

ZERO4D: TRAINING-FREE 4D VIDEO GENERATION FROM SINGLE VIDEO USING OFF-THE-SHELF VIDEO DIFFUSION MODELS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

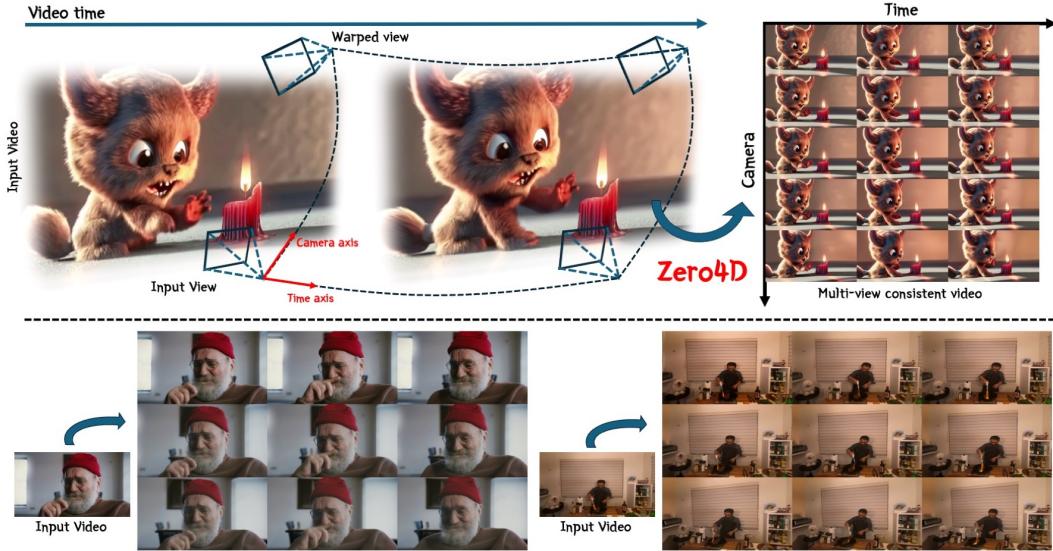


Figure 1: **Zero4D** is a **training-free** multi-view synchronized video generation framework that takes a single monocular video and generates a grid of camera-time consistent frames. It first utilizes a depth estimation model to warp target view frames from the input video (top-left), then repurposes the image-to-video diffusion model to sample multi-view frames synchronized in both camera and temporal dimensions (top-right). Using an off-the-shelf video diffusion model without training, our approach can generate multi-view videos for both synthesized and real-world footage. [Project Page](#).

ABSTRACT

Multi-view and 4D video generation have recently emerged as important topics in generative modeling. However, existing approaches face key limitations: they often require orchestrating multiple video diffusion models with additional training, or involve computationally intensive training of full 4D diffusion models—despite limited availability of real-world 4D datasets. In this work, we propose a novel training-free 4D video generation method that leverages off-the-shelf video diffusion models to synthesize multi-view videos from a single input video. Our approach consists of two stages. First, we designate the edge frames in a spatio-temporal sampling grid as key frames and synthesize them using a video diffusion model, guided by depth-based warping to preserve structural and temporal consistency. Second, we interpolate the remaining frames to complete the spatio-temporal grid, again using a video diffusion model to maintain coherence. This two-step framework allows us to extend a single-view video into a multi-view 4D representation along novel camera trajectories, while maintaining spatio-temporal fidelity. Our method is entirely training-free, requires no access to multi-view data, and fully utilizes existing generative video models—offering a practical and effective solution for 4D video generation.

054
055

1 INTRODUCTION

056 Since the introduction of the diffusion and foundation models (Ho et al., 2020; Rombach et al.,
 057 2021; Xie et al., 2024), 3D reconstruction has advanced significantly, leading to unprecedented
 058 progress in representing the real world in 3D models. Combined with generative models, this success
 059 drives a renaissance in 3D generation, enabling more diverse and realistic content creation. These
 060 advancements extend beyond static scene or object reconstruction and generation, evolving toward
 061 dynamic 3D reconstruction and generation that aims to capture the real world. Previous works
 062 (Bahmani et al., 2024b; Zeng et al., 2024; Singer et al., 2023; Zhao et al., 2023; Bahmani et al.,
 063 2024a) leverage video diffusion models and Score Distillation Sampling (SDS) to enable dynamic
 064 3D generation. However, most existing approaches primarily focus on generating dynamic objects in
 065 blank or simplified backgrounds (e.g., text-to-4D generation), leaving the more challenging task of
 066 reconstructing or generating real-world scenes from text prompts, reference images, or input videos
 067 largely unaddressed. In contrast to the abundance of high-quality datasets for 3D and video tasks, 4D
 068 datasets with multiview, temporally synchronized video remain extremely scarce. As a result, a core
 069 challenge in training 4D generative models for real-world scenes lies in the lack of comprehensive,
 070 large-scale multi-view video datasets. To overcome these limitations, recent works such as 4DiM
 071 (Watson et al., 2024) propose a joint training diffusion model with 3D and video with a scarce 4D
 072 dataset. CAT4D (Wu et al., 2024) proposes training multi-view video diffusion models by curating
 073 a diverse collection of synthetic 4D data, 3D datasets, and monocular video sources. DimensionX
 074 (Sun et al., 2024) trains the spatial-temporal diffusion model independently with multiple LoRA,
 075 achieving multi-view videos via an additional refinement process. Despite several approaches, the
 076 scarcity of high-quality 4D data makes it difficult to generalize to complex real-world scenes and
 077 poses fundamental challenges in training large multi-view video models.

078 To address these challenges, we introduce *Zero4D*—a novel zero-shot framework for 4D video
 079 generation. *Zero4D* generates synchronized multi-view 4D video from a single monocular input
 080 video by leveraging an off-the-shelf video diffusion model (Blattmann et al., 2023), without requiring
 081 any additional training. Building upon the prior observations (Wang et al., 2024a; Wu et al., 2024)
 082 that 4D video is composed of multiple video frames arranged along the spatio-temporal sampling
 083 grid (i.e., camera view and time axes), generating a 4D video can be regarded as populating the
 084 sampling grid with consistent spatio-temporal frames. Consequently, our approach achieves this
 085 through two key steps: (1) We first designate the boundary frames of the spatio-temporal sampling
 086 grid as key frames and synthesize them using a video diffusion model. To ensure structural fidelity,
 087 we incorporate a depth-based warping technique as guidance, encouraging the generated frames to
 088 conform to the underlying scene geometry. (2) We repurpose the interpolation capabilities of a video
 089 diffusion model to fill in the remaining frames through bidirectional diffusion sampling, resulting in
 090 a fully populated and temporally coherent 4D grid. Throughout both stages, our method enforces
 091 spatial and temporal consistency across the entire grid.

092 Our main contributions can be summarized as follows:
 093

- 094 • We propose a novel framework that can generate 4D video from a single video via an
 095 off-the-shelf video diffusion model without any training or large-scale datasets. To the
 096 best of our knowledge, our approach is the first interpolation based *training-free* method to
 097 generate synchronized multi-view video—previously regarded as infeasible.
- 098 • This is made possible by a novel synchronization mechanism, which guarantees high-quality
 099 outputs while maintaining global spatio-temporal consistency. Specifically, we alternate
 100 bidirectional video interpolation across both the camera and temporal axes to align motion
 101 and appearance throughout the sequence.
- 102 • Our framework outperforms baselines in maintaining global spatio-temporal consistency
 103 and demonstrates robust 4D video generation capability, achieving competitive performance
 104 across diverse quantitative and qualitative evaluations even without additional training.

105
106

2 RELATED WORK

107 **Video generation with camera control.** Several studies try to train a multi-view diffusion model for
 108 spatially consistent image generation (Shi et al., 2023; Wang & Shi, 2023; Liu et al., 2023; Kant et al.,
 109 2024; Gao et al., 2024; Melas-Kyriazi et al., 2024). ReCapture (Zhang et al., 2024) trains the novel

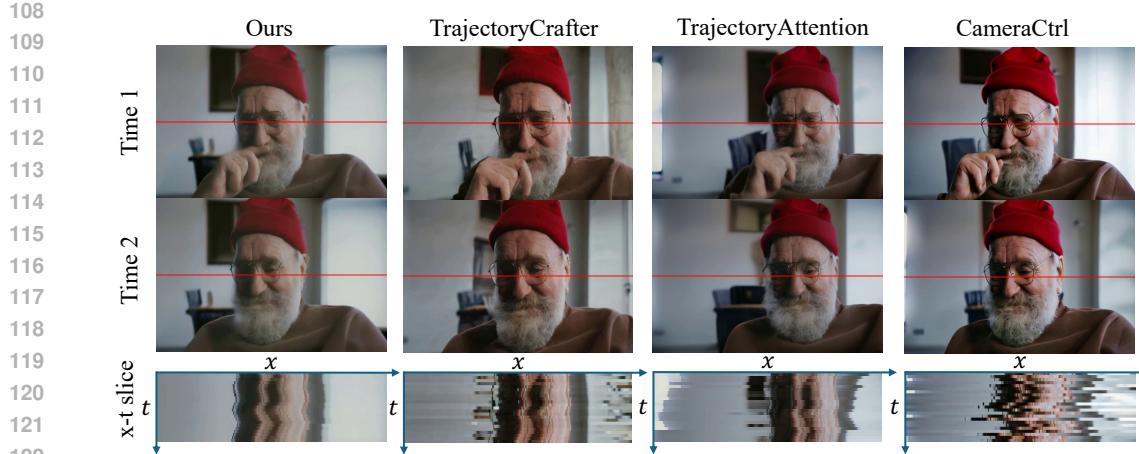


Figure 2: **Qualitative comparison.** We compare our method with baseline models in terms of novel-view video generation and global spatio-temporal consistency. Given a single input video, both baselines and ours generate outputs across multiple views and time steps. To evaluate global consistency, we leverage baselines to produce bullet-time videos at all input frames and re-align them to a fixed viewpoint. We also visualize x - t slices (red lines) to highlight temporal coherence. While baselines exhibit inconsistencies across views and time, our method preserves spatio-temporal coherence and yields high-quality multi-view videos.

Table 1: Comparison of camera-controllable video diffusion models. Unlike prior approaches, Zero4D can generate 4D-consistent videos with camera control without requiring additional training.

Model	Training-Free	Camera Control	4D Consistency
Camera Controllable Video Diffusion Model	✗	✓	✗
4D Video Diffusion Model	✗	✓	✓
Zero4D (Ours)	✓	✓	✓

camera trajectory video diffusion model from a single reference video with existing scene motion. CameraCtrl (He et al., 2024) proposes a plug-and-play camera module in the video diffusion model to control video generation with precise and smooth camera viewpoints. TrajectoryCrafter (YU et al., 2025) and TrajectoryAttention (Xiao et al., 2025) fine-tune video diffusion models to generate novel-view videos along a given camera trajectory using depth-based warping. These approaches can be categorized as *camera-controllable video diffusion models*. However, although these models can synthesize novel views conditioned on warped videos, they fail to produce 4D-consistent videos that ensure global consistency across multiple views and multiple time steps (see Table 1).

4D generation. Recent advancements in 4D generation have been driven by numerous pioneering works exploring various conditioning methods. Several approaches have leveraged score distillation sampling in conjunction with video diffusion models or multi-view image diffusion models to generate 4D content from text prompts (Bahmani et al., 2024b; Zeng et al., 2024; Singer et al., 2023). However, these approaches largely focus on generating dynamic objects in blank backgrounds. A notable example is CAT4D (Wu et al., 2024), which synthesizes 4D videos conditioned on multiple input modalities using a multi-view video model trained on a curated synthetic multi-view dataset. Similarly, Van Hoorick et al. (2024b) introduces a framework for novel-view synthesis of dynamic 4D scenes from a single video. This method is trained on synthetic multi-view video data with corresponding camera poses, enabling high-fidelity 4D reconstructions. Concurrently, Yu et al. (2024) proposes text-to-4D scene generation pipelines that integrate video diffusion models with canonical 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023), ensuring spatio-temporal consistency in the generated 4D outputs. Furthermore, Wang et al. (2024a) enhance video diffusion models by introducing a parallel camera-temporal token stream and a learnable synchronization layer, which effectively fuses independent tokens to maintain camera and temporal consistency across generated frames. While these *4D video diffusion models* enable camera control and maintain multi-view and temporal consistency, they rely on training a large diffusion model with 4D data, which is limited in availability and costly to obtain (see Table 1).

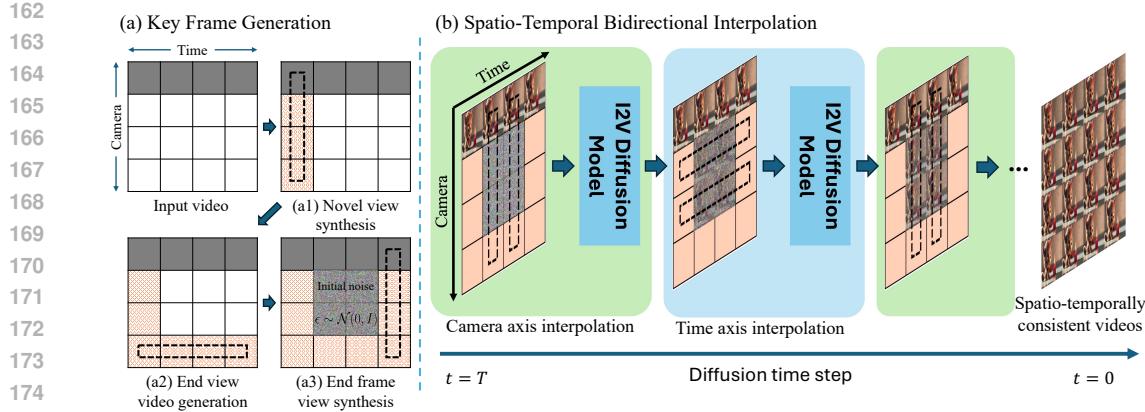


Figure 3: **Generation pipeline of Zero4D:** (a) **Key frame generation step:** Starting from the input video (shown as the gray-shaded row), we sequentially generate boundary frames—novel view synthesis, end-view video generation, and end-frame view synthesis—where each step leverages the results of the previous one. (b) **Spatio-temporal bidirectional interpolation step:** Starting from the noisy frames, we alternately perform camera-axis and time-axis interpolation, each conditioned on boundary frames, to progressively denoise the 4D grid. Through this bidirectional process, noisy latents are refined into globally coherent spatio-temporal videos.

3 ZERO4D

Let $x[i, j] \in \mathbb{R}^{H \times W}$, $i = 1, \dots, N, j = 1, \dots, F$ denotes the image at the i -th camera viewpoint and the j -th temporal frame, where H and W denote the height and width of the image, respectively (see Fig. 3(a)). Then, the input video captured from a single camera viewpoint c is denoted as $x[c, :]$, whereas the multi-view images at the temporal frame f are represented by $x[:, f]$. The goal of Zero4D is then to populate the spatio-temporal video grid (or camera-time grid) $x[:, :]$ by generating frames across multiple camera poses. The key innovation is that the spatio-temporal grid can be populated entirely at inference time, without any training—a task once thought impossible. As illustrated in Fig. 3, the overall reconstruction pipeline of Zero4D is composed of two steps: 1) key frame generation and 2) spatio-temporal bidirectional interpolation along the time and camera axes in an alternating manner. In this section, we describe each in detail.

3.1 KEY FRAME GENERATION

As shown in Fig. 3(a), the key frame generation is achieved through three steps. Specifically, given a input video denoted by $x[1, :]$, we first perform novel-view synthesis, followed by end-view video frame generation. These two steps are achieved through diffusion sampling, guided by warped views. Finally, we complete the rightmost column using diffusion-based interpolation sampling.

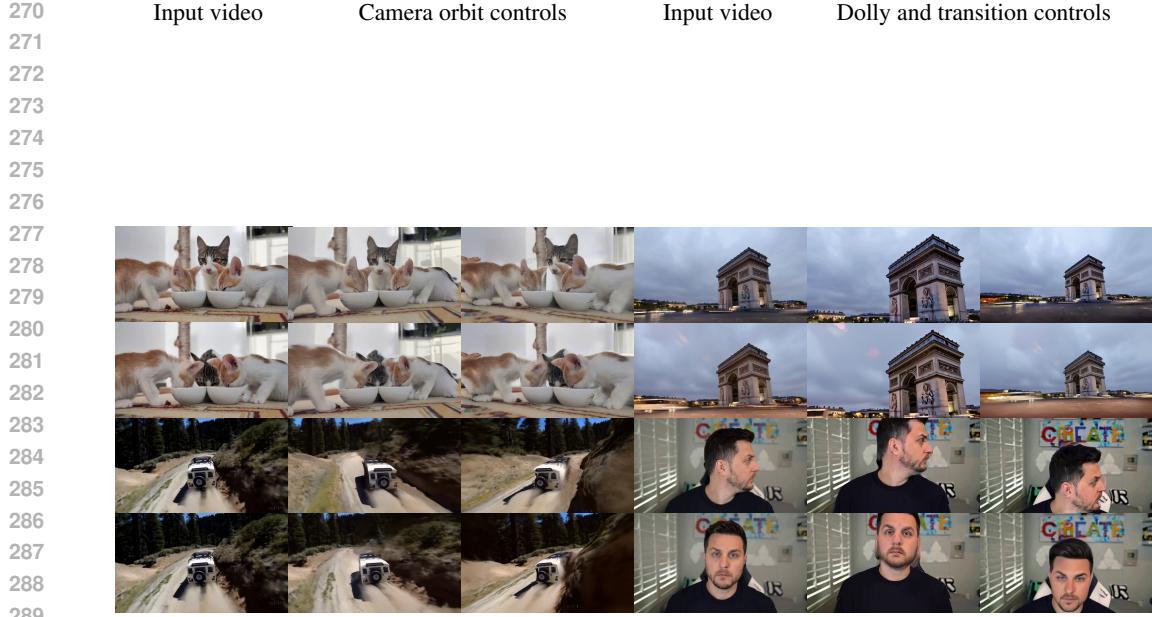
Novel view synthesis (a1). First, we synthesize novel view video $x[:, 1]$ from the first frame image $x[1, 1]$ using the I2V diffusion model. Here, we incorporate the warped frames $x_w[:, 1]$ as guidance to ensure the generated novel views align with the warped images from input video. The warped frames $x_w[:, :]$ are computed as follows. Given an input video $x[1, :]$, we generate novel views by first estimating a per-frame depth map $D[1, :]$ using a monocular depth estimation model (Piccinelli et al., 2024). This depth information enables depth-based geometric warping, wherein each frame of the input video is unprojected into 3D space and reprojected into a target viewpoint in $p(n) \in \mathcal{P}_N$ where \mathcal{P}_N defines the desired set of camera views. This produces the warped frames:

$$x_w[n, i] = \mathcal{W}(x[1, i], D[1, i], p(n), K), \quad i = 1, \dots, F, \quad (1)$$

for $n = 1, \dots, N$, where K is the intrinsic camera matrix. The warping function $\mathcal{W}(\cdot)$ unprojects each pixel using its estimated depth and reprojects it into the target view. Formally, for each pixel location r_i in the i -view, the warped pixel location r_j in the novel-view at the j -th camera location is computed as:

$$r_j = K P_{i \rightarrow j} D_i(r_i) K^{-1} r_i, \quad (2)$$

where $P_{i \rightarrow j}$ is the transformation from the input to the novel-view, and $D_i(r_i)$ is the depth at r_i . Since r_j may not align exactly with integer pixel locations, interpolation is applied to assign pixel



290 **Figure 4: Result from Zero-4D.** Our model generates high-quality 4D videos from a single input
 291 video, enabling diverse camera motions such as orbit, transition, and dolly movements. As illustrated,
 292 the synthesized videos maintain spatial and temporal consistency across multiple views and frames,
 293 effectively rendering novel perspectives that are not present in the original input. *Best viewed with*
 294 *Acrobat Reader. Click first two rows' images to play the video clip.*

295 3.2 SPATIO-TEMPORAL BIDIRECTIONAL INTERPOLATION

296 As shown in Fig. 3(b), once the keyframes are generated, the remaining task is to fill in the missing
 297 sampling grid at the center so the final resulting 4D video remains consistent across both the camera
 298 and time axes. Accordingly, it is essential to perform conditioned sampling using the key frames
 299 and adjacent frames from the camera and temporal axes. However, a naive image-to-video diffusion
 300 model can only condition on a single or two end frames. To address this challenge, we first repurpose
 301 a video interpolation approach to generate spatio-temporally consistent samples under multi-view
 302 conditions. The key idea is to alternate interpolation along both the camera and time axes, thereby
 303 guiding the overall diffusion trajectory to satisfy the multiple constraints from the keyframes. In this
 304 work, we leverage ViBiDSampler (Yang et al., 2025) as the interpolator, with implementation details
 305 provided in Appendix A.5 (see Algorithm 2).

306 **Camera axis interpolation.** Starting from the initial noise $x_T[:, :] \sim \mathcal{N}(0, I)$, we select a specific
 307 frame in the 4D grid (a column) $x_t[:, i]$, and perform an interpolation denoising process(6) using the
 308 edge-frame conditions $c[1, i]$ and $c[N, i]$:

$$310 \quad x_{t-1}[:, i] \leftarrow I_\theta(x_t[:, i], \sigma_t, c[1, i], c[N, i], x_w[:, i]) \quad (6)$$

311 Here, the image condition $c[1, i]$ is applied first, along with the warped view to guide the diffusion
 312 denoising step. The video is then perturbed with noise again, flipped along the camera axis, and
 313 subjected to another diffusion denoising step using $c[N, i]$ as the condition. Through these two
 314 conditioning steps, $x_t[:, i]$ integrates information from both $c[1, i]$ and $c[N, i]$, enabling interpolation-
 315 based denoising that preserves consistency across the camera axis. Before proceeding to time axis
 316 interpolation, we apply a re-noising step to ensure smooth transitions across generated frames.

317 **Time axis interpolation.** After ensuring spatial consistency across the camera axis, we interpolate
 318 frames along the time axis to maintain temporal coherence. For each row $x_t[j, :]$ in the 4D grid, we
 319 perform an interpolation denoising (7) using the start and end frame conditions $c[j, 1]$ and $c[j, F]$.

$$320 \quad x_{t-1}[j, :] \leftarrow I_\theta(x_t[j, :], \sigma_t, c[j, 1], c[j, F], x_w[j, :]) \quad (7)$$

321 Initially, $c[j, 1]$ is applied along with the warped view to guide the diffusion denoising step. The
 322 frame is then perturbed with noise, flipped along the time axis, and another diffusion denoising

324 step is performed using $c[j, F]$ as the condition. Through this bidirectional conditioning process,
 325 $x_t[j, :]$ effectively integrates information from both $c[j, 1]$ and $c[j, F]$, facilitating interpolation-based
 326 denoising that ensures smooth transitions along the time axis. Throughout the diffusion steps, we
 327 perform denoising by alternating interpolation along the camera axis and time axis. This approach
 328 maintains global coherence while ensuring consistency in multi-view video generation.

329 3.3 DETAILS OF CONDITIONAL VIDEO DIFFUSION

330 Our work is built upon Stable Video Diffusion (SVD) (Blattmann et al., 2023), an image-to-video
 331 diffusion model that follows the principles of the EDM framework (Karras et al., 2022). SVD utilizes
 332 an iterative denoising approach based on an Euler step method, which progressively transforms a
 333 Gaussian noise sample x_T into a clean signal x_0 :

$$335 \quad x_{t-1}(x_t; \sigma_t, c) := \hat{x}_c(x_t) + \frac{\sigma_{t-1}}{\sigma_t} (x_t - \hat{x}_c(x_t)), \quad (8)$$

337 where the initial noise is $x_T \sim \mathcal{N}(0, I)$, $\hat{x}_c(x_t)$ is the denoised estimate by Tweedie's formula using
 338 the score function trained by the neural network parameterized by θ , and σ_t is the discretized noise
 339 level for each timestep $t \in [0, T]$.

340 Now, we describe how to modify SVD to enable conditional sampling under the condition on warped
 341 image x_w , occlusion mask m , and conditioning input c . For convenience, we refer to $x_t[:, :]$ as x_t .
 342 From the formulation of the reverse diffusion sampling process in Eq. (8), the reverse diffusion
 343 process can be modulated by conditioning on a known scene-prior x_{known} (Lugmayr et al., 2022):

$$344 \quad \bar{x}_c(x_t) = \hat{x}_c(x_t) \cdot m + x_{\text{known}} \cdot (1 - m), \quad (9)$$

346 where m is a mask that determines which parts of the scene are known, guiding the denoising process
 347 by preserving the warped pixels while allowing the diffusion model to inpaint the missing areas. In
 348 our approach, rather than relying on an externally defined scene-prior x_{known} , we leverage the warped
 349 frames x_w obtained from depth-based warping as the conditional guidance. Specifically, we redefine
 350 the denoising process by replacing x_{known} with x_w and substituting m with the occlusion mask m_w :

$$351 \quad \bar{x}_c(x_t) = \hat{x}_c(x_t) \cdot m_w + x_w \cdot (1 - m_w). \quad (10)$$

353 Here, the occlusion mask m_w ensures that the visible regions in x_w directly guide the denoising
 354 process, while the unseen parts are inpainted using the learned prior. By incorporating this modified
 355 formulation into the reverse diffusion process, we obtain the following sampling update:

$$356 \quad x_{t-1}(x_t; \sigma_t, c) \leftarrow \bar{x}_c(x_t) + \frac{\sigma_{t-1}}{\sigma_t} (x_t - \hat{x}_c(x_t)), \quad (11)$$

358 where the target camera viewpoints influence the generated frames through the depth-warped obser-
 359 vations x_w , ensuring geometric consistency during video synthesis. Throughout the reverse sampling,
 360 we iteratively apply this procedure. Additionally, following the approach of (Lugmayr et al., 2022;
 361 Liu et al., 2024), we incorporate resampling annealing to further enhance output quality.

362 4 EXPERIMENTS

364 We used the SVD (Blattmann et al., 2023) as an I2V model without additional training. The image
 365 resolution was fixed at 576×1024 , with 25 cameras and a sequence length of 25 frames, a total
 366 of multi-view video frames are $625 = 25^2$. All frames were generated to form a multi-view video
 367 following the target camera trajectory. For depth-based warping, we utilized off-the-shelf depth
 368 models (Hu et al., 2024) with various camera movements, including orbit controls (right, left), dolly
 369 in/out, and vertical transitions (up, down), with further details on the camera movements provided
 370 in Appendix A.3. Runtime performance and user study in appendix A.1 and A.4 confirm that our
 371 method is much more memory-efficient and competitive in runtime, outperforming the baselines.

372 **Baseline models.** We compare against state-of-the-art video generation models that support either
 373 camera control or multi-view generation: (1) CameraCtrl (He et al., 2024) is a camera-controllable
 374 video diffusion model. Given a single input image, it can synthesize bullet-time videos by following
 375 a predefined camera trajectory. (2) TrajectoryCrafter (YU et al., 2025), a representative baseline,
 376 synthesizes novel-view and bullet-time videos from warped frames aligned to a target trajectory. (3)
 377 TrajectoryAttention (Xiao et al., 2025) similarly leverages warped video frames from the input video
 to generate both novel-view and bullet-time videos. (4) SV4D (Xie et al., 2024) is an image-to-video

378
 379 **Table 2: Quantitative result in novel view video generation.** We evaluate our method against
 380 baselines on VBench, comparing multi-view video results based on novel-view generation from a
 381 fixed camera view. Our method achieves the best performance in both frame consistency across videos
 382 and image quality of individual frames. (* denotes baselines evaluated with bullet-time re-alignment)

Method	Subject Consistency ↑	Background Consistency ↑	Temporal Flickering ↑	Motion Smoothness ↑	Dynamic Degree ↓	Image Quality ↑	Aesthetic Quality ↑
SV4D	88.76%	91.36%	94.21%	95.28%	49.20%	46.89%	34.36%
GCD	90.31%	94.13%	96.14%	93.21%	19.23%	45.77%	32.98%
TrajectoryAttention	88.83%	91.42%	96.86%	97.89%	59.50%	42.98%	37.92%
TrajectoryCrafter	93.47%	96.93%	98.42%	99.26%	21.00%	52.10%	44.41%
Ours	95.55%	95.75%	97.48%	98.34%	27.50%	51.12%	38.22%
CameraCtrl*	91.71%	91.05%	89.98%	91.03%	98.00%	40.12%	35.86%
TrajectoryAttention*	94.72%	94.93%	97.61%	98.28%	27.50%	47.75%	42.88%
TrajectoryCrafter*	94.71%	94.48%	94.74%	96.81%	32.50%	48.81%	35.86%
Ours	95.55%	95.75%	97.48%	98.34%	27.50%	51.12%	38.22%

392 diffusion model capable of generating multiple novel-view videos from a single input video. (5)
 393 GCD (Van Hoorick et al., 2024a) also takes a single video as input and generates novel views of
 394 dynamic 4D scenes by controlling azimuth and elevation angles.

395 **Evaluation protocol.** We evaluate our method in two categories: (1) fixed novel-view video
 396 generation and (2) bullet-time video generation. For novel-view evaluation, we adopt VBench (Huang
 397 et al., 2024), which measures seven aspects of video quality, including identity retention, motion
 398 coherence, and temporal consistency. For bullet-time evaluation, we assess 3D consistency using
 399 pose errors (ATE, RPE-T, RPE-R) (Goel et al., 1999) obtained via COLMAP (Schönberger & Frahm,
 400 2016) and MET3R (Asim et al., 2024), a recent metric based on DUSt3R (Wang et al., 2024b) that
 401 quantifies geometric consistency from unposed frames. We conducted all experiments on 50 videos
 402 randomly sampled from Webvid-10M (Bain et al., 2021), comparing ours with baseline models.

4.1 FIXED NOVEL-VIEW VIDEO GENERATION

403 We evaluate our method in two settings: (1) novel-view generation for video quality, and (2) spatio-
 404 temporal consistency for coherence across views and time.

406 **Evaluation of direct novel-view generation.** We assess the quality of novel-view videos from
 407 fixed target viewpoints using VBench (Huang et al., 2024). Zero4D retrieves $x[n, :]$ corresponding
 408 to a target camera viewpoint $p(n)$ from the 4D video grid $x[:, :, :]$ synthesized from the input video
 409 $x[1, :, :]$, while baselines directly generate $x[n, :]$ at viewpoint $p(n)$. For this experiment, we consider
 410 baselines capable of direct novel-view generation at viewpoint n , SV4D, GCD, TrajectoryAttention,
 411 and TrajectoryCrafter. As shown in the upper part of Table 2, Zero4D, despite being training-free,
 412 achieves the highest score in subject consistency and ranks second in five other categories. This
 413 demonstrates that ours achieves robust novel-view video generation performance, comparable to
 414 models pretrained on large-scale datasets.

415 **Evaluation of global spatio-temporal consistency.** To examine whether models maintain global
 416 4D consistency, we construct re-aligned videos at a fixed viewpoint from generated bullet-time
 417 videos. For each input frame $x[1, i]$ ($i = 1, \dots, F$), baselines generate a bullet-time sequence $x[:, i]$
 418 along a predefined trajectory. These sequences are aggregated into a 4D grid $x[:, :, :]$, from which the
 419 fixed-view sequence $x[n, :]$ at viewpoint $p(n)$ is extracted. We consider three baseline models capable
 420 of bullet-time video generation: CameraCtrl, TrajectoryAttention, and TrajectoryCrafter. In contrast,
 421 Zero4D directly retrieves $x[n, :]$ from its generated 4D grid without requiring bullet-time re-alignment.
 422 As shown in the Table 2 (below the horizontal separator), ours achieves the highest scores in five
 423 VBench categories and second-best in the remaining two. This strong performance indicates that
 424 spatio-temporal interpolation enables Zero4D to preserve global consistency across views and time,
 425 whereas baseline models, unable to sample jointly across multi-view and multi-time dimensions, yield
 426 inferior consistency. Although baseline models generate plausible bullet-time results at individual
 427 time steps, re-alignment to a fixed viewpoint exposes frequent inconsistencies, particularly in the
 428 background and the x-t slices shown in Figure 2, which clearly reveal the inconsistencies.

4.2 BULLET-TIME VIDEO GENERATION

430 We design two evaluations for bullet-time video generation: (1) direct generation along a camera
 431 trajectory to assess spatial coherence, and (2) multi-view alignment at fixed time steps to measure
 432 global 4D consistency.

432 **Evaluation of direct bullet-time generation.** We compare Zero4D against baselines (CameraCtrl,
 433 TrajectoryAttention, TrajectoryCrafter) capable of bullet-time generation. Given an input video
 434 $x[1, \cdot]$, these models generate bullet-time sequences $x[:, i]$ by smoothly moving the camera along
 435 a predefined trajectory at fixed time i . This setting provides a direct evaluation of each model’s
 436 ability to produce spatially coherent bullet-time videos from the input. As shown in Table 3 (upper
 437 part), Zero4D attains comparable scores to baselines that are explicitly trained for novel-view video
 438 generation, despite being a training-free approach.

439 **Evaluation of multi-view consistency in bullet-time.** To further
 440 assess global 4D consistency, we
 441 construct bullet-time videos by re-
 442 aligning novel-view outputs at a fixed
 443 time step. For baseline models, novel-
 444 view videos $x[n, \cdot]$ are generated at
 445 each target viewpoint $p(n)$ along the
 446 predefined camera trajectory, and the
 447 frames corresponding to the same
 448 time index are re-aligned to form a
 449 bullet-time sequence $x[:, \cdot]$. In con-
 450 trast, ours directly retrieves the cor-
 451 responding sequence $x[:, i]$ from its
 452 generated 4D grid $x[:, \cdot]$, without requiring re-alignment. As shown in Table 3 (below the horizontal
 453 separator), Zero4D maintains global coherence across views and time, thereby achieving better accu-
 454 racy in pose estimation (ATE, RPE-T, RPE-R) and lower MEt3R scores, surpassing the performance
 455 of baseline approaches.

Table 3: **Bullet-time video quantitative comparisons.** We report results on (1) direct bullet-time generation for spatial coherence and (2) multi-view consistency by re-aligning outputs at fixed time steps. (* denotes baselines evaluated with novel-view re-alignment)

Method	ATE (m, \downarrow)	RPE-T (\downarrow)	RPE-R (deg \downarrow)	MEt3R \downarrow
CameraCtrl	0.185	0.155	0.57	0.0264
TrajectoryAttention	<u>0.182</u>	0.113	0.25	0.0202
TrajectoryCrafter	0.170	0.140	2.26	0.0224
Ours	0.190	0.142	<u>0.53</u>	0.0307
TrajectoryAttention*	5.582	3.377	<u>1.65</u>	0.1000
TrajectoryCrafter*	<u>0.211</u>	<u>0.251</u>	3.61	0.0930
Ours	<u>0.190</u>	0.142	0.53	0.0307

Table 4: **Quantitative ablation.** Ablation studies on generated videos show that incorporating all components yields the best performance.

Method	ATE (m, \downarrow)	RPE-T (m, \downarrow)	RPE-R (deg, \downarrow)	Subject Consistency \uparrow	Background Consistency \uparrow	Temporal Flickering \uparrow	Motion Smoothness \uparrow	Dynamic Degree \downarrow	Image Quality \uparrow	Aesthetic Quality \uparrow
Ours	<u>0.190</u>	0.142	<u>0.53</u>	95.55%	95.75%	97.48%	98.34%	27.50%	51.12%	38.22%
w/o STBI	0.175	0.149	<u>0.34</u>	93.23%	92.63%	93.28%	95.24%	100%	52.38%	43.21%
w/o warp	0.501	0.251	0.89	93.73%	93.38%	93.98%	96.12%	<u>47.29%</u>	43.79%	36.11%

463 **Ablation.** We performed ablation studies under two settings: (1) *Without warped frame guidance*:
 464 removing warped frames from the input degrades image fidelity and weakens structural details.
 465 (2) *Without spatio-temporal bidirectional interpolation (STBI)*: generating each novel-view indepen-
 466 dently breaks multi-view coherence. Table 4, evaluated with ATE, RPE-T, RPE-R in the bullet-time
 467 setting and VBench (Huang et al., 2024) for fixed novel-view, shows that both components are
 468 essential for maintaining fidelity and global consistency. Additional qualitative ablation results are
 469 provided in Appendix A.5 (see Figure 7).

5 CONCLUSION

472 In this work, we introduced a novel training-free approach for synchronized multi-view video gen-
 473 eration using an off-the-shelf video diffusion model. Our method generates high-quality 4D video
 474 through depth-based warping and spatio-temporal bidirectional interpolation, ensuring structural
 475 consistency across both spatial and temporal domains. Unlike prior methods that rely on extensive
 476 training with video or 4D datasets, our framework achieves competitive performance without ad-
 477 ditional training. Experiments demonstrate that our approach produces synchronized multi-view
 478 videos with superior subject consistency, smooth motion trajectories, and temporal stability. This
 479 makes our framework a practical solution for multi-view video generation, particularly in scenarios
 480 where large-scale 4D datasets and powerful computational resources are limited. Future work may
 481 investigate extensions to more complex dynamic scenes, adaptive interpolation strategies, or fusion
 482 with other generative models to further enhance realism and flexibility.

483 **Limitation and Potential Negative Impacts.** While our method enables training-free 4D generation,
 484 it requires multiple rounds of bidirectional diffusion sampling, which leads to increased inference time.
 485 Additionally, since the 4D generation is guided by the prior knowledge encoded in the pre-trained
 486 video diffusion model, our method may inherit potential drawbacks of generative models.

486 REFERENCES
487

488 Mohammad Asim, Christopher Wewer, Thomas Wimmer, Bernt Schiele, and Jan Eric Lenssen. Met3r:
489 Measuring multi-view consistency in generated images, 2024.

490 Sherwin Bahmani, Xian Liu, Wang Yifan, Ivan Skorokhodov, Victor Rong, Ziwei Liu, Xihui Liu,
491 Jeong Joon Park, Sergey Tulyakov, Gordon Wetzstein, et al. Tc4d: Trajectory-conditioned text-to-
492 4d generation. In *European Conference on Computer Vision*, pp. 53–72. Springer, 2024a.

493 Sherwin Bahmani, Ivan Skorokhodov, Victor Rong, Gordon Wetzstein, Leonidas Guibas, Peter
494 Wonka, Sergey Tulyakov, Jeong Joon Park, Andrea Tagliasacchi, and David B Lindell. 4d-fy:
495 Text-to-4d generation using hybrid score distillation sampling. In *Proceedings of the IEEE/CVF*
496 *Conference on Computer Vision and Pattern Recognition*, pp. 7996–8006, 2024b.

497 Max Bain, Arsha Nagrani, Gü̈l Varol, and Andrew Zisserman. Frozen in time: A joint video and
498 image encoder for end-to-end retrieval. In *IEEE International Conference on Computer Vision*,
499 2021.

500 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
501 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
502 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

503 Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla, Pratul
504 Srinivasan, Jonathan T Barron, and Ben Poole. Cat3d: Create anything in 3d with multi-view
505 diffusion models. *arXiv preprint arXiv:2405.10314*, 2024.

506 Puneet Goel, Stergios I Roumeliotis, and Gaurav S Sukhatme. Robust localization using relative
507 and absolute position estimates. In *Proceedings 1999 IEEE/RSJ International Conference on*
508 *Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence*
509 *and Emotional Quotients (Cat. No. 99CH36289)*, volume 2, pp. 1134–1140. IEEE, 1999.

510 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan Yang. Cam-
511 eractrl: Enabling camera control for text-to-video generation. *arXiv preprint arXiv:2404.02101*,
512 2024.

513 Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. *ArXiv*,
514 abs/2006.11239, 2020. URL <https://api.semanticscholar.org/CorpusID:219955663>.

515 Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong Cun, Yong Zhang, Long Quan, and Ying
516 Shan. Depthcrafter: Generating consistent long depth sequences for open-world videos. *arXiv*
517 *preprint arXiv:2409.02095*, 2024.

518 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
519 Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video
520 generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
521 *Recognition*, pp. 21807–21818, 2024.

522 Yash Kant, Aliksandr Siarohin, Ziyi Wu, Michael Vasilkovsky, Guocheng Qian, Jian Ren, Riza Alp
523 Guler, Bernard Ghanem, Sergey Tulyakov, and Igor Gilitschenski. Spad: Spatially aware multi-
524 view diffusers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
525 *Recognition*, pp. 10026–10038, 2024.

526 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
527 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
528 2022.

529 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
530 for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

531 Kunhao Liu, Ling Shao, and Shijian Lu. Novel view extrapolation with video diffusion priors. *arXiv*
532 *preprint arXiv:2411.14208*, 2024.

540 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
 541 Zero-1-to-3: Zero-shot one image to 3d object. In *Proceedings of the IEEE/CVF international*
 542 *conference on computer vision*, pp. 9298–9309, 2023.

543 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 544 Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the*
 545 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.

546 Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran Gafni,
 547 and Filippos Kokkinos. Im-3d: Iterative multiview diffusion and reconstruction for high-quality 3d
 548 generation. *arXiv preprint arXiv:2402.08682*, 2024.

549 Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia Segu, Siyuan Li, Luc Van Gool, and
 550 Fisher Yu. Unidepth: Universal monocular metric depth estimation. In *Proceedings of the*
 551 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10106–10116, 2024.

552 Robin Rombach, A. Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 553 resolution image synthesis with latent diffusion models. *2022 IEEE/CVF Conference on*
 554 *Computer Vision and Pattern Recognition (CVPR)*, pp. 10674–10685, 2021. URL <https://api.semanticscholar.org/CorpusID:245335280>.

555 Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In *Conference*
 556 *on Computer Vision and Pattern Recognition (CVPR)*, 2016.

557 Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. Mvdream: Multi-view
 558 diffusion for 3d generation. *arXiv preprint arXiv:2308.16512*, 2023.

559 Uriel Singer, Shelly Sheynin, Adam Polyak, Oron Ashual, Iurii Makarov, Filippos Kokkinos, Naman
 560 Goyal, Andrea Vedaldi, Devi Parikh, Justin Johnson, et al. Text-to-4d dynamic scene generation.
 561 *arXiv preprint arXiv:2301.11280*, 2023.

562 Wenqiang Sun, Shuo Chen, Fangfu Liu, Zilong Chen, Yueqi Duan, Jun Zhang, and Yikai Wang.
 563 Dimensionx: Create any 3d and 4d scenes from a single image with controllable video diffusion.
 564 *arXiv preprint arXiv:2411.04928*, 2024.

565 Basile Van Hoorick, Rundi Wu, Ege Ozguroglu, Kyle Sargent, Ruoshi Liu, Pavel Tokmakov, Achal
 566 Dave, Changxi Zheng, and Carl Vondrick. Generative camera dolly: Extreme monocular dynamic
 567 novel view synthesis. In *European Conference on Computer Vision*, pp. 313–331. Springer, 2024a.

568 Basile Van Hoorick, Rundi Wu, Ege Ozguroglu, Kyle Sargent, Ruoshi Liu, Pavel Tokmakov, Achal
 569 Dave, Changxi Zheng, and Carl Vondrick. Generative camera dolly: Extreme monocular dynamic
 570 novel view synthesis. In *European Conference on Computer Vision*, pp. 313–331. Springer, 2024b.

571 Chaoyang Wang, Peiye Zhuang, Tuan Duc Ngo, Willi Menapace, Aliaksandr Siarohin, Michael
 572 Vasilkovsky, Ivan Skorokhodov, Sergey Tulyakov, Peter Wonka, and Hsin-Ying Lee. 4real-video:
 573 Learning generalizable photo-realistic 4d video diffusion. *arXiv preprint arXiv:2412.04462*, 2024a.

574 Peng Wang and Yichun Shi. Imagedream: Image-prompt multi-view diffusion for 3d generation.
 575 *arXiv preprint arXiv:2312.02201*, 2023.

576 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r:
 577 Geometric 3d vision made easy. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 578 *and Pattern Recognition*, pp. 20697–20709, 2024b.

579 Daniel Watson, Saurabh Saxena, Lala Li, Andrea Tagliasacchi, and David J Fleet. Controlling space
 580 and time with diffusion models. *arXiv preprint arXiv:2407.07860*, 2024.

581 Rundi Wu, Ruiqi Gao, Ben Poole, Alex Trevithick, Changxi Zheng, Jonathan T Barron, and Alek-
 582 sander Holynski. Cat4d: Create anything in 4d with multi-view video diffusion models. *arXiv*
 583 *preprint arXiv:2411.18613*, 2024.

584 Zeqi Xiao, Wenqi Ouyang, Yifan Zhou, Shuai Yang, Lei Yang, Jianlou Si, and Xingang Pan.
 585 Trajectory attention for fine-grained video motion control. In *The Thirteenth International Confer-
 586 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=2z1HT51w5M>.

594 Yiming Xie, Chun-Han Yao, Vikram Voleti, Huaizu Jiang, and Varun Jampani. Sv4d: Dynamic 3d
 595 content generation with multi-frame and multi-view consistency. *arXiv preprint arXiv:2407.17470*,
 596 2024.

597 Serin Yang, Taesung Kwon, and Jong Chul Ye. VibiDSampler: Enhancing video interpolation
 598 using bidirectional diffusion sampler. In *The Thirteenth International Conference on Learning
 599 Representations*, 2025.

600 Meng You, Zhiyu Zhu, Hui Liu, and Junhui Hou. Nvs-solver: Video diffusion model as zero-shot
 601 novel view synthesizer. *arXiv preprint arXiv:2405.15364*, 2024.

602 Heng Yu, Chaoyang Wang, Peiye Zhuang, Willi Menapace, Aliaksandr Siarohin, Junli Cao, Laszlo A
 603 Jeni, Sergey Tulyakov, and Hsin-Ying Lee. 4real: Towards photorealistic 4d scene generation via
 604 video diffusion models. *arXiv preprint arXiv:2406.07472*, 2024.

605 Mark YU, Wenbo Hu, Jinbo Xing, and Ying Shan. Trajectorycrafter: Redirecting camera trajectory
 606 for monocular videos via diffusion models. 2025.

607 Yifei Zeng, Yanqin Jiang, Siyu Zhu, Yuanxun Lu, Youtian Lin, Hao Zhu, Weiming Hu, Xun Cao, and
 608 Yao Yao. Stag4d: Spatial-temporal anchored generative 4d gaussians. In *European Conference on
 609 Computer Vision*, pp. 163–179. Springer, 2024.

610 David Junhao Zhang, Roni Paiss, Shiran Zada, Nikhil Karnad, David E Jacobs, Yael Pritch, Inbar
 611 Mosseri, Mike Zheng Shou, Neal Wadhwa, and Nataniel Ruiz. Recapture: Generative video camera
 612 controls for user-provided videos using masked video fine-tuning. *arXiv preprint arXiv:2411.05003*,
 613 2024.

614 Yuyang Zhao, Zhiwen Yan, Enze Xie, Lanqing Hong, Zhenguo Li, and Gim Hee Lee. Animate124:
 615 Animating one image to 4d dynamic scene. *arXiv preprint arXiv:2311.14603*, 2023.

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

A APPENDIX

650
651

A.1 USER STUDY.

652
653

To evaluate our approach, we conducted a user study comparing Ours, TrajectoryCrafter (YU et al., 2025), TrajectoryAttention (Xiao et al., 2025), and CameraCtrl (He et al., 2024) across four key metrics: View Angle, General Quality, Smoothness, and Background Quality. Participants viewed generated videos and selected the most visually appealing results for each criterion, providing subjective feedback on the overall quality and realism. As shown in Table 5, our method consistently achieved the highest user preference, particularly excelling in General Quality (36%) and Background Quality (39%), which highlights its superior fidelity and ability to preserve scene details. The View Angle metric (30%) confirms accurate and convincing novel-view synthesis, while Smoothness (33%) indicates our approach produces fluid transitions with minimal distortion or artifacts. These results collectively demonstrate that our method offers a more immersive and visually coherent experience compared to competing techniques.

661
662

A.2 PRE-TRAINED MODEL CHECKPOINTS

663
664

Zero4D is developed based on publicly available, pre-trained generative models for both images and videos. For transparency and reproducibility, we specify below the exact versions of each model employed in our framework:

665
666

- Depth estimation model: Depthcrafter¹
- Image-to-Video generation model: stable-video-diffusion-img2vid-xt²

667

A.3 CAMERA TRAJECTORY CONTROL

668
669

We support various camera motions for novel view synthesis, leveraging depth information for realistic scene transformation:

670

Camera orbit rotation: Horizontal camera movement around the subject, creating a side-to-side viewing effect. The depth map guides proper parallax by determining each pixel’s displacement based on its relative depth.

671

Dolly movement: Forward/backward camera translation that adjusts focal length to maintain subject size. For dolly-in, foreground elements remain stable while the background compresses; for dolly-out, the background expands naturally.

672

Elevation transition: Vertical camera movement that rotates the viewpoint up or down. Depth information ensures accurate perspective shifts as the camera changes height, maintaining geometric consistency.

673

Our system utilizes monocular depth estimation to construct a pseudo-3D representation of the scene. This depth map is crucial for maintaining geometric consistency during novel view synthesis, allowing for convincing parallax effects and occlusion handling. By projecting pixels according to their estimated depth values, we achieve realistic scene transformations without explicit 3D reconstruction.

674
675
676
677

Table 5: **User study.** Winning rates across four evaluation metrics. Our method consistently outperforms the baselines, particularly in General Quality and Background Quality.

Method	View Angle	General Quality	Smoothness	BG Quality
Ours	30%	36%	33%	39%
TrajectoryCrafter	32%	30%	27%	28%
TrajectoryAttention	27%	26%	34%	23%
CameraCtrl	11%	8%	6%	10%

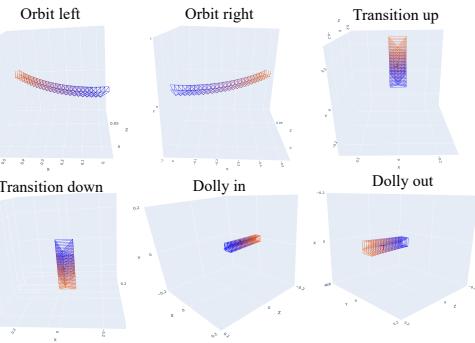


Figure 5: **Camera trajectory visualization.** With a monocular depth estimation model, our approach can generate various novel view videos with spatio-temporal synchronized videos.

¹<https://huggingface.co/tencent/DepthCrafter>

²<https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt>

702 A.4 DETAILS OF ZERO4D IMPLEMENTATION
703704
705 **Algorithm 2:** I_θ : A sampling step of extended ViBiDSampler for bidirectional interpolation.

```

706 1: function  $I_\theta(x_t, \sigma_t, c_{start}, c_{end}, x_w)$ 
707 2:    $\hat{x}_{c_{start}} \leftarrow D_\theta(x_t; \sigma_t, c_{start})$                                  $\triangleright$  EDM denosing
708 3:    $\bar{x}_{c_{start}} \leftarrow \hat{x}_{c_{start}} \cdot m + x_w \cdot (1 - m)$ 
709 4:    $x_{t-1, c_{start}} \leftarrow \bar{x}_{c_{start}} + \frac{\sigma_{t-1}}{\sigma_t} (x_t - \hat{x}_\emptyset)$ 
710 5:    $x_t, c_{start} \leftarrow x_{t-1, c_{start}} + \sqrt{\sigma_t^2 - \sigma_{t-1}^2} \epsilon$            $\triangleright$  Re-noise
711 6:    $x_t, c_{start} \leftarrow \text{flip}(x_t, c_{start})$                                           $\triangleright$  Time reverse
712 7:    $\hat{x}'_{c_{end}} \leftarrow D_\theta(x'_t, c_{start}; \sigma_t, c_{end})$                           $\triangleright$  EDM denoising
713 8:    $\bar{x}'_{c_{end}} \leftarrow \hat{x}'_{c_{end}} \cdot m + x_w \cdot (1 - m)$ 
714 9:    $x'_{t-1} \leftarrow \bar{x}'_{c_{end}} + \frac{\sigma_{t-1}}{\sigma_t} (x'_t, c_{start} - \hat{x}_\emptyset)$ 
715 10:   $x'_{t-1} \leftarrow \text{flip}(x'_{t-1})$                                                $\triangleright$  Time reverse
716 11:  return  $x_{t-1}$ 
717 12: end function

```

718
719
720 **Algorithm 3:** Novel view synthesis and end-view video generation algorithm from Liu et al.
721 (2024)

722 **Input:** Warped frames x_w , opacity mask m
723 **Output:** Input video x_0

```

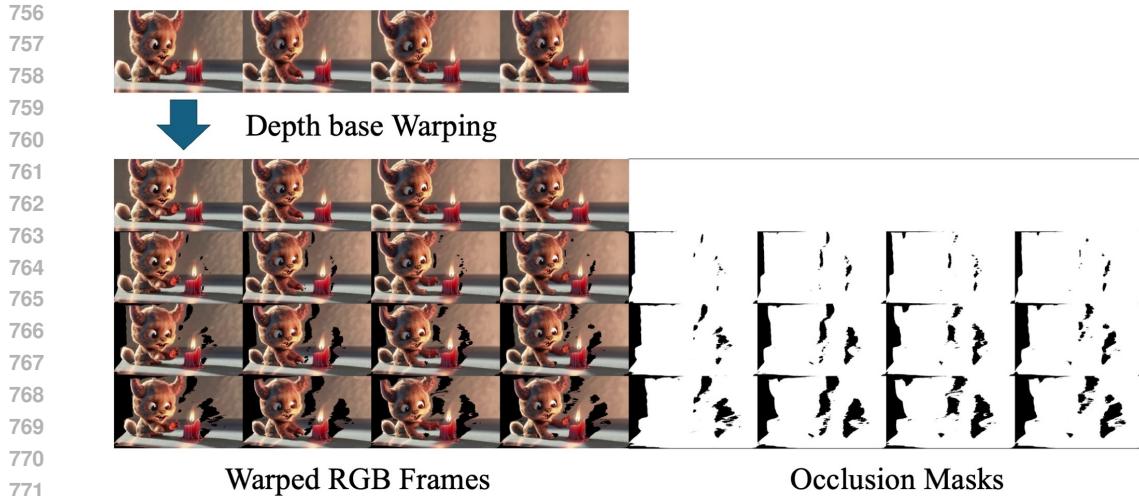
724 1  $x_T \sim \mathcal{N}(0, 1)$ 
725 2 for  $t \leftarrow T$  to 1 do
726 3   if  $t > T - T^{\text{guide}}$  then
727 4     for  $r \leftarrow 1$  to  $R$  do
728 5        $\hat{x}_0 \leftarrow \text{Predict}(x_t)$ 
729 6       if  $r \leq R^{\text{guide}}$  then
730 7          $\hat{x}_0 \leftarrow D_\theta(x_t; \sigma_t, c_{x_0})$ 
731 8          $\bar{x}_0 \leftarrow \hat{x}_0 \cdot m + x_w \cdot (1 - m)$ 
732 9       else
733 10       $\bar{x}_0 \leftarrow \hat{x}_0$ 
734 11       $x_{t-1} \leftarrow \bar{x}_0 + \frac{\sigma_{t-1}}{\sigma_t} (x_t - \hat{x}_0)$ 
735 12      if  $r < R$  then
736 13         $x_t \sim \mathcal{N}(\bar{x}_0, \sigma_t)$ 
737
738 14   else
739 15      $\hat{x}_{t-1} \leftarrow D_\theta(x_t; \sigma_t, c_{x_0})$ 
740 16      $x_{t-1} \leftarrow \bar{x}_0 + \frac{\sigma_{t-1}}{\sigma_t} (x_t - \hat{x}_0)$ 

```

741 17 **return** x_0

742
743 **Details of interpolation.** To generate globally consistent 4D videos, we adapt the interpolation
744 strategy during spatio-temporal video generation. Specifically, we leverage ViBiDSampler (Yang
745 et al., 2025) as the interpolator I_θ . ViBiDSampler is a state-of-the-art training-free video interpolation
746 method designed for image-to-video diffusion models. Given two conditioning frames, it alternates
747 denoising along the temporal axis to synthesize intermediate frames. In our framework, we extend
748 this process by incorporating warped-frame guidance (see Algorithm 2), which provides additional
749 geometric cues. This modification refines the interpolation process, leading to more faithful structure
750 preservation and improved global spatio-temporal coherence across the generated 4D video grid.

751
752 **Novel-view synthesis.** Algorithm 3 outlines the process for generating novel-view videos from a
753 single monocular video. We first apply novel view synthesis to the initial frame using an I2V diffusion
754 model Blattmann et al. (2023) to produce the novel view $x[:, 1]$. For this, depth-based warping priors
755 from the input video are incorporated to enable inpainting-based synthesis. Specifically, using an
off-the-shelf depth estimation model Piccinelli et al. (2024); Hu et al. (2024), we warp the original



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Figure 6: **Input Video Warping.** Given a single video, we utilize an off-the-shelf depth estimation model to generate warped frames from novel viewpoints.

frame to novel viewpoints, as illustrated in Figure 5. As shown in Fig. 6, occluded regions from the warp operation appear black, allowing us to extract an opacity mask. Inspired by Lugmayr et al. (2022); You et al. (2024); Liu et al. (2024), we adopt a mask inpainting approach, where inpainting is performed on the estimated noisy frame $\hat{x}_0[:, 1]$. Rather than applying inpainting at every denoising step, as in Liu et al. (2024), we utilize a re-noising process within the diffusion model’s denoising step to refine the final synthesis by reducing artifacts and enhancing structural coherence. A detailed description is provided in Algorithm 3.

Table 6: Runtime and VRAM comparison for sampling an $N \times F$ 4D grid.

	Zero4D (Ours)*	Zero4D (Ours)	TrajectoryCrafter	TrajectoryAttention	CameraCtrl
VRAM	23GB	28GB	45GB	20GB	46GB
Time	88m	66m	60m	50m	31m

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Runtime performance. Although Zero4D takes a similar amount of time to generate a full 4D video compared to baseline methods, it requires significantly less GPU memory—nearly 40–50% less than TrajectoryCrafter. This makes Zero4D a much more memory-efficient solution that remains competitive in runtime without compromising consistency or quality. The * indicates results measured on an RTX 4090, while the others were benchmarked on an NVIDIA A100.

A.5 ADDITIONAL RESULTS

Ablation (detailed analysis).

801
802
803
804
805
806
807
808
809
Figure 7 qualitatively illustrates the role of each component in maintaining global consistency. Without spatio-temporal bidirectional interpolation (STBI), each frame is synthesized independently, which causes temporal flickering and background inconsistencies across views. For example, in the water-pouring sequence (left), the liquid surface fails to remain temporally stable, as highlighted by the red boxes. Similarly, without warping guidance, the model struggles with geometric alignment. In the motorcycle example (middle), artifacts appear in the generated human figure, leading to distorted or incomplete shapes. Finally, in the clock sequence (right), the absence of warping or spatio-temporal interpolation leads to visible structural mismatches and background inconsistencies. In contrast, our full model effectively aggregates global information through STBI and enforces geometric consistency via warped-frame guidance, resulting in coherent and high-quality multi-view videos across both spatial and temporal dimensions.

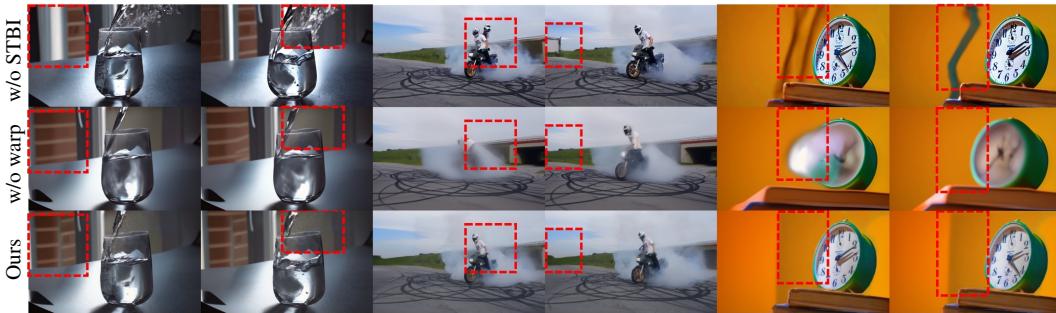


Figure 7: **Ablation results.** Removing spatio-temporal bidirectional interpolation (STBI) or warping guidance leads to broken consistency and geometric artifacts (red boxes). In contrast, our full method preserves spatial structure and temporal coherence across views.

B THE USE OF LARGE LANGUAGE MODELS (LLMs)

LLMs were not involved in research ideation or methodological design and were only used for minor expression refinement. The authors retain full responsibility for all scientific content.

821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864

865

Input video

View from orbit left

View from orbit right

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

Input video

Transition up

Transition down

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

Figure 8: **Camera orbit & transition novel videos.** Our model generates high-quality 4D videos from a single input video, enabling diverse camera motions such as orbit, transition, and dolly movements. *Best viewed with Acrobat Reader. Click the images to play the video clip.*

915

916

917

918	Input video	Time index 1	Time index 2
919			
920			
921			
922			
923			
924			
925			
926			
927			
928			
929			
930			
931			
932			
933			
934			
935			
936			
937			
938			
939			
940			
941			
942			
943			
944			
945			
946			
947			
948			
949			
950			
951			
952			
953			
954			
955			
956			
957			
958			
959			
960			
961			
962			
963			
964			
965			
966			
967			
968			
969			
970			
971			

Figure 9: **Bullet time videos.** Our model generates high-quality bullet-time videos, demonstrating spatio-temporal consistency. *Best viewed with Acrobat Reader. Click the images to play the video clip.*

972	Input video	Dolly in	Dolly out
973			
974			
975			
976			
977			
978			
979			
980			
981			
982			
983			
984			
985			
986			
987			
988			
989			
990			
991			
992			
993			
994			
995			
996			
997			
998			
999			
1000			
1001			
1002			
1003			
1004			
1005			
1006			
1007			
1008			
1009			
1010			
1011			
1012			
1013			
1014			
1015			
1016			
1017			
1018			
1019			
1020			
1021			
1022			
1023			
1024	Figure 10: Dolly in/out videos. Our model generates high-quality 4D videos from a single input		
1025	video with dolly movements. <i>Best viewed with Acrobat Reader. Click the images to play the video</i>		
	<i>clip.</i>		