standard deviation
(STD) of our proposed STET in comparison with existing
sEMG-based gesture recognition methods. Specifically,
we train the model on the GRABMyo dataset (Pradhan
et al., 2022), with data processing details provided in Sec-
tion 3.1. Classification results are separately reported for
single-finger gestures, multi-finger gestures, wrist gestures,
rest, and the overall performance. The ratio of the training
set to the test set for each gesture is 5 to 2. The experiment
results are shown in Table 1.
The experimental results show that STET consistently
achieves the best performance across all four gesture cate-
gories as well as the overall dataset. In particular, STET and
Zerveas et al. (2021) both employ Transformer-based en-
coders. However, in the decoder stage, STET integrates both
short-term and long-term decoders, in contrast to the fully
connected layers used in Zerveas et al. (2021). As a result,
the overall accuracy is improved from 80.43% to 90.76%.
This improvement stems from the proposed long-term and
short-term decoupling module, which captures both global
and fine-grained dependencies in sEMG signals, leading to
more informative representations.
Among the transformer-based methods, Informer and STET
performed best, with accuracy rates of 87.71% and 90.76%,
respectively. Informer relies heavily on max pooling layers
to aggregate features, leading to the relative weakness in
extracting some short-term features. STET enhances accu-
racy and stability by strengthening the short-term feature
extraction. The improvement is remarkable on the Rest ges-
tures, where the accuracy improves from 83.56% to 95.33%.
Furthermore, after incorporating our designed short-term en-
coder into Informer, its accuracy rate increased from 87.71%

6



Revisiting Noise Resilience Strategies in Gesture Recognition: Short-Term Enhancement in sEMG Analysis

Radio of Additive Gaussian Noise

A
cc

ur
ac

y

A
cc

ur
ac

y

Gaussian Multiplicative Noise Radio of  Drop Point

A
cc

ur
ac

y

0.55

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5 6 7 8 9 10 11

Fuse decoder
Long term decoder
Short term decoder
Transformer

0.63

0.67

0.71

0.75

0.79

0.83

1 2 3 4 5 6 7 8 9 10

Fuse decoder
Long term decoder
Short term decoder
Transformer

0.55

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5 6 7 8 9 10 11

Fuse decoder
Long term decoder
Short term decoder
Transformer

Figure 3: Accuracy versus Noise Intensity Curve. The accuracy of different decoders (Fuse, Long term, Short term, and
Transformer) under varying levels of Additive Gaussian Noise, Gaussian Multiplicative Noise, and Drop Point Noise.

Table 2: Ablation study results. EIPC: sEMG Intrinsic Pattern
Capture; LT: Long-Term decoder; ST: Short-Term decoder; CEL:
Cross Entropy Loss; ASL: Asymmetric Loss.

Transformer EIPC LT ST Fusing CEL ASL ACC (%)

✓ ✓ 85.73
✓ ✓ ✓ 86.33
✓ ✓ ✓ ✓ 88.02
✓ ✓ ✓ ✓ 87.72

✓ ✓ ✓ ✓ ✓ ✓ 89.37
✓ ✓ ✓ ✓ ✓ 89.42
✓ ✓ ✓ ✓ ✓ ✓ 90.54

to 89.14%, and the classification accuracy for Rest gestures
improved from 83.56% to 90.33%.
The Rest gesture, representing the idle state of devices such
as interactive bracelets, is the most frequent gesture class
in the dataset. As a result, the stability of its prediction
is crucial for reliable gesture recognition. STET achieves
the highest and most stable performance on the Rest cate-
gory compared to all baseline methods, demonstrating its
robustness in handling frequent and critical gesture states.

5.3. Ablation Studies
To validate the effects of the unsupervised sEMG Intrinsic
Pattern Capture (EIPC), Long-term decoder, Short-term
decoder, Fuse strategy, and loss function. We designed
variants of STET and reported their results in Table 2.
First, we observe that with the introduction of unsuper-
vised EIPC, the accuracy of both the Transformer and STET
improves by 0.60% and 1.12%, respectively, compared to
training from scratch. This suggests that EIPC enables the
model to capture additional features from the data—such
as the inherent variability in sEMG—without the need for
new samples or additional annotations. Importantly, this
process avoids reliance on external data, thereby preserving
user privacy during data acquisition and processing. Replac-
ing the fully connected layer in the Transformer’s decoder
with either the long-term decoder or the short-term decoder
improves performance by 1.16% and 1.39%, respectively.
The similar effectiveness of both variants indicates that long-
term and short-term features play distinct and complemen-

tary roles in sEMG signal recognition, and that short-term
information should not be neglected. Most notably, when
our fusion module is used to combine long-term and short-
term features, accuracy further increases by 2.46%. This
result confirms that the two decoders are complementary
and that explicitly enhancing short-term features on top of
long-term modeling is beneficial. Finally, we apply Asym-
metric Loss (ASL) to emphasize difficult samples during
training. Compared to using Cross-Entropy Loss (CEL), this
leads to a 0.73% improvement in accuracy, demonstrating
the effectiveness of ASL in improving model robustness.

5.4. Robustness Analysis
To verify the model’s robustness, we only used high-quality
data collected in the lab to train the model and added dif-
ferent types of noise (Additive and Multiplicative Gaussian
noise and signal loss) during validation to simulate complex
scenarios that might be encountered in real situations.
Additive noise typically refers to thermal noise added to
the original signal. This type of noise exists regardless of
the presence of the original signal and is often considered
the background noise of the system in sEMG acquisition.
Multiplicative noise is generally caused by channel insta-
bility and has a multiplicative relationship with the original
signal. Also, we simulated signal loss during transmission
by randomly setting a portion of the signals to zero.
Figure 3 illustrates the influence exerted by three distinctive
noise categories, namely additive noise, multiplicative noise,
and signal loss, on the accuracy of the proposed model. The
model using only the short-term decoder is less affected by
noise than the long-term version. This relative robustness
of the short-term decoder is potentially attributable to its
unique capability to mitigate the global impact of noise by
virtue of a sliding window multiple-sampling scheme, which
effectively confines the sphere of noise impact. The model
that integrates both long-term and short-term characteristics
persistently outperforms models that rely on only one. This
highlights the significant effectiveness of the integrating
process in dealing with noise-induced interference.
As depicted in Table 3, it is evident that both Transformer
and Informer models demonstrate a notable enhancement
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Table 3: Drop rates of accuracy calculated by drop rate =
(ACCraw −ACCnoise) /ACCraw. AG: Additive Gaussian noise,
MG: Multiplicative Gaussian noise.

Backbone In STET AG Noise MG Noise Signal Loss

Transformer No 25% 16% 14%
Transformer Yes 10% 10% 8%
Informer No 11% 9% 26%
Informer Yes 9% 8% 17%

(b)(a) (c)

Figure 4: Visualization of (a) the long-term sEMG embeddings,
(b) the short-term sEMG embeddings, and (c) the fused sEMG
embeddings for gesture recognition. Note that we color each
sample by its classes.

in noise resistance when they adopt the design from STET.
Our short-term enhancement can be easily extended to other
models. It is evident that both Transformer and Informer
models demonstrate a notable enhancement in noise resis-
tance when their decoders are replaced with the design from
STET. Specifically, when comparing the drop rates of accu-
racy due to different noise types, calculated by drop rate:
Transformer: Without the STET framework, it experienced
a drop of 25% under additive Gaussian noise, 16% under
multiplicative Gaussian noise, and 14% with signal loss.
However, when integrated into the STET framework, these
drops were reduced to 10% for both additive and multiplica-
tive Gaussian noise and 8% for signal loss.
Informer: Without the STET framework, it showed a drop
of 11% due to additive Gaussian noise, 9% due to multi-
plicative Gaussian noise, and a significant 26% with signal
loss. With the STET design, these rates improved to 9%
for additive Gaussian noise, 8% for multiplicative Gaussian
noise, and 17% for signal loss.

5.5. Visualizations
To demonstrate the distinction of different gestures, we first
obtained STET’s long-term, short-term, and fuse embed-
dings. The embeddings with dimensions (N,T,H) were
then flattened to (N,T ∗H) and separately projected in 2D
by t-SNE, the result shown in Figure 4. We colored each
node by category for the illustration. As shown in Figure 4,
The classification boundary generated by the long-term fea-
ture and the short-term feature is a significant difference,
indicating that the long-term and short-term features are
capable of recognizing different types of gestures. This
further suggests that the two features are complementary
in data representation. For example, short-term embedding
can distinguish TA gestures from TIFO gestures very well,
but TA gestures and TIFO gestures will be confused in long-

Table 4: Model performance comparison. PCC: Pearson Correla-
tion Coefficient, NRMSE: Normalized Root Mean Squared Error.

Model PCC ↑ NRMSE ↓ κ Epoch Time (s) ↓
LSTM 0.779 0.096 0.581 26.36
TCN 0.833 0.088 1.533 3.62
BERT 0.867 0.077 1.571 4.95
sBERT-OHME 0.869 0.076 0.532 4.96
STET (Ours) 0.877 0.073 0.522 6.83

term embedding. Meanwhile, long-term embedding can
distinguish LP and TIFE gestures very well, but short-term
embedding will confuse them. As shown in Figure 4(c), af-
ter the fusion of the two types of features, the classification
interface is wider, and the confusion points are significantly
reduced, which indicates that the fusion module can effec-
tively complement the strengths of the two types of features.

5.6. Regression: Hand Joint Angles Prediction
STET can conveniently handle regression tasks by chang-
ing the loss function to mean squared error (MSE) loss.
Continuous motion estimation extracts continuous motion
information, such as joint angles and torques, from sEMG
signals. Since continuous motion estimation requires out-
putting subtle movement variations at each time instant, the
local signal variations are particularly important for this
type of estimation. In this section, we have re-selected the
most competitive models known for sEMG-based joint an-
gle prediction as the baseline and tested the performance
of STET on the regression task of predicting the main 10
joint angles for fingers using the Ninapro DB2 (Atzori et al.,
2014) dataset. As shown in Table 4, STET achieved the best
performance in PCC, NRMSE, and κ, indicating that the
joint angle curve predicted by STET is more in line with the
real curve and has less abnormal fluctuations, which will
significantly improve the user’s interactive experience. In
terms of training time, due to the addition of the short-term
decoder, its training speed is slightly slower than BERT but
still within an acceptable range.

6. Conclusion
Current sEMG-based gesture recognition models usually
fail to handle various noisy and distinguish similar gestures,
especially in non-laboratory settings. In this paper, we found
using short-term information and self-supervised EIPC mit-
igates this issue. Therefore, we proposed STEM to capture
local signal changes and enhance noise resistance. STEM is
easily deployable and serves as a plug-in that can potentially
be applied to most time series deep learning models. Ac-
cording to our experimental results, our method significantly
improved performance for both classification and regression
tasks in sEMG, and the model’s ability to resist signal loss,
Gaussian additive noise, and Gaussian multiplicative noise
was clearly improved. This will further drive the practical
application of sEMG in VR, AR, and other human-computer
interaction scenarios.
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Software
The code is available at https://github.com/guoweiyu/
short-term-semg.
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Part I

Appendix
A. The details of methods
A.1. The details of sEMG Signal Masking
The algorithm of sEMG Signal Masking is shown in 1. The algorithm generates a mask matrix M, where each element
mi,j indicates whether the j-th sampling point of the i-th sensor is masked.

Algorithm 1 The Algorithm of sEMG Signal Masking

Require: The length of the input signal sequence t
Require: The number of signal sensors c
Require: The average length of masked segments lm
Require: The masked ratio r
Ensure: The mask matrix M

1: for i = 1, . . . , c do
2: mi ← [True]t % Initialize all elements to True
3: pm ← 1

lm
% Probability of ending a masked segment

4: pu ← pm·r
1−r % Probability of ending an unmasked segment

5: p← [pm, pu]
6: state← Bool(random(0, 1) > r) % Initialize first state
7: for j = 1, . . . , t do
8: mi,j ← state
9: if random(0, 1) < p[state] then

10: state← ¬state {Flip the state}
11: end if
12: end for
13: end for
14: Return M← ([mi]

c
i=0)

T

The choice of a sensor-wise masking strategy aligns well with the practical scenarios of sEMG noise, where signal
disturbances often occur at the level of individual sensors. For instance, signal loss from a specific electrode or cases where
electrodes become detached or misaligned frequently affects specific sensor data. By employing sensor-wise masking, our
approach effectively mimics these real-world noise conditions. Furthermore, it encompasses scenarios of multi-sensor signal
loss, broadening the model’s generalizability across diverse noise conditions. This strategy encourages the model to focus
on learning the intrinsic patterns of sEMG signals from unmasked sensors, enhancing its ability to infer missing data. Unlike
other masking techniques, sensor-wise masking does not overly depend on spatial-temporal uniformity across sensors,
which is crucial given the localized nature of many sEMG disturbances. This robustness ensures better generalization across
various signal conditions, as demonstrated by our model’s improved performance in handling noisy and partial signals.
By addressing practical noise issues systematically, the proposed approach enhances the model’s resilience in real-world
applications.

A.2. Role of unsupervised pretraining and noise robustness
Our sEMG Signal Masking strategy aims to capture intrinsic variability in the signal rather than explicitly removing noise.
This improves the model’s robustness by:
• Preventing overfitting on spurious patterns in supervised training.
• Enabling better feature learning from unlabeled data.
As shown in Table 3, this approach reduced performance degradation under various noise conditions (e.g., additive Gaussian
noise impact decreased from 25% to 10%).To further understand the contribution of the pretrain with sEMG Signal
Masking strategy, we conducted additional experiments to evaluate its impact on the model’s robustness to various noise
types. Specifically, we removed the short-term and long-term enhancement modules and assessed the backbone model
(Transformer) under conditions with and without pretraining using the sEMG Signal Masking strategy. Other experimental
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conditions, such as ASL loss, remain unchanged. Due to time constraints, this experiment was conducted on data from only
three subjects. The results are summarized below:

A.3. The details of experiment on Table 2
In this experiment, we utilized transformers and informers as the backbone network, employing the same parameters as in
Table 1. The STET framework incorporates a pretraining strategy with sEMG masks and STEM on top of the backbone. In
contrast, the No STET framework uses a standard pretraining with a general mask, employing a standard masking approach
with fixed segment lengths of 3 (aligning with the average length in our method), sensor-agnostic masking, and a random
masking ratio of 15% (consistent with our method). Other experimental conditions, such as ASL loss, remain unchanged.

Backbone Pretrain with sEMG Signal Masking AG Noise (%) MG Noise (%)

Transformer No 22.00 15.00
Transformer Yes 15.00 13.00

Table 5: Comparison of performance with and without sEMG Signal Masking strategy for Transformer backbone.

A.4. The definition of long-term encoder
The long-term encoder is defined as follows:

MultiHeadL

(
X(L)

)
= Concat (h1, . . . , hd)W

O, (4a)

where {hi}di=0 = {Attention (Qi,Ki,Vi)}di=0 , (4b)
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i }di=0 ∈ Rh×h are parameter matrices and
d is the number of attention heads. Concat(·) represents the concatenate operation. WO ∈ Rdh×h is the output parameter
matrix to transform the concatenated outputs of d attention heads. Then, the long-term sEMG embeddings Hl ∈ Rt×h is
obtained by Hl = MultiHeadL(X

(L)).
The linear projection is applied in the long-term enhanced module because this module processes inputs of fixed length
due to its structural design. We use linear projection here to adjust the feature dimensions appropriately. In contrast, the
short-term enhanced module operates based on a sliding window, which means the input length remains consistent and does
not require dimensional adjustment. Therefore, linear projection is not needed in the short-term module.

B. The significance of the results
We conducted Friedman and Wilcoxon signed-rank tests to analyze significant differences among subjects with different
evaluation methods, and we corrected the P-value using Bonferroni correction. Our model outperformed the other models in
Table 1 (P < 0.01). Finally, we would like to emphasize that in sEMG-related HCI applications, even a small improvement
in accuracy can significantly improve user experience. Therefore, we believe that our proposed model can significantly
improve user experience.

B.1. The details of noise
Additive noise typically refers to thermal noise added to the original signal. This type of noise exists regardless of the
presence of the original signal and is often considered the background noise of the system in sEMG acquisition. Additive
noise can be described as:

Gadd(x) = x+ α ·N(x), (5)

N(x) =
1√
2π

exp

(
− (x− u)2

2σ2

)
, (6)

where G(x)add represent the signal with additive noise, α is used to adjust the size of the noise. N(x) is a normal distribution
that simulates background noise. Here, we set u to 0 and σ to 1.
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Multiplicative noise is generally caused by channel instability and has a multiplicative relationship with the original signal.
Multiplicative noise used in the experiment can be described as:

Gmul(x) = x+Nmul(x), (7)

Nmul(x) = n · x2

N(x)2
\ 10SNR

10 , (8)

where G(x)add represent the signal with multiplicative noise, SNR stand for the signal to noise ratio.
Additionally, we simulated signal loss during transmission by randomly setting a portion of the signals to zero.

C. Real-World Deployment and human-subject study
Although most previous works, including ours, have primarily tested the performance of gesture detection algorithms on
offline laboratory datasets (Wang et al., 2020a; Chen et al., 2021), we recognize the importance of real-world application
scenarios. These scenarios often involve complex variables such as electrode movement and muscle state changes, which
offline testing does not capture adequately. As shown in Figure 1, we expanded our evaluation to include online performance
verification to address this gap. This was achieved by integrating our algorithm with a 3D virtual hand, which was developed
using the Unreal 5 engine and controlled through STET decoding of sEMG signals.

Figure 5: STET-based Real-Time Hand Interaction Reconstruction from Wrist sEMG Signals.

To make our system more aligned with daily usage habits, we placed four myoelectric electrodes on both the left and right
wrists of users, each with a sampling rate of 2000Hz. The signals were transmitted to the host computer via a WiFi interface
for continuous motion estimation. Our online experiment results demonstrated an overall latency of less than 50ms and
a Pearson Correlation Coefficient (PCC) of over 0.8. This indicates a stable, accurate, and natural interactive experience,
surpassing the capabilities of computer vision-based methods regarding energy efficiency and independence from lighting
conditions and occlusions.
To enable streaming processing online, we implemented an online buffer mechanism. Specifically, the buffer collects
incoming signals in real-time, and every 10ms, the model retrieves the most recent 200ms of signals from the buffer for
processing. The architecture used for online testing is identical to the one described in the paper. Furthermore, the model
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has been deployed in a commercial sEMG interaction application, where it has undergone testing in VR control scenarios,
demonstrating its practical usability.
In our human-subject study, we recruited a total of eight healthy participants, comprising an equal gender distribution of
four males and four females, all of whom were right-handed. Each participant was asked to perform six distinct movements,
captured using a standard transformer model and our STET model. Importantly, the participants were blinded to the model
used during their tasks. After engaging in a 10-minute gaming session designed to test the models, participants were asked to
identify which model they felt was more stable and provided a better experience. Remarkably, out of the eight participants,
seven preferred the STET model, citing its greater stability and overall performance. This overwhelming preference for the
STET model amongst participants highlights its efficacy and potential for real-world applications, reinforcing our findings
regarding its superior performance compared to traditional models.
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Figure 6: The gestures were used in gesture classification experiment:(a) Single-finger gestures (b) Multi-finger gestures (c)
Wrist gestures.

D. The difference from LST-EMG-NET
Our proposed approach exhibits a marked deviation from the LST-EMG-Net as detailed in (Zhang et al., 2023b). In the
LST-EMG-Net, the raw sEMG data is pre-segmented into long and short durations prior to the network ingestion. This
pre-segmentation could potentially hinder the encoder’s capability to grasp the intrinsic patterns of sEMG. In contrast, our
method divides the data into short-term and long-term segments during decoding, which we believe is a more effective
strategy. Our results support this, with our method achieving an accuracy of 90.8% compared to 85.3% achieved by the
LST-EMG-Net model.

E. Noise Analysis Metrics
We have employed two key metrics to analyze the noise distribution quantitatively:
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Signal-to-Noise Ratio (SNR) We analyzed the spectral properties of each sEMG signal recording and measured the SNR
(in dB) as the ratio between the power of the signal to the power of the noise [1]. The power of the noise was estimated as
the power of sEMG recordings during the rest trial (when sEMG acquisition is least susceptible to interference) [1]. The
average SNR across all signals in our datasets was 14.565± 6.385 dB.

Correlation Coefficient of Normality (CCN) This metric was used to analyze amplitude distribution. For a static
contraction with moderate force, sEMG can be modeled as a filtered, random, white Gaussian noise process [2]. It has been
suggested that a test of normality can provide a measure of biosignal quality, where a signal amplitude with a non-Gaussian
distribution would be considered contaminated. We generated a Gaussian distribution with equal mean and variance to that
of the recording [3]. The CCN is defined as the Pearson correlation coefficient between the histogram bin values of the
sEMG recording and the normal density function value for the corresponding bins [4]. A value close to 1 indicates a normal
distribution. The CCN of all signals in our dataset was 0.975± 0.041.
In the real-world dataset, noises are complexly and randomly intermingled, making precise quantitative isolation impossible.
Therefore, we used SNR and CCN calculations to analyze the overall noise distribution in spectral and amplitude properties.
Our measurements of the GrabMyo dataset revealed the following distribution:

Table 6: SNR Distribution in the GrabMyo Dataset

Metric High noise (SNR < 10 dB) Moderate noise (10 dB ≤ SNR ≤ 20 dB) Low noise (SNR > 22 dB)

SNR 28.2% 56.3% 15.5%

Through visual inspection and based on our experience, we identified samples with CCN < 0.93 (11.6% of the total samples)
as having severe non-Gaussian signals, which may be affected by transient noise such as motion artifacts or electromagnetic
interference.

F. Dataset
We conducted the experiments on the Gesture Recognition and Biometrics ElectroMyogram (GRABMyo) Dataset, the
largest known open-source wrist EMG dataset with great potential for developing new generation human-machine interaction
based on sEMG. GRABMyo has 43 healthy subjects whose average age is 26.35± 2.89, and the average forearm length is
25.15± 1.74 cm (measured as the distance between the olecranon process and the ulnar styloid process). There were 23
male subjects and 20 female subjects, respectively.
Data collection. Place 2 rings of 12 monopolar sEMG electrodes (AM-N00S/E, Ambu, Denmark) at the wrist position;
each ring consists of 6 electrodes. The sample rate was set to 2048Hz. The distance between the center lines of adjacent
electrodes is 2cm. To keep the electrode positions consistent across subjects, the position of the first electrode was fixed at
the centerline of the elbow crease. The subjects performed 17 gestures of hand and wrist (including a rest period sEMG)
according to the prompts on the computer screen. Each gesture was repeated seven times, each lasting 5 seconds. To avoid
muscle fatigue, rest 10s between repetitions. In the following experiments, we use five repetitions as the training set and two
repetitions as the test set.
Data processing.To avoid muscle fatigue, rest 10s between repetitions. In the following experiments, we use five repetitions
as the training set and two repetitions as the test set. Bandpass filtered between 10 Hz and 500 Hz with a gain of 500 was
adopted to the raw signal. We use the difference between the corresponding electrodes in the two loops as the input signal of
our model.
Sizes of Training, Validation, and Test Sets. Table 7 shows the division of the training set, validation set, and test set, which
aligns with the common comparison practices in the field. Note that after selecting the parameters using the validation set,
the validation set will be merged into the training set for retraining.
Gesture Classification Task: For this task, we used the GRABMyo dataset for both pre-training and fine-tuning. The
GRABMyo dataset provides the necessary data for gesture classification, but it does not include joint angle information.
Hand Joint Regression Task: Since the GRABMyo dataset lacks joint angle data, we employed the Ninapro DB2 dataset
for this task. Both pre-training and fine-tuning were conducted using data exclusively from Ninapro DB2.
Participant-Dependent Experiments. Our experiments are participant-dependent (user-specific). For each user, we train and
evaluate the model using data exclusively from that user. This approach aligns with the objectives of our study, focusing
on enhancing the model’s robustness and performance for individual users without introducing additional data from other
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Task Type Data Used Samples per User (except rest)

Classification
Training Set Five repetitions per gesture per user 42,500 samples
Validation Set One repetition randomly selected from the training set 8,500 samples
Test Set Two repetitions per gesture per user 17,000 samples

Regression
Training Set Four repetitions per gesture per user 34,000 samples
Validation Set One repetition randomly selected from the training set 8,500 samples
Test Set Two repetitions per gesture per user 17,000 samples

Table 7: Data Splits for Classification (GRABMyo) and Regression (Ninapro DB2) Tasks

participants during pre-training or fine-tuning. This is a common practice in sEMG studies when aiming to optimize
performance for specific users.

G. Supplementary details of the experimental section
All comparison methods reported in our paper were re-implemented by us. This decision was made because different
methods in the literature often use different datasets, select varying subsets of gesture categories, or employ different
evaluation protocols, making direct comparisons challenging. By re-implementing these methods under a consistent
framework, we ensured that all methods were evaluated:
• On the same dataset(s)
• Using the same set of gesture categories
• Under identical training, validation, and testing conditions
• With consistent hyperparameter tuning strategies based on the original papers

G.1. Fairness of Comparison Regarding Pretraining
We want to emphasize that the pretraining in our work is fundamentally different from typical pretraining approaches in
fields like NLP. Unlike models that are pre-trained on large external datasets and then fine-tuned on specific tasks, our
method performs pretraining without introducing any external data. We use only the user-specific training data for both
pretraining and fine-tuning. This means that both our method and the comparison methods are trained and tested on exactly
the same data, ensuring a fair comparison. Our contribution demonstrates that our approach enhances the model’s robustness
and performance using the existing user-specific data even without additional data.

G.2. Evaluation Protocol Compared to the Original Dataset Paper
The original GRABMyo dataset paper did not directly evaluate gesture classification accuracy or provide corresponding
benchmarks for classification tasks. Instead, the dataset’s quality was assessed using metrics like the Area Under the Curve
(AUC) and Equal Error Rate (EER). Therefore, our work does not follow the exact evaluation protocol proposed in the
original paper because such a protocol for gesture classification was not established.

G.3. Details of Evaluation Metrics
Root Mean Square Error (RMSE) is a common metric for evaluating the deviation between predicted and observed values.
As the range of fluctuations in the curves of different joint angles can vary significantly, it is difficult to fairly evaluate the
performance of models using RMSE alone. Normalization of RMSE addresses this issue, resulting in the Normalized RMSE
(NRMSE).

RMSE =

√√√√ N∑
i=1

(θest − θreal)
2

N
,

NRMSE =
RMSE

θmax − θmin
.

(9)

Pearson Correlation Coefficient (CC) is a widely used measure of the linear relationship between two variables. It ranges
from -1 to 1, where a larger CC value indicates greater similarity between the predicted and estimated joint angles curve,
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indicating improved estimation.

CC =

∑N
i=1

(
θest − θest

) (
θreal − θreal

)√∑N
i=1

(
θest − θest

)2√∑N
i=1

(
θreal − θreal

)2 , (10)

where θest and θest are the estimated angle and their average, while θreal and θreal are the real angle and their average. θmax

is the maximum of the real angle, and θmin is the minimum of the real angle.

H. Inference Performance and Parameter Comparison of Models

Model Inference Time Inference Time Parameter Count GPU Memory
GPU (A6000) CPU (AMD EPYC 7543) Allocated

Transformer 3.8 ms 15.1 ms 481169 18.08 MB
Add STEM with weight sharing 3.9 ms 17.6 ms 489233 23.66 MB
Without weight sharing 4.8 ms 27.5 ms 581137 21.65 MB

Table 8: The comparison of inference time, number of parameters, and GPU usage between the model using STEM and a
non-weight sharing transformer layer.

In Table 8, we use the following hyperparameters: Feature dimension is 12, the maximum length is 200, model dimension
is 64, number of attention heads is 2, number of layers is 3, dimension of feedforward network is 256, number of classes
is 17, the dropout rate is 0.1, positional encoding is ’learnable’, the activation function is ’GELU’, and normalization is
’BatchNorm’. The STEM model uses the same parameters as those in the experimental setup of the paper.
Parameter Count: By incorporating STEM, we significantly reduce the model’s parameter count. Specifically, when the
STEM module is added (with weight sharing enabled), the parameter count increases slightly from 481,169 to 489,233, an
increase of about 1.7%. However, if weight-sharing is not used, the parameter count increases substantially to 581,137, a
21% increase.
Inference Time: We measured the inference time on both GPU and CPU. When using the STEM module with weight sharing,
the GPU inference time is 3.9ms, and the CPU inference time is 17.6ms, which is a significant improvement compared to
the case without the STEM module (4.8ms on GPU and 27.5ms on CPU). This indicates that while enhancing short-term
features, the STEM module maintains a low inference time.
GPU Memory Consumption: The relative increase in GPU usage is due to the mechanism of parallel computation that the
GPU activates when using a sliding window.

H.1. Parameters search and the model’s sensitivity
The selection of the masking ratio (0.15) and the average length of masked segments was informed by a systematic
hyperparameter search using the (0.05, 0.15, 0.25, 0.35, 0.45), (1,3,5,7,9) range. This was conducted via Wandb, ensuring
a comprehensive evaluation of the model’s sensitivity to these parameters. We observed that a masking ratio of 0.15 and
an average length of 3 consistently yielded the best performance in terms of classification accuracy. While the accuracy
fluctuated by approximately 4% across the tested range, the 0.15 ratio provided an optimal balance between introducing
sufficient noise for robust feature learning and retaining enough original signal for effective pretraining. The choice of
segment length further complements this masking strategy, as it ensures that the model learns to reconstruct meaningful
patterns while not overly relying on adjacent unmasked data. These parameters jointly enable the model to focus on
capturing intrinsic signal variability, thereby enhancing its resilience to real-world noise scenarios. Such robustness aligns
well with our goal of improving generalization in noisy environments.
Regarding window sizes of STEM, we experimented with varying configurations and found that a short-term window size of
41 and 21 with a step size of 1 provided the best balance between noise isolation and feature granularity. We use Wandb to
search for the best window size; the search space is (11,21,31,41,51,61). The accuracy fluctuated by approximately 3%
across the tested range. In the future, we will collaborate with biologists to explore the relationship between window size
and different gesture classifications on a biological level.

18


