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ABSTRACT

As large language models (LLMs) begin to saturate existing benchmarks, auto-
mated benchmark creation using LLMs (LLM-as-a-benchmark) has emerged as
a scalable alternative to slow and costly human curation. While these gener-
ated test sets have to potential to cheaply rank models, we demonstrate a critical
flaw. LLM-generated benchmarks systematically favor the model that created the
benchmark: they exhibit self-bias on low resource languages to English transla-
tion tasks. We show three key findings on automatic benchmarking of LLMs for
translation: First, this bias originates from two sources: the generated test data
(LLM-as-a-testset) and the evaluation method (LLM-as-an-evaluator), with their
combination amplifying the effect. Second, self-bias in LLM-as-a-benchmark is
heavily influenced by the model’s generation capabilities in the source language.
For instance, we observe more pronounced bias in into-English translation, where
the model’s generation system is developed, than in out-of-English translation
tasks. Third, we observe that low diversity in source text is one attribution to self-
bias. Our results suggest that improving the diversity of these generated source
texts can mitigate some of the observed self-bias.

1 INTRODUCTION

The rapid advancements in Large Language Models (LLMs) have led to an unprecedented satu-
ration of existing, meticulously human-curated benchmarks. This phenomenon exposes two criti-
cal, intertwined challenges: traditional benchmark creation is too laborious and expensive to keep
pace with rapid model development, and this challenge is compounded by the inherent difficulty of
constructing high-quality benchmarks for low-resource languages, even with human labor, which
further strains existing benchmark resources. This growing demand for scalable and dynamic eval-
uation methods has thus spurred the emergence of automated benchmark creation using LLMs, or
“LLM-as-a-benchmark”(Farchi et al., 2024; Maheshwari et al., 2024; Pombal et al., 2025a). These
approaches promise a cost-effective and agile alternative to human curation, potentially revolution-
izing how models are ranked and progress is measured in natural language processing.

While LLM-as-a-benchmark offers a promising avenue for efficient model ranking, our research
uncovers a significant limitation: LLM-generated benchmarks exhibit strong self-bias, particularly
with strong frontier models and low-resource XX→En translation. This systemic bias dispropor-
tionately favors the LLM that created the benchmark, suggesting that these benchmarks may reflect
the generator’s inherent biases rather than providing an objective assessment of a model’s true ca-
pabilities. In this paper, we formally define self-bias based on the statistical concept of estimator
bias. Here, the evaluator model’s estimated ranking serves as the empirical expected value, while the
mean rankings from peer models act as a proxy for the true estimation. Self-bias is then quantified
as the difference between the estimated value and the true (proxy) value (Xu et al., 2024).

We decompose self-bias in LLM-as-a-benchmark into two constituents: LLM-as-a-testset and LLM-
as-an-evaluator. While LLM-as-an-evaluator has been extensively studied—with biases often at-
tributed to self-recognition (Panickssery et al., 2025) or genuine quality improvements (Chen et al.,
2025)—the origins of self-bias in LLM-as-a-benchmark remain underexplored. Our primary contri-
bution is a comprehensive analysis of self-bias attribution within the LLM-as-a-benchmark frame-
work, specifically elucidating its mechanisms across different language directions and source text
generation methods.
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For translation tasks, we investigate these mechanisms and present three key findings:

First, self-bias in the LLM-as-a-benchmark paradigm stems from dual, additive sources: test data
generation (LLM-as-a-testset) and the evaluation method (LLM-as-an-evaluator). Their combined
interaction amplifies the overall self-bias, posing a notable challenge to fair evaluation.

Second, our investigation shows that the magnitude of self-bias in LLM-as-a-benchmark is heavily
influenced by the LLM’s generation capability in the specific source language. This leads to a
crucial asymmetry in bias. For instance, we observe significantly greater self-bias in into-English
(XX→En) translation directions than in out-of-English (En→XX).

Third, we demonstrate that one attribution of self-bias stems from the LLM’s limited generation
capability in low-resource languages, which leads to the production of homogeneous source texts
characterized by repetitive content and stylistic traits. Our findings show that improving the diversity
of these generated source texts can mitigate some of the observed self-bias.

2 PRELIMINARIES AND SELF-BIAS DEFINITION

LLM-as-a-testset We automatically generate a test set using a generator model, Mtest. For a given
instruction s, Mtest produces a source text x and an optional reference text y′. The source text x is
then used as a prompt for the target model under evaluation, Mtarget, which generates an output y.
Finally, an evaluation metric computes a quality score for y by comparing it against source text x.
We investigate testset generation self-bias: a critical flaw where a generated test set inherently favors
the generator model (Mtest), leading to inflated scores that do not reflect true model capabilities.

LLM-as-an-evaluator An evaluator model, Mevaluator, assesses the quality of an output y generated
by a target model Mtarget in response to a prompt x , assigning it a score based on predefined criteria.
In our experimental setup, the prompts x are sourced from human-authored benchmark datasets. We
investigate the phenomenon of evaluator self-bias, where an LLM-based evaluator assigns dispro-
portionately high scores to outputs from its own model, regardless of their actual quality compared
to outputs from other models.

LLM-as-a-benchmark We define the LLM as Benchmark setting as a paradigm where a single
language model serves two roles: it generates a source text x to prompt a target model, Mtarget,
and subsequently evaluates the quality of Mtarget’s output. This approach effectively combines the
"LLM as Testset Generator" and "LLM as Evaluator" functions. This paper investigates the self-bias
inherent in the LLM as Benchmark paradigm.

We now operationalize evaluation self-bias as follows:

biasMi
= θMi,Mi︸ ︷︷ ︸

self-ranking

− 1

|M | − 1

∑
Mo ̸=Mi

θMi,Mo︸ ︷︷ ︸
ranking by other models

(1)

where M is a set of models, Mi is a specific model that is being evaluated by itself, and Mo are
other models that evaluate Mi. The θMi,Mo is an outcome of evaluating model Mi by model Mo.
This evaluation outcome can be, for example, number of assigned points averaged across multiple
samples, or ranking in a task.

The θMi,Mi
is the outcome of model Mi evaluating itself and 1

|M |−1

∑
Mo ̸=Mi

θMi,Mo
is the average

evaluation according to other models. We consider the latter the true estimate of the true performance
of Mi. The difference between the true evaluation and self-evaluation becomes our quantity of
interest, biasMi . A self-bias score will be negative if a model ranks its own output more favorably
than other models would rank that same output. A more negative score indicates a stronger bias by
the model towards its own generations.

In our study for the task of machine translation, the role of Mo in θMi,Mo
can be either that of input

text generation, translation quality evaluator, or both.
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3 EXPERIMENTAL SETUP

To empirically investigate self-bias, we situate our analysis within the machine translation do-
main, employing an LLM-as-a-benchmark methodology. Our experiments encompass six low
to medium resource language directions: Bemba→English, Kurdish→English, Aymara→English,
Luo→English, English→Bemba, and English→Aymara. In high-resource languages, performance
is often near-optimal, which obscures the subtle disparities required for reliable bias detection. For
instance, frontier LLMs frequently rate each other’s outputs as nearly perfect. This phenomenon
motivates our current investigation.

Our analysis involves three state-of-the-art LLMs at translation: Gemini 2.5 Pro, GPT-4.1, and
Claude 3 Opus, which are tested under three experimental conditions:

• LLM-as-a-testset Generator: LLMs generate source texts, and their translation quality is subse-
quently assessed using the MetricX quality estimation metric (QE), which scores based on both
source and translation (Juraska et al., 2024).

• LLM-as-an-evaluator: LLMs function as evaluators, scoring translations of canonical source texts
drawn from the FLORES-200 benchmark (Team et al., 2022).

• LLM-as-a-benchmark: In our primary configuration, LLMs perform both source text generation
and the subsequent evaluation of translations produced by all models. This LLM-as-a-benchmark
evaluation scores based on source and translation, without requiring a reference text. The default
setup for source text generation involves generating both source and reference texts, while a truly
reference-free variant of this approach is analyzed in Section 5.

To investigate the LLM-as-a-testset and LLM-as-a-benchmark, we generated 200 source texts for
each language direction and obtained translations from all three LLMs. For studying LLM-as-an-
evaluator independently, we sampled 200 examples per language direction from the FLORES bench-
mark, subsequently obtaining translations from the same three LLMs. All prompts used for gener-
ation, translation, and evaluation are provided in appendix B. Notably, all evaluations (whether
using MetricX QE or LLM-as-an-evaluator) were conducted in a reference-free setting.

For score normalization and comparability across conditions, we convert raw numerical scores into
ranking. Specifically, for each source segment, the outputs from the three generation models are
scored by an evaluator. A model’s aggregate system score is determined by the mean of its per-
segment ranks over the entire dataset.

4 DOES THE USE OF LLM-AS-A-BENCHMARK INTRODUCE SELF-BIAS?

This section investigates the self-bias inherent in the LLM-as-a-benchmark paradigm, where models
generate a test set and evaluate their own outputs. To generate our dataset, we employed the prompt
proposed by Pombal et al. (2025b) in their LLM-as-a-testset framework. This prompt instructs the
models to generate source-reference text pairs covering diverse topics and varying in length (See
appendix B for more details).

Table 1 quantifies the self-bias for Gemini-2.5-pro, GPT-4.1, and Claude-Opus-4 for the XX→En
direction. In our framework, a negative bias score indicates preferential treatment. The consistently
negative diagonal scores confirm that these models systematically favor their own translations in
four different XX-EN language directions, except Gemini-2.5-Pro on Kurdish to English translation.

To understand what contributes to self-bias in LLM-as-a-benchmark, we examine the self-bias of
LLM-as-a-test and LLM-as-an-evaluator as distinct components. We conducted an ablation study
presented in Table 2 which isolates the impact of LLM-as-a-testset, where models generate test sets
for a fixed external metric (MetricX) and LLM-as-a-benchmark, where the model acts as an evalu-
ator on the Flores test set. Both setups result in measurable self-bias. The LLM-as-a-benchmark
setting shows a larger self-bias than the LLM-as-a-testset, which suggests that using an LLM both
as a generator and evaluator can result in a compounding effect.

Where does the self-bias stem from? The simultaneous generation of source texts and reference
translations, as proposed in Pombal et al. (2025a), could result in two distinct types of biases: a
model’s inherent stylistic “dialect” in the source language, and a translatability bias where the model
generates source sentences it already knows it can translate well.
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Bemba→En. LLM-as-a-benchmark
Gemini GPT Claude

Tr
an

sl
at

or
Gemini -0.591 0.161 0.430
GPT -0.145 -0.202 0.347
Claude 0.102 0.515 -0.617

Aymara→En. LLM-as-a-benchmark
Gemini GPT Claude

Tr
an

sl
at

or

Gemini -0.157 0.180 -0.022
GPT 0.232 -0.315 0.083
Claude 0.253 0.365 -0.617

Luo→En. LLM-as-a-benchmark
Gemini GPT Claude

Tr
an

sl
at

or

Gemini -0.300 0.120 0.180
GPT 0.385 -0.508 0.123
Claude 0.188 0.352 -0.540

Kurdish→En. LLM-as-a-benchmark
Gemini GPT Claude

Tr
an

sl
at

or

Gemini 0.005 0.215 -0.219
GPT 0.173 -0.150 -0.023
Claude -0.095 0.520 -0.425

Table 1: Bias estimation of using Gemini-2.5-Pro, GPT4.1 and Claude-Opus-4 as LLM-as-a-
benchmark on Bemba→English, Aymara→English, Luo→English and Kurdish→English. For each
column, each LLM is used as both testset generator and evaluator (LLM-as-a-benchmark). For each
each row, LLM is used as generation model. Self-bias estimation is the diagonal line across all the
tables. If the bias score is below 0, this indicates that system acting as the LLM-as-a-benchmark
prefers its own translation system. Three LLMs display self-bias across four language directions
except Gemini-2.5-Pro on Kurdish-to-English translation.

XX→En Gemini GPT Claude

LLM-as-a-testset -0.124 -0.239 -0.093
LLM-as-a-benchmark -0.261 -0.294 -0.550
LLM-as-an-evaluator -0.302 -0.443 -0.303

Table 2: Self-bias for three models in three scenarios: using an LLM to generate the test set (“LLM-
as-a-testset”), using an LLM for both testset generation and evaluation (“LLM-as-a-benchmark”),
and using an LLM for evaluation (“LLM-as-an-evaluator”). The last row is separate because it
operates on different data. Across all scenarios, all models consistently prefer their own outputs.

When generating both src+ref texts, the LLM might generate texts that it knows how to translate,
avoiding source texts for which it lacks confident translation mappings. We confirm this translata-
bility bias by assessing translation quality using MetricX-QE for LLM-generated test sets under
two scenarios: src-only and src+ref. As Table 3 illustrates, src+ref generation consistently yielded
superior translation performance for both Bemba→English and Aymara→English. This strongly
supports our hypothesis that co-generation introduces a significant confounding variable, essen-
tially tailoring the source material to the model’s translation strengths.

The superior performance on ‘src+ref‘ texts thus clearly stems from an artificially easier, pre-filtered
source, not from enhanced translation capability. While this translatability bias is noteworthy, our
primary interest lies in the more fundamental source effect bias. This is introduced as an LLM
potentially might generate texts in its own native “dialect”, confirming certain linguistic styles and
patterns to which it has preference towards. This text when translated by the same model results in
higher quality translations. Furthermore, since LLMs have the ability to recognize their own outputs
(Panickssery et al., 2025), they also assess them of higher quality. For higher resource languages like
English, many of the current LLMs generate text that are of similar quality and diversity whereas
for the lower-resource languages, as the model’s distribution is less-developed due to access to finite
datasets during training, for these languages, the model’s “native dialect” is far narrower and more
repetitive.

To isolate this effect, we conduct additional ablations and study self-bias where a) the model is asked
to generate just the source text without generating a reference translation and b) we also study bias
in higher-resources EN-XX settings. This allows us to systematically study the pure impact of the
“dialect” bias, i.e. it shows how much easier it is for the model to translate text that conforms to its
own general monolingual patterns, even without the translation task in mind.
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Bemba→En Gemini GPT Claude

Source-only -8.49 -5.33 -4.07
Source+Ref -2.73 -4.76 -3.89

Aymara→En Gemini GPT Claude

Source-only -12.90 -10.40 -8.29
Source+Ref -7.54 -9.60 -8.13

Table 3: Translation quality improves when source texts are co-generated with their reference trans-
lations rather than generated in isolation. This disparity strongly suggests that the paired generation
process acts as a confounding variable, creating source texts that are pre-aligned with the model’s
capabilities. MetricX negative values indicate errors.

Bemba→En LLM-as-a-benchmark
Gemini GPT Claude

Tr
an

sl
at

or

Gemini -0.515 0.055 0.460
GPT 0.235 -0.253 0.018
Claude 0.220 0.543 -0.763

Aymara→En LLM-as-a-benchmark
Gemini GPT Claude

Tr
an

sl
at

or

Gemini -0.293 0.285 0.008
GPT 0.308 -0.330 0.022
Claude 0.015 0.473 -0.488

Table 4: This table presents the self-bias estimations for Gemini-2.5-pro, GPT-4.1, and Claude-
Opus-4 in the LLM-as-a-benchmark setup for Bemba→English and Aymara→English. Despite the
data generation pipeline being limited to producing only source texts, all three LLMs still exhibit
self-bias across both language pairs.

5 HOW DOES SOURCE TEXT GENERATION IMPACT SELF-BIAS?

In this section, we first establish that source-only generation inherently leads to self-bias (Sec-
tion 5.1). Our investigation then reveals that this bias is partially driven by models’ tendency to
produce homogeneous and repetitive content, even when explicitly prompted for diverse topics (Sec-
tion 5.2). We further demonstrate that limited diversity source text generation is one attribution of
this self-bias (Section 5.3). Finally, we show that improving source text diversity can mitigate some
of the observed self-bias across all three LLMs (Section 5.4). Due to budget constraints, this sec-
tion’s study focuses on Aymara→English and Bemba→English.

5.1 SOURCE TEXT GENERATION LEADS TO SELF-BIAS

As shown in Table 4, a measurable self-bias persists even when the data generation pipeline is
constrained to produce only source texts. This self-bias is highly localized to each model’s own
output, evidenced by negative bias scores appearing exclusively on the diagonal. Source only text
generation is not an alternative solution to replace "src+ref" generation.

5.2 WHAT MAKES SOURCE TEXT GENERATION EXHIBIT BIAS?

In this section, we investigate how an LLM’s source text diversity and stylistic characteristics con-
tribute to self-bias. This bias manifests as a model generating content and style highly consistent
with its own inherent "dialect": for a given model, its source texts display non-trivial high similarity
to other texts it produces (even under different topics) when compared to texts from other models.
To quantify this phenomenon, we define within-model similarity and cross-model similarity.

Let M = {M1,M2,M3} be the set of LLMs (Gemini-2.5-pro, GPT4.1, Claude-Opus-4). Each
model Mk ∈ M generates N source texts, Sk = {sk,1, . . . , sk,N}, where j in sk,j denotes a
topic ID. We quantify text similarity using chrF@K, measuring how well source texts from one
model align with those from another (or the same) model. This encompasses both within-model
(MA = MB) and cross-model (MA ̸= MB) comparisons.

For a source text sA,i ∈ SA, its chrF@K similarity to model MB is calculated by: 1. Computing
pairwise chrF scores, chrF(sA,i, sB,j), against all sB,j ∈ SB . (Self-matches are excluded when
MA = MB .) 2. Selecting the K = 5 highest chrF scores, {chrF1, . . . , chrFK}, and averaging them:

chrF@K(sA,i,MB) =
1

K

K∑
k=1

chrFk (2)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Bemba→En chrF across prompts + models
Gemini GPT Claude

D
at

a
fr

om Gemini 35.76 32.70 32.03
GPT 32.28 37.78 31.63
Claude 36.42 35.99 38.64

Aymara→En chrF across prompts + models
Gemini GPT Claude

D
at

a
fr

om Gemini 37.78 32.19 32.58
GPT 33.52 40.79 32.44
Claude 39.56 37.04 42.28

Table 5: presents average chrF@K similarity scores, differentiating within-model (diagonal entries)
from cross-model (off-diagonal entries) comparisons. The results show that each model maintains a
significantly higher similarity to its own generated content (even across varied topics) than to texts
from other models. This within-model similarity suggests that, rather than achieving true textual
diversity as instructed, models tend to repeat content and style from their limited knowledge for
low-resource languages like Bemba and Aymara.

Aymara English Bemba English
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Claude Gemini GPT Human Claude Gemini GPT Human

Model Degeneration Ratio (%)

Gemini 22.3
GPT4.1 5.8
Claude 0

Model Pair on TTR Cohen’s D

Gemini×GPT4.1 0.777
Gemini×Claude 1.487
Claude×GPT4.1 0.663

Figure 1: The left panel illustrates the Type-Token Ratio (TTR) of source texts (three LLMs vs.
FLORES human references), indicating higher lexical diversity in human texts and distinct TTR
profiles among LLMs. Bottom right, pairwise Cohen’s D values exceeding 0.5 quantify these TTR
distributional differences as moderate to substantial. Top right, estimated degeneration ratios across
two language directions reveal differential degeneration levels in the three models during source text
generation (Degeneration is defined as 4-gram repeating more than 10 times).

Finally, to obtain a single average similarity score for MA’s perspective on MB’s style, we average
these chrF@K scores across all sA,i ∈ SA:

Avg. chrF@K(MA,MB) =
1

N

N∑
i=1

chrF@K(sA,i,MB) (3)

This process yields three final scores for each model MA: one for its average within-model similarity
(to itself), and two for its average cross-model similarities to the other two LLMs. Table 5 presents
the average chrF@K similarity scores, with diagonal entries representing within-model similarity
and off-diagonal entries showing cross-model similarities. The results clearly demonstrate that each
model exhibits a significantly higher similarity to its own generated content (even across different
topics) compared to texts generated by other models. This strong within-model consistency suggests
that, rather than generating truly diverse texts following instructions, the models tend to reproduce
content and style from their limited knowledge for low-resource languages like Bemba and Aymara.

5.3 UNDERLYING CAUSES: LIMITED DIVERSITY AND QUALITY IN SYNTHETIC
LOW-RESOURCE LANGUAGE SOURCE TEXTS

To further support and explain our findings regarding within and cross model similarities (as quan-
tified by chrF@K similarity), we hypothesize that the underlying cause lies in the limited diversity
and quality of the generated source texts themselves. To test this, we measure several key linguis-
tic properties of these generated source texts. Specifically, we assess lexical diversity (Type-Token
Ratio; TTR) and degeneration ratio, comparing each model’s output against each other.
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Gemini GPT Claude

English→Bemba -0.145 0.103 0.138
Bemba→English -0.591 -0.202 -0.617

Gemini GPT Claude

English→Aymara 0.016 -0.092 0.069
Aymara→English -0.157 -0.315 -0.617

Table 7: Out-of-English directions exhibit less self-bias in LLM-as-a-benchmark. We observe a
greater self-bias when LLMs generate texts in out-of-English directions compared to into-English
directions. The magnitude of self-bias for English→Aymara and English→Bemba is consistently
less than 0.15.

Figure 1 illustrates the differences in TTR and degeneration ratio across the three evaluated models.
All three LLMs exhibit distinctive TTR distributions. We quantified these distributional differences
using Cohen’s D (Cohen, 1988) (see Appendix A for an introduction), with pairwise Cohen’s D
values exceeding 0.5 (bottom right panel) indicating moderate to substantial divergence. All three
LLMs, including Claude, demonstrate less lexical diversity than human-written benchmarks1. This
supports prior work (Yu et al., 2023) on data diversity’s role in mitigating systematic bias (We will
discuss more details in the next section).

Further inspection reveals that the notably low diversity in sources from Gemini-2.5-pro and GPT4.1
often stems from degeneration. We quantified this by counting repeating n-grams, marking
texts with ≥10 repeating 4-grams as degenerated. As shown in Figure 1 (top right panel), both
models exhibit varying degeneration levels across language directions. Interestingly, generation-
time degeneration patterns are often model-specific; translation quality from such sources can be
improved when the translation model is the same as the generation model (Appendix D), suggesting
better recognition and compensation for these characteristic flaws.

5.4 IMPROVING ON DIVERSITY CAN REDUCE SELF-BIAS

Self-bias Estimation
Subset Gemini GPT Claude

Max chrF -0.400 -0.280 -0.685
Random -0.342 -0.256 -0.616
Min chrF -0.250 -0.265 -0.600

Table 6: Self-bias of LLM-as-a-benchmark
for subsets of LLM-generated source texts:
those with the highest within-model chrF
similarity (lowest lexical diversity), those
with the lowest within-model chrF similar-
ity (highest lexical diversity), and a randomly
selected baseline. Diverse source texts miti-
gate self-bias. Self-bias is averaged for Ay-
mara to English and Bemba to English.

We hypothesize that the one attribution of self-bias
is the lack of diversity in the generated source texts.
To investigate this, we conducted an ablation study
on source texts using our established within-model
similarity metric. As defined in Equation (3) (MA =
MB), a high within-model similarity score indi-
cates a model’s tendency to repeat its own content
and style, even when prompted for diverse topics,
thereby generating less diverse texts. For each of the
three LLMs, we selected three subsets of 50 source
texts from the total 200: those with high within-
model similarity (representing low lexical diversity),
those with low within-model similarity (representing
high lexical diversity), and a randomly selected sub-
set for control.

Table 6 demonstrates that source texts corresponding to high within-model similarity (Max chrF)
consistently exhibit the highest self-bias across all three LLMs, surpassing the bias observed in the
random 50-sample baseline. Conversely, source texts with low within-model similarity (Min chrF)
consistently lead to reduced or comparable self-bias compared to random and the Max chrF subset.
This compellingly suggests that generating more diverse source texts can mitigate self-bias.

6 IMPACT OF TRANSLATION DIRECTION ON SELF-BIAS

In Table 7, we show that the out-of-English directions exhibit lower self-bias in LLM-as-a-
benchmark. We observe a lower self-bias when LLMs generate texts in out-of-English direc-
tions compared to into-English directions. The magnitude of self-bias for English→Aymara and
English→Bemba is consistently less than 0.15.

1We selected 200 source texts from Flores-200 Aymara and Bemba texts.
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LLM-as-a-testset
Gemini GPT Claude

English→XX 0.024 0.054 -0.076
XX→English -0.174 -0.239 -0.093

LLM-as-an-evaluator
Gemini GPT Claude

English→XX -0.110 0.049 0.099
XX→English -0.302 -0.443 -0.303

Table 8: Self-bias decomposition in LLM-as-a-benchmark. Decomposing LLM-as-a-benchmark
into LLM-as-a-testset and LLM-as-an-evaluator reveals that both components exhibit greater self-
bias for into-English directions compared to out-of-English directions. This indicates that for
XX→English, LLMs tend to generate self-favorable source texts and assign higher scores to their
own outputs. Conversely, self-bias is significantly less pronounced in En→XX directions.

Source-Only Source+Ref

Gem.×Claude Gem.×GPT Claude×GPT Gem.×Claude Gem.×GPT Claude×GPT

English→XX 0.076 0.190 0.111 0.164 0.259 0.081
XX→English 1.487 0.777 0.663 0.597 0.111 0.556

Table 9: Source Text Type-to-Token Ratio distribution differences between models. We examined
the Type-to-Token Ratio (TTR) distributions of source texts generated by different models. We
found that for texts generated in English (as source for En→XX translation), all models exhibit
relatively similar TTR distributions. This similarity is less pronounced for source texts generated in
other languages (for XX→En translation). This suggests that the models generate English source
texts with more consistent lexical diversity compared to other languages.

Table 8 presents a decomposition of LLM-as-a-benchmark into its LLM-as-a-testset and LLM-
as-an-evaluator components, elucidating the sources of self-bias. Both components consistently
exhibit a more pronounced self-bias in into-English (XX→En) directions than in out-of-English
(En→XX) directions. This observation highly suggests that in XX→En generation, the LLM-as-a-
testset produces source texts containing intrinsic linguistic features that offer an advantage to its own
translation system. Simultaneously, the LLM-as-an-evaluator appears more sensitive to these self-
generated patterns when judging its own XX→En outputs, leading to systematically higher scores
for these directions compared to En→XX.

Why does translation asymmetry exist for self-bias? To answer the translation asymmetry in
self-bias, we leverage the findings that we had in previous section and examine the chrF similarity
and type-to-token ratio distributions for English source texts. In Table 9, we showed that TTR in
English as source texts are more similar or consistently generated across all three LLMs. However,
the similarity is less pronounced for source texts generated in XX languages. This suggests that
the models generate English source texts with more consistent lexical diversity compared to other
languages, which could be the attribution for English→XX direciton has less self-bias. Table 11
demonstrates that neither Gemini-2.5-pro nor Claude-Opus-4 exhibit biased source text similarity
(represented by diagonal entries), a contrast to XX→En translations. Specifically, Claude-generated
outputs show cross-model chrF similarities with GPT4.1 and Gemini-2.5-pro that are comparable
to its within-model similarity. It’s important to note, however, that direct chrF differences are not
strictly comparable between English and XX texts due to inherent linguistic variations. Appendix
Appendix C demonstrates that the TTR distribution of English source texts is closer to human-
written texts compared to that of low-resource (XX) language source texts.

7 MERITS OF LLM-AS-A-BENCHMARK

LLM-as-a-benchmark can still benefit open source models Table 10 reveals distinct evaluation
patterns for frontier LLMs (Gemini-2.5-Pro, GPT-4.1, Claude-Opus-4). We observe that these mod-
els consistently rank open-source models (Gemma3-27B, Mistral-large-2411, Qwen3-32B) with low
intrinsic bias, aside from GPT-4.1’s specific bias toward Qwen3-32B. This consistency, which aligns
with findings in LLM-as-a-benchmark evaluation (Pombal et al., 2025a), supports the continued util-
ity of LLM-as-a-benchmark for fostering rapid iteration in open-source model development. How-
ever, a significant concern arises from the substantial self-bias exhibited by these frontier models
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Bemba LLM-as-a-benchmark (Rank)
Gemini GPT Claude

Tr
an

sl
at

or

Gemma3 1.125 1.110 1.160
Mistral 1.675 1.623 1.630
Qwen3 2.335 2.558 2.285

Bemba LLM-as-a-benchmark (Bias)
Gemini GPT Claude

Tr
an

sl
at

or

Gemma3 -0.01 0.04 -0.03
Mistral 0.05 -0.02 -0.03
Qwen3 -0.09 -0.16 0.25

Table 10: On the left, we observe consistent rankings of Gemma3-27B, Mistral-large-2411, and
Qwen3-32B by Gemini-2.5-Pro, GPT-4.1, and Claude-Opus-4. The right table illustrates minimal
bias from frontier models towards these open-source models, except for GPT-4.1’s bias towards
Qwen3-32B. This consistency in ranking open-source models aligns with (Pombal et al., 2025a).
However, significant self-bias is evident when frontier models rank each other.

when ranking their peers. This self-bias indicates that automated benchmarking approaches, while
may be effective for open-source models, may yield skewed and unreliable evaluations for frontier
models, necessitating careful consideration in their application to advanced model development.

8 RELATED WORK

Automatic Benchmark Creation As existing benchmarks become increasingly saturated by the
rapid advancements in LLM capabilities Glazer et al. (2025), the field has shifted towards explor-
ing automatic benchmark construction using LLMs. This approach generally involves an LLM
generating benchmark data from task instructions (LLM-as-a-benchmark) Pombal et al. (2025b),
subsequently used for ranking various LLM models. The efficacy of such automatically generated
benchmarks is typically evaluated either by assessing benchmark agreement (Perlitz et al., 2024)
or by comparing their ranking correlations with human-written benchmarks (Pombal et al., 2025b).
Depending on the specific task requirements, this automated creation process can encompass di-
verse methods, such as automating software environment setups for repositories (Vergopoulos et al.,
2025), constructing new user prompts from existing data (Li et al., 2024), or synthesizing test
sets through complex prompt workflows (Sprague et al., 2024). Concurrently, the evaluation of
model outputs varies based on task verifiability, utilizing simple accuracy metrics for objective tasks
(Sprague et al., 2024) or employing LLMs as judges for more nuanced prompt-answer pair evalua-
tions (Xu et al., 2023; Pombal et al., 2025b).

Self-bias in LLM The "LLM-as-a-benchmark " paradigm is susceptible to self-bias from two
sources: the LLM acting as an evaluator and the LLM generating the testset. While most prior work
has focused on the evaluator, a well-documented issue is the tendency of an LLM judge to system-
atically favor its own outputs (Xu et al., 2024; Panickssery et al., 2025). This preference is often
linked to the judge’s familiarity with its own stylistic patterns or a bias towards low-perplexity text
(Wataoka et al., 2025). Although this behavior could sometimes reflect genuine quality improve-
ments (Chen et al., 2025), a judge’s reliability is questionable for problems it cannot solve itself
(Krumdick et al., 2025). Our work extends this analysis by investigating the overlooked self-bias
from testset generation and, crucially, the additive effects when both biases are present. While Yuan
et al. (2025) also address biases in automated benchmarks, their mitigation strategies are limited
to verifiable tasks like math reasoning are not immediately applicable to generative tasks where
evaluating model success is a task in itself.

9 CONCLUSION

Our work formally defines and quantifies self-bias in LLM-as-a-benchmark, attributing its origin
to a synergistic interplay between LLM-as-a-testset and LLM-as-an-evaluator. We show this bias
is influenced by the LLM’s source language proficiency, appearing more strongly in into-English
translation. Moreover, we observe that low diversity in source text is an attribution to self-bias. Our
results suggest that improving the diversity of these generated source texts can mitigate some of
the observed self-bias. Despite these challenges, we identify potential use cases where LLM-as-a-
benchmark remains valuable. It reliably ranks less competitive models, exhibiting smaller bias and
consistent rankings in such scenarios. Moreover, for languages where LLMs generate high-quality
source texts (e.g., out-of-English translations), LLM-as-a-benchmark presents less risk in self-bias.
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10 REPRODUCIBILITY STATEMENT

We access Gemini-2.5-Pro, Claude-Opus-4@-20250514, and GPT4.1@2025-04-14 via publicly
available commercial APIs. The FLORES benchmark is publicly available. Gemma3-27B, Mistral-
large-2411, and Qwen3-32B are publicly available on Huggingface. We plan to release code and
data upon publication to facilitate further research. All results presented in this paper are repro-
ducible. Gemini-2.5-Pro was used to polish the writing of this paper.
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A COHEN’S D: EFFECT SIZE FOR MEAN DIFFERENCES

Cohen’s d (Cohen, 1988) is a widely used standardized effect size measure to quantify the difference
between two means, expressed in standard deviation units. It is particularly useful when comparing
the central tendency of two groups (e.g., two sets of scores, two distributions) and interpreting the
practical significance of their difference, independent of sample size.

Given two groups, Group 1 and Group 2, with means x̄1 and x̄2 and standard deviations s1 and s2
respectively, Cohen’s d is typically calculated as:

d =
x̄1 − x̄2

sp

where sp is the pooled standard deviation, calculated as:

sp =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

n1 and n2 are the sample sizes for Group 1 and Group 2.

Interpretation Guidelines (Cohen’s conventions):

• d = 0.2: Small effect
• d = 0.5: Medium effect
• d = 0.8: Large effect

B PROMPTS USED FOR LLM-AS-A-BENCHMARK

All prompts for both LLM-as-a-testset and LLM-as-an-evaluator are included. To ensure fair com-
parisons, these prompts are adapted from the zero-shot benchmark paper by (Pombal et al., 2025a).
The LLM-as-a-testset prompts incorporate a few randomly chosen seed variables—such as length,
topic, subtopic, and style—to guarantee diverse generated source texts. A complete list of options
for each seed variable is provided below.

Prompt for LLM-as-a-Testset (source + reference generation). You are a multilingual

content creator and translation expert. Your task is to generate a comprehensive

translation exercise based on the given attributes. Follow these instructions

carefully:

1. Review the following input variables:

- Source language: SOURCE LANGUAGE

- Target language: TARGET LANGUAGE

- Topic: topic

- Subtopic: subtopic

- Source length: length

- Style: style

2. Generate a source text: Create an original text in the source language,

adhering to the specified topic, subtopic, and length. The text should be

coherent, informative, and suitable for translation.

3. Generate a reference translation: Produce a high-quality, fluent translation

of the source text in the target language.

This translation should serve as a reference for evaluating other translations.

IT IS CRUCIAL THAT THE REFERENCE TRANSLATION SOUNDS NATURAL IN THE TARGET

LANGUAGE. Format your output as follows:

<START OF SOURCE>

INSERT THE SOURCE TEXT HERE

<END OF SOURCE>

<START OF REFERENCE TRANSLATION>
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INSERT THE REFERENCE TRANSLATION HERE

<END OF REFERENCE TRANSLATION>

Ensure that your response is comprehensive, coherent, and follows all the

instructions provided above. Abide strictly by the requested format and

generated until the end of the requested output. Only generate source and

reference translation. Do not generate any other text such as reasoning or

explanations.

<START OF SOURCE>

Prompt for LLM-as-a-Testset (source only). You are a multilingual content creator

and translation expert. Your task is to generate a comprehensive translation

exercise based on the given attributes. Follow these instructions carefully:

1. Review the following input variables:

- Source language: SOURCE LANGUAGE

- Topic: topic

- Subtopic: subtopic

- Source length: length

- Style: style

2. Generate a source text: Create an original text in the source language,

adhering to the specified topic, subtopic, and length. The text should be

coherent, informative, and suitable for translation.

Format your output as follows:

<START OF SOURCE>

INSERT THE SOURCE TEXT HERE

<END OF SOURCE>

Ensure that your response is comprehensive, coherent, and follows all the

instructions provided above.

Abide strictly by the requested format and generated until the end of the

requested output. Only generate source text. Do not generate any other text

such as reasoning or explanations.

<START OF SOURCE>

Topics. "Tech Innovation", "Global Markets", "Environmental Policy", "Public

Health", "Urban Development", "International Relations", "Education Reform",

"Cultural Trends", "Scientific Discoveries", "Economic Policy", "Sports

Industry", "Media & Entertainment", "Workplace Transformation", "Transportation

& Mobility", "Food & Agriculture", "Medical & Healthcare", "Legal & Compliance",

"E-commerce & Retail", "Financial Services", "Gaming & Software", "Marketing

& Advertising", "Government Documentation", "Academic Research", "Patents &

Intellectual Property", "Manufacturing & Safety", "Tourism & Hospitality",

"Religious & Cultural Studies", "Insurance & Risk Management", "Consumer

Electronics", "Pharmaceutical Industry", "Fashion & Apparel", "Beauty &

Cosmetics", "Home & Living", "Automotive Industry", "Social Media", "Dating

& Relationships", "Parenting & Family", "Arts & Culture", "Music Industry",

"Film & Cinema", "Books & Literature", "Food & Cuisine", "Sports & Recreation",

"Fitness & Wellness", "Mental Health", "Architecture & Design", "Real Estate",

"Telecommunications", "Renewable Energy", "Space Exploration", "Wildlife &

Nature", "Weather & Climate", "History & Heritage", "Politics & Governance",

"NGOs & Nonprofits", "New York City", "London", "Tokyo", "Paris", "Berlin",

"Singapore", "Dubai", "São Paulo", "Sydney", "Mumbai", "Madrid", "Lisbon",

"Stockholm", "Amsterdam", "Seoul", "Japan", "France", "Germany", "Brazil",

"India", "Italy", "Spain", "China", "United Kingdom", "Portugal", "Poetry"

Subtopics. "Poetry": [ "Modernism", "Contemporary", "Modernism", "Haiku",

"European Poetry", "Asian Poetry", "Theme identification", ], "Tech Innovation":

[ "Artificial Intelligence", "Quantum Computing", "Robotics", "5G/6G Networks",

"Biotechnology", "Green Tech", "Edge Computing", "Cybersecurity", ], "Global

Markets": [ "Stock Exchanges", "Cryptocurrency", "International Trade", "Foreign
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Investment", "Commodity Markets", "Emerging Markets", "Foreign Exchange", "Market

Regulations", ], "Environmental Policy": [ "Carbon Trading", "Renewable Energy

Initiatives", "Wildlife Protection", "Urban Planning", "Waste Management",

"Climate Agreements", "Marine Conservation", ], "Public Health": [ "Disease

Prevention", "Healthcare Systems", "Vaccination Programs", "Mental Health

Services", "Maternal Health", "Epidemiology", "Health Technology", ], ......

Styles. "creative", "concise", "technical", "formal", "informal", "narrative",

"persuasive", "descriptive", "analytical", "humorous", "poetic", "casual",

"academic", "journalistic", "neutral", "elaborate", "minimalist", "rushed"

Lengths. "short", "medium"

Prompt for LLM-as-an-Evaluator. You are an expert judge evaluating translation
quality. You will be presented with: - An original text - A translation to
evaluate

Rate the translation on a scale of 1-6 based on these key criteria: - Accuracy
and fidelity to source - Grammar and language correctness - Natural flow and
readability - Terminology consistency - Completeness of translation - Technical
precision

Scoring Rubric:

6 - Outstanding - Perfect accuracy with source meaning - Flawless grammar and
language use - Reads completely naturally in target language - Consistent
and precise terminology - Complete translation with no omissions - Excellent
technical accuracy

5 - Excellent - Very accurate rendering of source - Strong grammar with minimal
issues - Natural-sounding translation - Good terminology consistency - Nearly
complete coverage - Strong technical accuracy

4 - Good - Generally accurate translation - Mostly correct grammar - Readable
with some awkward passages - Generally consistent terminology - Minor omissions
only - Adequate technical accuracy

3 - Fair - Some accuracy issues - Notable grammar problems - Often unnatural
phrasing - Inconsistent terminology - Several omissions - Technical inaccuracies
present

2 - Poor - Significant accuracy issues - Frequent grammar errors - Unnatural
throughout - Poor terminology consistency - Major omissions - Many technical
errors

1 - Inadequate - Fails to convey source meaning - Severe grammar issues -
Incomprehensible in target language - No terminology consistency - Incomplete
translation - Technical meaning lost

Format your output as follows: Put detailed explanation between <START OF
FEEDBACK> and </END OF FEEDBACK> Put result between <START OF RESULT> and </END
OF RESULT> Don’t provide any other text

<START OF FEEDBACK> Put detailed explanation of the score based on the criteria

here </END OF FEEDBACK>

<START OF RESULT> Put only a number from 1 to 6 here </END OF RESULT> <START

OF SOURCE TEXT> prompt </END OF SOURCE TEXT>

<START OF TRANSLATION> answer </END OF TRANSLATION>

Prompt for Translation. You are a professional translator. You are given a

source text in SOURCE LANGUAGE. You need to translate the source text to TARGET

LANGUAGE. Don’t include any other text except the translation. Please output

the translation between <START OF TRANSLATION> and <END OF TRANSLATION>. Source

text: SOURCE TEXT
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En→Bemba chrF across prompts + models
Gemini GPT Claude

D
at

a
fr

om Gemini 36.07 35.77 34.13
GPT 32.98 34.86 31.50
Claude 36.75 36.47 36.85

En→Aymara chrF across prompts + models
Gemini GPT Claude

D
at

a
fr

om Gemini 36.15 35.89 34.07
GPT 32.83 35.28 31.27
Claude 36.83 36.62 37.14

Table 11: Average chrF@K similarity scores, differentiating within-model (diagonal) from cross-
model (off-diagonal) comparisons. Unlike XX→En translation, a clear diagonal trend is not ob-
served. For instance, Claude-generated outputs exhibit cross-model chrF similarities with GPT4.1
and Gemini-2.5-pro that are comparable to its within model similarity.

C WHY DOES TRANSLATION ASYMMETRY EXIST FOR SELF-BIAS?

In Table 12, we showed that model-generated English source texts have TTR distributions more
similar to human-written English than model-generated texts in other languages (for XX→En trans-
lation) do to their human-written counterparts. This indicates that the lexical diversity of model-
generated English source text is closer to that of human-written English source text.

Source Text Type-to-Token Ratio distribution differences between model and human
Src Only Src + Ref

Lang dir Gem&Hu GPT&Hu Cla&Hu Gem&Hu GPT&Hu Cla&Hu

En→XX 1.795 1.688 1.590 1.351 1.154 1.131
XX→En 3.187 2.335 2.232 2.306 1.826 2.010

Table 12: We compared the Type-to-Token Ratio (TTR) distributions of model-generated source
texts with those of human-generated source texts. We observed that model-generated English source
texts (for En→XX translation) have TTR distributions more similar to human-written English than
model-generated texts in other languages (for XX→En translation) do to their human-written coun-
terparts. This indicates that the lexical diversity of model-generated English is closer to that of
human-written English.

D SELF-REPAIR DEGENERATION IN TRANSLATION

In Table 13, we examine Gemini-2.5-pro’s self-repair ability when translating its own degenerated
source texts. Gemini-2.5-pro more effectively corrects degenerated content it produces during the
translation process compared to other models, across both language directions. The observed non-
deterministic behavior of GPT-4.1 is likely due to the significantly smaller sample of degenerated
source sentences it processed (n=23/400) compared to Gemini-2.5-pro (n=89/400). An example of
this self-repair during translation is provided below.

Degeneration ratio after translating on degenerated source texts
Aymara→English Bemba→English

Translator Gemini-2.5-Pro GPT4.1 Gemini-2.5-Pro GPT4.1

Gemini-2.5-Pro 90.4 86.7 81.1 75.0
GPT4.1 94.2 93.3 86.5 62.5
Claude-Opus-4 94.2 73.3 94.6 87.5

Table 13: Model Self-Repair Ability during Translation of Self-Generated Degenerated Source
Texts. This table presents the percentage of translations that retain degenerated content. Gemini-2.5-
pro demonstrates a consistently superior ability to correct degenerated content in its self-generated
source texts during the translation process, outperforming other models across both language direc-
tions. GPT-4.1’s observed non-deterministic behavior is potentially attributable to the significantly
smaller sample size of degenerated source sentences it processed (n=23/400), compared to Gemini-
2.5-pro (n=89/400).
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Example of Gemini’s self repair during translation.
Gemini’s degenerate source text: Jichhürunakanxa, celularanakax wali
wakiskiripuniwa. Aka tecnología ukax janiw mayni jaqimpi aruskipt’añatakikiti,
jan ukasti yatiñanak jikxatañataki, anatañataki, ukat yaqha lurawinak lurawinak
lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak
lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak
lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak
[repeated 50 times] lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak
lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak
lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak
lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak
lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak
lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak
lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak lurawinak
lurawinak lurawinak lurawinak lurawinak luraw

Gemini’s translation: Nowadays, cell phones are truly necessary. This

technology is not only for communicating with other people, but also for finding

information, for entertainment, and for carrying out various other activities.
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