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ZERO4D: TRAINING-FREE 4D VIDEO GENERATION
FROM SINGLE VIDEO USING OFF-THE-SHELF VIDEO
DIFFUSION MODELS
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Figure 1: Zero4D is a training-free multi-view synchronized video generation framework that takes
a single monocular video and generates a grid of camera-time consistent frames. It first utilizes a
depth estimation model to warp target view frames from the input video (top-left), then repurposes
the image-to-video diffusion model to sample multi-view frames synchronized in both camera and
temporal dimensions (top-right). Using an off-the-shelf video diffusion model without training, our
approach can generate multi-view videos for both synthesized and real-world footage. Project Page.

ABSTRACT

Multi-view and 4D video generation have recently emerged as important topics
in generative modeling. However, existing approaches face key limitations: they
often require orchestrating multiple video diffusion models with additional training,
or involve computationally intensive training of full 4D diffusion models—despite
limited availability of real-world 4D datasets. In this work, we propose a novel
training-free 4D video generation method that leverages off-the-shelf video dif-
fusion models to synthesize multi-view videos from a single input video. Our
approach consists of two stages. First, we designate the edge frames in a spatio-
temporal sampling grid as key frames and synthesize them using a video diffusion
model, guided by depth-based warping to preserve structural and temporal consis-
tency. Second, we interpolate the remaining frames to complete the spatio-temporal
grid, again using a video diffusion model to maintain coherence. This two-step
framework allows us to extend a single-view video into a multi-view 4D represen-
tation along novel camera trajectories, while maintaining spatio-temporal fidelity.
Our method is entirely training-free, requires no access to multi-view data, and
fully utilizes existing generative video models—offering a practical and effective
solution for 4D video generation.
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1 INTRODUCTION

Since the introduction of the diffusion and foundation models (Ho et al., 2020; Rombach et al.,
2021; Xie et al., 2024), 3D reconstruction has advanced significantly, leading to unprecedented
progress in representing the real world in 3D models. Combined with generative models, this success
drives a renaissance in 3D generation, enabling more diverse and realistic content creation. These
advancements extend beyond static scene or object reconstruction and generation, evolving toward
dynamic 3D reconstruction and generation that aims to capture the real world. Previous works
(Bahmani et al., 2024b; Zeng et al., 2024; Singer et al., 2023; Zhao et al., 2023; Bahmani et al.,
2024a) leverage video diffusion models and Score Distillation Sampling (SDS) to enable dynamic
3D generation. However, most existing approaches primarily focus on generating dynamic objects in
blank or simplified backgrounds (e.g., text-to-4D generation), leaving the more challenging task of
reconstructing or generating real-world scenes from text prompts, reference images, or input videos
largely unaddressed. In contrast to the abundance of high-quality datasets for 3D and video tasks, 4D
datasets with multiview, temporally synchronized video remain extremely scarce. As a result, a core
challenge in training 4D generative models for real-world scenes lies in the lack of comprehensive,
large-scale multi-view video datasets. To overcome these limitations, recent works such as 4DiM
(Watson et al., 2024) propose a joint training diffusion model with 3D and video with a scarce 4D
dataset. CAT4D (Wu et al., 2024) proposes training multi-view video diffusion models by curating
a diverse collection of synthetic 4D data, 3D datasets, and monocular video sources. DimensionX
(Sun et al., 2024) trains the spatial-temporal diffusion model independently with multiple LoRA,
achieving multi-view videos via an additional refinement process. Despite several approaches, the
scarcity of high-quality 4D data makes it difficult to generalize to complex real-world scenes and
poses fundamental challenges in training large multi-view video models.

To address these challenges, we introduce Zero4D—a novel zero-shot framework for 4D video
generation. Zero4D generates synchronized multi-view 4D video from a single monocular input
video by leveraging an off-the-shelf video diffusion model (Blattmann et al., 2023), without requiring
any additional training. Building upon the prior observations (Wang et al., 2024a; Wu et al., 2024)
that 4D video is composed of multiple video frames arranged along the spatio-temporal sampling
grid (i.e., camera view and time axes), generating a 4D video can be regarded as populating the
sampling grid with consistent spatio-temporal frames. Consequently, our approach achieves this
through two key steps: (1) We first designate the boundary frames of the spatio-temporal sampling
grid as key frames and synthesize them using a video diffusion model. To ensure structural fidelity,
we incorporate a depth-based warping technique as guidance, encouraging the generated frames to
conform to the underlying scene geometry. (2) We repurpose the interpolation capabilities of a video
diffusion model to fill in the remaining frames through bidirectional diffusion sampling, resulting in
a fully populated and temporally coherent 4D grid. Throughout both stages, our method enforces
spatial and temporal consistency across the entire grid.

Our main contributions can be summarized as follows:

• We propose a novel framework that can generate 4D video from a single video via an
off-the-shelf video diffusion model without any training or large-scale datasets. To the
best of our knowledge, our approach is the first interpolation based training-free method to
generate synchronized multi-view video— previously regarded as infeasible.

• This is made possible by a novel synchronization mechanism, which guarantees high-quality
outputs while maintaining global spatio-temporal consistency. Specifically, we alternate
bidirectional video interpolation across both the camera and temporal axes to align motion
and appearance throughout the sequence.

• Our framework outperforms baselines in maintaining global spatio-temporal consistency
and demonstrates robust 4D video generation capability, achieving competitive performance
across diverse quantitative and qualitative evaluations even without additional training.

2 RELATED WORK

Video generation with camera control. Several studies try to train a multi-view diffusion model for
spatially consistent image generation (Shi et al., 2023; Wang & Shi, 2023; Liu et al., 2023; Kant et al.,
2024; Gao et al., 2024; Melas-Kyriazi et al., 2024). ReCapture (Zhang et al., 2024) trains the novel

2
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Figure 2: Qualitative comparison. We compare our method with baseline models in terms of
novel-view video generation and global spatio-temporal consistency. Given a single input video,
both baselines and ours generate outputs across multiple views and time steps. To evaluate global
consistency, we leverage baselines to produce bullet-time videos at all input frames and re-align
them to a fixed viewpoint. We also visualize x–t slices (red lines) to highlight temporal coherence.
While baselines exhibit inconsistencies across views and time, our method preserves spatio-temporal
coherence and yields high-quality multi-view videos.
Table 1: Comparison of camera-controllable video diffusion models. Unlike prior approaches,
Zero4D can generate 4D-consistent videos with camera control without requiring additional training.

Model Training-Free Camera Control 4D Consistency

Camera Controllable Video Diffusion Model ✗ ✓ ✗
4D Video Diffusion Model ✗ ✓ ✓
Zero4D (Ours) ✓ ✓ ✓

camera trajectory video diffusion model from a single reference video with existing scene motion.
CameraCtrl (He et al., 2024) proposes a plug-and-play camera module in the video diffusion model
to control video generation with precise and smooth camera viewpoints. TrajectoryCrafter (YU
et al., 2025) and TrajectoryAttention (Xiao et al., 2025) fine-tune video diffusion models to generate
novel-view videos along a given camera trajectory using depth-based warping. These approaches can
be categorized as camera-controllable video diffusion models. However, although these models can
synthesize novel views conditioned on warped videos, they fail to produce 4D-consistent videos that
ensure global consistency across multiple views and multiple time steps (see Table 1).

4D generation. Recent advancements in 4D generation have been driven by numerous pioneering
works exploring various conditioning methods. Several approaches have leveraged score distillation
sampling in conjunction with video diffusion models or multi-view image diffusion models to
generate 4D content from text prompts (Bahmani et al., 2024b; Zeng et al., 2024; Singer et al., 2023).
However, these approaches largely focus on generating dynamic objects in blank backgrounds. A
notable example is CAT4D (Wu et al., 2024), which synthesizes 4D videos conditioned on multiple
input modalities using a multi-view video model trained on a curated synthetic multi-view dataset.
Similarly, Van Hoorick et al. (2024b) introduces a framework for novel-view synthesis of dynamic
4D scenes from a single video. This method is trained on synthetic multi-view video data with
corresponding camera poses, enabling high-fidelity 4D reconstructions. Concurrently, Yu et al.
(2024) proposes text-to-4D scene generation pipelines that integrate video diffusion models with
canonical 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023), ensuring spatio-temporal consistency
in the generated 4D outputs. Furthermore, Wang et al. (2024a) enhance video diffusion models by
introducing a parallel camera-temporal token stream and a learnable synchronization layer, which
effectively fuses independent tokens to maintain camera and temporal consistency across generated
frames. While these 4D video diffusion models enable camera control and maintain multi-view and
temporal consistency, they rely on training a large diffusion model with 4D data, which is limited in
availability and costly to obtain (see Table 1).

3
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Figure 3: Generation pipeline of Zero4D: (a) Key frame generation step: Starting from the
input video(shown as the gray-shaded row), we sequentially generate boundary frames—novel view
synthesis, end-view video generation, and end-frame view synthesis—where each step leverages the
results of the previous one. (b) Spatio-temporal bidirectional interpolation step: Starting from
the noisy frames, we alternately perform camera-axis and time-axis interpolation, each conditioned
on boundary frames, to progressively denoise the 4D grid. Through this bidirectional process, noisy
latents are refined into globally coherent spatio-temporal videos.

3 ZERO4D

Let x[i, j] ∈ RH×W , i = 1, · · · , N, j = 1, · · · , F denotes the image at the i-th camera viewpoint
and the j-th temporal frame, where H and W denote the height and width of the image, respectively
(see Fig. 3(a)). Then, the input video captured from a single camera viewpoint c is denoted as x[c, :],
whereas the multi-view images at the temporal frame f are represented by x[:, f ]. The goal of Zero4D
is then to populate the spatio-temporal video grid (or camera-time grid) x[:, :] by generating frames
across multiple camera poses. The key innovation is that the spatio-temporal grid can be populated
entirely at inference time, without any training—a task once thought impossible. As illustrated
in Fig. 3, the overall reconstruction pipeline of Zero4D is composed of two steps: 1) key frame
generation and 2) spatio-temporal bidirectional interpolation along the time and camera axes in an
alternating manner. In this section, we describe each in detail.

3.1 KEY FRAME GENERATION

As shown in Fig. 3(a), the key frame generation is achieved through three steps. Specifically, given a
input video denoted by x[1, :], we first perform novel-view synthesis, followed by end-view video
frame generation. These two steps are achieved through diffusion sampling, guided by warped views.
Finally, we complete the rightmost column using diffusion-based interpolation sampling.

Novel view synthesis (a1). First, we synthesize novel view video x[:, 1] from the first frame image
x[1, 1] using the I2V diffusion model. Here, we incorporate the warped frames xw[:, 1] as guidance
to ensure the generated novel views align with the warped images from input video. The warped
frames xw[:, :] are computed as follows. Given an input video x[1, :], we generate novel views by
first estimating a per-frame depth map D[1, :] using a monocular depth estimation model (Piccinelli
et al., 2024). This depth information enables depth-based geometric warping, wherein each frame of
the input video is unprojected into 3D space and reprojected into a target viewpoint in p(n) ∈ PN

where PN defines the desired set of camera views. This produces the warped frames:

xw[n, i] =W (x[1, i], D[1, i], p(n),K) , i = 1, . . . , F, (1)

for n = 1, · · · , N , where K is the intrinsic camera matrix. The warping functionW(·) unprojects
each pixel using its estimated depth and reprojects it into the target view. Formally, for each pixel
location ri in the i-view, the warped pixel location rj in the novel-view at the j-th camera location is
computed as:

rj = KPi→jDi(ri)K
−1ri, (2)

where Pi→j is the transformation from the input to the novel-view, and Di(ri) is the depth at ri.
Since rj may not align exactly with integer pixel locations, interpolation is applied to assign pixel

4
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Algorithm 1: Zero4D overall pipeline
Input: Input video x[1, :], warped views xw[:, :], masks mw[:, :], Video diffusion interpolator Iθ
Output: Spatio–temporally consistent 4D grid x0[:, :] ∈ RN×F

1 Stage A — Boundary/Keyframe generation
2 x[:, 1] ∼ pθ(x[:, 1] | xw[:, 1],mw[:, 1], c[1, 1]) // (a1) left column

3 x[N, :] ∼ pθ(x[N, :] | xw[N, :],mw[N, :], c[N, 1]) // (a2) bottom row

4 for t← T to 0 do // (a3) right column

5 xt−1[:, F ]← Iθ(xt[:, F ], σt; c[1, F ], c[N,F ], xw[:, F ])

6 c[:, 1], c[N, :], c[:, F ]← Encode({x[:, 1], x[N, :], x[:, F ]})

7 Stage B — Spatio–temporal bidirectional interpolation
8 xT [:, :] ∼ N (0, I)

9 for t← T to 1 do
10 for i← 1 to F do // Camera-axis interpolation

11 xt−1[:, i]← Iθ(xt[:, i], σt; c[1, i], c[N, i], xw[:, i],mw[:, i])

xt[:, i]← xt−1[:, i] +
√
σ2
t − σ2

t−1 ϵ // re-noise

12 for j ← 1 to N do // Time-axis interpolation

13 xt−1[j, :]← Iθ(xt[j, :], σt; c[j, 1], c[j, F ], xw[j, :],mw[j, :])

14 return x0[:, :]

values. However, missing regions (e.g., occlusions from depth-based projection) often appear in xw.
To address this, we utilize a video diffusion model (Blattmann et al., 2023) parameterized by θ to
inpaint the missing regions and ensure consistency within the 4D video grid. This can be considered
as conditional sampling under the condition of the warped image, occlusion mask, and the input
video conditioning. For the case of novel-view synthesis at the temporal frame index j = 1, this
corresponds to

x[:, 1] ∼ pθ (x[:, 1] | xw[:, 1],mw[:, 1], c[1, 1]) , (3)

where pθ corresponds to the conditional distribution from the trained diffusion model, mw[:, 1] is
an occlusion mask that identifies missing pixels, and c[1, 1] is conditioned embedding vector from
x[1, 1]. The specific details of conditional video diffusion sampling will be described in Section 3.3.

End view video generation (a2). Similarly, we can synthesize the end-view video x[N, :] from the
generated view x[N, 1] utilizing warp-guided diffusion sampling.

x[N, :] ∼ pθ (x[N, :] | xw[N, :],mw[N, :], c[N, 1]) . (4)

This process follows the same video sampling approach as first-frame novel-view synthesis; however,
it differs in that it synthesizes the video from the final camera position.

End frame novel-view synthesis (a3). Finally, we generate video at the end-frame novel-view
x[:, F ], which constitutes the rightmost column of the 4D grid in Fig. 3(a). Given that we already
have x[1, F ] from the input video and the synthesized end-view frame x[N,F ] derived from x[N, :],
we incorporate both images to enhance consistency. To this end, we repurpose a video interpolation
method that simultaneously conditions on both c[1, F ] and c[N,F ] for novel-view synthesis. During
interpolation, we further incorporate the warped image and its mask to fully exploit the available
prior information. In particular, we synthesize the last column x[:, F ] leveraging video diffusion
interpolation method (Yang et al., 2025):

xt−1[:, F ] = Iθ
(
xt[:, F ], σt, c[1, F ], c[N,F ], xw[:, F ]

)
for t = T → 0. (5)

where Iθ denotes the one-step denoising using video interpolation. The final novel-view frame
x[:, F ] is obtained iteratively by applying Iθ over diffusion time steps t = T → 0. The detailed
implementation of the interpolation process is provided in Algorithm 2 of Appendix A.4.

5
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Input video Camera orbit controls Input video Dolly and transition controls

Figure 4: Result from Zero-4D. Our model generates high-quality 4D videos from a single input
video, enabling diverse camera motions such as orbit, transition, and dolly movements. As illustrated,
the synthesized videos maintain spatial and temporal consistency across multiple views and frames,
effectively rendering novel perspectives that are not present in the original input. Best viewed with
Acrobat Reader. Click first two rows’ images to play the video clip.

3.2 SPATIO-TEMPORAL BIDIRECTIONAL INTERPOLATION

As shown in Fig. 3(b), once the keyframes are generated, the remaining task is to fill in the missing
sampling grid at the center so the final resulting 4D video remains consistent across both the camera
and time axes. Accordingly, it is essential to perform conditioned sampling using the key frames
and adjacent frames from the camera and temporal axes. However, a naive image-to-video diffusion
model can only condition on a single or two end frames. To address this challenge, we first repurpose
a video interpolation approach to generate spatio-temporally consistent samples under multi-view
conditions. The key idea is to alternate interpolation along both the camera and time axes, thereby
guiding the overall diffusion trajectory to satisfy the multiple constraints from the keyframes. In this
work, we leverage ViBiDSampler (Yang et al., 2025) as the interpolator, with implementation details
provided in Appendix A.5 (see Algorithm 2).

Camera axis interpolation. Starting from the initial noise xT [:, :] ∼ N (0, I), we select a specific
frame in the 4D grid (a column) xt[:, i], and perform an interpolation denoising process(6) using the
edge-frame conditions c[1, i] and c[N, i]:

xt−1[:, i]← Iθ(xt[:, i], σt, c[1, i], c[N, i], xw[:, i]) (6)

Here, the image condition c[1, i] is applied first, along with the warped view to guide the diffusion
denoising step. The video is then perturbed with noise again, flipped along the camera axis, and
subjected to another diffusion denoising step using c[N, i] as the condition. Through these two
conditioning steps, xt[:, i] integrates information from both c[1, i] and c[N, i], enabling interpolation-
based denoising that preserves consistency across the camera axis. Before proceeding to time axis
interpolation, we apply a re-noising step to ensure smooth transitions across generated frames.

Time axis interpolation. After ensuring spatial consistency across the camera axis, we interpolate
frames along the time axis to maintain temporal coherence. For each row xt[j, :] in the 4D grid, we
perform an interpolation denoising (7) using the start and end frame conditions c[j, 1] and c[j, F ].

xt−1[j, :]← Iθ
(
xt[j, :], σt, c[j, 1], c[j, F ], xw[j, :]

)
(7)

Initially, c[j, 1] is applied along with the warped view to guide the diffusion denoising step. The
frame is then perturbed with noise, flipped along the time axis, and another diffusion denoising

6
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step is performed using c[j, F ] as the condition. Through this bidirectional conditioning process,
xt[j, :] effectively integrates information from both c[j, 1] and c[j, F ], facilitating interpolation-based
denoising that ensures smooth transitions along the time axis. Throughout the diffusion steps, we
perform denoising by alternating interpolation along the camera axis and time axis. This approach
maintains global coherence while ensuring consistency in multi-view video generation.
3.3 DETAILS OF CONDITIONAL VIDEO DIFFUSION

Our work is built upon Stable Video Diffusion (SVD) (Blattmann et al., 2023), an image-to-video
diffusion model that follows the principles of the EDM framework (Karras et al., 2022). SVD utilizes
an iterative denoising approach based on an Euler step method, which progressively transforms a
Gaussian noise sample xT into a clean signal x0:

xt−1(xt;σt, c) := x̂c(xt) +
σt−1

σt

(
xt − x̂c(xt)

)
, (8)

where the initial noise is xT ∼ N (0, I), x̂c(xt) is the denoised estimate by Tweedie’s formula using
the score function trained by the neural network parameterized by θ, and σt is the discretized noise
level for each timestep t ∈ [0, T ].

Now, we describe how to modify SVD to enable conditional sampling under the condition on warped
image xw, occlusion mask m, and conditioning input c. For convenience, we refer to xt[:, :] as xt.
From the formulation of the reverse diffusion sampling process in Eq. (8), the reverse diffusion
process can be modulated by conditioning on a known scene-prior xknown (Lugmayr et al., 2022):

x̄c(xt) = x̂c(xt) ·m+ xknown · (1−m), (9)

where m is a mask that determines which parts of the scene are known, guiding the denoising process
by preserving the warped pixels while allowing the diffusion model to inpaint the missing areas. In
our approach, rather than relying on an externally defined scene-prior xknown, we leverage the warped
frames xw obtained from depth-based warping as the conditional guidance. Specifically, we redefine
the denoising process by replacing xknown with xw and substituting m with the occlusion mask mw:

x̄c(xt) = x̂c(xt) ·mw + xw · (1−mw). (10)

Here, the occlusion mask mw ensures that the visible regions in xw directly guide the denoising
process, while the unseen parts are inpainted using the learned prior. By incorporating this modified
formulation into the reverse diffusion process, we obtain the following sampling update:

xt−1(xt;σt, c)← x̄c(xt) +
σt−1

σt

(
xt − x̂c(xt)

)
, (11)

where the target camera viewpoints influence the generated frames through the depth-warped obser-
vations xw, ensuring geometric consistency during video synthesis. Throughout the reverse sampling,
we iteratively apply this procedure. Additionally, following the approach of (Lugmayr et al., 2022;
Liu et al., 2024), we incorporate resampling annealing to further enhance output quality.

4 EXPERIMENTS

We used the SVD (Blattmann et al., 2023) as an I2V model without additional training. The image
resolution was fixed at 576×1024, with 25 cameras and a sequence length of 25 frames, a total
of multi-view video frames are 625=252. All frames were generated to form a multi-view video
following the target camera trajectory. For depth-based warping, we utilized off-the-shelf depth
models (Hu et al., 2024) with various camera movements, including orbit controls (right, left), dolly
in/out, and vertical transitions (up, down), with further details on the camera movements provided
in Appendix A.3. Runtime performance and user study in appendix A.1 and A.4 confirm that our
method is much more memory-efficient and competitive in runtime, outperforming the baselines.

Baseline models. We compare against state-of-the-art video generation models that support either
camera control or multi-view generation: (1) CameraCtrl (He et al., 2024) is a camera-controllable
video diffusion model. Given a single input image, it can synthesize bullet-time videos by following
a predefined camera trajectory. (2) TrajectoryCrafter (YU et al., 2025), a representative baseline,
synthesizes novel-view and bullet-time videos from warped frames aligned to a target trajectory. (3)
TrajectoryAttention (Xiao et al., 2025) similarly leverages warped video frames from the input video
to generate both novel-view and bullet-time videos. (4) SV4D (Xie et al., 2024) is an image-to-video

7
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Table 2: Quantitative result in novel view video generation. We evaluate our method against
baselines on VBench, comparing multi-view video results based on novel-view generation from a
fixed camera view. Our method achieves the best performance in both frame consistency across videos
and image quality of individual frames. (* denotes baselines evaluated with bullet-time re-alignment)

Method Subject
Consistency ↑

Background
Consistency ↑

Temporal
Flickering ↑

Motion
Smoothness ↑

Dynamic
Degree ↓

Image
Quality ↑

Aesthetic
Quality ↑

SV4D 88.76% 91.36% 94.21% 95.28% 49.20% 46.89% 34.36%
GCD 90.31% 94.13% 96.14% 93.21% 19.23% 45.77% 32.98%
TrajectoryAttention 88.83% 91.42% 96.86% 97.89% 59.50% 42.98% 37.92%
TrajectoryCrafter 93.47% 96.93% 98.42% 99.26% 21.00% 52.10% 44.41%
Ours 95.55% 95.75% 97.48% 98.34% 27.50% 51.12% 38.22%

CameraCtrl* 91.71% 91.05% 89.98% 91.03% 98.00% 40.12% 35.86%
TrajectoryAttention* 94.72% 94.93% 97.61% 98.28% 27.50% 47.75% 42.88%
TrajectoryCrafter* 94.71% 94.48% 94.74% 96.81% 32.50% 48.81% 35.86%
Ours 95.55% 95.75% 97.48% 98.34% 27.50% 51.12% 38.22%

diffusion model capable of generating multiple novel-view videos from a single input video. (5)
GCD (Van Hoorick et al., 2024a) also takes a single video as input and generates novel views of
dynamic 4D scenes by controlling azimuth and elevation angles.

Evaluation protocol. We evaluate our method in two categories: (1) fixed novel-view video
generation and (2) bullet-time video generation. For novel-view evaluation, we adopt VBench (Huang
et al., 2024), which measures seven aspects of video quality, including identity retention, motion
coherence, and temporal consistency. For bullet-time evaluation, we assess 3D consistency using
pose errors (ATE, RPE-T, RPE-R) (Goel et al., 1999) obtained via COLMAP (Schönberger & Frahm,
2016) and MEt3R (Asim et al., 2024), a recent metric based on DUSt3R (Wang et al., 2024b) that
quantifies geometric consistency from unposed frames. We conducted all experiments on 50 videos
randomly sampled from Webvid-10M (Bain et al., 2021), comparing ours with baseline models.
4.1 FIXED NOVEL-VIEW VIDEO GENERATION

We evaluate our method in two settings: (1) novel-view generation for video quality, and (2) spatio-
temporal consistency for coherence across views and time.

Evaluation of direct novel-view generation. We assess the quality of novel-view videos from
fixed target viewpoints using VBench (Huang et al., 2024). Zero4D retrieves x[n, :] corresponding
to a target camera viewpoint p(n) from the 4D video grid x[:, :] synthesized from the input video
x[1, :], while baselines directly generate x[n, :] at viewpoint p(n). For this experiment, we consider
baselines capable of direct novel-view generation at viewpoint n, SV4D, GCD, TrajectoryAttention,
and TrajectoryCrafter. As shown in the upper part of Table 2, Zero4D, despite being training-free,
achieves the highest score in subject consistency and ranks second in five other categories. This
demonstrates that ours achieves robust novel-view video generation performance, comparable to
models pretrained on large-scale datasets.

Evaluation of global spatio-temporal consistency. To examine whether models maintain global
4D consistency, we construct re-aligned videos at a fixed viewpoint from generated bullet-time
videos. For each input frame x[1, i] (i = 1, . . . , F ), baselines generate a bullet-time sequence x[:, i]
along a predefined trajectory. These sequences are aggregated into a 4D grid x[:, :], from which the
fixed-view sequence x[n, :] at viewpoint p(n) is extracted. We consider three baseline models capable
of bullet-time video generation: CameraCtrl, TrajectoryAttention, and TrajectoryCrafter. In contrast,
Zero4D directly retrieves x[n, :] from its generated 4D grid without requiring bullet-time re-alignment.
As shown in the Table 2 (below the horizontal separator), ours achieves the highest scores in five
VBench categories and second-best in the remaining two. This strong performance indicates that
spatio-temporal interpolation enables Zero4D to preserve global consistency across views and time,
whereas baseline models, unable to sample jointly across multi-view and multi-time dimensions, yield
inferior consistency. Although baseline models generate plausible bullet-time results at individual
time steps, re-alignment to a fixed viewpoint exposes frequent inconsistencies, particularly in the
background and the x–t slices shown in Figure 2, which clearly reveal the inconsistencies.

4.2 BULLET-TIME VIDEO GENERATION

We design two evaluations for bullet-time video generation: (1) direct generation along a camera
trajectory to assess spatial coherence, and (2) multi-view alignment at fixed time steps to measure
global 4D consistency.

8
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Evaluation of direct bullet-time generation. We compare Zero4D against baselines (CameraCtrl,
TrajectoryAttention, TrajectoryCrafter) capable of bullet-time generation. Given an input video
x[1, :], these models generate bullet-time sequences x[:, i] by smoothly moving the camera along
a predefined trajectory at fixed time i. This setting provides a direct evaluation of each model’s
ability to produce spatially coherent bullet-time videos from the input. As shown in Table 3 (upper
part), Zero4D attains comparable scores to baselines that are explicitly trained for novel-view video
generation, despite being a training-free approach.

Table 3: Bullet-time video quantitative comparisons. We
report results on (1) direct bullet-time generation for spatial
coherence and (2) multi-view consistency by re-aligning
outputs at fixed time steps.(* denotes baselines evaluated
with novel-view re-alignment)

Method ATE (m, ↓) RPE-T (↓) RPE-R (deg ↓) MEt3R ↓
CameraCtrl 0.185 0.155 0.57 0.0264
TrajectoryAttention 0.182 0.113 0.25 0.0202
TrajectoryCrafter 0.170 0.140 2.26 0.0224
Ours 0.190 0.142 0.53 0.0307

TrajectoryAttention* 5.582 3.377 1.65 0.1000
TrajectoryCrafter* 0.211 0.251 3.61 0.0930
Ours 0.190 0.142 0.53 0.0307

Evaluation of multi-view consis-
tency in bullet-time. To further
assess global 4D consistency, we
construct bullet-time videos by re-
aligning novel-view outputs at a fixed
time step. For baseline models, novel-
view videos x[n, :] are generated at
each target viewpoint p(n) along the
predefined camera trajectory, and the
frames corresponding to the same
time index are re-aligned to form a
bullet-time sequence x[:, :]. In con-
trast, ours directly retrieves the cor-
responding sequence x[:, i] from its
generated 4D grid x[:, :], without requiring re-alignment. As shown in Table 3 (below the horizontal
separator), Zero4D maintains global coherence across views and time, thereby achieving better accu-
racy in pose estimation (ATE, RPE-T, RPE-R) and lower MEt3R scores, surpassing the performance
of baseline approaches.

Table 4: Quantitative ablation. Ablation studies on generated videos show that incorporating all
components yields the best performance.

Method ATE (m,↓) RPE-T (m, ↓) RPE-R (deg, ↓) Subject
Consistency ↑

Background
Consistency ↑

Temporal
Flickering ↑

Motion
Smoothness ↑

Dynamic
Degree ↓

Image
Quality ↑

Aesthetic
Quality ↑

Ours 0.190 0.142 0.53 95.55% 95.75% 97.48% 98.34% 27.50% 51.12% 38.22%
w/o STBI 0.175 0.149 0.34 93.23% 92.63% 93.28% 95.24% 100% 52.38% 43.21%
w/o warp 0.501 0.251 0.89 93.73% 93.38% 93.98% 96.12% 47.29% 43.79% 36.11%

Ablation. We performed ablation studies under two settings: (1) Without warped frame guidance:
removing warped frames from the input degrades image fidelity and weakens structural details.
(2)Without spatio-temporal bidirectional interpolation (STBI): generating each novel-view indepen-
dently breaks multi-view coherence. Table 4, evaluated with ATE, RPE-T, RPE-R in the bullet-time
setting and VBench (Huang et al., 2024) for fixed novel-view, shows that both components are
essential for maintaining fidelity and global consistency. Additional qualitative ablation results are
provided in Appendix A.5 (see Figure 7).

5 CONCLUSION

In this work, we introduced a novel training-free approach for synchronized multi-view video gen-
eration using an off-the-shelf video diffusion model. Our method generates high-quality 4D video
through depth-based warping and spatio-temporal bidirectional interpolation, ensuring structural
consistency across both spatial and temporal domains. Unlike prior methods that rely on extensive
training with video or 4D datasets, our framework achieves competitive performance without ad-
ditional training. Experiments demonstrate that our approach produces synchronized multi-view
videos with superior subject consistency, smooth motion trajectories, and temporal stability. This
makes our framework a practical solution for multi-view video generation, particularly in scenarios
where large-scale 4D datasets and powerful computational resources are limited. Future work may
investigate extensions to more complex dynamic scenes, adaptive interpolation strategies, or fusion
with other generative models to further enhance realism and flexibility.

Limitation and Potential Negative Impacts. While our method enables training-free 4D generation,
it requires multiple rounds of bidirectional diffusion sampling, which leads to increased inference time.
Additionally, since the 4D generation is guided by the prior knowledge encoded in the pre-trained
video diffusion model, our method may inherit potential drawbacks of generative models.

9
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A APPENDIX

A.1 USER STUDY.

Table 5: User study. Winning rates across four evaluation
metrics. Our method consistently outperforms the baselines,
particularly in General Quality and Background Quality.

Method View Angle General Quality Smoothness BG Quality
Ours 30% 36% 33% 39%
TrajectoryCrafter 32% 30% 27% 28%
TrajectoryAttention 27% 26% 34% 23%
CameraCtrl 11% 8% 6% 10%

To evaluate our approach, we con-
ducted a user study comparing Ours,
TrajectoryCrafter (YU et al., 2025),
TrajectoryAttention (Xiao et al.,
2025), and CameraCtrl (He et al.,
2024) across four key metrics: View
Angle, General Quality, Smoothness,
and Background Quality. Participants
viewed generated videos and selected
the most visually appealing results for
each criterion, providing subjective
feedback on the overall quality and realism. As shown in Table 5, our method consistently achieved
the highest user preference, particularly excelling in General Quality (36%) and Background Quality
(39%), which highlights its superior fidelity and ability to preserve scene details. The View Angle
metric (30%) confirms accurate and convincing novel-view synthesis, while Smoothness (33%)
indicates our approach produces fluid transitions with minimal distortion or artifacts. These results
collectively demonstrate that our method offers a more immersive and visually coherent experience
compared to competing techniques.

A.2 PRE-TRAINED MODEL CHECKPOINTS

Zero4D is developed based on publicly available, pre-trained generative models for both images and
videos. For transparency and reproducibility, we specify below the exact versions of each model
employed in our framework:

• Depth estimation model: Depthcrafter 1

• Image-to-Video generation model: stable-video-diffusion-img2vid-xt2

A.3 CAMERA TRAJECTORY CONTROL

Orbit left Orbit right Transition up

Transition down Dolly in Dolly out

Figure 5: Camera trajectory visualization. With
a monocular depth estimation model, our approach
can generate various novel view videos with spatio-
temporal synchronized videos.

We support various camera motions for novel
view synthesis, leveraging depth information for
realistic scene transformation:
Camera orbit rotation: Horizontal camera
movement around the subject, creating a side-
to-side viewing effect. The depth map guides
proper parallax by determining each pixel’s dis-
placement based on its relative depth.
Dolly movement: Forward/backward camera
translation that adjusts focal length to maintain
subject size. For dolly-in, foreground elements
remain stable while the background compresses;
for dolly-out, the background expands naturally.
Elevation transition: Vertical camera move-
ment that rotates the viewpoint up or down.
Depth information ensures accurate perspective
shifts as the camera changes height, maintaining
geometric consistency.
Our system utilizes monocular depth estimation to construct a pseudo-3D representation of the scene.
This depth map is crucial for maintaining geometric consistency during novel view synthesis, allow-
ing for convincing parallax effects and occlusion handling. By projecting pixels according to their
estimated depth values, we achieve realistic scene transformations without explicit 3D reconstruction.

1https://huggingface.co/tencent/DepthCrafter
2https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt
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A.4 DETAILS OF ZERO4D IMPLEMENTATION

Algorithm 2: Iθ : A sampling step of extended ViBiDSampler for bidirectional interpolation.
1: function Iθ(xt, σt, cstart, cend, xw)
2: x̂cstart ← Dθ(xt;σt, cstart) ▷ EDM denosing
3: x̄cstart ← x̂cstart ·m+ xw · (1−m)
4: xt−1,cstart

← x̄cstart
+ σt−1

σt
(xt − x̂∅)

5: xt, cstart ← xt−1,cstart
+
√
σ2
t − σ2

t−1ϵ ▷ Re-noise
6: xt, cstart ← flip(xt, cstart) ▷ Time reverse
7: x̂′

cend
← Dθ(x

′
t, cstart;σt, cend) ▷ EDM denoising

8: x̄′
cend
← x̄′

cend
·m+ xw · (1−m)

9: x′
t−1 ← x̄′

cend
+ σt−1

σt
(x′

t, cstart − x̂′
∅)

10: x′
t−1 ← flip(x′

t−1) ▷ Time reverse
11: return xt−1

12: end function

Algorithm 3: Novel view synthesis and end-view video generation algorithm from Liu et al.
(2024)
Input: Warped frames xw, opacity mask m
Output: Input video x0

1 xT ∼ N (0, 1)
2 for t← T to 1 do
3 if t > T − T guide then
4 for r ← 1 to R do
5 x̂0 ← Predict(xt)

6 if r ≤ Rguide then
7 x̂0 ← Dθ(xt; σt, cx0

)
8 x̄0 ← x̂0 ·m+ xw · (1−m)
9 else

10 x̄0 ← x̂0

11 xt−1 ← x̄0 +
σt−1

σt
(xt − x̂0)

12 if r < R then
13 xt ∼ N (x̄0, σt)

14 else
15 x̂t−1 ← Dθ(xt; σt, cx0)
16 xt−1 ← x̄0 +

σt−1

σt
(xt − x̂0)

17 return x0

Details of interpolation. To generate globally consistent 4D videos, we adapt the interpolation
strategy during spatio-temporal video generation. Specifically, we leverage ViBiDSampler (Yang
et al., 2025) as the interpolator Iθ. ViBiDSampler is a state-of-the-art training-free video interpolation
method designed for image-to-video diffusion models. Given two conditioning frames, it alternates
denoising along the temporal axis to synthesize intermediate frames. In our framework, we extend
this process by incorporating warped-frame guidance (see Algorithm 2), which provides additional
geometric cues. This modification refines the interpolation process, leading to more faithful structure
preservation and improved global spatio-temporal coherence across the generated 4D video grid.

Novle-view synthesis. Algorithm 3 outlines the process for generating novel-view videos from a
single monocular video. We first apply novel view synthesis to the initial frame using an I2V diffusion
model Blattmann et al. (2023) to produce the novel view x[:, 1]. For this, depth-based warping priors
from the input video are incorporated to enable inpainting-based synthesis. Specifically, using an
off-the-shelf depth estimation model Piccinelli et al. (2024); Hu et al. (2024), we warp the original
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Figure 6: Input Video Warping. Given a single video, we utilize an off-the-shelf depth estimation
model to generate warped frames from novel viewpoints.

frame to novel viewpoints, as illustrated in Figure 5. As shown in Fig. 6, occluded regions from
the warp operation appear black, allowing us to extract an opacity mask. Inspired by Lugmayr et al.
(2022); You et al. (2024); Liu et al. (2024), we adopt a mask inpainting approach, where inpainting is
performed on the estimated noisy frame x̂0[:, 1]. Rather than applying inpainting at every denoising
step, as in Liu et al. (2024), we utilize a re-noising process within the diffusion model’s denoising
step to refine the final synthesis by reducing artifacts and enhancing structural coherence. A detailed
description is provided in Algorithm 3.

Table 6: Runtime and VRAM comparison for sampling an N × F 4D grid.

Zero4D (Ours)* Zero4D (Ours) TrajectoryCrafter TrajectoryAttention CameraCtrl

VRAM 23GB 28GB 45GB 20GB 46GB
Time 88m 66m 60m 50m 31m

Runtime performance. Although Zero4D takes a similar amount of time to generate a full 4D
video compared to baseline methods, it requires significantly less GPU memory—nearly 40–50%
less than TrajectoryCrafter. This makes Zero4D a much more memory-efficient solution that remains
competitive in runtime without compromising consistency or quality. The * indicates results measured
on an RTX 4090, while the others were benchmarked on an NVIDIA A100.

A.5 ADDITIONAL RESULTS

Ablation (detailed analysis).

Figure 7 qualitatively illustrates the role of each component in maintaining global consistency.
Without spatio-temporal bidirectional interpolation (STBI), each frame is synthesized independently,
which causes temporal flickering and background inconsistencies across views. For example, in the
water-pouring sequence (left), the liquid surface fails to remain temporally stable, as highlighted by
the red boxes. Similarly, without warping guidance, the model struggles with geometric alignment.
In the motorcycle example (middle), artifacts appear in the generated human figure, leading to
distorted or incomplete shapes. Finally, in the clock sequence (right), the absence of warping or
spatio-temporal interpolation leads to visible structural mismatches and background inconsistencies.
In contrast, our full model effectively aggregates global information through STBI and enforces
geometric consistency via warped-frame guidance, resulting in coherent and high-quality multi-view
videos across both spatial and temporal dimensions.
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Figure 7: Ablation results. Removing spatio-temporal bidirectional interpolation (STBI) or warping
guidance leads to broken consistency and geometric artifacts (red boxes). In contrast, our full method
preserves spatial structure and temporal coherence across views.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were not involved in research ideation or methodological design and were only used for minor
expression refinement. The authors retain full responsibility for all scientific content.
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Input video View from orbit left View from orbit right

Input video Transition up Transition down

Figure 8: Camera orbit & transition novel videos. Our model generates high-quality 4D videos
from a single input video, enabling diverse camera motions such as orbit, transition, and dolly
movements. Best viewed with Acrobat Reader. Click the images to play the video clip.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Input video Time index 1 Time index 2

Figure 9: Bullet time videos. Our model generates high-quality bullet-time videos, demonstrating
spatio-temporal consistency. Best viewed with Acrobat Reader. Click the images to play the video
clip.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Input video Dolly in Dolly out
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Figure 10: Dolly in/out videos. Our model generates high-quality 4D videos from a single input
video with dolly movements. Best viewed with Acrobat Reader. Click the images to play the video
clip.
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