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Abstract

Although Large Language Models (LLMs)
have demonstrated impressive capabilities in
language processing, they often struggle with
tasks requiring spatial reasoning, particularly
for applications like robot navigation where un-
derstanding the robot’s position relative to its
environment is key. We design a text-based rea-
soning benchmark, MazeBench, consisting of
5x5 mazes rendered as text with varying com-
plexity, to investigate spatial reasoning in text-
based reasoning models. On this benchmark,
DeepSeek-R1-671B solves 74% of the mazes
in a zero-shot manner. However, with Super-
vised Finetuning (SFT), our model AlphaMaze-
SFT, solves 87% of mazes using only 1.5B
parameters. Further refinement with Group
Relative Policy Optimization (GRPO) allowed
AlphaMaze-GRPO to solve 95% of the bench-
mark. Our results demonstrate that while spa-
tial reasoning can be achieved by a power-
ful general reasoning model, a smaller spe-
cialist model can also achieve significant spa-
tial reasoning capabilities, presenting a viable
approach in resource-constrained applications
such as robotics.

1 Introduction

Visual spatial reasoning remains a significant chal-
lenge for LLMs, despite their impressive perfor-
mance in natural language processing and code gen-
eration (Zhang et al., 2024; Ma et al., 2024). Cur-
rent Vision-Language Models (VLMs) excel at pat-
tern recognition and object identification but strug-
gle with tasks requiring deeper spatial inference
and step-by-step planning in visual domains. While
techniques such as Multimodal Visualization-of-
Thought (Li et al., 2025) have shown that such rea-
soning is possible, reliance on VLMs entails large-
scale training of vision encoders and expensive
multi-modal inference. Spatial reasoning with text-
only LLMs (Wang et al., 2024) remain a goal for
resource constrained applications such as robotics.
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Figure 1: Visualization of AlphaMaze’s step-by-step
prediction process during maze solving, learned via
SFT and refined by GRPO.

This paper tackles the challenge of teaching vi-
sual spatial reasoning to a standard LLLM through
maze navigation. We hypothesize that by provid-
ing an LLM with a tokenized visual representa-
tion of a maze, we can train it to learn step-by-
step movement commands from origin to target.
Our approach builds on several key research ar-
eas: (1) Chain-of-Thought (CoT) prompting (Wei
et al., 2022b, 2023; Wang et al., 2023), which en-
courages LLMs to generate intermediate reasoning
steps for multi-step inference tasks and which we
extend to visual spatial reasoning; (2) Supervised
Fine-Tuning (SFT) (Wei et al., 2022a; Jiang et al.,
2024), which adapts pre-trained LLMs to specific
tasks through task-specific datasets and serves as
our initial training stage; (3) Reinforcement Learn-
ing techniques, specifically Group Relative Pol-
icy Optimization (GRPO) (Kwon et al., 2023a;
Guo et al., 2025; Shao et al., 2024), which offers
a computationally efficient alternative to RLHF
by estimating advantages based on group scores
without a separate critic network, similar to self-
play mechanisms like SPIN (Chen et al., 2024);
and (4) Visual Reasoning and Maze Solving ap-



proaches, traditionally based on graph search al-
gorithms (Lester, 2014-2024; Janamian and Alam,
2023) and recently enhanced by techniques like Mi-
crosoft’s Multimodal Visualization-of-Thought (Li
et al., 2025) and neural-symbolic methods (Mao
et al., 2023).

We present a two-stage framework that em-
ploys SFT to establish foundational maze naviga-
tion skills using tokenized visual representations,
then applies GRPO with carefully designed re-
wards to refine the model’s reasoning and decision-
making. To evaluate our approach, we introduce
MazeBench, a comprehensive benchmark for as-
sessing LLLMs’ maze-solving capabilities across
varying complexity levels.

Our contributions include: (1) a novel train-
ing framework for enhanced visual-spatial reason-
ing in LLMs utilizing SFT and GRPO; (2) em-
pirical demonstration that this approach improves
maze navigation accuracy and fosters emergent
chain-of-thought reasoning; and (3) We release
MazeBench !, a structured benchmark for visual
maze navigation that captures diverse spatial chal-
lenges.

2 Methodology

2.1 Stage 1: Supervised Fine-Tuning

First, we fine-tune the model using SFT to estab-
lish foundational maze-solving skills. Mazes are
represented as a sequence of tokens encoding grid
coordinates (<|row-col |>), wall presence relative
to the cell (e.g., <|up_wall|>, <|no_wall|>), and
special markers for <|origin|>and <|target|>.
Empty cells within the representation are marked
with <|blank|>. This symbolic tokenization ex-
plicitly encodes spatial relationships.

The SFT stage uses a dataset of 500k synthet-
ically generated 5x5 mazes with varied complex-
ity. The training objective is to predict the next
movement token (<|up|>, <|down|>, <|left|>,
or <|right|>) at each step, conditioned on the to-
kenized maze input and any preceding movement
tokens generated by the model. This step-by-step
prediction encourages sequential reasoning, as vi-
sualized in Figure 1. The SFT dataset also includes
‘reset” examples where the model learns to recover
from simulated incorrect paths (details deferred to
supplementary material).

ink to github repository to be shared upon publication

2.2 Stage 2: Group Relative Policy
Optimization

Following SFT, we apply GRPO (Guo et al., 2025)
to refine the model’s policy, enhance robustness,
and encourage deeper reasoning. This stage uses
a distinct set of 150k mazes. We employ LoRA
(Hu et al., 2021) for parameter-efficient fine-tuning,
implemented using efficient tooling like Unsloth
(Daniel Han and team, 2023) and VLLM (Kwon
et al., 2023b) for inference during RL.

Reward Structure: GRPO estimates advantages
based on relative scores within sampled batches
(groups) of trajectories, updating the policy to max-
imize expected reward without requiring a separate
critic network, thus refining the initial SFT policy
towards more accurate and robust maze navigation.

Our GRPO implementation uses three comple-
mentary rewards: (1) a Correctness Reward (+0.2
per correct step) scaled by the ground-truth path
length when the target is reached, incentivizing
efficient solutions; (2) an Integrity Reward (+0.5)
awarded for outputs containing only valid move-
ment tokens and optional <think> tags; and (3) a
Thinking Reward (+0.25) for correctly using the
<think> tag before movement tokens, encouraging
emergent reasoning.

2.3 MazeBench

To evaluate spatial reasoning and planning capa-
bilities, we introduce MazeBench, a benchmark of
100 maze-solving challenges generated using the
same approach as the training and development set.
Unlike existing benchmarks such as (Rein et al.,
2024) that focus on logical reasoning or common-
sense knowledge, MazeBench specifically targets
spatial understanding, multi-step planning, and se-
quential action execution—capabilities crucial for
robotics, navigation, and virtual agent control. A
similar benchmark, SpatialEval (Wang et al., 2024)
contains a maze-solving subset which has both
image and text representations. However, unlike
MazeBench, SpatialEval is designed as a question
answering (QA) benchmark. Other spatial reason-
ing benchmarks such as StepGame (Shi et al., 2022)
and GSR-Bench (Rajabi and Kosecka, 2024) are
also largely QA-based and tackle reasoning of spa-
tial relationships between objects.

MazeBench is structured into three difficulty lev-
els based on the path length required to reach the
goal, as detailed in Table 1. The Easy category (50
mazes, 1-4 steps) establishes a baseline for funda-
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Figure 2: Dataset creation process showing the gener-
ation and partitioning of maze data into test, straight
success, reset, and GRPO training datasets.

mental navigation skills. The Medium category (40
mazes, 5-8 steps) requires more advanced planning.
The Hard category (10 mazes, 9-13 steps) tests the
model’s capacity to handle complex spatial struc-
tures and extended solution paths.

Table 1: Maze Configuration by Difficulty Level

Category | Number of Mazes | Steps
Easy 50 1-4
Medium 40 5-8
Hard 10 9-13
Total 100 1-13

Mazes are presented to LLMs in the tokenized
format described in Appendix A. During evalua-
tion, we extract movement tokens from the model’s
output, with the correct sequence being crucial. A
solution is considered correct only if the extracted
sequence of movement tokens leads to the target
without invalid moves. Our primary evaluation
metric is the success rate: the percentage of mazes
solved correctly.

2.4 Generating Training Data

Figure 2 illustrates our dataset construction pro-
cess. We generated 530,000 synthetic 5x5 mazes
using randomized depth-first search via the maze-
dataset framework (Ivanitskiy et al., 2023), ensur-
ing each maze has a guaranteed solution path. We
reserved 30,000 mazes as our test set and used the
remaining 500,000 for training. From this pool, we
created three components: (1) a straight success
dataset of 250,000 mazes with direct solution paths,
(2) areset dataset of 250,000 mazes containing al-
gorithmically generated incorrect paths followed
by reset messages and correct solutions, and (3)
a 150,000-maze dataset for GRPO training. The

final SFT dataset combines equal parts success and
retry examples (250,000 each), balancing direct
navigation with error recovery capabilities. Further
algorithmic details are reported in in Appendix C.

2.4.1 Error Types

To evaluate the performance of the maze-solving
model, we conducted a detailed analysis of its in-
correct solution attempts. We categorized the errors
encountered into three primary types:

E1 - Invalid Solution: where the model’s output
deviates significantly from the expected format of a
sequence of directional tokens. This error can also
arise due truncation from maximum token limits
during generation.

E2 - Path Blocked: where the model’s proposed
move sequence results in moving into a wall within
the maze environment.

E3 - Incomplete Solution: where the model gen-
erated a sequence of syntactically valid moves not
resulting in wall collisions but fails to reach the
target location.

2.5 Hyperparameters

We fine-tuned the DeepSeek-R1-Distill-Qwen-
1.5B model (Guo et al., 2025) using a two-stage
process. The initial Supervised Fine-Tuning (SFT)
stage ran for 1 hour on 8§ NVIDIA H200 GPUs, em-
ploying a learning rate of 1.0e-5 with a warm-up
proportion of 0.1. The GRPO stage was conducted
for 5-6 hours on a single H200 GPU. For LoRA,
we set the rank (7) to 128, alpha («) to 128, and the
learning rate to 1.0e-6. The number of generations
per prompt to sample was set to 4.

For model inference and output generation, we
experimented with various prompts. We set the
maximum number of new tokens to be generated
to 30,000. The temperature parameter was set to
0.6 across all experiments reported here.

3 Results

3.1 Model Performance on MazeBench

As shown in Table 2, the initial model, trained
for direct path prediction without explicit reason-
ing, achieved 1% accuracy on MazeBench. The
SFT-only model reached a baseline of 87%, demon-
strating the effectiveness of supervised fine-tuning
for learning step-by-step maze navigation. Fur-
ther enhancement with GRPO led to significant
improvement, reaching 95% after 1600 steps of
GRPO training.



Table 2: Performance Comparison of Reasoning Models. Category scores are report as counts. The total for each of
the categories are Easy (50), Medium (40) and Hard (10). Error types are as follows: El-Invalid Solution, E2-Path

Blocked, E3-Incomplete Solution.

Model Overall Score by Category Error Count by Type
Acc (%) [ Easy Medium Hard | E1 E2 E3
DeepSeek-R1-Distill-Qwen-1.5B 1 0 0 43 36 20
DeepSeek-R1-Distill-Qwen-7B 1 0 16 37 42
DeepSeek-R1-671B 74 28 3 0 22 4
AlphaMaze-1.5B-SFT (Ours) 87 34 7 0 11 2
AlphaMaze-1.5B-GRPO (Ours) 95 38 8 0 5 0
MazeBench scores with GRPO steps 3.1.1 Model Evolution During GRPO
95 ——
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Figure 3: MazeBench scores over GRPO steps with a
linear regression trendline and its -1 standard deviation
bounds.

The progression of performance across our mod-
els highlights the impact of each training stage.
While the base 1.5B parameter model struggles in
the zero-shot setting, task-specific SFT dramati-
cally improved its performance. The subsequent
application of GRPO further refined the learned pol-
icy, leading to even higher accuracy and suggesting
that reinforcement learning techniques can effec-
tively optimize the model’s decision-making pro-
cess for complex spatial tasks. This demonstrates
a viable pathway for enhancing specific reasoning
skills in more resource-constrained models.

We also evaluated two additional models under
a zero-shot setting, to test the baseline capabili-
ties of pre-trained reasoning models. DeepSeek-
R1-Distill-Qwen-7B performs better than the 1.5B
model with a 5% completion rate. Meanwhile the
much larger 671B DeepSeek-R1 model, accessed
through DeepSeek’s API, achieves 75% accuracy.

The strong zero-shot performance of the much
larger DeepSeek-R1-67B model indicates that scal-
ing model size can inherently improve spatial rea-
soning capabilities, but our results demonstrate that
targeted training, even on a smaller model, can
achieve competitive performance with significantly
fewer parameters.

proved maze-solving capabilities. This process is
nevertheless noisy, an additional GRPO steps could
still potentially further improve performance.

While the absolute accuracy gain (87% to 95%)
over a strong SFT baseline is moderate, we observe
notable qualitative improvements during this pro-
cess. The GRPO-refined model exhibits more ro-
bust, self-correcting reasoning patterns resembling
chain-of-thought, suggesting GRPO encourages
deeper sequential deliberation beyond simple path
prediction, guided by our tailored reward function.
We present our full observations in Appendix B.

4 Conclusion

This paper presents AlphaMaze, a two-stage train-
ing framework that combines SFT and GRPO to
enhance spatial reasoning capabilities in LLMs for
maze navigation tasks. Our approach utilizes a
tokenized representation of mazes, with SFT es-
tablishing foundational navigation skills that are
refined through GRPO. Experimental results on
our MazeBench benchmark demonstrate that this
approach improves performance from 87% to 95%
accuracy using only a 1.5B parameter LLM. This
research demonstrates the effectiveness of apply-
ing RL techniques developed for language tasks
to the domain of visual-spatial reasoning, particu-
larly for parameter-efficient models. These findings
suggest promising applications in domains requir-
ing integrated spatial understanding and sequential
decision-making.



Limitations

While our results are promising, several limitations
warrant consideration. The performance improve-
ment from GRPO implementation (7% absolute
gain) is modest, suggesting potential for further
optimization of the reward function and training
parameters. Our evaluation methodology primarily
focuses on solution accuracy rather than incorporat-
ing more nuanced metrics for path efficiency or rea-
soning quality. Although qualitative observations
suggest improved reasoning patterns after GRPO
training, more rigorous interpretability studies are
needed to substantiate these findings. Addition-
ally, our experiments are limited to synthetic 5x5
mazes; future work should investigate generaliz-
ability to larger, more complex environments and
real-world spatial reasoning tasks. Finally, while
our tokenized representation proves effective, it
represents a simplified abstraction compared to raw
visual input processing.
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A Maze Tokenization Example

This section provides a concrete example of the
tokenization scheme used to represent mazes for
the LLM input. The scheme encodes the grid struc-
ture, walls relative to each cell, and the origin/target
locations.

Figure 4: Visual representation of the 5x5 maze.

The full tokenized input sequence for the maze
depicted in Figure 4 is presented below. Each line
represents a row of the maze in the token sequence.

<|0-0|><|up_left_wall|><|blank
| ><]0-1]|><|up_down_right_wall |><]|
blank|><]|0-2|><|up_down_left_wall
|><|blank|><]|0-3|><|up_down_wall|><|
blank|><|0-4|><|up_right_wall|><]|
blank|>
<|1-0|><|down_left_wall|><|blank
[ ><]1-1]><|up_wall|><|blank
| ><|1-2|><|up_down_right_wall|><]|
blank |><|1-3|><|up_left_wall|><|
blank|><|1-4|><|down_right_wall|><]|
blank|>

<|2-0|><|up_left_wall|><|blank
| ><]2-1|><|right_wall|><]origin
| ><]2-2|><|up_left_wall|><|blank
| ><]2-3|><|down_right_wall|><|blank
| ><|2-4|><|up_left_right_wall]|><|
blank]|>
<|3-0|><|left_right_wall|><|blank
| ><|3-1|><|down_left_right_wall|><|
blank|><|3-2|><|left_right_wall]|><]|
blank|><|3-3|><|up_down_left_wall
|><|blank|><]|3-4|><|right_wall|><]|
target|>
<|4-0|><|down_left_wall|><|blank
| ><]4-1|><|up_down_wall|><]|blank
| ><|4-2|><|down_wall|><|blank
| ><]4-3|><|up_down_wall|><]|blank
| ><|4-4|><|down_right_wall|><|blank
| >

B Qualitative Results

Qualitative analysis of model outputs revealed no-
table differences in reasoning behavior. The base-
line model often produced nonsensical or incom-
plete movement sequences, frequently failing to
reach the target and exhibiting "hallucinations”
by predicting movements invalid within the maze
structure. The AlphaMaze-SFT model demon-
strated improved coherence and step-by-step pro-
gression, but still struggled with longer or more
complex mazes, sometimes becoming trapped in
loops or making incorrect turns in later stages of
the solution path.

In contrast, the AlphaMaze-SFT+GRPO model
exhibited the most sophisticated reasoning. In
many instances, emergent chain-of-thought pat-
terns were observed, with AlphaMaze (two-stage)
appearing to explicitly consider wall constraints
and spatial relationships at each step before predict-
ing the next movement. Furthermore, outputs occa-
sionally displayed instances reminiscent of the "aha
moments" reported in prior work on DeepSeek-
R1. For example, in some complex mazes, Al-
phaMaze (two-stage) would initially begin along
one path, then appear to "re-evaluate" its trajec-
tory mid-sequence, correcting its course to find a
more efficient or correct solution. Error analysis
indicated that AlphaMaze (two-stage) made fewer
invalid moves and was more robust to long-context
reasoning challenges compared to the AlphaMaze-
SFT model. However, limitations remained, partic-
ularly in mazes requiring backtracking or complex
spatial planning beyond the immediate next step.
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C Algorithm

This appendix details the algorithm used to gener-
ate the maze reasoning dataset with reset demon-
strations. The algorithm processes a base dataset
of maze navigation problems and augments it with
demonstration of incorrect attempts followed by
resets and correct solutions.

Algorithm 1 Maze Reasoning Reset Data Genera-
tion - Main Process
Require: Base dataset D containing maze prob-
lems with:
1: - Adjacency list representation of 5 X 5 maze
grid
2: - Origin and target coordinates
3: - Correct solution path
Ensure: Augmented dataset with reset demonstra-
tions
4: Initialize empty datasets D and Dy
5: for all example e € D do
6:  Extract adjacency list A, origin O, target 7',
and path P from e
7:  Count walls W around origin O
8: if W =1 then
9: Add e to D,

10: Call ProcessOrder1(e) {See Algorithm 2}
11:  elseif W = 2 then

12: Add e to Dy

13: Call ProcessOrder2(e) {See Algorithm 3}
14:  end if

15: end for

16: Combine processed examples from D; and Do
into the final dataset

Algorithm 2 Order-1 Processing (1 wall at origin)

1: Procedure ProcessOrderl(example)

2: WP « () {Initialize wrong paths set}
3: for all adjacent node NV to origin O do
4:  if N ¢ correct path P then

5: for n_steps from max_n_steps down to
1do
6: Attempt to extend path from N until a
dead end or n_steps are reached.
7: if path length = n_steps or a dead end
is reached then
8: WP < WPU {path}
9: break
10 end if
11: end for
12:  endif
13: end for

14: for all pathp € WP do
15:  Generate chain-of-thought steps for path p.
16:  Add “Heading in wrong direction” message.

17:  Add RESET marker.

18: end for

19: Append original correct solution (path P).
20: Format as conversation pairs.

21: End Procedure

Algorithm 3 Order-2 Processing (2 walls at origin)

1: Procedure ProcessOrder2(example)
2: for n_steps from max_n_steps down to 1 do
3:  Generate wrong path WP of length
n_steps starting from O.
if a valid path W P is found then
Generate chain-of-thought for W P.
if W P ends at a dead end (3 walls) then
Add “Hit a dead end” message.
else
Add “Heading in wrong direction”
message.
10: end if
11: Add RESET marker.
12: break
13:  end if
14: end for
15: Append original correct solution (path P).
16: Format as conversation pairs.
17: End Procedure

X DR
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