
NLDL
#42

NLDL
#42

NLDL 2026 Full Paper Submission #42. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Towards Agnostic and Holistic Universal Image Segmentation
with Bit Diffusion

Anonymous Full Paper
Submission 42

Abstract001

This paper introduces a diffusion-based framework002

for universal image segmentation, making agnostic003

segmentation possible without depending on mask-004

based frameworks and instead predicting the full005

segmentation in a holistic manner. We present sev-006

eral key adaptations to diffusion models, which are007

important in this discrete setting. Notably, we show008

that a location-aware palette with our 2D gray code009

ordering improves performance. Adding a final tanh010

activation function is crucial for discrete data. On011

optimizing diffusion parameters, the sigmoid loss012

weighting consistently outperforms alternatives, re-013

gardless of the prediction type used, and we settle014

on x-prediction. While our current model does not015

yet surpass leading mask-based architectures, it nar-016

rows the performance gap and introduces unique017

capabilities, such as principled ambiguity modeling,018

that these models lack. All models were trained019

from scratch, and we believe that combining our020

proposed improvements with large-scale pretraining021

or promptable conditioning could lead to competi-022

tive models.023

1 Introduction024

In universal image segmentation, the goal is to seg-025

ment images from many data modalities with a single026

model. Conversely, in narrow image segmentation,027

you specialize on a single dataset or task, such as028

brain tumor segmentation. In recent times, the029

image segmentation field has favored universal seg-030

mentation models such as Mask-RCNN [1] and the031

Segment Anything Model (SAM) [2, 3]. These foun-032

dation models are used as general problem solvers033

that can be finetuned or prompted for narrow down-034

stream tasks.035

Universal segmentation systems increasingly face036

two, often competing, requirements: agnostic behav-037

ior and a holistic view of the images. By agnostic038

we mean the ability to segment objects without re-039

lying on a fixed label set. Agnostic models focus040

on masks while unbound by labels, enabling the041

model to generalize across domains and unseen cat-042

egories. By holistic we mean a model that considers043

the whole image when producing segmentations, in-044

cluding inter-mask correlations. I.e., choosing the045

same semantic division for separate masks. In prac-046

Our Model PredictionsImages

Base Diff. Model Our Model

Figure 1. The modifications to a base diffusion model
and their performance gains, visualized along with sam-
ples from our model.

tice, the first property enables open-world and cross- 047

dataset use, while the second reduces segmentation 048

inconsistencies. 049

We study diffusion-based segmentation as a route 050

to achieve these goals. Diffusion models are well 051

known for revolutionizing image generation [4], but 052

in our setting the image is only a conditional input 053

to the task of generating the segmentation. Ad- 054

ditionally, using diffusion models makes ambiguity 055

modeling possible. 056

Direct diffusion over discrete, high-dimensional 057

label spaces is non-trivial. Diffusion was developed 058

with continuous targets in mind, and it therefore 059

faces multiple challenges when dealing with discrete 060

data such as segmentations. Our approach combines 061

various ideas from the diffusion research landscape. 062

The addition of these ideas is essential to raise our 063

model’s performance. Our main contribution is to 064

adapt the following techniques to work for diffusion 065

segmentation (see Fig. 1): 066

1. Input scaled noise schedule [5]. We propose 067

using an input-scaled diffusion noise schedule, 068

in order to make the denoising problem suitably 069

hard for discrete target spaces and improving 070

training stability for segmentation. 071

2. Analog bit diffusion encoding [6]. We en- 072

code 2k classes with k signed bits and train the 073

diffusion model to predict bit-valued targets, re- 074

ducing dimensionality while preserving a simple 075
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route back to class indices. We suggest adding076

a tanh(·) activation, as it aligns the network’s077

outputs with the discrete bit codes and yields078

better-calibrated probabilities.079

3. Location-aware palette [7] (LAP). We080

adapt an LAP to reduce the downsides of the081

analog bit encoding when paired with our or-082

dering that follows a 2D gray code. The LAP083

assigns indices by mask location, creating con-084

sistent targets in an agnostic setting, improving085

training.086

2 Related Works087

The most common flavor of universal segmentation088

models are mask-based (e.g. Mask R-CNN [1]).089

They generally work by detecting candidate re-090

gions for potential masks, and then handling each091

candidate separately as a binary mask prediction092

and/or classification problem [8–11]. Promptable093

class-agnostic systems such as SAM [2] demonstrate094

strong open-world mask extraction, but are still095

relying on binary foreground/background mask pre-096

diction. Masks are produced independently across097

the image and are therefore not holistic. An ideal098

universal segmentation model should be holistic, to099

avoid inconsistency when producing e.g. repeating100

objects in an image or simply to avoid overlapping101

masks.102

Mask-based models are limited to predicting one103

mask at a time because they optimize for mean104

predictions. For full agnostic segmentations, the105

mean would deviate too far from any ground truth106

due to scene uncertainty. This issue is less severe107

for binary masks, where variance is low, and ab-108

sent in non-agnostic models with fixed vocabular-109

ies. Traditional losses such as cross-entropy or Dice110

push toward single estimates even when boundaries111

are ill-defined or annotators disagree, often blur-112

ring details and under-representing multi-modal so-113

lutions. Probabilistic segmentation explicitly mod-114

els these uncertainties, e.g., Probabilistic U-Net and115

its variants [12–14], and hierarchical variational ap-116

proaches [15]. Bayesian [16] and ensemble-style117

methods estimate uncertainty but often at a sig-118

nificant compute cost or weaker distributional guar-119

antees. Diffusion-based segmentation offers a gener-120

ative alternative that can sample diverse, plausible121

masks and produce uncertainty maps by construc-122

tion [17–20]. Previously mentioned generative mod-123

els all operate on narrow tasks instead of universal124

segmentation.125

Another recent diffusion-based method,126

pix2seq-D [21] focused on panoptic segmenta-127

tion with diffusion models. They took advantage128

of the ambiguity modeling inherent to generative129

models by splitting semantic masks into instance130

masks without running into combinatorial problems. 131

Their method also made use of input scaling and 132

analog bits, to deal with the discrete data domain. 133

The paper Unified Representation for Image Gen- 134

eration and Segmentation (UniGS) [7] is the most 135

comparable to our approach, as it also tackles uni- 136

versal image segmentation with diffusion models. 137

UniGS treats masks and images within a single 138

latent-diffusion framework by representing entity- 139

level masks as RGB colormaps aligned to the image 140

domain. They choose the RGB space because their 141

network is a finetuned Stable Diffusion [4] model 142

(text-to-image). Decoding masks from the predicted 143

RGB encoding is tricky, requiring the introduction 144

of a progressive dichotomy module. The authors 145

also introduce a location-aware color palette that 146

assigns consistent colors to entities based on spatial 147

location. Relative to UniGS, our work only targets 148

the segmentation domain and instead of utilizing a 149

pretrained model such as Stable Diffusion, we train 150

from scratch. Training from scratch comes with 151

upsides and downsides, namely we are restricted to 152

working at a small scale but we are able to study 153

the properties of the model in an unbiased setting, 154

and without restrictions on modeling choices. 155

3 Methods 156

3.1 Diffusion Model 157

We use a continuous time diffusion model [22, 23] 158

ranging from time t = 0 (data) to t = 1 (noise). The 159

diffusion sample xt is given by the equation 160

xt = α(t)x0 + σ(t)ϵ, (1) 161

where x0 is data, ϵ is i.i.d unit Gaussian noise. For a 162

diffusion segmentation model such as ours, the data 163

is a segmentation map. The image is a conditional 164

input which we concatenate across the channel di- 165

mension. The model operates in pixel space, since 166

recent research shows these models can be competi- 167

tive latent diffusion alternatives [24, 25]. 168

In order to predict x0, the network can pre- 169

dict it directly (x-prediction), predict the noise 170

(ϵ-prediction), or predict v = α(t)ϵ − σ(t)x0 (v- 171

prediction [22]). Each of these predictions parame- 172

terize the others based on Eq. (1). 173

We employ a convolutional neural network (CNN) 174

with an attention mechanism to predict the mean of 175

the conditional distribution p(x0|xt), i.e. predicting 176

the data from a noisy latent sample. Based on 177

[23], the model can generate segmentation maps by 178

denoising pure noise into segmentation maps over 179

a number of timesteps. We always use equidistant 180

timesteps from t = 1 to t = 0 when sampling. 181

The model is trained with the weighted MSE loss 182

function [23] 183

L(x) = Et∼U(0,1)

[
w(t)∥x0 − x̂∥2

]
, (2) 184
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where x̂ = x̂θ(xt, t) is the neural network predic-185

tion of the data, x0. The loss weighting, w(t), can186

emphasize the importance of different parts of the187

diffusion process, and following [24, 25] we use the188

sigmoid loss weighting with a bias of −4.189

3.2 Bit Diffusion190

Analog Bit Diffusion [6] is a modification to diffusion191

models that enable the model to work with high-192

dimensional discrete data, while maintaining a low193

dimensional latent space. Instead of representing194

discrete data as e.g. one-hot vectors, we represent the195

2k classes as nbits = k bits. We use 26 = 64 classes196

corresponding to nbits = 6. Negative bits have a197

value of −1 instead of 0, to make their distribution198

zero-mean and unit variance.199

The diffusion process works in the bit space, and200

can be easily converted to the class space by thresh-201

olding the bits at 0 and converting from the binary202

representation.203

With the bit diffusion formulation, the model204

should only predict values within [−1, 1] with heavy205

emphasis on the endpoints of the interval. The206

tanh(·) activation function is well suited for such207

a distribution, and we therefore apply it as a final208

activation (in cases where the model predicts the209

data directly). The non-thresholded bit activations210

enable conversion to a direct probability map. Let ŷ211

be the predicted bits for some pixel. The probability212

that the pixel has the binary sequence y is given by213

p(y|ŷ) =
nbits−1∏
i=0

p(yi|ŷi) =
nbits−1∏
i=0

(
1− |yi − ŷi|

2

)
.

(3)214

The equation above makes the downside of using a215

bit encoding clear. It does not model correlations be-216

tween bits, but instead considers each bit probability217

separately.218

3.3 Noise Schedule and Input Scaling219

The noise schedule is parameterized by γ : [0, 1] →220

[0, 1], a monotonically decreasing function. We use221

a variance preserving noise schedule, where the co-222

efficients are given by223

α(t) =
√
γ(t), σ(t) =

√
1− γ(t). (4)224

The variance preserving property enables parameter-225

izing both set of coefficients with a single function.226

A common choice for the noise schedule is the cosine227

schedule, which is given by γ(t) = cos(tπ/2)2 .228

Consider the upper row of latent samples in Fig. 2.229

As a consequence of using discrete data with high230

spatial correlation, it is easy to reconstruct the data231

for large parts of the diffusion process. If the model232

is able to only consider the latent sample for large233

parts of the diffusion process during training, then234

Image

0

1

Data coef. (t)

Noise coef. (t)

0 1time (t)
0

1

Data coef. (t)

Noise coef. (t)

b=1
(normal
cosine)

 Reverse process     Forward process 

b=0.1
(input

scaled)

Figure 2. The cosine noise schedule with latent dif-
fusion samples xt for various values of t. The latent
samples use 3 bits (up to 8 masks) to make them view-
able as RGB images.

the resulting model will be poor since it ignores the 235

image during inference. 236

To address these concerns we use input scaling [5], 237

which can be used to make diffusion noise schedules 238

harder. Input scaling was originally introduced to 239

deal with large images since increasing the number of 240

pixels lessens the effect of the noise. The idea behind 241

input scaling is to make noise schedule harder by 242

lowering the signal-to-noise ratio (SNR). The SNR 243

is given by 244

SNR(t) =
α(t)

σ(t)
=

√
γ(t)√

1− γ(t)
, (5) 245

and is lowered by multiplying with some constant 246

b ∈ [0, 1], called the input scale. One can show that 247

solving 248√
γb(t)√

1− γb(t)
= b

√
γ(t)√

1− γ(t)
, (6) 249

for the input scaled noise schedule, γb(t), yields the 250

expression 251

γb(t) =
b2γ(t)

(b2 − 1)γ(t) + 1
. (7) 252

Thus, all equations involving the noise schedule can 253

be reused, except by replacing the original γ(t) with 254

the input scaled γb(t). 255

3.4 Location-aware Palette 256

The segmentation model is class-agnostic, and there- 257

fore the class numbers which we assign objects can be 258

permuted without changing the task. A valid option 259

is thus to assign random class numbers, but a better 260

option is a location-aware palette (LAP)[7]. With 261

an LAP, each mask is assigned a class number based 262

on the mask centroid. An L× L grid is constructed 263

across the image, with each square associated with a 264

class number. When multiple mask centroids share 265

a grid, they are instead given the class number of 266

the nearest free grid square. Without an LAP, the 267

best prediction at t = 1 is a zero-image, since the 268

data is pure noise and the expected value of random 269
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bits is zero. When the prediction is independent of270

the image, there is no useful learning signal. When271

using an LAP, classes are biased towards the nearby272

LAP class indices, thus providing a learning signal273

for the parts of the diffusion process where the latent274

sample is largely noise.275

The analog bit encoding has difficulty represent-276

ing class distributions with multiple classes when277

the bits of the classes differ significantly (see sup-278

plementary material for details). By exploiting the279

LAP, we can increase the likelihood of adjacent class280

regions sharing their bit encoding digits. To this281

end, we arrange the bit codes in the L × L grid282

as a 2-dimensional gray code [26]. This ensures283

each 1-connectivity pair of neighbors only differ by284

1 bit in the LAP. Since we use nbits = 6 we have285

L =
√
26 = 8.286

4 Experiments287

4.1 Evaluation Setup288

As a basis for our experiments we use the Entity-289

Seg [27] dataset, consisting of 33,227 images each290

fully segmented with high-quality agnostic class la-291

bels across a variety of modalities. We partition the292

dataset on a holdout basis with an 80-10-10 split293

(train-val-test) and we use a 128 × 128 resolution294

version of their dataset using the padding strategy295

from [2]. Our model is a 38.5m parameter attn-296

UNet trained for 300k iterations with a batch size297

of 8. The learning rate was set at 1e− 4, with linear298

warmup for the first 1000 iterations and decreased299

with a cosine schedule for the last 50k iterations.300

We used the AdamW [28] optimizer.301

We compare quantitatively using two metrics.302

The first is the adjusted rand index (ARI), which is303

based on the probability of two random pixels agree-304

ing in the ground truth and prediction on whether305

they should belong to the same class or different306

classes. The adjusted formulation ensures the ex-307

pected value for a random prediction is 0 while still308

keeping a perfect prediction at a score of 1. The309

second metric is the Intersection over Union (IoU)310

matched with the Hungarian algorithm. Follow-311

ing [27] we only compute the mean over non-empty312

ground truth classes after matching ground truths313

with predictions.314

Our main model uses x-prediction and the sigmoid315

loss weights. The noise schedule is a cosine noise316

schedule with input scale parameter b = 0.1. The317

training data class indices are chosen based on a318

location-aware palette (LAP) that promotes similar319

analog bit encodings. A final activation function of320

tanh(·) is applied to the network. For sampling, we321

use 8 timesteps and a guidance weight of 1.0 unless322

otherwise is stated.323

No LAP w/ LAP
Encoding ARI IoU ARI IoU
Onehot 0.168 0.186 0.528 0.323
RGB 0.460 0.283 0.524 0.312
Analog Bits 0.515 0.368 0.670 0.432

Table 1. Mean performance for models trained with
different encoding types.
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Figure 3. Performance for the three encoding types as
the number of representable classes are varied.

4.2 Comparisons 324

We compare our model with the onehot and RGB 325

encodings. The results (shown in Table 1) show 326

that our model using analog bits improves upon the 327

alternatives. The contrast is especially large when 328

the models are trained with an LAP. 329

The analog bit encoding has exponential efficiency 330

in the number of classes it can represent, which is 331

clear when comparing how many classes the methods 332

can represent in Fig. 3. Onehot and analog bits are 333

similar in performance until around 16 classes when 334

onehot falls off. We use 64 classes as a baseline for 335

the rest of the experiments, since 96.14% of images 336

in the dataset have less than 65 objects. 337

Our model was trained with an empty image in 338

5% of training samples, as it enables using classi- 339

fier free guidance [29] during sampling to increase 340

the conditioning strength. To optimize sampling, 341

we vary the guidance weight (gw) and number of 342

sampling timesteps (see Fig. 4 and Fig. 5). We see 343

that around only 8 sampling steps is optimal and 344

performance only degrades slightly when using more 345

steps. Based on the ARI metric gw = 1.0 is best, 346

while IoU prefers a stronger gw = 2.5. Note that 347

gw = 0.0 is the same as normal sampling with no 348

guidance. 349

We increase the number of samples for each image 350

in Fig. 6 to see the potential gains if one had an 351

oracle to select the best prediction. More realistically 352

this indicates the usefulness of a human in the loop or 353

a test time augmentation (TTA) heuristic to select or 354

aggregates samples. Using a larger guidance weight 355

comes with a small penalty for the sample diversity 356

as we see a smaller gain in performance. 357
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Figure 4. Mean performance on the validation set as
the number of timesteps is varied for different guidance
weights (gw).
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Figure 5. Mean performance on the validation set as
the guidance weight is varied.

4.3 Ablations358

To investigate the best pair of prediction type and359

loss weights, we train a range of models while varying360

the available options. The results are seen in Fig. 7.361

With all prediction types, the sigmoid loss weights362

perform the best. The model with ϵ-prediction is363

slightly better than x-prediction. However, when in-364

specting samples produced by the model (see Fig. 8,365

the ϵ-prediction often failed to remove all the noise.366

One might think thresholding would solve this prob-367

lem, but based on qualitative inspection of samples368

it seems the denoising trajectory is affected, leaving369

small noisy patches of nonsensical labels. A much370

more visible symptom of the same effect is visible371

for the model with no tanh activation. Given the372
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Figure 6. Mean performance when selecting the best
segmentation from multiple samples. Shown in absolute
ARI (left) and relative to no guidance (right).

LAP None Different Random Similar
ARI 0.517 0.640 0.644 0.670
IoU 0.367 0.422 0.421 0.434

Table 2. Mean performance for models trained with
different types of LAP.

tiny difference in performance, we therefore still use 373

x-prediction.

v x
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0.0

0.2

0.4

0.6

AR
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0.4
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Figure 7. Mean performance for models trained with
different prediction types and loss weights. These models
were trained without LAP and b = 0.1.

374

The LAP encoding setup described in Section 3.4 375

is the one we call similar, since adjacent encodings 376

are similar. Additionally, we also consider an LAP 377

with random class indices and one which maximizes 378

the difference of adjacent classes based on a greedy 379

heuristic. The results in Table 2 show that in all 380

cases, an LAP significantly increases performance. 381

Additionally, the more similar the bit encodings of 382

adjacent class indices, the better the performance. 383

To study the effect of input scaling we train a 384

variety of models while varying b (see Fig. 9). A 385

value of b = 0.1 is close to optimal for our application. 386

Note that b = 1.0 corresponds to a model with no 387

input scaling. The average metrics are more than 388

doubled by just adding input scaling to the noise 389

schedule. 390

wo/ tanh -pred Ours

im
a
g
e

G
T

lo
g
it

s
se

g

Figure 8. A qualitative example to illustrate the dif-
ference in samples produced by a model without tanh(·)
activation and with ϵ-prediction, compared to our model.
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Figure 9. Mean performance for non-LAP models when
varying the input scale parameter (b).

5 Discussion391

Our experiments show that analog bits consistently392

outperforms RGB and one-hot encodings in agnos-393

tic segmentation. The relative gains are largest394

when class indices are assigned with a location-aware395

palette (LAP). We theorize that the gain in perfor-396

mance is an effect of an improved training process.397

Previously the network would learn little to nothing398

near t = 1, just producing a zero-mean prediction,399

but the bias from the LAP lets it encode segmen-400

tations at any timestep. By ordering bit codes of401

the LAP with a 2D gray ordering, we reduced differ-402

ences between neighboring bits (the similar model).403

This allowed the model to express soft ambiguity404

between adjacent masks without paying the penalty405

of spreading probability mass over many unrelated406

codes.407

The analog bit encoding was preferred in our net-408

works that were trained from scratch. An interesting409

research question is whether the same holds for tasks410

similar to that of UniGS [7]. The UniGS model was411

designed with the RGB encoding specifically because412

stable diffusion operates in RGB space. It may be413

possible to add a head to the segmentation branch to414

make this conversion possible. Given UniGS already415

reports competitive scores in segmentation bench-416

marks, replacing RGB colormaps with analog bits417

could perhaps push the unified generator–segmenter418

model to the forefront.419

The best results were achieved when the network420

used x-prediction. Across prediction types (x, v,421

and ϵ), the sigmoid loss weighting dominates alter-422

natives, provided its bias is tuned. In our early423

experiments, we found a bias of −4 to be effective.424

Input scaling makes the schedule “hard enough” for425

discrete targets: reducing the effective SNR with426

b≈0.1 more than doubles ARI over the unscaled co-427

sine schedule. Since input scaling was introduced428

in order to tackle the problem of high-dimensional429

spatial data, one can expect it should be lowered430

further than b = 0.1 for models with larger image431

sizes than 128× 128.432

We observe that only ∼8 denoising steps are suf-433

ficient for near-optimal performance, with modest434

degradation beyond that. Typically, diffusion mod-435

els using the basic DDPM [30] sampler require many436

hundreds of steps for decent results, but discrete 437

data may have lowered it. It is unclear to us why 438

the model performance degrades with more steps. 439

Further research is needed and perhaps there is 440

some performance to be gained by preventing this 441

collapse. 442

We find similar classifier-free guidance values as 443

those commonly used for text-to-image models. A 444

guidance weight around 1 seems to help conditioning 445

without collapsing diversity. We only explored image 446

guidance, but future work could extend to other 447

promptable signals such as weak supervision (points, 448

boxes, scribbles), class labels, or few-shot examples. 449

Modern universal segmentation systems must be 450

promptable to be useful in practical settings. The 451

ability to control condition strength on these inputs 452

would provide a whole new dimension to promptable 453

segmentation that traditional non-diffusion models 454

do not have. 455

Overall, we provide a concrete path to make diffu- 456

sion models viable for universal segmentation: ana- 457

log bit diffusion for discrete labels, a noise sched- 458

ule with input scaling, LAP for agnostic supervi- 459

sion, and a robust loss weighting. These choices 460

yield consistent gains and make the method com- 461

petitive in agnostic/holistic settings. At the same 462

time, in broad foundation scenarios dominated by 463

mask-classification architectures, our current model 464

does not yet surpass strong discriminative baselines 465

such as MaskFormer/Mask2Former or promptable 466

SAM variants [2, 9, 10]. This gap likely reflects scale 467

(data, compute, pretraining) and it motivates future 468

work based on pretrained networks. 469

6 Conclusion 470

Diffusion models can serve as a viable framework 471

for universal segmentation when adapted to discrete 472

labels. It is necessary to modify the model to suit the 473

discrete domain. Analog bits prove to be an effective 474

encoding scheme, combined with a 2D gray code 475

location-aware palette. Other effective modifications 476

are an input-scaled noise schedule, x-prediction and 477

using tanh as a final activation function. 478

While our approach does not yet surpass leading 479

mask-based universal models in general foundation 480

settings [2, 9, 10], it narrows the gap and offers ca- 481

pabilities those models lack: principled ambiguity 482

modeling and sample-based exploration of plausible 483

masks. Given the progress of diffusion segmenters 484

like UniGS [7], we see a possible path forward: com- 485

bine large-scale pretraining with analog bits and as 486

many as the other proposed model improvements. 487

Another path which might be more useful in practice 488

is to integrate promptable conditioning combined 489

with classifier-free guidance. If successful, generative 490

universal segmenters could prove to be competitive 491

models that remain both agnostic and holistic. 492
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