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Abstract

This paper introduces a diffusion-based framework
for universal image segmentation, making agnostic
segmentation possible without depending on mask-
based frameworks and instead predicting the full
segmentation in a holistic manner. We present sev-
eral key adaptations to diffusion models, which are
important in this discrete setting. Notably, we show
that a location-aware palette with our 2D gray code
ordering improves performance. Adding a final tanh
activation function is crucial for discrete data. On
optimizing diffusion parameters, the sigmoid loss
weighting consistently outperforms alternatives, re-
gardless of the prediction type used, and we settle
on x-prediction. While our current model does not
yet surpass leading mask-based architectures, it nar-
rows the performance gap and introduces unique
capabilities, such as principled ambiguity modeling,
that these models lack. All models were trained
from scratch, and we believe that combining our
proposed improvements with large-scale pretraining
or promptable conditioning could lead to competi-
tive models.

1 Introduction

In universal image segmentation, the goal is to seg-
ment images from many data modalities with a single
model. Conversely, in narrow image segmentation,
you specialize on a single dataset or task, such as
brain tumor segmentation. In recent times, the
image segmentation field has favored universal seg-
mentation models such as Mask-RCNN [1] and the
Segment Anything Model (SAM) [2, 3]. These foun-
dation models are used as general problem solvers
that can be finetuned or prompted for narrow down-
stream tasks.

Universal segmentation systems increasingly face
two, often competing, requirements: agnostic behav-
ior and a holistic view of the images. By agnostic
we mean the ability to segment objects without re-
lying on a fixed label set. Agnostic models focus
on masks while unbound by labels, enabling the
model to generalize across domains and unseen cat-
egories. By holistic we mean a model that considers
the whole image when producing segmentations, in-
cluding inter-mask correlations. I.e., choosing the
same semantic division for separate masks. In prac-
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Towards Agnostic and Holistic Universal Image Segmentation
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Figure 1. The modifications to a base diffusion model
and their performance gains, visualized along with sam-
ples from our model.

tice, the first property enables open-world and cross-
dataset use, while the second reduces segmentation
inconsistencies.

We study diffusion-based segmentation as a route
to achieve these goals. Diffusion models are well
known for revolutionizing image generation [4], but
in our setting the image is only a conditional input
to the task of generating the segmentation. Ad-
ditionally, using diffusion models makes ambiguity
modeling possible.

Direct diffusion over discrete, high-dimensional
label spaces is non-trivial. Diffusion was developed
with continuous targets in mind, and it therefore
faces multiple challenges when dealing with discrete
data such as segmentations. Our approach combines
various ideas from the diffusion research landscape.
The addition of these ideas is essential to raise our
model’s performance. Our main contribution is to
adapt the following techniques to work for diffusion
segmentation (see Fig. 1):

1. Input scaled noise schedule [5]. We propose
using an input-scaled diffusion noise schedule,
in order to make the denoising problem suitably
hard for discrete target spaces and improving
training stability for segmentation.

2. Analog bit diffusion encoding [6]. We en-
code 2F classes with k signed bits and train the
diffusion model to predict bit-valued targets, re-
ducing dimensionality while preserving a simple

048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066

067
068
069
070
071

NLDL
#42



NLDL

#42

076
077
078
079

080
081
082
083
084
085
086

087

088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

NLDL 2026 Full Paper Submission #42.

route back to class indices. We suggest adding
a tanh(-) activation, as it aligns the network’s
outputs with the discrete bit codes and yields
better-calibrated probabilities.

3. Location-aware palette [7] (LAP). We
adapt an LAP to reduce the downsides of the
analog bit encoding when paired with our or-
dering that follows a 2D gray code. The LAP
assigns indices by mask location, creating con-
sistent targets in an agnostic setting, improving
training.

2 Related Works

The most common flavor of universal segmentation
models are mask-based (e.g. Mask R-CNN [1]).
They generally work by detecting candidate re-
gions for potential masks, and then handling each
candidate separately as a binary mask prediction
and/or classification problem [8-11]. Promptable
class-agnostic systems such as SAM [2] demonstrate
strong open-world mask extraction, but are still
relying on binary foreground/background mask pre-
diction. Masks are produced independently across
the image and are therefore not holistic. An ideal
universal segmentation model should be holistic, to
avoid inconsistency when producing e.g. repeating
objects in an image or simply to avoid overlapping
masks.

Mask-based models are limited to predicting one
mask at a time because they optimize for mean
predictions. For full agnostic segmentations, the
mean would deviate too far from any ground truth
due to scene uncertainty. This issue is less severe
for binary masks, where variance is low, and ab-
sent in non-agnostic models with fixed vocabular-
ies. Traditional losses such as cross-entropy or Dice
push toward single estimates even when boundaries
are ill-defined or annotators disagree, often blur-
ring details and under-representing multi-modal so-
lutions. Probabilistic segmentation explicitly mod-
els these uncertainties, e.g., Probabilistic U-Net and
its variants [12-14], and hierarchical variational ap-
proaches [15]. Bayesian [16] and ensemble-style
methods estimate uncertainty but often at a sig-
nificant compute cost or weaker distributional guar-
antees. Diffusion-based segmentation offers a gener-
ative alternative that can sample diverse, plausible
masks and produce uncertainty maps by construc-
tion [17-20]. Previously mentioned generative mod-
els all operate on narrow tasks instead of universal
segmentation.

Another  recent  diffusion-based  method,
pix2seq-D [21] focused on panoptic segmenta-
tion with diffusion models. They took advantage
of the ambiguity modeling inherent to generative
models by splitting semantic masks into instance
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masks without running into combinatorial problems.
Their method also made use of input scaling and
analog bits, to deal with the discrete data domain.

The paper Unified Representation for Image Gen-
eration and Segmentation (UniGS) [7] is the most
comparable to our approach, as it also tackles uni-
versal image segmentation with diffusion models.
UniGS treats masks and images within a single
latent-diffusion framework by representing entity-
level masks as RGB colormaps aligned to the image
domain. They choose the RGB space because their
network is a finetuned Stable Diffusion [4] model
(text-to-image). Decoding masks from the predicted
RGB encoding is tricky, requiring the introduction
of a progressive dichotomy module. The authors
also introduce a location-aware color palette that
assigns consistent colors to entities based on spatial
location. Relative to UniGS, our work only targets
the segmentation domain and instead of utilizing a
pretrained model such as Stable Diffusion, we train
from scratch. Training from scratch comes with
upsides and downsides, namely we are restricted to
working at a small scale but we are able to study
the properties of the model in an unbiased setting,
and without restrictions on modeling choices.

3 Methods
3.1 Diffusion Model

We use a continuous time diffusion model [22, 23]
ranging from time ¢t = 0 (data) to ¢t = 1 (noise). The
diffusion sample x; is given by the equation

x; = a(t)xo + o(t)e,

(1)

where xg is data, € is i.i.d unit Gaussian noise. For a
diffusion segmentation model such as ours, the data
is a segmentation map. The image is a conditional
input which we concatenate across the channel di-
mension. The model operates in pixel space, since
recent research shows these models can be competi-
tive latent diffusion alternatives [24, 25].

In order to predict xg, the network can pre-
dict it directly (z-prediction), predict the noise
(e-prediction), or predict v = a(t)e — o(t)xo (v-
prediction [22]). Each of these predictions parame-
terize the others based on Eq. (1).

We employ a convolutional neural network (CNN)
with an attention mechanism to predict the mean of
the conditional distribution p(xg|x¢), i.e. predicting
the data from a noisy latent sample. Based on
[23], the model can generate segmentation maps by
denoising pure noise into segmentation maps over
a number of timesteps. We always use equidistant
timesteps from t = 1 to ¢t = 0 when sampling.

The model is trained with the weighted MSE loss
function [23]

L(x) = Eyu(0,1 [w(t)l|x0 — %[|] ,

(2)
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where X = Xg(x¢,t) is the neural network predic-
tion of the data, x¢. The loss weighting, w(t), can
emphasize the importance of different parts of the
diffusion process, and following [24, 25] we use the
sigmoid loss weighting with a bias of —4.

3.2 Bit Diffusion

Analog Bit Diffusion [6] is a modification to diffusion
models that enable the model to work with high-
dimensional discrete data, while maintaining a low
dimensional latent space. Instead of representing
discrete data as e.g. one-hot vectors, we represent the
2k classes as npits = k bits. We use 2% = 64 classes
corresponding to npits = 6. Negative bits have a
value of —1 instead of 0, to make their distribution
zero-mean and unit variance.

The diffusion process works in the bit space, and
can be easily converted to the class space by thresh-
olding the bits at 0 and converting from the binary
representation.

With the bit diffusion formulation, the model
should only predict values within [—1, 1] with heavy
emphasis on the endpoints of the interval. The
tanh(-) activation function is well suited for such
a distribution, and we therefore apply it as a final
activation (in cases where the model predicts the
data directly). The non-thresholded bit activations
enable conversion to a direct probability map. Let ¢
be the predicted bits for some pixel. The probability
that the pixel has the binary sequence y is given by

Thits —1 Thits —1 N
X R lyi — il
soli) =TT sl = T (1-252).
1=0 1=0

3)
The equation above makes the downside of using a
bit encoding clear. It does not model correlations be-
tween bits, but instead considers each bit probability
separately.

3.3 Noise Schedule and Input Scaling

The noise schedule is parameterized by v : [0,1] —
[0, 1], a monotonically decreasing function. We use
a variance preserving noise schedule, where the co-
efficients are given by

(), o) =v1-n0). (4

The variance preserving property enables parameter-
izing both set of coeflicients with a single function.
A common choice for the noise schedule is the cosine
schedule, which is given by ~(t) = cos(tr/2)? .
Consider the upper row of latent samples in Fig. 2.
As a consequence of using discrete data with high
spatial correlation, it is easy to reconstruct the data
for large parts of the diffusion process. If the model
is able to only consider the latent sample for large
parts of the diffusion process during training, then
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Figure 2. The cosine noise schedule with latent dif-
fusion samples x; for various values of t. The latent
samples use 3 bits (up to 8 masks) to make them view-
able as RGB images.

the resulting model will be poor since it ignores the
image during inference.

To address these concerns we use input scaling [5],
which can be used to make diffusion noise schedules
harder. Input scaling was originally introduced to
deal with large images since increasing the number of
pixels lessens the effect of the noise. The idea behind
input scaling is to make noise schedule harder by

lowering the signal-to-noise ratio (SNR). The SNR
is given by
t t
sNR(t) = 20 V00 (5)
o(t) 1—~(t)

and is lowered by multiplying with some constant

b € [0,1], called the input scale. One can show that
solving
t t
W0 _, A0 “
1—(t) 1—~(t)

for the input scaled noise schedule, v,(t), yields the
expression

b*y(t)

CEOESS (7)

Yo(t) =
Thus, all equations involving the noise schedule can
be reused, except by replacing the original y(¢) with
the input scaled 7, (t).

3.4 Location-aware Palette

The segmentation model is class-agnostic, and there-
fore the class numbers which we assign objects can be
permuted without changing the task. A valid option
is thus to assign random class numbers, but a better
option is a location-aware palette (LAP)[7]. With
an LAP, each mask is assigned a class number based
on the mask centroid. An L x L grid is constructed
across the image, with each square associated with a
class number. When multiple mask centroids share
a grid, they are instead given the class number of
the nearest free grid square. Without an LAP, the
best prediction at t = 1 is a zero-image, since the
data is pure noise and the expected value of random
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bits is zero. When the prediction is independent of
the image, there is no useful learning signal. When
using an LAP, classes are biased towards the nearby
LAP class indices, thus providing a learning signal
for the parts of the diffusion process where the latent
sample is largely noise.

The analog bit encoding has difficulty represent-
ing class distributions with multiple classes when
the bits of the classes differ significantly (see sup-
plementary material for details). By exploiting the
LAP, we can increase the likelihood of adjacent class
regions sharing their bit encoding digits. To this
end, we arrange the bit codes in the L x L grid
as a 2-dimensional gray code [26]. This ensures
each 1-connectivity pair of neighbors only differ by
1 bit in the LAP. Since we use npits = 6 we have

L =126 =28.

4 Experiments

4.1 Evaluation Setup

As a basis for our experiments we use the Entity-
Seg [27] dataset, consisting of 33,227 images each
fully segmented with high-quality agnostic class la-
bels across a variety of modalities. We partition the
dataset on a holdout basis with an 80-10-10 split
(train-val-test) and we use a 128 x 128 resolution
version of their dataset using the padding strategy
from [2]. Our model is a 38.5m parameter attn-
UNet trained for 300k iterations with a batch size
of 8. The learning rate was set at le — 4, with linear
warmup for the first 1000 iterations and decreased
with a cosine schedule for the last 50k iterations.
We used the AdamW [28] optimizer.

We compare quantitatively using two metrics.
The first is the adjusted rand index (ARI), which is
based on the probability of two random pixels agree-
ing in the ground truth and prediction on whether
they should belong to the same class or different
classes. The adjusted formulation ensures the ex-
pected value for a random prediction is 0 while still
keeping a perfect prediction at a score of 1. The
second metric is the Intersection over Union (IoU)
matched with the Hungarian algorithm. Follow-
ing [27] we only compute the mean over non-empty
ground truth classes after matching ground truths
with predictions.

Our main model uses z-prediction and the sigmoid
loss weights. The noise schedule is a cosine noise
schedule with input scale parameter b = 0.1. The
training data class indices are chosen based on a
location-aware palette (LAP) that promotes similar
analog bit encodings. A final activation function of
tanh(-) is applied to the network. For sampling, we
use 8 timesteps and a guidance weight of 1.0 unless
otherwise is stated.
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No LAP w/ LAP
Encoding ARI 1IoU | ARI 1IoU
Onehot 0.168 0.186 | 0.528 0.323
RGB 0.460 0.283 | 0.524 0.312
Analog Bits | 0.515 0.368 | 0.670 0.432

Table 1. Mean performance for models trained with
different encoding types.

0.45

—8— RGB
0.6 1 0.40 1 Analog Bits
z o = 0.35 4 —8— Onehot
<os = °
0.30
0.4 0.25 A
T T 4 T u T T 4 T u
4 16 64 256 1024 4 16 64 256 1024

#classes #classes

Figure 3. Performance for the three encoding types as
the number of representable classes are varied.

4.2 Comparisons

‘We compare our model with the onehot and RGB
encodings. The results (shown in Table 1) show
that our model using analog bits improves upon the
alternatives. The contrast is especially large when
the models are trained with an LAP.

The analog bit encoding has exponential efficiency
in the number of classes it can represent, which is
clear when comparing how many classes the methods
can represent in Fig. 3. Onehot and analog bits are
similar in performance until around 16 classes when
onehot falls off. We use 64 classes as a baseline for
the rest of the experiments, since 96.14% of images
in the dataset have less than 65 objects.

Our model was trained with an empty image in
5% of training samples, as it enables using classi-
fier free guidance [29] during sampling to increase
the conditioning strength. To optimize sampling,
we vary the guidance weight (gw) and number of
sampling timesteps (see Fig. 4 and Fig. 5). We see
that around only 8 sampling steps is optimal and
performance only degrades slightly when using more
steps. Based on the ARI metric gw = 1.0 is best,
while IoU prefers a stronger gw = 2.5. Note that
gw = 0.0 is the same as normal sampling with no
guidance.

We increase the number of samples for each image
in Fig. 6 to see the potential gains if one had an
oracle to select the best prediction. More realistically
this indicates the usefulness of a human in the loop or
a test time augmentation (TTA) heuristic to select or
aggregates samples. Using a larger guidance weight
comes with a small penalty for the sample diversity
as we see a smaller gain in performance.
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Figure 4. Mean performance on the validation set as
the number of timesteps is varied for different guidance
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Figure 5. Mean performance on the validation set as

2 4 6

Guidance Weight

the guidance weight is varied.

4.3 Ablations

To investigate the best pair of prediction type and
loss weights, we train a range of models while varying
the available options. The results are seen in Fig. 7.
With all prediction types, the sigmoid loss weights
perform the best. The model with e-prediction is
slightly better than z-prediction. However, when in-
specting samples produced by the model (see Fig. 8,
the e-prediction often failed to remove all the noise.
One might think thresholding would solve this prob-
lem, but based on qualitative inspection of samples

0 2 4 6
Guidance Weight
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LAP | None Different Random Similar
ARI | 0.517 0.640 0.644 0.670
IoU | 0.367 0.422 0.421 0.434

Table 2. Mean performance for models trained with

different types of LAP.

tiny difference in performance, we therefore still use 373

z-prediction.

Emm SNR  mmm SNR+1 B SNR trunc.

mm sigmoid

s uniform

Prediction Type

Figure 7. Mean performance for models trained with
different prediction types and loss weights. These models

were trained without LAP and b = 0.1.

schedule.

it seems the denoising trajectory is affected, leaving
small noisy patches of nonsensical labels. A much

more visible symptom of the same effect is visible
for the model with no tanh activation. Given the

0.78
0.76 1
0.74 1
0.72 1

& 0701
0.68 1
0.66 1
0.64 1

—— gw=0.0
—— gw=0.1
—— gw=0.3
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—— gw=3.0
—— gw=-0.1

Aari

0.03

0.02 -

0.01 -

0.00 -

—0.01 -

Figure 6. Mean performance when selecting the best
segmentation from multiple samples. Shown in absolute

2 4 8 16
#Samples per Image

#Samples per Image

ARI (left) and relative to no guidance (right).

wo/ tanh

e-pred

image

GT

Prediction Type

The LAP encoding setup described in Section 3.4
is the one we call similar, since adjacent encodings
are similar. Additionally, we also consider an LAP
with random class indices and one which maximizes
the difference of adjacent classes based on a greedy
heuristic. The results in Table 2 show that in all
cases, an LAP significantly increases performance.
Additionally, the more similar the bit encodings of
adjacent class indices, the better the performance.

To study the effect of input scaling we train a
variety of models while varying b (see Fig. 9). A
value of b = 0.1 is close to optimal for our application.
Note that b = 1.0 corresponds to a model with no
input scaling. The average metrics are more than
doubled by just adding input scaling to the noise

Ours

Figure 8. A qualitative example to illustrate the dif-
ference in samples produced by a model without tanh(-)
activation and with e-prediction, compared to our model.
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—o— ari

loU

Metric Value

0.03 0.1
Input scale (b)

0.003 0.01 0.3 1.0

Figure 9. Mean performance for non-LAP models when
varying the input scale parameter (b).

5 Discussion

Our experiments show that analog bits consistently
outperforms RGB and one-hot encodings in agnos-
tic segmentation. The relative gains are largest
when class indices are assigned with a location-aware
palette (LAP). We theorize that the gain in perfor-
mance is an effect of an improved training process.
Previously the network would learn little to nothing
near t = 1, just producing a zero-mean prediction,
but the bias from the LAP lets it encode segmen-
tations at any timestep. By ordering bit codes of
the LAP with a 2D gray ordering, we reduced differ-
ences between neighboring bits (the similar model).
This allowed the model to express soft ambiguity
between adjacent masks without paying the penalty
of spreading probability mass over many unrelated
codes.

The analog bit encoding was preferred in our net-
works that were trained from scratch. An interesting
research question is whether the same holds for tasks
similar to that of UniGS [7]. The UniGS model was
designed with the RGB encoding specifically because
stable diffusion operates in RGB space. It may be
possible to add a head to the segmentation branch to
make this conversion possible. Given UniGS already
reports competitive scores in segmentation bench-
marks, replacing RGB colormaps with analog bits
could perhaps push the unified generator-segmenter
model to the forefront.

The best results were achieved when the network
used a-prediction. Across prediction types (z, v,
and €), the sigmoid loss weighting dominates alter-
natives, provided its bias is tuned. In our early
experiments, we found a bias of —4 to be effective.
Input scaling makes the schedule “hard enough” for
discrete targets: reducing the effective SNR with
b~0.1 more than doubles ARI over the unscaled co-
sine schedule. Since input scaling was introduced
in order to tackle the problem of high-dimensional
spatial data, one can expect it should be lowered
further than b = 0.1 for models with larger image
sizes than 128 x 128.

We observe that only ~8 denoising steps are suf-
ficient for near-optimal performance, with modest
degradation beyond that. Typically, diffusion mod-
els using the basic DDPM [30] sampler require many

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

hundreds of steps for decent results, but discrete
data may have lowered it. It is unclear to us why
the model performance degrades with more steps.
Further research is needed and perhaps there is
some performance to be gained by preventing this
collapse.

We find similar classifier-free guidance values as
those commonly used for text-to-image models. A
guidance weight around 1 seems to help conditioning
without collapsing diversity. We only explored image
guidance, but future work could extend to other
promptable signals such as weak supervision (points,
boxes, scribbles), class labels, or few-shot examples.
Modern universal segmentation systems must be
promptable to be useful in practical settings. The
ability to control condition strength on these inputs
would provide a whole new dimension to promptable
segmentation that traditional non-diffusion models
do not have.

Overall, we provide a concrete path to make diffu-
sion models viable for universal segmentation: ana-
log bit diffusion for discrete labels, a noise sched-
ule with input scaling, LAP for agnostic supervi-
sion, and a robust loss weighting. These choices
yield consistent gains and make the method com-
petitive in agnostic/holistic settings. At the same
time, in broad foundation scenarios dominated by
mask-classification architectures, our current model
does not yet surpass strong discriminative baselines
such as MaskFormer/Mask2Former or promptable
SAM variants [2, 9, 10]. This gap likely reflects scale
(data, compute, pretraining) and it motivates future
work based on pretrained networks.

6 Conclusion

Diffusion models can serve as a viable framework
for universal segmentation when adapted to discrete
labels. It is necessary to modify the model to suit the
discrete domain. Analog bits prove to be an effective
encoding scheme, combined with a 2D gray code
location-aware palette. Other effective modifications
are an input-scaled noise schedule, x-prediction and
using tanh as a final activation function.

While our approach does not yet surpass leading
mask-based universal models in general foundation
settings [2, 9, 10], it narrows the gap and offers ca-
pabilities those models lack: principled ambiguity
modeling and sample-based exploration of plausible
masks. Given the progress of diffusion segmenters
like UniGS [7], we see a possible path forward: com-
bine large-scale pretraining with analog bits and as
many as the other proposed model improvements.
Another path which might be more useful in practice
is to integrate promptable conditioning combined
with classifier-free guidance. If successful, generative
universal segmenters could prove to be competitive
models that remain both agnostic and holistic.
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