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ABSTRACT

Recent studies have shown that higher accuracy on ImageNet usually leads to bet-
ter robustness against different corruptions. In this paper, instead of following the
traditional research paradigm that investigates new out-of-distribution corruptions
or perturbations deep models may encounter, we aim to conduct model debugging
with in-distribution data to explore which object attributes a model may be sensi-
tive to. To achieve this goal, we create a toolkit for object editing with controls
of backgrounds, sizes, positions, and directions, and create a rigorous benchmark
named ImageNet-E(diting) for evaluating the image classifier robustness in terms
of object attributes. With our ImageNet-E, we evaluate the performance of current
deep learning models, including both convolutional neural networks and vision
transformers. We find that most models are quite sensitive to attribute changes.
An imperceptible change in the background can lead to an average of 10.15% drop
rate on top-1 accuracy. We also evaluate some robust models including both adver-
sarially trained models and other robust trained models and find that some models
show worse robustness against attribute changes than vanilla models. Based on
these findings, we discover ways to enhance attribute robustness with preprocess-
ing, architecture designs, and training strategies. We hope this work can provide
some insights to the community and open up a new avenue for research in robust
computer vision. The code and dataset will be publicly available.

Adversarial Examples

ImageNet-C
Background Size Position & Direction

ILSVRC2012_val_00005614 ILSVRC2012_val_00004577 ILSVRC2012_val_00009393

ImageNet-E
Figure 1: Examples of the proposed ImageNet-E dataset. In contrast to adversarial examples or
datasets like ImageNet-C who add perturbation or corruptions to original images, we edit the object
attributes with controls of backgrounds, sizes, positions and directions.

1 INTRODUCTION

Deep learning has triggered the rise of artificial intelligence and has become the workhorse of ma-
chine intelligence. Deep models have been widely applied in various fields such as autonomous
driving (Huang et al., 2020), medical science (Litjens et al., 2017), and finance (Ozbayoglu et al.,
2020). With the spread of these techniques, the robustness and safety issue begins to be more essen-
tial, especially after the finding that deep models can be easily mistaken by negligible noises (Good-
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fellow et al., 2014). As a result, more researchers contribute to building datasets for benchmarking
model robustness to spot vulnerabilities in advance.

Most of the existing work builds datasets for evaluating the model robustness and generalization abil-
ity on out-of-distribution data (Carlini & Wagner, 2017; Hendrycks & Dietterich, 2019; Kar et al.)
using adversarial examples and common corruptions. For example, the ImageNet-C(orruption)
dataset conducts visual corruptions such as Gaussian noise to input images to simulate the possi-
ble processors in real scenarios (Hendrycks & Dietterich, 2019). ImageNet-R(enditions) contains
various renditions (e.g., paintings, embroidery) of ImageNet object classes (Hendrycks et al., 2021).
As both studies have found that higher accuracy on ImageNet usually leads to better robustness
against different domains (Hendrycks & Dietterich, 2019; Xiao et al., 2021). We advocate that
it is essential to conduct model debugging with the in-distribution data to provide clues for model
accuracy improvement, besides exploring a new domain that models may confront. For example, it
is interesting to explore whether a bird with a water background can be recognized correctly even if
most birds appear with trees or grasses in the training data. Though this topic has been investigated
in studies such as causal and effect analysis (Cui & Athey, 2022), the experiments and analysis are
undertaken on domain generalization datasets. How a deep model generalizes to different back-
grounds is still unknown due to the vacancy of a qualified benchmark. Therefore, in this paper, we
provide a detached object editing tool to conduct the model debugging from the perspective of object
attribute and construct a dataset named ImageNet-E(diting).
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Figure 2: Top-1 accuracies on
the original images (Ori) and cor-
responding edited ones, includ-
ing simple (BG-S), complex (BG-
C) and adversarial (BG-A) back-
grounds, different object sizes in-
cluding small (S-S) and large (S-L),
and position (P) editing.

Specifically, the ImageNet-E is a compact but challenging
test set for object recognition that contains controllable object
attributes including backgrounds, sizes, positions and direc-
tions, as shown in Figure 1. In contrast to ObjectNet (Barbu
et al., 2019) whose images are collected by their workers via
posing objects according to specific instructions and differ
from the target data distribution. Our ImageNet-E is automat-
ically generated with our object attribute editing tool based
on the original ImageNet. Specifically, to change the object
background, we provide an object background editing method
that can make the background simpler or more complex based
on diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020). In this way, one can easily evaluate how much the
background complexity can influence the model performance.
To control the object size, position, and direction to simu-
late pictures taken from different distances and angles, an ob-
ject editing method is also provided. With the above editing
toolkit, we apply it to the large-scale ImageNet dataset (Rus-
sakovsky et al., 2015) to construct our ImageNet-E(diting)
dataset. It can serve as a general dataset for benchmarking
robustness evaluation on different object attributes.

With the generated ImageNet-E, we evaluate the performance of current deep learning models, in-
cluding both convolutional neural networks (CNNs) and vision transformers. We find that deep
models are quite sensitive to object attributes. For example, when editing the background towards
high complexity (see Figure 1, the 3rd row in the background part), the drop rate of top-1 accuracy
reaches 10.15% on average. We also find that though some robust models share similar top-1 accu-
racy on ImageNet, the robustness against different attributes may differ a lot, as shown in Figure 2.
Some models, being robust under certain settings, even show worse results than the vanilla ones on
our dataset. This suggests that improving robustness is still a challenging problem and the object
attributes should be taken into account. Afterward, we discover ways to enhance robustness against
object attribute changes. The main contributions are summarized as follows:

• We provide an object editing toolkit that can change the object attributes smoothly for
manipulated image generation.

• We provide a new dataset called ImageNet-E that can serve as a general dataset for bench-
marking robustness to different object attributes. It opens up new avenues for research in
robust computer vision against object attributes.
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• We conduct extensive experiments on ImageNet-E and find that models with good robust-
ness to other corruptions may show poor performance on our dataset.

2 PRELIMINARIES

We first briefly review the theory of denoising diffusion probabilistic models (DDPM) (Sohl-
Dickstein et al., 2015; Ho et al., 2020) and analysis how it can be used to generate the desired
image.

According to the definition of the Markov Chain, one can always reach a desired stationary distri-
bution from a given distribution along with the Markov Chain (Geyer, 1992). To get a generative
model that can generate images from random Gaussian noises, one only needs to construct a Markov
Chain whose stationary distribution is Gaussian distribution. This is the core idea of DDPM. In
DDPM, given a data distribution x0 ∼ q(x0), a forward noising process produces a series of la-
tents x1, ...,xT of the same dimensionality as the data x0 by adding Gaussian noise with variance
βt ∈ (0, 1) at time t:

q(xt|xt−1) = N (
√
1− βtxt−1, βtI), s.t. 0 < βt < 1, (1)

where βt is the diffusion rate. Then the distribution q(xt|x0) at any time t is:

q(xt|x0) = N (
√
ᾱt, (1− ᾱt)I), xt =

√
ᾱtx0 +

√
1− ᾱtϵ (2)

where ᾱt =
∏t

s=1(1 − βt), ϵ ∼ N (0, I). It can be proved that limt→∞ q(xt) = N (0, I). In other
words, we can map the original data distribution into a Gaussian distribution with enough iterations.
Such a stochastic forward process is named as diffusion process since what the process q(xt|xt−1)
does is adding noise to xt−1.

To draw a fresh sample from the distribution q(x0), the Markov process is reversed. That is, begin-
ning from a Gaussian noise sample xT ∼ N (0, I), a reverse sequence is constructed by sampling
the posteriors q(xt−1|xt). To approximate the unknown function q(xt−1|xt), in DDPMs, a deep
model pθ is trained to predict the mean and the covariance of xt−1 given xt. Then the xt−1 can be
sampled from the normal distribution defined as:

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)). (3)

In stead of inferring µθ(xt, t) directly, Ho et al. (2020) propose to predict the noise ϵθ(xt, t) which
was added to x0 to get xt with Equation 2. Then µθ(xt, t) is:

µθ(xt, t) =
1√
ᾱt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)). (4)

Ho et al. (2020) keep the value of Σθ(xt, t) to be constant. As a result, given a sample xt at time t,
with a trained model that can predict the noise ϵθ(xt, t), we can get µθ(xt, t) according to Equation 4
to reach the xt−1 with Equation 3 and eventually we can get to x0.

Previous studies have shown that diffusion models can achieve superior image generation quality
compared to the current state-of-the-art generative models (Avrahami et al., 2022). Besides, there
have been plenty of works on utilizing the DDPMs to generate samples with desired properties, such
as semantic image translation (Meng et al., 2021), high fidelity data generation from low-density
regions (Sehwag et al., 2022), etc. In this paper, we also choose DDPMs as our generator.

3 ATTRIBUTE EDITING WITH DIFFUSION MODELS AND IMAGENET-E

Most previous work on robustness in deep vision models has focused on the important challenges
of robustness on adversarial examples (Carlini & Wagner, 2017), common corruptions (Hendrycks
& Dietterich, 2019), unknown unknowns (Hendrycks et al., 2018). They have found that higher
clean accuracy usually leads to better robustness. Therefore, instead of exploring a new corruption
that models may encounter in reality, we pay attention to the model debugging in terms of object
attributes, hoping to provide new insights to clean accuracy improvement. We develop an object
attribute editing tool for generating images while maintaining their semantic meaning. In the fol-
lowing, we describe our editing tool and the generated ImageNet-E dataset in detail.
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Figure 3: Images generated with the proposed background complexity editing method.

3.1 OBJECT ATTRIBUTE EDITING WITH DIFFUSION MODELS

Background editing. Most existing corruptions conduct manipulations on the whole image, as
shown in Figure 1. Compared to adding global corruptions that may hinder the visual quality, a
more likely-to-happen way in reality is to manipulate the backgrounds to attack the model. Besides,
it is shown that there exists a spurious correlation between labels and image backgrounds (Geirhos
et al., 2020). From this point, a background corruption benchmark is needed to evaluate the model’s
robustness. In this work, we choose to manipulate the background in terms of texture complexity
due to the hypothesis that an object should be observed more easily from simple backgrounds than
from complicated ones. In general, the texture complexity can be evaluated with the gray-level
co-occurrence matrix (GLCM) (Haralick et al., 1973), which calculates the gray-level histogram to
show the texture characteristic. However, the calculation of GLCM is non-differentiable, thus it
cannot serve as the conditional guidance of image generation. We hypothesize that a complex image
should contain more frequency components in its spectrum and higher amplitude indicates greater
complexity. Thus, we define the objective of complexity as:

Lc =
∑

abs(A(F(x))), (5)

where F is the Fourier transformation (Bochner et al., 1949), A extracts the amplitude of the input
spectrum. x is the evaluated image. Since minimizing this loss helps us generate an image with
desired properties and should be conducted on the x0, we need a way of estimating a clean image
x0 from each noisy latent representation xt during the denoising diffusion process. Recall that the
process estimates at each step the noise ϵθ(xt, t) added to x0 to obtain xt. Thus, x̂0 can be estimated
via Equation 6 (Avrahami et al., 2022). The whole optimization procedure is shown in Algorithm 1.

x̂0 =
xt√
ᾱt

−
√
1− ᾱtϵθ(xt, t)√

ᾱt
. (6)

Algorithm 1: Background editing
input : source image x, input mask M , diffusion

model (µθ(xt),Σθ(xt)),
hyperparameter λ, iteration steps t0

output: edited image x0

1 xt0 ∼ N (
√
ᾱt0x, (1− ᾱt0)I);

2 for t← t0 to 0 do
3 x̂0 ← xt√

ᾱt
−

√
1−ᾱtϵθ(xt,t)√

ᾱt
;

4 ∇bg ← ∇x̂0Lc(x̂0);
5 xb

t−1 ∼ N (µθ(xt) + λΣθ(xt)∇bg,Σθ(xt));
6 xo ∼ N (

√
ᾱtx, (1− ᾱt)I);

7 xt−1 ←M ⊙ xo + (1−M)⊙ xb
t−1;

8 end

Algorithm 2: Object size controlling
input : source image x, input mask M , diffusion

model (µθ(xt),Σθ(xt)), iteration steps
t0, target ratio s

output: edited image x0

1 xb ← ObjectRemoving(x,M );
2 x,M ← Rescale (x,M, s);
3 xt0 ∼ N (

√
ᾱt0x

b, (1− ᾱt0)I);
4 for t← t0 to 0 do
5 xb

t−1 ∼ N (µθ(xt),Σθ(xt));
6 xo ∼ N (

√
ᾱtx, (1− ᾱt)I);

7 xt−1 ←M ⊙ xo + (1−M)⊙ xb
t−1;

8 end

As shown in Figure 3, with the proposed method, when we guide the generation procedure with the
proposed objective towards the complex direction, it will return images with visually complex back-
grounds. We also provide the GLCM dissimilarity and contrast of each image to make a quantitative
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analysis of the generated images. A higher dissimilarity/contrast score indicates a more complex
image background (Haralick et al., 1973). It can be observed that the complexity is consistent with
the complex value calculated with GLCM, indicating the effectiveness of the proposed method.

Controlling object size, position and direction.

Original     Mask   In-painted    Paste        Ours
Original     Mask          Object-removed           Paste                     Ours

Figure 4: Edited images with size changing. The
Fréchet inception distance (FID) for pasting is
50.64 while it is 32.59 for ours, indicating the ef-
fectiveness of the leveraging of DDPMs.

In general, the human vision system is robust
to position, direction and small size changes.
Whether the deep models are also robust to
these object attribute changes is still unknown
to researchers. Therefore, we conduct the im-
age editing with controls of object sizes, po-
sitions and directions to find the answer. For
a valid evaluation on different attributes, all
other variables should remain unchanged, es-
pecially the background. Therefore, we first
disentangle the object and background with the
in-painting strategy provided by Zheng et al.
(2022). Specifically, we mask the object area in
input image x. Then we conduct in-painting to
remove the object and get the pure background
image xb, as shown in Figure 4 column 3. To
realize the aforementioned object attribute con-
trolling, we adopt the orthogonal transforma-
tion. Denote P as the pixel locations of ob-
ject in image x where P ∈ R3×No . No is
the number of pixels belong to object and pi = [xi, yi, 1]

T is the position of object’s i-th pixel.
h′ ∈ [0, H − h], w′ ∈ [0,W − w] where [x, y, w, h] stand for the enclosing rectangle of the object
with mask M . Then the newly edited x[Tattribute · P ] = x[P ] and M [Tattribute · P ] = M [P ], where

Tsize =

[
s 0 ∆x
0 s ∆y
0 0 1

]
, Tposition =

[
1 0 w′

0 1 h′

0 0 1

]
, Tdirection =

[
cos θ sin θ 0
− sin θ cos θ 0

0 0 1

]
. (7)

where s is the resize scale. θ is the rotation angle. ∆x = (1−s)·(x+w/2),∆y = (1−s)·(y+h/2).

With the background image xb and edited object xo, a naive way is to place the object in the original
image to the corresponding area of background image xb as M ⊙ xo + (1 − M) ⊙ xb. However,
the result generated in this manner may look disharmonic, lacking a delicate adjustment to blending
them together. Besides, as shown in Figure 4 column 3, the object-removing operation may leave
some artifacts behind, failing to produce a coherent and seamless result. To deal with this problem,
we leverage DDPM models to blend them at different noise levels along the diffusion process. De-
note the image with desired object attribute as xo. Starting from the pure background image xb at
time t0, at each stage, we perform a guided diffusion step with a latent xt to obtain the xt−1 and
at the same time, obtain a noised version of object image xo

t−1. Then the two latents are blended
with the mask M as xt−1 = M ⊙ xo

t−1 + (1−M)⊙ xt−1. The DDPM denoising procedure may
change the background. Thus a proper initial timing is required to maintain a high resemblance to
the original background. We set the iteration steps t0 as 50 and 25 in Algorithm 1 and 2 respectively.

3.2 IMAGENET-E DATASET

With the tool above, we conduct object attribute editing including background, size, direction
and position changes based on the large-scale ImageNet dataset (Russakovsky et al., 2015) and
ImageNet-S Gao et al. (2022), which provides the mask annotation. To guarantee the dataset qual-
ity, we choose the animal classes from ImageNet classes such as dogs, fishes and birds, since they
appear more in nature without messy backgrounds. Classes such as stove and mortarboard are re-
moved. Finally, our dataset consists of 47872 images with 373 classes. Detailed information can
be found in Appendix A. For background editing, we choose five levels of the complexity, includ-
ing λ = 0, λ = −20, λ = 20, λ = 100 and λ = 20-adv with adversarial guidance instead of
complexity. Larger λ indicates stronger guidance towards high complexity. For the object size, we
design four levels of sizes in terms of the object pixel rates (= sum(M > 0.5)/sum(M ≥ 0)):
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[Full, 0.1, 0.08, 0.05] where ‘Full’ indicates making the object as large as possible while maintain-
ing its whole body inside the image. Smaller rates indicate smaller objects. For object position, we
find that some objects hold a high object pixel rate in the whole image, resulting in a small H − h.
Take the first picture in Figure 4 for example, the dog is big and it will make little visual differences
after position changing. Therefore, we adopt the data whose pixel rate is 0.05 as our initial images
and run the position-changing operation.

In contrast to benchmarks like ImageNet-C (Hendrycks & Dietterich, 2019) giving images from
different domains so that the model robustness in these situations may be assessed, our effort aims to
give an editable image tool that can edit the object’s attribute in the given image while maintaining
it in the original distribution for model debugging, in order to identify specific shortcomings of
different models and provide some insights for clean accuracy improving. Thus, we choose the
out-of-distribution (OOD) detection method Energy (Liu et al., 2020) and GradNorm (Huang et al.,
2021) as the evaluation methods to find out whether our editing tool will move the edited image
out of its original distribution. In contrast to FID which indicates the divergence of two datasets,
the OOD detection is used to indicate the extent of the deviance of a single input image from the
in-distribution dataset. The results are shown in Figure 5. x-axis is the in-distribution (ID) score
and y-axis is the frequency of each ID score. A high ID score indicates the detection method takes
the input sample as the ID data, therefore, the ImageNet data are on the right side. Compared to
other datasets, our method barely changes the data distribution under both Energy (the 1st row)
and GradNorm (the 2nd row) evaluation methods. This implies that our editing tool can ensure the
proximity to the original ImageNet, thus can give a controlled evaluation on object attribute changes.
Besides, to find out whether the DDPM will induce some degradation to our evaluation, we have
conducted experiment in Table 1 with the setting λ = 0 during background editing. This operation
will first add noises to the original and denoise them. It can be found in “Inver” column that the
degradation is negligible compared to degradation induced by attribute changes.

Figure 5: The distribution of the OOD scores for in-distribution (ImageNet) and other datasets.
Higher overlap indicates greater proximity to ImageNet.

4 EXPERIMENTS

We conduct evaluation experiments on various architectures including both CNNs (ResNet (RN) (He
et al., 2016), DenseNet (Huang et al., 2017), EfficientNet (EF) (Tan & Le, 2019),
ResNest (Zhang et al., 2022), ConvNeXt (Liu et al., 2022)) and transformer-based models (Vision-
Transformer (ViT) (Dosovitskiy et al., 2020), Swin-Transformer(Swin) (Liu et al., 2021)). Apart
from different sizes of these models, we have also evaluated their adversarially trained versions for
comprehensive studies. More details can be found in Appendix D.

4.1 ROBUSTNESS EVALUATION OF STATE-OF-THE-ART MODELS

Normally trained models. To find out whether the widely used models in computer vision have
gained robustness against changes on different object attributes, we conduct extensive experiments
on different models. As shown in Table 1, when only the background is edited towards high com-
plexity, the average drop rate of top-1 accuracy is 10.15% (λ = 20). This indicates that most models
are quite sensitive to object background changes. Other attribute changes such as size and position
can also lead to model performance degradation. For example, when changing the object pixel rate
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Table 1: Evaluations with different state-of-the-art models in terms of Top-1 accuracy drop rate.
Models Ori Inver Background changes Size changes Position Direction

λ = −20 λ = 20 λ = 100 λ = 20-adv Full 0.1 0.08 0.05 rp rd
RN50 0.9278 2.13% 7.88% 14.40% 31.54% 32.28% 3.02% 7.82% 11.34% 22.94% 28.54% 27.10%

DenseNet121 0.9205 1.62% 6.83% 9.77% 20.53% 31.70% 3.80% 7.60% 11.59% 23.40% 28.80% 25.67%
EF-B0 0.9285 1.15% 7.65% 11.54% 27.08% 37.57% 3.54% 8.61% 12.46% 25.08% 30.06% 20.58%

ResNest50 0.9531 1.51% 6.64% 9.41% 18.06% 27.91% 2.55% 5.53% 8.39% 18.90% 22.41% 18.16%
ViT-S 0.9474 1.75% 7.73% 11.23% 19.21% 33.96% 1.29% 5.53% 8.39% 18.90% 22.41% 18.16%

Swin-S 0.9621 1.17% 5.38% 7.62% 13.36% 24.42% 1.34% 4.38% 6.54% 14.72% 18.04% 13.95%
ConvNeXt-T 0.9602 1.49% 4.88% 6.52% 9.91% 20.64% 1.77% 3.42% 5.39% 13.28% 16.35% 16.43%

RN101 0.9400 2.25% 7.50% 12.37% 29.59% 31.35% 2.88% 7.25% 10.76% 21.97% 27.50% 25.98%
DenseNet169 0.9239 1.21% 6.29% 9.13% 21.54% 29.78% 2.44% 7.50% 11.27% 22.29% 26.99% 22.39%

EF-B3 0.9499 1.97% 8.19% 8.84% 18.31% 31.49% 1.58% 7.16% 10.70% 22.49% 26.30% 18.15%
ResNest101 0.9557 1.16% 5.84% 6.96% 11.32% 24.11% 1.55% 4.16% 6.84% 16.16% 20.00% 14.98%

ViT-B 0.9570 0.71% 5.44% 8.37% 12.42% 25.35% 0.52% 4.91% 6.87% 16.40% 20.35% 11.96%
Swin-B 0.9593 0.82% 4.65% 6.49% 12.26% 22.34% 0.94% 3.29% 5.25% 12.86% 16.03% 13.13%

ConvNeXt-B 0.9646 0.71% 3.89% 5.04% 7.64% 17.10% 1.14% 2.34% 3.48% 9.82% 12.86% 13.49%

to 0.05, as shown in Figure 1 row 4 in the ‘size’ column, while we can still recognize the image
correctly, the performance drop rate is 22.27% on average. We also find that the robustness under
different object attributes is improved along with improvements in terms of clean accuracy (Origi-
nal) on different models. Accordingly, a switch from an RN50 (92.78% top-1 accuracy) to a Swin-S
(96.21%) leads to the drop rate decrease from 14.43% to 7.64% when λ = 20. By this measure,
models have become more and more capable of generalizing to different backgrounds, which im-
plies that they indeed learn some robust features. This shows that object attribute robustness can
be a good way to measure future progress in representation learning. We also observe that larger
networks possess better robustness on the attribute editing. For example, swapping a RN50 (92.78%
top-1 accuracy) with the larger RN101 (94.00% top-1 accuracy) leads to the decrease of the drop
rates from 14.43% to 12.68% when λ = 20. In a similar fashion, a ViT-S (11.91% drop rate) is less
robust than the giant ViT-B (8.59% drop rate). Consequently, models with even more depth, width,
and feature aggregation may attain further attribute robustness.

Adversarially trained models. Adversarial training (Salman et al., 2020) is one of the state-of-the-
art methods for improving the adversarial robustness of deep neural networks and has been widely
studied (Bai et al., 2021a). To find out whether they can boost the attribute robustness, we conduct
extensive experiments in terms of different architectures and perturbation budgets (constraints of l2
norm bound). As shown in Figure 6, it is surprising to find that the adversarially trained ones are not
robust against attribute changes including both backgrounds and size-changing situations. The drop
rates are much greater compared to normally trained models. As the perturbation budget grows,
the model gets worse on our ImageNet-E. This indicates that adversarial training can do harm to
robustness against attributes.

Figure 6: Drop rate comparison of vanilla models and adversarially trained models across different
architectures in terms of background changes and size changes (left two). Evaluation of adversarial
models trained with different perturbation budgets is also provided in the right figures (l2, l∞).

4.2 ROBUSTNESS ENHANCEMENTS

Based on the above evaluations, we step further to discover ways to enhance the attribute robustness
in terms of preprocessing, network design and training strategies. More details including training
setting and numerical experimental results can be found in Appendix D.5.

Preprocessing. Given that an object can be inconspicuous due to its small size or subtle position,
viewing an object at several different locations may lead to a more stable prediction. Having this
intuition in mind, we perform the classical Ten-Crop strategy to find out if this operation can help
to get a robustness boost. The Ten-Crop operation is executed by cropping all four corners and the
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center of the input image. We average the predictions of these crops together with their horizontal
mirrors as the final result. We find this operation can contribute a 0.69% and 1.24% performance
boost on top-1 accuracy in both background and size changes scenarios on average respectively.

Network designs. Intuitively, a robust model should tend to focus more on the object of interest
instead of the background. Therefore, some recent models begin to enhance the model by employ-
ing some attention modules. Of these, the state-of-the-art ResNest (Zhang et al., 2022) can be a
representative. The ResNest is a modularized architecture, which applies channel-wise attention on
different network branches to leverage their success in capturing cross-feature interactions and learn-
ing diverse representations. As it has achieved a great boost in the ImageNet dataset, it also shows
superiority in our ImageNet-E compared to ResNet. For example, a switch from RN50 decreases
the average drop rate from 17.53% to 12.59%. This indicates that the channel-wise attention module
can be a good choice to improve the attribute robustness. Another representative model can be the
vision transformer, which consists of multiple self-attention modules. To study whether incorporat-
ing Transformer’s self-attention-like architecture into the model design can help attribute robustness
generalization, we create a hybrid architecture by directly feeding the output of res 3 block in RN50
into ViT-S as the input feature like Bai et al. (2021b). The drop rate decreases by 4.16% compared
to the original RN50, indicating the effectiveness of the self-attention-like architectures.

Training strategy. a) Robust trained. There have been plenty of studies focusing on the robust
training strategy to improve model robustness. To find out whether these works can boost the ro-
bustness on our dataset, we further evaluate these state-of-the-art models including SIN (Geirhos
et al., 2018), DebiasedCNN (Li et al., 2020), Augmix (Hendrycks et al., 2020), ANT (Rusak et al.,
2020), DeepAugment (Hendrycks et al., 2021). As shown in Table 2, while the Augmix model
shows the best performance against the background change scenario, the Debiased model holds
the best in the object size change scenario. What we find unexpectedly is the SIN performance.
The SIN method features the novel data augmentation scheme where ImageNet images are stylized
with style transfer as the training data to force the model to rely less on textural cues for classi-
fication. Though the performance boost is achieved on ImageNet-C (mCE 69.32%) compared to
its vanilla model (mCE 76.7%), they fail to improve the robustness in both object background and
size-changing scenarios. The drop rates for vanilla RN50 and RN50-SIN are 23.38% and 26.56%
respectively, when the object size rate is 0.05, though they share similar accuracy on original Ima-
geNet. This indicates that existing benchmarks cannot reflect the real robustness in object attribute
changing. Therefore, a dataset like ImageNet-E is necessary for comprehensive evaluations on deep
models. b) Masked image modeling. Considering that masked image modeling (MIM) has demon-
strated impressive results in self-supervised representation learning by recovering corrupted image
patches (Bao et al., 2022), it may be robust to the attribute changes. Therefore, we choose the
Masked AutoEncoder (MAE) (He et al., 2022a) as the training strategy since its objective is recov-
ering images with only 25% patches. Specifically, we adopt the MAE training strategy with ViT-B
backbone and then finetune it with ImageNet training data. We find that the robustness is greatly
improved. For example, the drop rate decreases from 8.69% to 6.70% when λ = 20 compared to
vanilla ViT-B. Motivated by the success of MAE, we also test another classical MIM-based method
SimMIM (Xie et al., 2022) and can also get a boost. These results validate the effectiveness of MIM
training strategy in attribute robustness.

Table 2: Evaluations with different robust models in terms of Top-1 accuracy drop rate.
Models Ori Inver Background changes Size changes Position Direction

λ = −20 λ = 20 λ = 100 λ = 20-adv Full 0.1 0.08 0.05 rp rd
RN50 0.9278 2.13% 7.88% 14.40% 31.54% 32.28% 3.02% 7.82% 11.34% 22.94% 28.54% 27.10%

RN50-A 0.8202 0.81% 5.79% 16.62% 34.62% 46.21% 6.00% 11.74% 17.00% 31.12% 39.66% 38.99%
RN50-SIN 0.9154 2.43% 8.31% 13.31% 30.04% 36.21% 1.63% 9.06% 13.76% 26.46% 31.85% 29.75%

RN50-Debiased 0.9336 1.53% 6.53% 12.26% 29.58% 29.98% 2.22% 5.92% 9.38% 20.65% 25.73% 26.75%
RN50-Augmix 0.9352 1.05% 6.70% 8.96% 13.60% 32.61% 1.65% 6.84% 10.66% 22.91% 29.03% 23.97%

RN50-ANT 0.9186 1.82% 7.20% 13.00% 22.38% 38.81% 1.75% 7.75% 11.56% 23.40% 29.02% 27.46%
RN50-DeepAugment 0.9290 1.61% 7.13% 13.32% 35.24% 34.89% 1.61% 7.82% 11.43% 22.91% 28.29% 22.93%

4.3 BAD CASE ANALYSIS

To explore the reason why some robust trained models may fail, we leverage the LayerCAM (Jiang
et al., 2021) to generate the heat map for different models including vanilla RN50, RN50+SIN and
RN50+Debiased for comprehensive studies. As shown in Figure 7, the heat map of the Debiased
model aligns better with the objects in the image than that of the original model. It is interesting
to find that the SIN model sometimes makes wrong predictions even with its attention on the main
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object. We suspect that the SIN relies too much on the shape. for example, the ‘sea urchin’ looks
like the ‘acron’ with the shadow. However, its texture clearly indicates that it is the ‘sea urchin’. In
contrast, the Debiased model which is trained to focus on both the shape and texture can recognize
it correctly. More studies can be found in Appendix D.4.

SINEdited DebiasedVanillaOriginal SINEdited DebiasedVanillaOriginal

Figure 7: Heat maps for explaining which parts of the image dominate the model decision through
LayerCAM (Jiang et al., 2021).

5 RELATED WORK

The literature related to attribute robustness benchmarks can be broadly grouped into the following
themes: robustness benchmarks and attribute editing datasets. Existing robustness benchmarks such
as ImageNet-C(orruption) (Hendrycks & Dietterich, 2019), ImageNet-R(endition) (Hendrycks et al.,
2021), ImageNet-Stylized (Geirhos et al., 2018) and ImageNet-3DCC (Kar et al.) mainly focus on
the exploring of the corruption or out-of-distribution data that models may encounter in reality.
For instance, the ImageNet-R dataset contains various renditions (e.g., paintings, embroidery) of
ImageNet object classes. ImageNet-C analyzes image models in terms of various simulated image
corruptions (e.g., noise, blur, weather, JPEG compression, etc.). Attribute editing dataset creation
is a new topic and few studies have explored it before. Among them, ObjectNet (Barbu et al.,
2019) and ImageNet-9 (Xiao et al., 2021) can be the representative. ObjectNet collects a large real-
world test set for object recognition with controls where object backgrounds, rotations, and imaging
viewpoints are random. The images in ObjectNet are collected by their workers who image objects
in their homes. It consists of 313 classes which are mainly household objects. ImageNet-9 mainly
creates a suit of datasets that help disentangle the impact of foreground and background signals on
classification. To achieve this goal, it uses coarse-grained classes with corresponding rectangular
bounding boxes to remove the foreground and then paste the cut area with other backgrounds. It can
be observed that there lacks a dataset that can edit the object attribute smoothly.

6 CONCLUSION AND FUTURE WORK

In this paper, we put forward an image editing toolkit that can take control of object attributes
smoothly. With this tool, we create a new dataset called ImageNet-E that can serve as a gen-
eral dataset for benchmarking robustness against different object attributes. Extensive evaluations
conducted on different state-of-the-art models show that most models are vulnerable to attribute
changes, especially the adversarially trained ones. Meanwhile, other robust trained models can
show worse results than vanilla models even when they have achieved a great robustness boost on
other robustness benchmarks. We further discover ways for robustness enhancement from both pre-
processing, network designing and training strategies.

Limitations and future work. This paper proposes to edit the object attributes in terms of back-
grounds, sizes, positions and directions. Therefore, the annotated mask of the interest object is
required, resulting in a limitation of our method. Besides, since our editing toolkit is developed
based on diffusion models, the generalization ability is determined by DDPMs. For example, we
find synthesizing high-quality person images is difficult for DDPMs. In considering of both the an-
notated mask and data quality, our ImageNet-E is a compact test set. In our future work, we would
like to explore how to leverage the edited data to enhance the model’s performance, including both
the validation accuracy and robustness.

9
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ETHICS STATEMENT

In this paper, we provide a novel object attribute editing tool and create a dataset named ImageNet-E.
With the proposed dataset ImageNet-E, one can easily conduct model debugging to find out current
deep learning’s weaknesses against different attributes, thus making deep models more robust. We
hope this work can provide some insights to the community and open up a new avenue for research
in robust computer vision. We did not use crowdsourcing and did not conduct research with human
subjects in our experiments. We cited the creators when using existing assets (e.g., code, data,
models).

REPRODUCIBILITY STATEMENT

Our attribute editing tool is an appealingly simple method, which is developed based on the
publicly available codes from DDPMs. We specify the settings of hyper-parameters and how
they were chosen in our paper. The source code for our toolkit can be found at https://
huggingface.co/spaces/Anonymous-123/ImageNet-Editing. Due to the require-
ment for GPU, the demo at this site is disabled and can only return the input image. Alternatively,
we record a demo video locally, which can be found at https://drive.google.com/file/
d/1h5EV3MHPGgkBww9grhlvrl--kSIrD5Lp/view?usp=sharing.
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A DETAILS FOR IMAGENET-E

To guarantee the visual quality of the generated examples, we choose the animal classes from Im-
ageNet since they appear more in nature without messy backgrounds. Specifically, images whose
coarse labels in [fish, shark, bird, salamander, frog, turtle, lizard, crocodile, dinosaur, snake, trilo-
bite, arachnid, ungulate, monotreme, marsupial, coral, mollusk, crustacean, marine mammals, dog,
wild dog, cat, wild cat, bear, mongoose, butterfly, echinoderms, rabbit, rodent, hog, ferret, ar-
madillo,primate] are picked. The corresponding coarse labels of each class we refer to can be
found in Eshed (2020)1. Finally, our ImageNet-E consists of 373 classes. Since the number of
masks provided in ImageNet-S (Gao et al., 2022) in these classes is 4352, thus the number of
images in each edited kind is 4352. The ImageNet-E contains 11 kinds of attributes editing, in-
cluding 5 kinds of background editing and 4 kinds of size editing, as well as one kind of position
editing and one kind of direction editing. Finally, our ImageNet-E contains 47872 images. Ex-
periments on more images can be found in section D.3. The comprehensive comparisons with
the state-of-the-art robustness benchmarks are shown in Figure 8. In contrast to other bench-
marks that investigate new out-of-distribution corruptions or perturbations deep models may en-
counter, w conduct model debugging with in-distribution data to explore which object attributes
a model may be sensitive to. The examples in ImageNet-E are shown in Figure 9. A demo
video for our editing toolkit can be found at this url:https://drive.google.com/file/
d/1h5EV3MHPGgkBww9grhlvrl--kSIrD5Lp/view?usp=sharing.

Benchmarks Description Classes Samples

ImageNet-A
Challenging examples 

collected by-hand 200

ImageNet-C
Corruptions added on 

images 1000

ImageNet-R
Various renditions of 

ImageNet object classes 200

ImageNet-3DCC 3D common corruptions 1000

ImageNet-9
Images whose objects and 

backgrounds are 
disentangled with bbox

370

ImageNet-E
Images with attribute-

edited objects 373

Figure 8: Benchmark comparison.

B BACKGROUND EDITING

Intuitively, an image with complicated background tends to contain more high-frequency compo-
nents, such as edges. Therefore, a straight-forward way is to define the background complexity
as the amplitude of high-frequency components. However, this operation can result in noisy back-
grounds, instead of the ones with complicated textures. Therefore, we directly define complexity as
the amplitude of all frequency components. The compared results are shown in Figure 10. It can
be observed that the amplitude supervision on high-frequency components tends to make the model
generate images with more noise. In contrast, amplitude supervision on all frequency components
can help to generate images with texture-complex backgrounds. To edit the background adversari-
ally, we set Lc = CE(f(x), y) where ‘CE’ is the cross entropy loss. f and y are the classifier and
label of x respectively. We adopt the classifier f from guided-diffusion2.

1https://github.com/noameshed/novelty-detection/blob/master/imagenet categories synset.csv
2https://github.com/openai/guided-diffusion
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Figure 9: Samples from ImageNet-E. From left to right, top to bottom, the images stand for back-
ground editing with λ = −20, λ = 20, λ = 20-adv, randomly shuffled backgrounds, size editing
with rate 0.1 and 0.05, randomly rotate, random position, randomly rotate based on images with
object pixel rate 0.05 respectively.

HF

All

HF

All

Original Original

Figure 10: Comparisons between the amplitude supervision on high-frequency components (HF)
and amplitude supervision on all frequency components (All).
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C IMAGE EDITING WITH DENOISING DIFFUSION PROBABILISTIC MODELS

Object 
Removal

x!! , bgx"

x!! , obj

#(x!!|x)

#(x!!|x)

⨀
')(x!|x!*+)

x!! x!!*+, bg

x!!*+, obj

⨀ ⨀

#(x!!"#|x)

Figure 11: Attribute editing with DDPMs.

D EXPERIMENTAL DETAILS

D.1 DETAILS FOR METRICS

In this paper, we care more about how different attributes impact different models. Therefore, we
choose the top-1 accuracy drop rate as our evaluation metric. A lower drop rate indicates higher
robustness against our attribute changes. The drop rate (DR) is defined as:

DR =
accoriginal − acc

accoriginal
. (8)

The detailed top-1 accuracy (Top-1) and drop rate (DR)on our ImageNet-E are listed in Table 3,
Table 4 and Table 5, Table 6. RN50-T is the ResNet50 model from timm library which is trained
with lots of training strategies (Wightman et al., 2021).

Table 3: Evaluations under different backgrounds.

Models Ori Inver λ = −20 λ = 20 λ = 100 λ = 20-Adv
Top-1 Top-1 DR Top-1 DR Top-1 DR Top-1 DR Top-1 DR

RN50 0.9278 0.9072 2.13% 0.8539 7.88% 0.7934 14.40% 0.6345 31.54% 0.6277 32.28%
DenseNet121 0.9205 0.9061 1.62% 0.8581 6.83% 0.8310 9.77% 0.7319 20.53% 0.6290 31.70%

EFB0 0.9285 0.9178 1.15% 0.8575 7.65% 0.8214 11.54% 0.6770 27.08% 0.5797 37.57%
ViT-S 0.9474 0.9308 1.75% 0.8742 7.73% 0.8410 11.23% 0.7654 19.21% 0.6257 33.96%

Swin-S 0.9621 0.9508 1.17% 0.9103 5.38% 0.8888 7.62% 0.8336 13.36% 0.7271 24.42%
RN101 0.9400 0.9189 2.25% 0.8695 7.50% 0.8238 12.37% 0.6619 29.59% 0.6453 31.35%

DenseNet169 0.9239 0.9125 1.21% 0.8656 6.29% 0.8394 9.13% 0.7247 21.54% 0.6486 29.78%
EFB3 0.9499 0.9310 1.97% 0.8720 8.19% 0.8657 8.84% 0.7758 18.31% 0.6507 31.49%
ViT-B 0.9570 0.9498 0.71% 0.9045 5.44% 0.8765 8.37% 0.8378 12.42% 0.7141 25.35%

Swin-B 0.9593 0.9517 0.82% 0.9150 4.65% 0.8973 6.49% 0.8420 12.26% 0.7452 22.34%

Table 4: Evaluations with different robust models under different backgrounds.

Models Ori Inver λ = −20 λ = 20 λ = 100 λ = 20-adv
Top-1 Top-1 DR Top-1 DR Top-1 DR Top-1 DR Top-1 DR

RN50 0.9278 0.9072 2.13% 0.8539 7.88% 0.7934 14.40% 0.6345 31.54% 0.6277 32.28%
RN50-A 0.8202 0.8130 0.81% 0.7721 5.79% 0.6834 16.62% 0.5359 34.62% 0.4409 46.21%

RN50-SIN 0.9154 0.8934 2.43% 0.8396 8.31% 0.7938 13.31% 0.6406 30.04% 0.5841 36.21%
RN50-debiased 0.9336 0.9191 1.53% 0.8725 6.53% 0.8189 12.26% 0.6573 29.58% 0.6535 29.98%
RN50-Augmix 0.9352 0.9252 1.05% 0.8724 6.70% 0.8512 8.96% 0.8079 13.60% 0.6301 32.61%

RN50-ANT 0.9186 0.9019 1.82% 0.8525 7.20% 0.7993 13.00% 0.7131 22.38% 0.5621 38.81%
RN50-DeepAugment 0.9290 0.9138 1.61% 0.8626 7.13% 0.8051 13.32% 0.6015 35.24% 0.6048 34.89%

RN50-T 0.9455 0.9350 1.11% 0.8890 5.98% 0.8717 7.81% 0.8224 13.02% 0.7266 23.15%

D.2 CLASSES WHOSE TOP-1 ACCURACY DROPS THE GREATEST

To find out which class gets the worst robustness against attribute changes, we plot the dropped
accuracy in Figure 12. The evaluated models are vanilla RN50 and its Debiased model. It can be
observed that objects that have tentacles with simple backgrounds are more easily to be attacked.

16



Under review as a conference paper at ICLR 2023

Table 5: Evaluations under different object sizes.
Models Ori Full 0.10 0.08 0.05 0.05-rp rd

Top-1 Top-1 DR Top-1 DR Top-1 DR Top-1 DR Top-1 DR Top-1 DR
RN50 0.9278 0.8998 3.02% 0.8544 7.82% 0.8218 11.34% 0.7143 22.94% 0.6623 28.54% 0.6757 27.10%

DenseNet121 0.9205 0.8855 3.80% 0.8510 7.60% 0.8142 11.59% 0.7055 23.40% 0.6557 28.80% 0.6846 25.67%
EF-B0 0.9285 0.8956 3.54% 0.8485 8.61% 0.8128 12.46% 0.6957 25.08% 0.6494 30.06% 0.7374 20.58%
ViT-S 0.9474 0.9352 1.29% 0.8764 7.50% 0.8410 11.23% 0.7445 21.42% 0.6966 26.48% 0.7752 18.18%

Swin-S 0.9621 0.9492 1.34% 0.9200 4.38% 0.8992 6.54% 0.8205 14.72% 0.7886 18.04% 0.8279 13.95%
RN101 0.9400 0.9129 2.88% 0.8719 7.25% 0.8388 10.76% 0.7335 21.97% 0.6815 27.50% 0.6958 25.98%

DenseNet169 0.9239 0.9014 2.44% 0.8547 7.50% 0.8196 11.27% 0.7178 22.29% 0.6744 26.99% 0.7169 22.39%
EF-B3 0.9499 0.9349 1.58% 0.8817 7.16% 0.84881 10.70% 0.7361 22.49% 0.6999 26.30% 0.7773 18.15%
ViT-B 0.9570 0.9520 0.52% 0.9097 4.91% 0.8909 6.87% 0.7998 16.40% 0.7619 20.35% 0.8422 11.96%

Swin-B 0.9593 0.9503 0.94% 0.9280 3.29% 0.9092 5.25% 0.8362 12.86% 0.8058 16.03% 0.8336 13.13%

Table 6: Evaluations with different robust models under different object sizes.
Models Ori Full 0.10 0.08 0.05 0.05-rp rd

Top-1 Top-1 DR Top-1 DR Top-1 DR Top-1 DR Top-1 DR Top-1 DR
RN50 0.9278 0.8998 3.02% 0.8544 7.82% 0.8218 11.34% 0.7134 22.94% 0.6623 28.54% 0.6757 27.10%

RN50-A 0.8202 0.7710 6.00% 0.7234 11.74% 0.6802 17.00% 0.5645 31.12% 0.4945 39.66% 0.5000 38.99%
RN50-SIN 0.9154 0.9005 1.63% 0.8327 9.06% 0.7897 13.76% 0.6734 26.46% 0.6241 31.85% 0.6433 29.75%

RN50-debiased 0.9336 0.9129 2.22% 0.8781 5.92% 0.8458 9.38% 0.7407 20.65% 0.6933 25.73% 0.6837 26.75%
RN50-Augmix 0.9352 0.9198 1.65% 0.8710 6.84% 0.8353 10.66% 0.7208 22.91% 0.6636 29.03% 0.7108 23.97%

RN50-ANT 0.9186 0.9025 1.75% 0.8475 7.75% 0.8125 11.56% 0.7038 23.40% 0.6521 29.02% 0.6664 27.46%
RN50-DeepAugment 0.9290 0.9140 1.61% 0.8561 7.82% 0.8226 11.43% 0.7160 22.91% 0.6660 28.29% 0.7159 22.93%

RN50-T 0.9455 0.9285 1.80% 0.8981 5.02% 0.8672 8.28% 0.7709 18.46% 0.7343 22.34% 0.7495 20.73%

For example, the dropped accuracy of the ‘black widow’ class reaches 47% for both vanilla and
Debiased models. In contrast, the impact is smaller for images with complicated backgrounds such
as pictures from ‘squirrel monkey’.

Vanilla Debiased

Figure 12: Dropped accuracy (%) in each class. Classes whose number of images is less than 15 or
drop rate is zero are removed.

D.3 EXPERIMENTS ON MORE DATA

To explore the model robustness against object attributes on large-scale datasets, we step further to
conduct the image editing on all the images in the ImageNet-S validation set. Finally, the edited
dataset ImageNet-E-L shares the same size as ImageNet-S, which consists of 919 classes and 10919
images. We conduct both background editing and size editing to them. The evaluation results are
shown in Table 7. The same conclusion can also be observed. For instance, most models show
vulnerability against attribute changing since the average drop rates reach 15.52% and 24.80% in
background and size changes respectively. When the model gets larger, the robustness is improved.
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The consistency implies that using our ImageNet-E can already reflect the model robustness against
object attribute changes.

Table 7: Evaluations with more data.
Models Original Background Size-0.05 Models Original Background Size-0.05

Top-1 Top-1 DR Top-1 DR Top-1 Top-1 DR Top-1 DR
DenseNet121 0.8661 0.7473 13.71% 0.6148 29.01% DenseNet169 0.8766 0.7603 13.27% 0.6331 27.78%

RN50 0.8815 0.7164 18.70% 0.6313 28.36% RN101 0.8951 0.7533 15.85% 0.6511 27.27%
EF-B0 0.8855 0.7564 14.57% 0.6216 29.79% EF-B3 0.9212 0.8081 12.28% 0.6618 28.17%

ResNest50 0.9209 0.8061 12.49% 0.7005 23.96% ResNest101 0.9279 0.8346 10.05% 0.7267 21.67%
ViT-S 0.9214 0.7894 14.34% 0.6930 24.80% ViT-B 0.9412 0.8304 11.77% 0.7565 19.62%

Swin-S 0.9310 0.8298 10.88% 0.7536 19.06% Swin-B 0.9316 0.8411 9.73% 0.7699 17.37%
ConvNeXt-T 0.9272 0.8400 9.43% 0.7641 17.62% ConvNeXt-B 0.9406 0.8641 8.12% 0.8034 14.58%

D.4 BAD CASE ANALYSIS

To make a comprehensive study of how the model behaves, we step further to make a comparison of
the heat maps of the originals and edited ones. We choose the images that are recognized correctly at
first but misclassified after editing. All the attributes editing including background, size, directions
are explored. The heat maps are visualized in Figure 13. It can be observed that compared to the SIN
and Debiased models, the vanilla RN50 is more likely to lose its focus on the interest area, especially
in the size change scenario. For example, in the second row, as it puts his focus on the background,
it returns a result with the ‘nail’ label. The same fashion is also observed in the background change
scenario. The predicted label of ‘night snake’ turns into ‘spider web’ as the complex background has
attracted its attention. In contrast, the SIN and Debiased models have robust attention mechanisms.
The quantitative results in Table 4 also validate this. The drop rate of RN50 (14.43%) is higher than
SIN (13.04%) and Debiased (12.82%) even though the original accuracy of SIN (0.9154) is lower
than vanilla RN50 (0.9278). However, the SIN also has its weakness. We find that though the SIN
pays attention to the desired region, it can also make wrong predictions. As shown in the second row
of Figure 13, when the object size gets smaller, the shape-based SIN model tends to make wrong
predictions, e.g., mistaking the ‘sea urchin’ as ’acorn’ due to the lack of texture analysis. As a result,
the drop rate in the size change scenario is 26.56% for SIN, even lower than vanilla RN50, whose
drop rate is 23.38%. On the contrary, the Debiased model can recognize it correctly, profiting from
its shape and texture-biased module. From the above observation, we can conclude that the texture
matters in the small object scenario.

Original

Size

Original

Background

Original

Direction

SIN DebiasedVanilla SIN DebiasedVanilla SIN DebiasedVanilla

Figure 13: The heat map comparisons between original images and edited ones.
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D.5 DETAILS FOR ROBUSTNESS ENHANCEMENTS

Network design—-self-attention-like architecture. The results in Table 1 show that most vision
transformers show better robustness than CNNs in our scenario. Previous study has shown that the
self-attention-like architecture may be the key to robustness boost (Bai et al., 2021b). Therefore, to
ablate whether incorporating this module can help attribute robustness generalization, we create a
hybrid architecture (RN50d-hybrid) by directly feeding the output of res 3 block in RN50d into ViT-
S as the input feature. The results are shown in Table 8. As we can find that while the added module
maintains the robustness on background changes, it can help to boost the robustness against size
changes. Moreover, the RN50-hybrid can also boost the overall performance compared to ViT-S.

Table 8: Ablation study of the self-attention-like architecture.
Models Ori Inver Background changes Size changes Position Direction

λ = −20 λ = 20 λ = 100 λ = 20-adv Full 0.1 0.08 0.05 rp rd
RN50d 0.9375 1.31% 5.12% 6.91% 12.37% 20.68% 2.97% 4.65% 7.54% 18.08% 21.85% 20.60%
ViT-S 0.9474 1.75% 7.73% 11.23% 19.21% 33.96% 1.29% 7.50% 11.23% 21.42% 26.48% 18.18%

R50d-hybrid 0.9540 1.09% 5.92% 7.51% 10.95% 22.57% 1.42% 3.70% 6.21% 14.59% 18.06% 14.80%

Training strategy—-Masked image modeling. Considering that masked image modeling has
demonstrated impressive results in self-supervised representation learning by recovering corrupted
image patches (Bao et al., 2022), it may be robust to the attribute changes. Thus, we test the Masked
AutoEncoder (MAE) (He et al., 2022b) and SimMIM (Xie et al., 2022) training strategy based on
ViT-B backbone. As shown in Table 9, the drop rates decrease a lot compared to vanilla ViT-B,
validating the effectiveness of the masked image modeling strategy.

Table 9: Ablation study of the self-supervised models including MAE and MoCo-V3.
Models Ori Inver Background changes Size changes Position Direction

λ = −20 λ = 20 λ = 100 λ = 20-adv Full 0.1 0.08 0.05 rp rd
ViT-B 0.9570 0.71% 5.44% 8.37% 12.42% 25.35% 0.52% 4.91% 6.87% 16.40% 20.35% 11.96%

MAE-ViT-B 0.9612 0.81% 4.96% 6.46% 10.17% 21.94% 0.82% 3.13% 5.06% 12.59% 16.10% 14.56%
SimMIM-ViT-B 0.9614 0.78% 3.30% 7.03% 16.03% 24.52% 0.96% 3.35% 5.55% 13.70% 17.81% 14.17%

D.6 HARDWARE

Our experiments are implemented by PyTorch (Paszke et al., 2019) and runs on RTX-3090TI.

E FURTHER EXPLORATION ON BACKGROUNDS CHANGING

Motivated by the models’ vulnerability against background changes, especially for those compli-
cated backgrounds. Apart from randomly picking the backgrounds from the ImageNet dataset as
final backgrounds (random bg), we also collect background templates with abundant textures, in-
cluding leopard, eight diagrams, checker and stripe to explore the performance on out-of-distribution
backgrounds. The evaluation results are shown in Table 10. It can be observed that the background
changes can lead to a 14.70% drop rate. When the background is set to be a leopard or other images,
the drop rates can even reach 39.60%. Sometimes the robust models even show worse robustness.
For example, when the background is eight diagrams, all the robust models show worse results than
the vanilla RN50, which is quite unexpected. To comprehend the behaviour behind it, we visualize
the heat maps of the different models in Figure 8. An interesting finding is that deep models tend
to make decisions with dependency on the backgrounds, especially when the background is compli-
cated and can attract some attention. For example, when the background is the eight diagrams, the
SIN takes the goldfish as a dishwasher. We suspect it has mistaken the background as dishes. In the
same fashion, the Debiased model and ANT take the ‘sea slug’ with eight diagrams as a ‘shopping
basket’, which seems to make sense since the ‘sea slug’ looks like a vegetable.
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Table 10: Evaluation of images generated with different backgrounds.
Models Ori Random bg Leopard Eight diagrams Checker Stripe
RN50 0.9278 0.7935 14.39% 0.5717 38.32% 0.6432 30.61% 0.6513 29.73% 0.6290 32.14%

RN50-A 0.8202 0.6671 18.60% 0.2505 69.43% 0.3725 54.59% 0.3247 60.39% 0.4696 42.72%
RN50-SIN 0.9154 0.7799 14.83% 0.6274 31.48% 0.4874 46.78% 0.5115 44.14% 0.5265 42.50%

RN50-debiasd 0.9336 0.8122 12.98% 0.6858 26.52% 0.6268 32.85% 0.6710 28.11% 0.6316 32.32%
RN50-Augmix 0.9352 0.8056 13.84% 0.5735 38.67% 0.5620 39.89% 0.6878 26.44% 0.6568 29.77%

RN50-ANT 0.9186 0.7651 16.72% 0.5811 36.75% 0.5904 35.74% 0.5191 43.49% 0.5469 40.46%
RN50-DeepAugment 0.9290 0.7956 14.34% 0.6283 32.35% 0.5771 37.86% 0.5946 35.99% 0.6180 33.46%

Original

Random

Leopard

Eight diagrams

Checker

Stripe

Vanilla SIN Debiased Augmix ANT DeepAugment Vanilla SIN Debiased Augmix ANT DeepAugment

Figure 14: Heat maps under different backgrounds.

F FURTHER DISCUSSION ON THE DISTRIBUTION

In this paper, our effort aims to give an editable image tool that can conduct model debugging with
in-distribution data. One way for evaluating the similarity of two distributions can be KL diver-
gence. However, the data distribution p(x) is hard to be measured. As an alternative, we adopt
some existing out-of-distribution (OOD) detection methods including Energy (Liu et al., 2020) and
GradNorm (Huang et al., 2021) following DRA (Zhu et al., 2022). These OOD detection methods
aim to distinguish the OOD examples from the in-distribution examples. Here We provide further
comparisons with other datasets including ImageNet-V2, inpainted ImageNet-S, adversarial exam-
ples and ImageNet-9. With the results in Figure 15, we can find that the ImageNet-E holds the best
proximity to the ImageNet. This implies that our editing tool can give a controlled evaluation on
object attribute changes.

Covariate shift adaptation(a.k.a batch-norm adaptation, BNA) is a way for improving robustness
against common corruptions (Schneider et al., 2020). Thus, it can help to get a top-1 accuracy per-
formance boost in OOD data. Thus, one can easily find out if the provided dataset is OOD by check-
ing whether the BNA can get a performance boost on its data. We have tested the full adaptation
results using BNA on ResNet50. In contrast to the promotion on other out-of-distribution dataset,
we find that this operation induces little changes to top-1 accuracy on both ImageNet validation
set (0.7615 → 0.7613) and our ImageNet-E (0.7934 → 0.7933 under λ = 20, 0.6521 → 0.6514
under random position scenario, mean accuracy of 5 runs). This similar tendency implies that our
ImageNet-E shares a similar property with ImageNet.
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Figure 15: The distribution of the OOD scores for in-distribution (ImageNet) and other datasets.
Higher overlap indicates greater proximity to ImageNet.

Table 11: Evaluations on different robustness benchmarks. All results are top-1 accuracies(%) on
corresponding datasets except for ImageNet-C, which is mCE (mean Corruption Error). Higher
top-1 accuracy and lower mCE indicate better performance.

Models IN IN-V2 IN-A IN-C IN-R IN-Sketch IN-E-bg-random IN-E-size-005
CLIP-zero-shot 68.3 61.9 50.1 43.1 77.6 48.3 60.0 54.7

CLIP-FT 81.2 70.7 35.3 47..9 65.0 44.9 75.5 70.1

G FURTHER EVALUATION ON MORE STATE-OF-THE-ART MODELS

To provide evaluations on more state-of-the-art models, we step further to evaluate the CLIP (Rad-
ford et al., 2021) and EfficientNet-L2-Noisy-Student (Xie et al., 2020). CLIP shows a good ro-
bustness to out-of-distribution data (Kumar et al., 2022). Therefore, to find out whether the CLIP
can also show a good robustness against attribute editing, we evaluate the all the CLIP models with
both the zero-shot and end-to-end finetuned version. To achieve this, we finetune the pretrained
CLIP on the ImageNet training dataset based on prompt-initialized model following Wortsman et al.
(2022). It acquires 81.2 (ViT-B/16) and 87.7 (ViT-L/14@336px) top-1 accuracies on ImageNet
validation set while it is 68.3 (ViT-B/16) and 76.6 (ViT-L/14@336px) for zero-shot version. The
evaluation on ImageNet-E is shown in Table 11 and Table 12. Though previous studies have shown
that the zero-shot CLIP model exhibits better out-of-distribution robustness than the finetuned ones,
the finetuned CLIP shows better attribute robustness on ImageNet-E, as shown in Table 11 and Ta-
ble 12. The tendency on ImageNet-E is the same with ImageNet (IN) validation set and ImageNet-
V2 (IN-V2). This implies that the ImageNet-E shows a better proximity to ImageNet than other
out-of-distribution benchmarks such as ImageNet-C (IN-C), ImageNet-A (IN-A). Another finding
is that the CLIP model fails to show better robustness than ViT-B/16 while they share the same
architectures. We suspect that this is caused by that CLIP may have spared some capacity for out-
of-distribution robustness.

While EfficientNet-L2-Noisy-Student is one of the top models on ImageNet-A benchmark (Xie
et al., 2020), it also shows superiority on ImageNet-E. To delve into the reason behind this, we
test EfficientNet-L2-Noisy-Student-475 (EF-L2-NT-475) and EfficientNet-B0-Noisy-Student (EF-
B0-NT). The EF-L2-NT-475 differs from EF-L2-NT in terms of input size, which former is 475
while it is 800 for the latter. It can be found that the input size can induce little improvement to the
attribute robustness. In contrast, larger networks can benefit a lot to attribute robustness, which is
consistent with the finding in Section 4.1.

H MODEL REPAIR WITH IMAGENET-E

To validate that the evaluation on ImageNet-E can help to provide some insights for model’s ap-
plicability and enhancement, we conduct a toy example for model repairing. Our evaluation shows
that the ResNet50 is vulnerable to background changes. Based on this observation, we randomly
replace the backgrounds of objects during training and get a validation accuracy boost from 77.48%
to 79.00%. Note that the promotion is not small as we only conduct this operation on 8781 training
images since the ImageNet-S only provides 8781 annotated images with object masks in the training
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Table 12: More evaluations on state-of-the-art models including CLIP and EfficientNet-L2-Noisy-
Student.

Models Ori Inver Background changes Size changes Position Direction
λ = −20 λ = 20 λ = 100 λ = 20-adv Full 0.1 0.08 0.05 rp rd

ViT-B/16 0.9566 0.71% 5.44% 8.37% 12.42% 25.35% 0.52% 4.91% 6.87% 16.4% 20.35% 11.96%
Zero-shot

CLIP RN50 0.7238 8.32% 16.08% 23.10% 35.84% 48.45% 12.13% 19.88% 24.44% 36.59% 41.16% 34.97%
CLIP RN101 0.7335 6.15% 14.68% 19.66% 31.21% 45.56% 8.71% 19.81% 24.79% 36.23% 41.00% 33.41%
CLIP RN50x4 0.7718 6.00% 13.53% 17.19% 26.35% 40.67% 9.67% 16.03% 20.29% 31.39% 35.23% 31.41%

CLIP RN50x16 0.8210 5.37% 12.30% 15.12% 19.89% 33.05% 8.06% 13.51% 16.48% 26.90% 30.78% 28.17%
CLIP RN50x64 0.8566 5.57% 10.38% 12.60% 14.93% 27.72% 7.46% 10.74% 13.92% 22.37% 25.23% 24.01%
CLIP ViT-B/32 0.7408 7.50% 17.88% 25.17% 37.56% 58.40% 4.04% 21.05% 26.64% 39.21% 45.04% 33.60%
CLIP ViT-B/16 0.8001 6.10% 14.44% 19.10% 24.70% 45.17% 6.10% 15.85% 19.72% 31.63% 36.08% 26.96%
CLIP ViT-L/14 0.8761 4.97% 12.60% 16.51% 20.04% 38.45% 2.07% 13.32% 17.22% 27.00% 31.03% 20.60%

CLIP ViT-L/14@336px 0.8801 3.59% 10.31% 13.91% 14.42% 33.73% 3.59% 10.46% 13.38% 22.66% 26.00% 18.35%
Finetune

CLIP ViT-B/16 0.9368 2.32% 10.49% 12.63% 18.31% 40.92% 4.97% 9.87% 13.52% 24.89% 30.48% 23.49%
CLIP ViT-L/14@336px 0.9697 1.33% 5.32% 6.37% 7.20% 20.55% 1.33% 3.58% 5.06% 11.32% 14.17% 11.30%

EF-B0 0.9285 1.15% 7.65% 11.54% 27.08% 37.57% 3.54% 8.61% 12.46% 25.08% 30.06% 20.58%
EF-B0-NT 0.9430 2.08% 8.94% 11.15% 21.03% 37.05% 1.22% 8.39% 12.20% 24.35% 29.29% 20.22%

EF-L2-NT-475 0.9784 1.10% 3.68% 4.61% 5.99% 15.21% 0.52% 2.26% 2.77% 5.62% 7.52% 4.68%
EF-L2-NT 0.9763 1.29% 3.58% 4.15% 5.32% 13.03% 0.73% 2.32% 2.85% 5.13% 6.17% 4.65%

data of ImageNet. We also step further to find out if the improved model can get a boost on other
robustness benchmarks, as shown in the Table 13. It can be observed that with the insights provided
by the evaluation on ImageNet-E, one can explore the model’s attribute vulnerabilities and struggle
to repair the model and get a performance boost accordingly.

Table 13: Model repair results. All results are top-1 accuracies (%) on corresponding datasets
except for ImageNet-C, which is mCE (mean Corruption Error). Higher top-1 accuracy and lower
mCE indicate better performance.

Models ImageNet-val ImageNet-V2 ImageNet-A ImageNet-C↓ ImageNet-R ImageNet-Sketch
RN50 77.5 65.7 6.5 68.6 39.6 27.5

RN50-repaired 79.0 67.2 9.4 65.8 40.7 29.4

I FAILURE CASES OF GENERATED IMAGES

The failure cases of generated images are shown in Figure 16. The diffusion model fails to gener-
ate high-quality person images. Though the object is reserved, the whole image looks quite wired.
Therefore, we only keep the animal classes, resulting a compact set of ImageNet-E. However, ex-
tensive evaluations to 919 in Section D.3 have witnessed a same conclusion with evaluations on 373
classes. This implies that using our ImageNet-E can already reflect the model robustness against
object attribute changes.

Figure 16: The failure cases of attribute editing

J RELATED LITERATURE TO ROBUSTNESS ENHANCEMENTS

Adversarial training. Salman et al. (2020) focus on adversarially robust ImageNet classifiers and
show that they yield improved accuracy on a standard suite of downstream classification tasks. It
provides a strong baseline for adversarial training. Therefore, we choose their officially released ad-
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Figure 17: The overall performance (average of drop rate) of several state-of-the-art models.
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Figure 18: The top-1 accuracy performance under different editing scenarios of 91 state-of-the-art
models.

versarially trained models3 as the evaluation model. Models with different architectures are adopted
here4.

SIN (Geirhos et al., 2018) provides evidence that machine recognition today overly relies on object
textures rather than global object shapes, as commonly assumed. It demonstrates the advantages of
a shape-based representation for robust inference (using their Stylized-ImageNet dataset to induce
such a representation in neural networks)

Debiased (Li et al., 2020) shows that convolutional neural networks are often biased towards either
texture or shape, depending on the training dataset, and such bias degenerates model performance.
Motivated by this observation, it develops a simple algorithm for shape-texture Debiased learning.
To prevent models from exclusively attending to a single cue in representation learning, it augments
training data with images with conflicting shape and texture information (e.g., an image of chim-
panzee shape but with lemon texture) and provides the corresponding supervision from shape and
texture simultaneously. It empirically demonstrates the advantages of the shape-texture Debiased
neural network training on boosting both accuracy and robustness.

3https://github.com/microsoft/robust-models-transfer
4https://github.com/alibaba/easyrobust
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Augmix (Hendrycks et al., 2020) focuses on the robustness improvement to unforeseen data shifts
encountered during deployment. It proposes a data processing technique named Augmix that helps
to improve robustness and uncertainty measures on challenging image classification benchmarks.

ANT (Rusak et al., 2020) demonstrates that a simple but properly tuned training with additive Gaus-
sian and Speckle noise generalizes surprisingly well to unseen corruptions, easily reaching the pre-
vious state of the art on the corruption benchmark ImageNet-C and on MNIST-C.

DeepAugment (Hendrycks et al., 2021). Motivated by the observation that using larger models and
artificial data augmentations can improve robustness on real-world distribution shifts, contrary to
claims in prior work. It introduces a new data augmentation method named DeepAugment, which
uses image-to-image neural networks for data augmentation. It improves robustness on their newly
introduced ImageNet-R benchmark and can also be combined with other augmentation methods to
outperform a model pretrained on 1000× more labeled data.
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