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Abstract001

Although Large Language Models (LLMs)002
have demonstrated impressive capabilities in003
language processing, they often struggle with004
tasks requiring spatial reasoning, particularly005
for applications like robot navigation where un-006
derstanding the robot’s position relative to its007
environment is key. We design a text-based rea-008
soning benchmark, MazeBench, consisting of009
5x5 mazes rendered as text with varying com-010
plexity, to investigate spatial reasoning in text-011
based reasoning models. On this benchmark,012
DeepSeek-R1-671B solves 74% of the mazes013
in a zero-shot manner. However, with Super-014
vised Finetuning (SFT), our model AlphaMaze-015
SFT, solves 87% of mazes using only 1.5B016
parameters. Further refinement with Group017
Relative Policy Optimization (GRPO) allowed018
AlphaMaze-GRPO to solve 95% of the bench-019
mark. Our results demonstrate that while spa-020
tial reasoning can be achieved by a power-021
ful general reasoning model, a smaller spe-022
cialist model can also achieve significant spa-023
tial reasoning capabilities, presenting a viable024
approach in resource-constrained applications025
such as robotics.026

1 Introduction027

Visual spatial reasoning remains a significant chal-028

lenge for LLMs, despite their impressive perfor-029

mance in natural language processing and code gen-030

eration (Zhang et al., 2024; Ma et al., 2024). Cur-031

rent Vision-Language Models (VLMs) excel at pat-032

tern recognition and object identification but strug-033

gle with tasks requiring deeper spatial inference034

and step-by-step planning in visual domains. While035

techniques such as Multimodal Visualization-of-036

Thought (Li et al., 2025) have shown that such rea-037

soning is possible, reliance on VLMs entails large-038

scale training of vision encoders and expensive039

multi-modal inference. Spatial reasoning with text-040

only LLMs (Wang et al., 2024) remain a goal for041

resource constrained applications such as robotics.042

Figure 1: Visualization of AlphaMaze’s step-by-step
prediction process during maze solving, learned via
SFT and refined by GRPO.

This paper tackles the challenge of teaching vi- 043

sual spatial reasoning to a standard LLM through 044

maze navigation. We hypothesize that by provid- 045

ing an LLM with a tokenized visual representa- 046

tion of a maze, we can train it to learn step-by- 047

step movement commands from origin to target. 048

Our approach builds on several key research ar- 049

eas: (1) Chain-of-Thought (CoT) prompting (Wei 050

et al., 2022b, 2023; Wang et al., 2023), which en- 051

courages LLMs to generate intermediate reasoning 052

steps for multi-step inference tasks and which we 053

extend to visual spatial reasoning; (2) Supervised 054

Fine-Tuning (SFT) (Wei et al., 2022a; Jiang et al., 055

2024), which adapts pre-trained LLMs to specific 056

tasks through task-specific datasets and serves as 057

our initial training stage; (3) Reinforcement Learn- 058

ing techniques, specifically Group Relative Pol- 059

icy Optimization (GRPO) (Kwon et al., 2023a; 060

Guo et al., 2025; Shao et al., 2024), which offers 061

a computationally efficient alternative to RLHF 062

by estimating advantages based on group scores 063

without a separate critic network, similar to self- 064

play mechanisms like SPIN (Chen et al., 2024); 065

and (4) Visual Reasoning and Maze Solving ap- 066
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proaches, traditionally based on graph search al-067

gorithms (Lester, 2014-2024; Janamian and Alam,068

2023) and recently enhanced by techniques like Mi-069

crosoft’s Multimodal Visualization-of-Thought (Li070

et al., 2025) and neural-symbolic methods (Mao071

et al., 2023).072

We present a two-stage framework that em-073

ploys SFT to establish foundational maze naviga-074

tion skills using tokenized visual representations,075

then applies GRPO with carefully designed re-076

wards to refine the model’s reasoning and decision-077

making. To evaluate our approach, we introduce078

MazeBench, a comprehensive benchmark for as-079

sessing LLMs’ maze-solving capabilities across080

varying complexity levels.081

Our contributions include: (1) a novel train-082

ing framework for enhanced visual-spatial reason-083

ing in LLMs utilizing SFT and GRPO; (2) em-084

pirical demonstration that this approach improves085

maze navigation accuracy and fosters emergent086

chain-of-thought reasoning; and (3) We release087

MazeBench 1, a structured benchmark for visual088

maze navigation that captures diverse spatial chal-089

lenges.090

2 Methodology091

2.1 Stage 1: Supervised Fine-Tuning092

First, we fine-tune the model using SFT to estab-093

lish foundational maze-solving skills. Mazes are094

represented as a sequence of tokens encoding grid095

coordinates (<|row-col|>), wall presence relative096

to the cell (e.g., <|up_wall|>, <|no_wall|>), and097

special markers for <|origin|> and <|target|>.098

Empty cells within the representation are marked099

with <|blank|>. This symbolic tokenization ex-100

plicitly encodes spatial relationships.101

The SFT stage uses a dataset of 500k synthet-102

ically generated 5x5 mazes with varied complex-103

ity. The training objective is to predict the next104

movement token (<|up|>, <|down|>, <|left|>,105

or <|right|>) at each step, conditioned on the to-106

kenized maze input and any preceding movement107

tokens generated by the model. This step-by-step108

prediction encourages sequential reasoning, as vi-109

sualized in Figure 1. The SFT dataset also includes110

’reset’ examples where the model learns to recover111

from simulated incorrect paths (details deferred to112

supplementary material).113

1link to github repository to be shared upon publication

2.2 Stage 2: Group Relative Policy 114

Optimization 115

Following SFT, we apply GRPO (Guo et al., 2025) 116

to refine the model’s policy, enhance robustness, 117

and encourage deeper reasoning. This stage uses 118

a distinct set of 150k mazes. We employ LoRA 119

(Hu et al., 2021) for parameter-efficient fine-tuning, 120

implemented using efficient tooling like Unsloth 121

(Daniel Han and team, 2023) and VLLM (Kwon 122

et al., 2023b) for inference during RL. 123

Reward Structure: GRPO estimates advantages 124

based on relative scores within sampled batches 125

(groups) of trajectories, updating the policy to max- 126

imize expected reward without requiring a separate 127

critic network, thus refining the initial SFT policy 128

towards more accurate and robust maze navigation. 129

Our GRPO implementation uses three comple- 130

mentary rewards: (1) a Correctness Reward (+0.2 131

per correct step) scaled by the ground-truth path 132

length when the target is reached, incentivizing 133

efficient solutions; (2) an Integrity Reward (+0.5) 134

awarded for outputs containing only valid move- 135

ment tokens and optional <think> tags; and (3) a 136

Thinking Reward (+0.25) for correctly using the 137

<think> tag before movement tokens, encouraging 138

emergent reasoning. 139

2.3 MazeBench 140

To evaluate spatial reasoning and planning capa- 141

bilities, we introduce MazeBench, a benchmark of 142

100 maze-solving challenges generated using the 143

same approach as the training and development set. 144

Unlike existing benchmarks such as (Rein et al., 145

2024) that focus on logical reasoning or common- 146

sense knowledge, MazeBench specifically targets 147

spatial understanding, multi-step planning, and se- 148

quential action execution—capabilities crucial for 149

robotics, navigation, and virtual agent control. A 150

similar benchmark, SpatialEval (Wang et al., 2024) 151

contains a maze-solving subset which has both 152

image and text representations. However, unlike 153

MazeBench, SpatialEval is designed as a question 154

answering (QA) benchmark. Other spatial reason- 155

ing benchmarks such as StepGame (Shi et al., 2022) 156

and GSR-Bench (Rajabi and Kosecka, 2024) are 157

also largely QA-based and tackle reasoning of spa- 158

tial relationships between objects. 159

MazeBench is structured into three difficulty lev- 160

els based on the path length required to reach the 161

goal, as detailed in Table 1. The Easy category (50 162

mazes, 1-4 steps) establishes a baseline for funda- 163
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Figure 2: Dataset creation process showing the gener-
ation and partitioning of maze data into test, straight
success, reset, and GRPO training datasets.

mental navigation skills. The Medium category (40164

mazes, 5-8 steps) requires more advanced planning.165

The Hard category (10 mazes, 9-13 steps) tests the166

model’s capacity to handle complex spatial struc-167

tures and extended solution paths.168

Table 1: Maze Configuration by Difficulty Level

Category Number of Mazes Steps
Easy 50 1 – 4
Medium 40 5 – 8
Hard 10 9 – 13
Total 100 1 – 13

Mazes are presented to LLMs in the tokenized169

format described in Appendix A. During evalua-170

tion, we extract movement tokens from the model’s171

output, with the correct sequence being crucial. A172

solution is considered correct only if the extracted173

sequence of movement tokens leads to the target174

without invalid moves. Our primary evaluation175

metric is the success rate: the percentage of mazes176

solved correctly.177

2.4 Generating Training Data178

Figure 2 illustrates our dataset construction pro-179

cess. We generated 530,000 synthetic 5×5 mazes180

using randomized depth-first search via the maze-181

dataset framework (Ivanitskiy et al., 2023), ensur-182

ing each maze has a guaranteed solution path. We183

reserved 30,000 mazes as our test set and used the184

remaining 500,000 for training. From this pool, we185

created three components: (1) a straight success186

dataset of 250,000 mazes with direct solution paths,187

(2) a reset dataset of 250,000 mazes containing al-188

gorithmically generated incorrect paths followed189

by reset messages and correct solutions, and (3)190

a 150,000-maze dataset for GRPO training. The191

final SFT dataset combines equal parts success and 192

retry examples (250,000 each), balancing direct 193

navigation with error recovery capabilities. Further 194

algorithmic details are reported in in Appendix C. 195

2.4.1 Error Types 196

To evaluate the performance of the maze-solving 197

model, we conducted a detailed analysis of its in- 198

correct solution attempts. We categorized the errors 199

encountered into three primary types: 200

E1 - Invalid Solution: where the model’s output 201

deviates significantly from the expected format of a 202

sequence of directional tokens. This error can also 203

arise due truncation from maximum token limits 204

during generation. 205

E2 - Path Blocked: where the model’s proposed 206

move sequence results in moving into a wall within 207

the maze environment. 208

E3 - Incomplete Solution: where the model gen- 209

erated a sequence of syntactically valid moves not 210

resulting in wall collisions but fails to reach the 211

target location. 212

2.5 Hyperparameters 213

We fine-tuned the DeepSeek-R1-Distill-Qwen- 214

1.5B model (Guo et al., 2025) using a two-stage 215

process. The initial Supervised Fine-Tuning (SFT) 216

stage ran for 1 hour on 8 NVIDIA H200 GPUs, em- 217

ploying a learning rate of 1.0e-5 with a warm-up 218

proportion of 0.1. The GRPO stage was conducted 219

for 5-6 hours on a single H200 GPU. For LoRA, 220

we set the rank (r) to 128, alpha (α) to 128, and the 221

learning rate to 1.0e-6. The number of generations 222

per prompt to sample was set to 4. 223

For model inference and output generation, we 224

experimented with various prompts. We set the 225

maximum number of new tokens to be generated 226

to 30,000. The temperature parameter was set to 227

0.6 across all experiments reported here. 228

3 Results 229

3.1 Model Performance on MazeBench 230

As shown in Table 2, the initial model, trained 231

for direct path prediction without explicit reason- 232

ing, achieved 1% accuracy on MazeBench. The 233

SFT-only model reached a baseline of 87%, demon- 234

strating the effectiveness of supervised fine-tuning 235

for learning step-by-step maze navigation. Fur- 236

ther enhancement with GRPO led to significant 237

improvement, reaching 95% after 1600 steps of 238

GRPO training. 239
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Table 2: Performance Comparison of Reasoning Models. Category scores are report as counts. The total for each of
the categories are Easy (50), Medium (40) and Hard (10). Error types are as follows: E1-Invalid Solution, E2-Path
Blocked, E3-Incomplete Solution.

Model Overall
Acc (%)

Score by Category Error Count by Type
Easy Medium Hard E1 E2 E3

DeepSeek-R1-Distill-Qwen-1.5B 1 1 0 0 43 36 20
DeepSeek-R1-Distill-Qwen-7B 5 4 1 0 16 37 42
DeepSeek-R1-671B 74 43 28 3 0 22 4
AlphaMaze-1.5B-SFT (Ours) 87 46 34 7 0 11 2
AlphaMaze-1.5B-GRPO (Ours) 95 49 38 8 0 5 0
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Figure 3: MazeBench scores over GRPO steps with a
linear regression trendline and its±1 standard deviation
bounds.

The progression of performance across our mod-240

els highlights the impact of each training stage.241

While the base 1.5B parameter model struggles in242

the zero-shot setting, task-specific SFT dramati-243

cally improved its performance. The subsequent244

application of GRPO further refined the learned pol-245

icy, leading to even higher accuracy and suggesting246

that reinforcement learning techniques can effec-247

tively optimize the model’s decision-making pro-248

cess for complex spatial tasks. This demonstrates249

a viable pathway for enhancing specific reasoning250

skills in more resource-constrained models.251

We also evaluated two additional models under252

a zero-shot setting, to test the baseline capabili-253

ties of pre-trained reasoning models. DeepSeek-254

R1-Distill-Qwen-7B performs better than the 1.5B255

model with a 5% completion rate. Meanwhile the256

much larger 671B DeepSeek-R1 model, accessed257

through DeepSeek’s API, achieves 75% accuracy.258

The strong zero-shot performance of the much259

larger DeepSeek-R1-67B model indicates that scal-260

ing model size can inherently improve spatial rea-261

soning capabilities, but our results demonstrate that262

targeted training, even on a smaller model, can263

achieve competitive performance with significantly264

fewer parameters.265

3.1.1 Model Evolution During GRPO 266

Figure 3 displays the MazeBench scores (blue 267

crosses) over GRPO steps along with a linear re- 268

gression trendline (red dashed line) and its±1 stan- 269

dard deviation bounds. The steady increase in the 270

trendline indicates that the reinforcement learning 271

with GRPO is able to guide the model towards im- 272

proved maze-solving capabilities. This process is 273

nevertheless noisy, an additional GRPO steps could 274

still potentially further improve performance. 275

While the absolute accuracy gain (87% to 95%) 276

over a strong SFT baseline is moderate, we observe 277

notable qualitative improvements during this pro- 278

cess. The GRPO-refined model exhibits more ro- 279

bust, self-correcting reasoning patterns resembling 280

chain-of-thought, suggesting GRPO encourages 281

deeper sequential deliberation beyond simple path 282

prediction, guided by our tailored reward function. 283

We present our full observations in Appendix B. 284

4 Conclusion 285

This paper presents AlphaMaze, a two-stage train- 286

ing framework that combines SFT and GRPO to 287

enhance spatial reasoning capabilities in LLMs for 288

maze navigation tasks. Our approach utilizes a 289

tokenized representation of mazes, with SFT es- 290

tablishing foundational navigation skills that are 291

refined through GRPO. Experimental results on 292

our MazeBench benchmark demonstrate that this 293

approach improves performance from 87% to 95% 294

accuracy using only a 1.5B parameter LLM. This 295

research demonstrates the effectiveness of apply- 296

ing RL techniques developed for language tasks 297

to the domain of visual-spatial reasoning, particu- 298

larly for parameter-efficient models. These findings 299

suggest promising applications in domains requir- 300

ing integrated spatial understanding and sequential 301

decision-making. 302
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Limitations303

While our results are promising, several limitations304

warrant consideration. The performance improve-305

ment from GRPO implementation (7% absolute306

gain) is modest, suggesting potential for further307

optimization of the reward function and training308

parameters. Our evaluation methodology primarily309

focuses on solution accuracy rather than incorporat-310

ing more nuanced metrics for path efficiency or rea-311

soning quality. Although qualitative observations312

suggest improved reasoning patterns after GRPO313

training, more rigorous interpretability studies are314

needed to substantiate these findings. Addition-315

ally, our experiments are limited to synthetic 5×5316

mazes; future work should investigate generaliz-317

ability to larger, more complex environments and318

real-world spatial reasoning tasks. Finally, while319

our tokenized representation proves effective, it320

represents a simplified abstraction compared to raw321

visual input processing.322
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A Maze Tokenization Example426

This section provides a concrete example of the427

tokenization scheme used to represent mazes for428

the LLM input. The scheme encodes the grid struc-429

ture, walls relative to each cell, and the origin/target430

locations.431

Figure 4: Visual representation of the 5x5 maze.

The full tokenized input sequence for the maze432

depicted in Figure 4 is presented below. Each line433

represents a row of the maze in the token sequence.434

<|0-0|><| up_left_wall|><|blank435
|><|0-1|><| up_down_right_wall |><|436
blank|><|0-2|><| up_down_left_wall437
|><|blank|><|0-3|><| up_down_wall|><|438
blank|><|0-4|><| up_right_wall|><|439
blank|>440

<|1-0|><| down_left_wall |><|blank441
|><|1-1|><| up_wall|><|blank442
|><|1-2|><| up_down_right_wall |><|443
blank|><|1-3|><| up_left_wall|><|444
blank|><|1-4|><| down_right_wall |><|445
blank|>446

<|2-0|><| up_left_wall|><|blank 447
|><|2-1|><| right_wall|><|origin 448
|><|2-2|><| up_left_wall|><|blank 449
|><|2-3|><| down_right_wall |><|blank 450
|><|2-4|><| up_left_right_wall |><| 451
blank|> 452

<|3-0|><| left_right_wall |><|blank 453
|><|3-1|><| down_left_right_wall |><| 454
blank|><|3-2|><| left_right_wall |><| 455
blank|><|3-3|><| up_down_left_wall 456
|><|blank|><|3-4|><| right_wall|><| 457
target|> 458

<|4-0|><| down_left_wall |><|blank 459
|><|4-1|><| up_down_wall|><|blank 460
|><|4-2|><| down_wall|><|blank 461
|><|4-3|><| up_down_wall|><|blank 462
|><|4-4|><| down_right_wall |><|blank 463
|> 464

B Qualitative Results 465

Qualitative analysis of model outputs revealed no- 466

table differences in reasoning behavior. The base- 467

line model often produced nonsensical or incom- 468

plete movement sequences, frequently failing to 469

reach the target and exhibiting "hallucinations" 470

by predicting movements invalid within the maze 471

structure. The AlphaMaze-SFT model demon- 472

strated improved coherence and step-by-step pro- 473

gression, but still struggled with longer or more 474

complex mazes, sometimes becoming trapped in 475

loops or making incorrect turns in later stages of 476

the solution path. 477

In contrast, the AlphaMaze-SFT+GRPO model 478

exhibited the most sophisticated reasoning. In 479

many instances, emergent chain-of-thought pat- 480

terns were observed, with AlphaMaze (two-stage) 481

appearing to explicitly consider wall constraints 482

and spatial relationships at each step before predict- 483

ing the next movement. Furthermore, outputs occa- 484

sionally displayed instances reminiscent of the "aha 485

moments" reported in prior work on DeepSeek- 486

R1. For example, in some complex mazes, Al- 487

phaMaze (two-stage) would initially begin along 488

one path, then appear to "re-evaluate" its trajec- 489

tory mid-sequence, correcting its course to find a 490

more efficient or correct solution. Error analysis 491

indicated that AlphaMaze (two-stage) made fewer 492

invalid moves and was more robust to long-context 493

reasoning challenges compared to the AlphaMaze- 494

SFT model. However, limitations remained, partic- 495

ularly in mazes requiring backtracking or complex 496

spatial planning beyond the immediate next step. 497
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C Algorithm498

This appendix details the algorithm used to gener-499

ate the maze reasoning dataset with reset demon-500

strations. The algorithm processes a base dataset501

of maze navigation problems and augments it with502

demonstration of incorrect attempts followed by503

resets and correct solutions.504

Algorithm 1 Maze Reasoning Reset Data Genera-
tion - Main Process
Require: Base dataset D containing maze prob-

lems with:
1: - Adjacency list representation of 5×5 maze

grid
2: - Origin and target coordinates
3: - Correct solution path

Ensure: Augmented dataset with reset demonstra-
tions

4: Initialize empty datasets D1 and D2

5: for all example e ∈ D do
6: Extract adjacency list A, origin O, target T ,

and path P from e
7: Count walls W around origin O
8: if W = 1 then
9: Add e to D1

10: Call ProcessOrder1(e) {See Algorithm 2}
11: else if W = 2 then
12: Add e to D2

13: Call ProcessOrder2(e) {See Algorithm 3}
14: end if
15: end for
16: Combine processed examples from D1 and D2

into the final dataset

Algorithm 2 Order-1 Processing (1 wall at origin)

1: Procedure ProcessOrder1(example)
2: WP ← ∅ {Initialize wrong paths set}
3: for all adjacent node N to origin O do
4: if N /∈ correct path P then
5: for n_steps from max_n_steps down to

1 do
6: Attempt to extend path from N until a

dead end or n_steps are reached.
7: if path length = n_steps or a dead end

is reached then
8: WP ←WP ∪ {path}
9: break

10: end if
11: end for
12: end if
13: end for
14: for all path p ∈WP do
15: Generate chain-of-thought steps for path p.
16: Add “Heading in wrong direction” message.

17: Add RESET marker.
18: end for
19: Append original correct solution (path P ).
20: Format as conversation pairs.
21: End Procedure

Algorithm 3 Order-2 Processing (2 walls at origin)

1: Procedure ProcessOrder2(example)
2: for n_steps from max_n_steps down to 1 do
3: Generate wrong path WP of length

n_steps starting from O.
4: if a valid path WP is found then
5: Generate chain-of-thought for WP .
6: if WP ends at a dead end (3 walls) then
7: Add “Hit a dead end” message.
8: else
9: Add “Heading in wrong direction”

message.
10: end if
11: Add RESET marker.
12: break
13: end if
14: end for
15: Append original correct solution (path P ).
16: Format as conversation pairs.
17: End Procedure
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