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ABSTRACT

Vision-Language Models (VLMs) often suffer from visual hallucinations — gen-
erating things that are not consistent with visual inputs — and language shortcuts,
where they skip the visual part and just rely on text priors. These issues arise
because most post-training methods for VLMs rely on simple verifiable answer
matching and supervise only final outputs, leaving intermediate visual reasoning
without explicit guidance. As a result, VLMs receive sparse visual signals and
often learn to prioritize language-based reasoning over visual perception. To mit-
igate this, some existing methods add visual supervision using human annotations
or distilled labels from external large models. However, human annotations are
labor-intensive and costly, and because external signals cannot adapt to the evolv-
ing policy, they cause distributional shifts that can lead to reward hacking.

In this paper, we introduce Vision-SR1, a self-rewarding reinforcement learning
method that improves visual reasoning without relying on external visual supervi-
sions. Vision-SR1 decomposes VLM reasoning into two stages: visual perception
and language reasoning. The model is first prompted to produce self-contained
visual perceptions that are sufficient to answer the question without referring back
the input image. To validate this self-containment, the same VLM model is then
re-prompted to perform language reasoning using only the generated perception
as input to compute reward. This self-reward is combined with supervision on
the final outputs through multi-reward policy optimization, providing a balanced
training signal that strengthens both visual perception and language reasoning. In
addition, Multi-Reward Policy Optimization separately computes advantages and
log probabilities for both the visual reasoning reward and the answer accuracy
reward. The method then calculates KL divergence regularization and actor loss
using the combined sum of these two reward components. Our experiments show
that Vision-SR1 improves visual reasoning, mitigates visual hallucinations, and
reduces reliance on language shortcuts across diverse vision-language tasks.

1 INTRODUCTION

Recent advances in vision-language models (VLMs) have progressed by integrating pre-trained lan-
guage models and vision encoders with instruction tuning (Liu et al., 2023b; et al, 2024; Chen et al.,
2024; Bai et al., 2025; Li et al., 2025d). Despite these successes, a critical limitation remains in their
reasoning capabilities: VLMs often produce visual hallucinations — descriptions of content that is
not actually present in the image (Guan et al., 2024; Liu et al., 2024; Li et al., 2025¢; Liu et al.,
2023a) — or rely on language shortcuts, where the model bypasses visual understanding and instead
depends solely on text priors (Si et al., 2022; Bleeker et al., 2024). Very recently, R1-style reinforce-
ment learning (RL) methods have been shown to improve the reasoning abilities of VLMs across
diverse tasks (Huang et al., 2025b; Shen et al., 2025; Xia et al., 2025; Zhang et al., 2025). However,
these methods often encourage “thinking over seeing” that lean heavily on language reasoning while
underutilize visual perception (Liu et al., 2025; Yao et al., 2025). This imbalance makes VLMs sus-
ceptible to reward hacking (Fu et al., 2025) and spurious effects (Shao et al., 2025) observed in RL
training. Although VLMs trained with RL often have apparent improvements, they can largely re-
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flect probability shifts toward the style of training and test data, leading to language shortcut answers
from prior knowledge and overlooking hallucination risks (Li et al., 2025b).

In essence, most existing post-training methods for VLMs rely on simple verifiable answer matching
and thus lack explicit supervision of visual information. As a result, VLMs receive sparse visual
signals and often learn to prioritize language-based reasoning over visual perception. To mitigate
this, some methods introduce intermediate visual supervision through human annotations (Thawakar
et al., 2025) or distilled labels (e.g., pre-extracted key steps) from external models (Xu et al., 2024;
Zhang et al., 2025; Xiao et al., 2025; Xia et al., 2025; Lu et al., 2025). However, these solutions
face significant limitations. Human annotations are labor-intensive, costly, and difficult to scale
across multimodal tasks, while distilled signals inherit biases from source models and often fail
to generalize across diverse domains. Moreover, distributional shifts between fixed intermediate
signals and the continually updated policy can lead to reward hacking (Gao et al., 2023). Most
importantly, both approaches remain limited by their reliance on external supervision and their use of
single advantage and log probability computations across multiple intermediate rewards, , restricting
their scalability and applicability.

In this paper, we introduce Vision-SR1, a reinforcement learning framework that encourages VLM
to produce self-contained visual reasoning that can be verified by the VLM itself, without external
supervision. Vision-SR1 decomposes the reasoning process into two stages: visual perception and
language reasoning. The visual perception is required to capture all details relevant to answering
the query, so that the reasoning stage can proceed without re-accessing the original image. We
explicitly compute advantages and rollouts separately for each stage, then calculate individual Actor
policy losses and KL divergence terms for the visual perception and language reasoning stages
before combining them into a unified training objective.

The training has two rollout passes and one training objective optimization of the same VLM:
— First pass (standard rollout): (Image, Query) — (Visual Perception, CoT Reasoning, Answer)

» The model generates a structured output that explicitly separates visual perception, chain-
of-thought (CoT) reasoning, and the final answer.
* An accuracy reward is computed by comparing the final answer with the ground truth.

— Second pass (self-reward rollout): (Query, Visual Perception) — (CoT Reasoning, Answer)

* The model is re-prompted to reason using only the generated perception (without re-
accessing the original image). If the correct answer is derived, the perception is considered
faithful, and a self-visual reward is assigned.

— Multi-Reward Policy Optimization (objective optimization):

* The multi-reward policy optimization enables the policy model to receive distinct feedback
for visual reasoning quality and answer accuracy through separate advantage computations
and rollout-specific loss terms.

These separate reward signals are then combined through our multi-policy loss objective to pro-
vide balanced training that strengthens both visual perception and language reasoning without the
entangled learning signals of traditional reward summation. Experiments show that Vision-SR1
improves visual reasoning, mitigates hallucinations, and reduces language shortcuts across diverse
vision-language tasks.

2 METHOD

We build upon advancement of Group Relative Policy Optimization (GRPO) (Shao et al., 2024) for
improving VLM reasoning. We first review the key concepts then introduce our method.

2.1 PRELIMINARY: REINFORCEMENT LEARNING FOR VLM WITH VERIFIABLE REWARD

We denote a pre-trained VLM as a policy model 7 to be optimized in reinforcement learning. Given
a multimodal question (Q)) consists of an image ¢ and a text question ¢, where QQ = {i, ¢}, the policy
model 7 generates a reasoning response s. We use GRPO to optimize the response s for the policy
model. For each multimodal question Q = {i,q} we sample a group of K candidate responses
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Figure 1: Overall framework of Vision-SR1. During RL training, the VLM performs two rollouts.
In the first pass, the model takes an image—query pair and generates a structured output (visual
perception, CoT reasoning, and answer), with answer reward computed against the ground truth.
In the second pass, the model is re-prompted to answer using only query and its generated visual
perception. If the correct answer is derived, a self-visual reward is assigned. We compute the
advantages and log probabilities for each rollout for Multi-Reward Policy Optimization.

Sg ={s1,---,8k}, sk ~ ma(-|Q). Each response is scored by a scalar reward (@), si,) (defined
in Sec. 2.2), and we compute a group-relative advantage

K
Ang(Q’Sk) = T(Q,Sk) - %ZT(QNSJ)) (])
j=1

which centres rewards within the group, removing question-level biases while retaining pairwise
preferences. We update the policy by maximizing

K

Lareo(0) = Eg.p [Zﬁgrp(Q’Sk) logmg(sk | Q) — B KL(me(-|Q) || 7T90('|Q)):|7 (2)

k=1

where 7y, is the frozen, pre-trained reference model and 3 controls the strength of the KL penalty
that keeps the updated policy close to its original behavior.

The group-centred baseline in equation 1 guarantees ), AgrP(Q, sg) = 0, thereby reducing the
variance of policy-gradient estimates without requiring an external value critic.

2.2 STEPS 1: SELF-REWARDING VLM VIA REASONING DECOMPOSITION

As we discussed, incorporating intermediate visual supervision can strengthen the reasoning ability
of VLMs. However, existing methods suffer from key limitations: methods based on human annota-
tions are labor-intensive and costly (Thawakar et al., 2025), while approaches that distill supervision
from external models provide static signals that cannot adapt as the policy model itself evolves dur-
ing training (Zhang et al., 2025; Xiao et al., 2025; Xia et al., 2025). To overcome these issues, we
introduce a self-rewarding framework that enables the VLM to reward its own visual perception.
The key idea is to decompose the visual reasoning process into structured components, i.e., the
VLM first produces a self-contained visual perception and then assesses whether this perception is
sufficient for produce the final answer. This decomposition reduces reliance on external supervision
and allows the reward signal to adapt dynamically as the model improves.

Decomposed VLM Reasoning. To encourage the VLM to perform self-contained visual reason-
ing, we require every response to adhere to a See-Think generation format (Jia et al., 2024; Xia
et al., 2025) format. Specifically, for a vision-language task, Q = {i, ¢} where ¢ is the input image
and q is the textual query, the model produces the following structured output:

(visual_reasoning) ¢ (/visual_reasoning) || (think) ¢ (/think) || (answer) a (/answer)

where c is a self-contained visual perception that captures all visual information necessary to solve
the task, so that the following language reasoning can proceed without re-accessing the original
input image. Besides, ¢ is the language reasoning trace, and a denotes the final answer.
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Self-Reward for Visual Reasoning. A challenge is judging whether the visual perception c is
self-contained — i.e. whether it encodes all the visual information needed to answer the question
Q = {i,q} correctly. To address this, our idea is to treat the visual perception as a text-only proxy
for the image and validate it by re-prompting the VLM itself to perform language reasoning using
only the generated perception as input. If the model can derive the correct answer from (¢, ¢) alone,
we consider c to be visually faithful and assign the corresponding visual reward.

a = fe(C,Q)’ rvisual(Qac) = H[&:a*}a (3)

where a* is the ground-truth answer. Instead of using an external reward model, we leverage the
policy model’s own reasoning ability for self-evaluation. The model itself determines the reward by
answering the question using only its generated visual reasoning (Figure 1).

Reward Composition. The reward composition comprises three aligned components, each con-
ditioned on the question @ = {4, ¢}:

e Format reward r,, (s): measures whether the response strictly follows the required layout. This
reward is being applied to both Visual reward and Accuracy reward with respect to their format
requirements.

e Answer reward 7,,s(Q), a): measures the correctness of the final answer (r4..) plus the corre-
sponding format reward. Because a is generated after the reasoning trace ¢, the term implicitly
rewards CoT reasoning. This is computed at first rollout with hyper-parameters (0 < « < 1):

Tans (Q» a) = 7nacC(CQa a)a +Q Tt (5) (4)

e Visual reward 7isu.1 (@, ¢): measures whether the visual reasoning output is self-contained, i.e.,
sufficient to answer the question without image (7y;s_qcc) plus corresponding format reward. A
reward of 1 is assigned if, given only the question and the visual reasoning, the VLM can give the
correct answer. This is computed at second rollout:

Tvisual (Q7 a) = Tvis,acc(Qa a)7 +a rfmt(s) (5)

2.3 STEP 2: MULTI-REWARD OPTIMIZATION WITH MULTI-ADVANTAGE LOSS
COMPUTATION.

Simply summing the visual reasoning reward and the final-answer accuracy reward could produce a
sparse and entangled learning signal: the policy has little to tell which rollout was responsible for
which part of the scalar return. To disentangle visual reasoning and answer accuracy assignment,
we keep the two rollouts—answer generation and visual reasoning—separate throughout the up-
date. Each rollout receives its own log-probabilities, advantage, and KL term, and the gradients are
combined only at the very end. This turns the single multi-reward problem into two single-reward
sub-problems that share parameters with individually optimized feedback.

Reward-Specific Log-Probability Tracking. During sampling we cache the behavioral log prob-
abilities for every token in each rollout:
log W(gfg(aans,t) , log 71—(gfc)i(a‘visual,t) s

where ans ¢ is the action at step ¢ of the first rollout, and ayisual,; 1s the action (token) at step ¢ of the
second rollout. At update time we compute the corresponding log 7y under the current parameters
to compute the policy and KL losses.

Group-wise Z-Score Advantage. For each reward we follow GRPO to compute the advantage:

e (0
A — Tans T fans g Py sl ©
Oans T € ) Ovisual T €
with means and standard deviations =1 (@ 2 _ 1 ( (i) _ )2 here B
Mans = 7 2_;Tansy Oang — [ Zl Tams Ltans) ", Where

is the rollout batch size (and analogously for the visual group). Broadcasting A,y to all caption
tokens and As, to all answer tokens gives two advantage masks that weight the corresponding
log-probabilities during backpropagation for each sub-task.
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Actor Loss (Policy Gradient Loss). The actor loss computes weighted policy gradients for the
two reward signals (answer and visual), with separate coefficients A,y and Ayigua indicating their
contributions.'

Aans 7 i )\visua ] i
Lactor = 7? Az(in?%,t log o (a‘gn?s,t) - Tl Agigual,t IOg //Te(a’sgual,t) (7

it it

KL Divergence Regularization Loss. The KL regularization applies separate penalty co-
efficients .., and B to prevent excessive policy deviation for each reward component.

B B
Lrr = Bgs Z Z [IOg WOId(agz)s,J — log ﬂ—e(a"‘(llzl)s,t)} + % Z Z [10g 7T"ld(a’\(/zs)ual.,t) — log ﬂg(a’\(/;s)ual,t)]
=1 t =1 t
®)

Multi-Reward Loss Objective. The total loss combines multi-reward policy gradients with
component-specific regularization to optimize the model across both reward signals.

Ltotal = Eactor + £KL (9)

2.4 THEORETICAL ANALYSIS

We analyze why Multi-Reward Policy Optimization with separate advantage computation could
improve VLM RL training compared to using only answer rewards. In standard RL training, the
objective depends solely on final answer correctness:

VG Eswwe [Tans(a; a*)] (10)
where s = (¢, a) contains visual reasoning and language reasoning trace ¢ and final answer a. Since
Tans ONly measures whether a matches ground truth a*, the intermediate visual reasoning ¢ receives
no direct supervision signal. For VLMs, the stronger LLM backbone dominates generation of ¢, and
continued RL training leads to potential reward hacking where the model exploits language priors
to achieve correct answers without visual grounding Pantazopoulos & Ozyigit (2025).

Multi-Reward Loss Decomposition. We decompose the loss computation itself into separate com-
ponents as shown in Equation 9, where the actor loss handles visual and answer components sepa-
rately (with the K L regularization term following similar component-wise structure):

Lactor = _)\ansE[Aans log o (aans)] - )\visualE[Avisual 10g Uy (avisualﬂ (11

Since each advantage is computed from different reward components (visual and answer) shown
in Equation 6, this approach creates clear gradient paths from each reward to its corresponding
components, enabling independent optimization of visual reasoning and language reasoning capa-
bilities (Zhu et al., 2025; Lyu et al., 2025).

From an information-theoretic perspective, let I denote the visual input, () the question, C' the
visual reasoning representation, and A the final answer. Mutual information I(U; V') measures how
much knowing U reduces uncertainty about V' (Shannon, 1948). If training relies only on 74y, the
model primarily maximizes I(A; QQ)—making answers strongly dependent on the question—while
neglecting I (A; I), the dependence of answers on the visual input. This permits shortcut solutions
that bypass perception. By additionally optimizing ryisya, which enforces high I(C’; I), the model
strengthens the path from I to A, thereby increasing I(A; ) and ensuring that answers remain
grounded in visual reasoning rather than language-only correlations.

2.5 DATA PREPARATION

Vision-SR1-47K. Our RL dataset consists of approximately 47K examples collected from 24 open-
source VLM benchmarks. It spans three key reasoning domains (Figure 1): mathematical reasoning
(30.5%), which strengthens quantitative and logical abilities; commonsense knowledge (30%); and
general visual understanding (39.5%), which grounds the model in visual question answering.

3 EXPERIMENTS

"We use 0.5 for Aans and Avisual.
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To implement our Vision-SR1, we use Table 1: Vision-SR1-47K data comprises three do-
Qwen2.5-VL-3B  and 7B, Mimo-7B- mains—Math, Knowledge, and General Visual Rea-
VL Team et al. (2025) as base models. soning—providing diverse supervision for VLM
Additionally, we use Lora finetuning to train  generalization and adaptation.

Qwen2.5-VL-72B to evaluate the method’s

o . Category Included Datasets Size (%)
general.lzatéon to larger model sizes and Lqra Math CLEVR-Math, GeoQAs. UniGeo. 14K 30.5%
finetuning.~ We train the base model with GEOS, Geometry3K.

. . uper-

GRPO. The RL phase is trained for 1 epoch

t ol . Science Knowledge TQA, ScienceQA, AI2D, 14K 30%
on the V1510n-SRl-47K dataset.  During PMC.VOA VOARAD.
training, the policy model first generates EXAMS-V-train
visual reasoning from the input image, General Visual Rea- ChartQA, DVQA, PloiQA, 18K 39.5%

: soni FigureQA, MapQA, TabMWP,

then produces language reasoning and final  soning ADKVOA, Toonh, visoal7o,
answer. We then compute a self-reward for OpenSpaces, Spacellava

visual reasoning by re-prompting the frozen

policy model to answer the question using only its generated visual reasoning, without access to the
original image ¢. Finally, we compute advantages and log probabilities separately for each reward
component and combine them in the final loss (Figure 1).’

3.1 BASELINE METHODS

Vision-R1 (Huang et al., 2025b): The first R1-style reinforcement learning approach, which relies
solely on answer rewards as the training signal. However, since the original Vision-R1 was trained
only on math-domain data and performs poorly on general-domain reasoning, we reproduce it using
our 47K dataset to ensure a fair comparison.

Perception-R1 (Xiao et al., 2025): Similar in training style to Vision-R1, but incorporates pre-
extracted visual annotations as an additional reward signal. These visual annotations are derived
from a state-of-the-art proprietary multimodal LLM (not specified in the paper).

Visionary-R1 (Xia et al., 2025): Trained to produce a caption—reason—answer output format during
RL, where the supervision signal comes from an external text-only LLM (not specified in the paper).

For fair comparisons, we only re-train Vision-R1 on our 47K dataset, since both Perception-R1 and
Visionary-R1 require access to external annotations or supervision signals, which are undisclosed.

3.2 BENCHMARKS AND METRICS

Our evaluation covers three areas to evaluate VLLMs abilities. Specifically, the domains include (1)
general visual understanding, (2) multimodal math reasoning (3) visual hallucination detection.

General Visual Understanding. We evaluate general visual understanding across five diverse
benchmarks. MMMU (Yue et al., 2024) tests cross-modal reasoning and subject knowledge with
11.5K college-level, four-choice questions spanning six disciplines. MMMU-Pro (Yue et al.,
2025) increases the difficulty with ten choices per question and adds a challenging vision-only
setting, where all text is embedded within the image to necessitate robust visual parsing. Real-
WorldQA (xAl, 2024) features ~700 real-world images from vehicle captures, paired with spatially
grounded questions that require verifiable answers. VisNumBench (Weng et al., 2025) specifically
targets visual number sense through ~1.9K questions covering seven numerical attributes and four
estimation tasks.

Multimodal Mathematical Reasoning. We assess mathematical reasoning using two specialized
benchmarks. MathVerse (Zhang et al., 2024a) consists of 2.6K diagram-centric problems (e.g., ge-
ometry, functions), each rendered in six visual-text variants to disentangle true visual understanding
from linguistic shortcuts. Evaluation is based on step-by-step Chain-of-Thought (CoT) correctness.
MATH-Vision (Wang et al., 2024) presents ~3K competition-grade problems across 16 disciplines
and five difficulty levels, stressing advanced multimodal reasoning.

2For Qwen2.5-VL-72B, we used ms-swift Zhao et al. (2024) to perform Lora finetuning on 80 steps, batch
size 8 for resource and time limitation. For 72B finetuning, the Lora adapter is frozen during both rollouts.
3The policy model remains frozen during both rollouts.
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Table 2: Vision-SR1 vs. baselines. For Vision-R1, as noted in Section 3.1, the original model
checkpoint was trained only on math-domain data. So we also reproduce it using our 47K dataset.

General Visual Understanding Visual Math & Hallucination
Methods MMMU MMMU RealWorld VisNum Math MATH Hallusion Avg.
-Pro QA Bench Verse -Vision Bench

Visionary-R1 (3B) by Xia et al. (2025) 27.4 30.6 56.9 10.0 45.0 404 26.7 339

Percention-R1 (7B) by Xiao et al. (2025) 36.8 409 69.4 159 52.1 35.7 65.4 452

Vision-R1 (7B) by Huang et al. (2025b) 349 42.8 60.1 33.0 573 51.2 322 44.5
Backbone model: Qwen2.5-VL-3B

Zero-shot Inference (before RL) 30.5 255 65.4 15.7 443 40.4 27.1 355

Vision-R1 47K data (fair comparison) 40.3 49.5 63.0 36.7 42.8 29.9 67.4 47.1

Vision-SR1 (ours) 40.8 49.6 66.1 419 45.8 29.3 683 48.8
Backbone model: Qwen2.5-VL-7B

Zero-shot Inference (before RL) 34.2 335 68.5 214 49.2 31.9 51.7 41.5

Vision-R1 47K data (fair comparison) 39.8 51.8 66.6 43 532 338 66.6 50.7

Vision-SR1 (ours) 40.7 52.2 69.2 435 54.5 36.2 68.9 52.2
Backbone model: Mimo-VL-7B

Zero-shot Inference (before RL) 38.0 45.6 68.2 30.2 35.5 21.6 71.9 44 .4

Vision-R1 47K data (fair comparison) 38.7 473 67.1 335 353 257 743 46.0

Vision-SR1 (ours) 393 49.5 68.1 44.6 40.0 29.6 75.6 49.5
Backbone model: Qwen2.5-VL-72B

Zero-shot Inference (before Lora RL) 40.6 45.0 69.5 26.1 51.3 335 68.7 47.8

Vision-R1 47K data (fair comparison) 43.8 453 72.1 47.1 50.5 346 732 524

Vision-SR1 (ours) 47.6 52.8 75.1 479 53.6 34.5 74.4 55.1

Hallucination Diagnosis. To diagnose model failures, we use HallusionBench (Guan et al., 2024),
a benchmark designed to pinpoint specific errors: (i) language-side hallucination, where visual con-
text is ignored, and (ii) visual-illusion errors, where the image is misinterpreted. The benchmark’s
binary yes/no format enables precise error analysis.

For our evaluations, we all use Gemini-2.5-flash (Comanici et al., 2025) to judge response correct-
ness on non-multiple choice format question, serving as a proxy for human judgment.

3.3 EXPERIMENTAL RESULTS

3.3.1 VISION-SR1 Vv.s. BASELINE METHODS

Table 2 presents a comprehensive comparison

of Vision-SR1 with several baseline methods Taple 3: Our method also can improve VLMs’

across diverse vision-language benchmarks. apjlities on spatial reasoning and language short-
For example, with the Qwen2.5VL-72B back- ¢yt (LS) robustness.
bone, Vision-SR1 reaches 47.6 on MMMU-Pro

ViLP MMSI Omni

and 52.8 on MMMU, outperforming Vision- Methods (LS)  -Bench _ Spatial "%
: : Backbone: Mimo-VL-7B

R1 fa}lr comparison runs (43.8 and 45.3, re- before RL s64 282 03 416
spectively). When averaged across all bench- l/,ision-l;llu 522 gg 404 4;;
. . . ision- 59.3 . v 43.3

marks, Vision-SR1 establishes a clear margin Backbone: Oward 3 VLT
of improvement. With the 72B backbone, it gle_fére IELI g?i ;‘l‘g Z? ;ié
. 1s10N- .3 B B .
achieves an average score of 55.1, compared Vision-SR1 526 277 42 415
to 52.4 for Vision-R1. Even with the smaller Backbone: Qwen2 VL7280 w65 alo
. . . £10-shol B X 36. B
3B and 7B backbone, Vision-SR1 achieve 48.8 Vision-R1 (Lora) 55.4 354 364 424
and 52.2 average, outperforming all compara- Vision-SRI QLora) 618 353 386 452

ble baselines. For results on Mimi-VL-7B, a

model outside the Qwen-VL family, we observe a similar trend: the average accuracy improves
from 44.4 to 49.5. This shows that our method generalizes beyond the Qwen-VL. These results
demonstrate that Vision-SR1 outperforms prior baseline models across both general-purpose and
math-specific visual reasoning tasks, validating the effectiveness of our approach.

3.3.2 ABLATION STUDY ON SPATIAL REASONING AND LANGUAGE SHORTCUT DATASETS

In addition to evaluating Vision-SR1 on standard visual-reasoning benchmarks, we further evaluate
its effectiveness on additional datasets to probe two complementary challenges: spatial reasoning
and language-shortcut (LS) robustness. MMSI-Bench Yang et al. (2025) and OmniSpatial Jia et al.
(2025) target multi-image spatial understanding, requiring models to integrate spatial relationships
across multiple images. In contrast, ViLP Luo et al. (2025) evaluates language shortcuts by pairing
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each question with images that can be answered either through textual priors alone or only through
pure visual reasoning. Table 3 shows that Vision-SR1 generalizes well to spatial reasoning bench-
marks and substantially improves robustness to visual-language shortcuts. In particular, explicitly
generating visual descriptions helps the model avoid shortcut behavior and rely more on the actual
visual content. Next we propose a systematic way to evaluate VLMs’ language shortcut frequencies
on standard VLM benchmarks.

3.3.3 ANALYSIS ON LANGUAGE SHORTCUT

Table 4: Language Shortcut Rate (LSR) across different benchmarks. Lower values indicate better
performance, as a reduced LSR reflects fewer language shortcuts during reasoning. Adding addi-
tional reward supervision can reduce the change of visual reasoning reward hacking.

General Visual Understanding Visual Math & Hallucination
Methods MMMU MMMU RealWorld  VisNum  Math MATH Hallusion Ave.
-Pro QA Bench Verse  -Vision Bench
Vision-SR1 (3B) 7.5 6.3 10.8 5.4 10.3 8.3 10.1 9.4
= w/o self-reward 9.0 9.6 11.9 4.2 11.4 9.2 8.5 104
Vision-SR1 (7B) 8.0 6.5 13.4 42 11.5 10.7 6.8 9.8
= w/o self-reward 8.7 53 10.8 39 12.7 10.7 9.1 10.1

We also introduce the Language Shortcut Rate (LSR), a metric designed to quantify how often a
model produces the correct answer with an incorrect visual perception. A high LSR suggests the
model is leveraging language knowledge prior rather than genuine visual understanding.

Our evaluation, follows a two-step process and uses Gemini-2.5-flash as a judge: (1) Visual Per-
ception Extraction: for each model output, we extracted the generated visual reasoning, denoted as
C. (2) Self-Containment Check: we then provide the C and the original question () to Gemini-
2.5-Flash evaluator. If the evaluator can reproduce the correct ground-truth answer using only this
information, C is deemed self-contained. Based on this process, we define the metrics: The Lan-
guage Shortcut Rate (LSR) is defined as the percentage of instances where the model produces an
incorrect (not self-contained) visual reasoning but still gives the correct final answer:

#{incorrect visual reasoning & correct answer}

LSR =
#{total samples}

A higher LSR indicates that the model is answering correctly while bypassing visual perception,
suggesting reliance on language prior shortcuts. An LSR of 0 indicates no shortcutting, i.e., every
correct answer is supported by a correct, self-contained visual reasoning.

We compute the LSR for 7B model w/ and w/o self rewards on seven selected benchmarks for demo
example in Table 4. An important finding is that the visual shortcut is the highest in multimodal
mathematical reasoning, which raises important question to previous work R1-VL (Zhang et al.,
2025), VLM-R1 (Shen et al., 2025), Vision-R1 (Huang et al., 2025b): is multimodal RL training
truly improving VLMs’ abilities to perform visual reasoning, or simply awakes the models’ language
reasoning ability to guess without actually looking at visual information?

4 RELATED WORK

4.1 POST-TRAINING VISION-LANGUAGE MODELS

Recent vision-language models have increasingly leveraged post-training alignment techniques, in-
cluding instruction tuning and reinforcement learning, to enhance general-purpose multimodal per-
formance (Liu et al., 2023b; Bai et al., 2025; Chen et al., 2024; et al, 2024; Huang et al., 2025b). For
example, LLaVA (Liu et al., 2023b) is tuned on GPT-4 generated (image, question, answer) pairs,
coupling a CLIP encoder with Vicuna to produce a visual chat assistant that imitates some GPT-4
vision capabilities. InstructBLIP (Dai et al., 2023) introduces an instruction-aware query trans-
former tuned on 26 datasets, which yields a model that substantially outperforms even larger models
on zero-shot benchmarks. Beyond standard instruction-tuning methods like LLaVA and Instruct-
BLIP, recent work increasingly uses reinforcement learning (RL) to align vision-language models
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for better reasoning (Huang et al., 2025b; Xia et al., 2025; Xiao et al., 2025). Many of these meth-
ods, inspired by techniques from DeepSeek-R1 (DeepSeek-Al et al., 2025), focus on sophisticated
reward engineering. Strategies include providing step-wise rewards to supervise the intermediate
reasoning (Zhang et al., 2025), adding explicit visual annotations to ground truth for calculating
visual rewards (Xiao et al., 2025), and applying RL in a two-stage curriculum that first strengthens
text-only reasoning (Peng et al., 2025b). As a complementary approach, RL from AI Feedback
for VLMs demonstrates that preference-based alignment is also a powerful signal, showing it can
substantially reduce object hallucination by learning from Al-generated feedback (Yu et al., 2024).

4.2 SELF-REWARDING REINFORCEMENT LEARNING

The existing reinforcement learning with verifiable rewards (RLVR) methods heavily rely on high-
quality reward models or human feedback, creating a major bottleneck for scalability (Peng et al.,
2025a; Dai et al., 2025; Li et al., 2025¢; Luu et al., 2025). To overcome this, recent work explores
self-rewarding approaches, where the model itself provides intrinsic reward signals during RL post-
training, an idea first pioneered by Yuan et al. (2025). Building on self-rewarding language models,
methods replace external reward models with the model’s own confidence and uncertainty (logit-
based self-certainty) or self-verification of its solutions, and even elicit a latent endogenous reward
already present inside base LLMs (Zhao et al., 2025; Li et al., 2025a; Simonds et al., 2025; Zheng
et al., 2025; van Niekerk et al., 2025; Huang et al., 2025a; Zhou et al., 2025). For example, RLIF
leverages self-certainty as a reward, achieving comparable performance to GRPO while improving
out-of-distribution generalization (Zhao et al., 2025). Similarly, RLSC optimizes a self-confidence
reward to secure large accuracy gains with only a few training samples (Li et al., 2025a).

Although self-generated reward signals have thrived in text-only LLMs, only a few works extend
this idea to VLMs (Zhou et al., 2024; Lee et al., 2025; Holmes & Chi, 2025), largely due to the
complexity of the visual modality and the difficulty of properly defining and evaluating reward
signals that capture visual perception. Recent progress includes Calibrated Self-Rewarding, which
iteratively generates candidates, self-scores them with step-wise, visually constrained rewards, and
fine-tunes via direct preference optimization (DPO) (Zhou et al., 2024). Similarly, RG-VLM uses
a VLM to directly label rewards for offline trajectories in long-horizon visual tasks, serving as an
auxiliary signal that boosts generalization (Lee et al., 2025). Beyond judgment-based signals, ARES
derives dense shaped rewards from attention weights to accelerate learning under sparse or delayed
feedback (Holmes & Chi, 2025). These works show that internal visual signals can provide rich
reward feedback for VLM alignment without costly supervision, yet the reward is not integrated
end-to-end, where the policy receives both visual perception and answer rewards during training.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce Vision-SR1, a self-rewarded reinforcement learning framework that de-
composes vision-language understanding into visual reasoning and language reasoning components.
Our approach uses the VLM itself to generate explicit rewards for visual understanding, then applies
Multi-Reward Policy Optimization to provide clear gradient attribution and backpropagation path-
ways for each reward component. Vision-SR1 strengthens visual perception and reduces language
shortcuts, thereby improving VLM performance across several domains of vision-language tasks.
Our proposed metric LSR further shows how perception reward lowers the tendency of models to
answer via language shortcut rather than genuine visual reasoning.

This work opens up several future research directions. First, future work can focus on improving the
efficiency of the visual reasoning then think generation format by treating the visual reasoning com-
ponent as latent thinking, thereby reducing the number of decoded tokens while still enabling reward
attribution to latent visual processes during the RL phase. It is also important to recognize that some
of the observed mathematical gains from RL training in VLMs may come from spurious effects —
for instance, recalibrating the LLM backbone’s output distribution can boost multimodal math per-
formance without true visual grounding (Shao et al., 2025). This suggests that improvements in
accuracy may sometimes reflect better exploitation of language shortcuts rather than genuine per-
ception gains. Therefore, future work can also explore more analysis to disentangle visual grounding
from shortcut learning.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide information regarding our prompt tem-
plates and experimental setup in the main paper and Appendix. All datasets and code will be released
upon conference decision release.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of large language models (LLMs) as assistive tools in this research. Our use
of LLMs was limited to refine grammar and improve language clarity. All outputs from these models
were meticulously reviewed, revised, and verified by the authors, who retain full responsibility for
all content presented in this paper.

B EXPERIMENT DETAILS

B.1 PROMPT TEMPLATES

This section presents the prompt templates used for constructing the cold start training data and
Model Training prompt. The See-Think prompt is used for generating SFT See-Think data and
model training. The Caption-Reasoner prompt is used to generate text-only caption reasoner SFT
data and self-reward during training.

See-Think Prompt Template

{Question}

You are tasked with analyzing an image/video to generate a detailed description to help you
answer the question. First analyze the image/video and produce a self-contained descrip-
tion—detailed enough that can lead to the correct answer. Wrap the entire description in
< description >< /description > tags.

Next, engage in an internal dialogue and include self-reflection or verification in
your reasoning process. Provide your detailed, step-by-step reasoning based on the
image/video description information and image/video, and enclose this part within
< think >< /[think > tags.

Finally, provide a single word or phrase answer to the question in \boxed{}.
The output format should be: < description > image/video description here

< /description > < think >reasoning process here < /think > \boxed{FINAL
ANSWER here}.

Note: {Questiony} is a placeholder for the actual question.

Caption-Reasoner (Self-Reward) Prompt Template

Text description: {Description}
Question: {Question}

You are provided a text description of a problem and a question. Determine the an-
swer to the question based on the text description. First provide an internal step-by-step
reasoning within < think >< /think > tags, then provide a single word or phrase answer
in \boxed{}.

Note: {Description} is a placeholder for the actual text caption. {Question} is a
placeholder for the actual question.
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Table 5: Through self-reward, the model is implicitly rewarded for text-only reasoning, leading to
improved performance in general reasoning and reduced degradation in math reasoning benchmarks.

Model MMLU-Pro SuperGPQA GSMS8K MATH-500
Backbone model: Qwen2.5-VL-3B

Before RL 343 15.1 78.5 65.2

Vision-R1 47.7 23.1 82.2 66.0

Vision-SR1 48.1 23.2 83.2 68.6
Backbone model: Qwen2.5-VL-7B

Before RL 334 17.1 86.0 734

Vision-R1 534 26.7 85.5 68.2

Vision-SR1 56.1 26.3 87.6 70.8

Vision Reasoner (CoT) Prompt Template

Question: {Question}
You FIRST think about the reasoning process as an internal monologue and then provide

the final answer. The reasoning process MUST BE enclosed within < think >< /think >
tags. The final answer MUST BE put in \boxed{}.

Note: {Question} is a placeholder for the actual question.

B.2 LLM-AS-A-JUDGE PROMPT
We use Gemini-2.5-flash as our LLM-as-a-Judge to evaluate

LLM-as-a-Judge Prompt Template

¢ Model: Gemini-2.5-flash

Prompt Message:
Question: {Question}

Reference: {Reference}
Candidate: {Candidate}
You are provided a question, a gold answer, and a candidate answer. Your task is to

judge the correctness of the candidate answer. Return your judgment enclosed with
< judgment >< /judgment >.

Note: {Question} is a placeholder for the actual question; {Reference} is a place-
holder for the gold answer; { Candidate} is a placeholder for the model response.

B.2.1 ANALYSIS ON TEXT-ONLY REASONING

An interesting question is how different training strategies affect the text-only reasoning capabilities
of VLMs. In particular, by decoupling visual perception and language reasoning with two separate
rewards, we ask whether these abilities can mutually reinforce one another. To examine this, we
evaluated the text-only performance of VLMs after RL fine-tuning on multimodal data.

Specifically, we tested on four text-only datasets: MMLU-Pro and SuperGPQA (multi-disciplinary,
general-domain benchmarks), and MATH-500 and GSMS8K (mathematical reasoning tasks). Our
results (Table 5) compare Vision-R1, our method, and pre-RL training baselines.

First, we observe that on GSM8K and MATH-500, multimodal RL training, including both Vision-
R1 and our method, degrades text-only reasoning performance. This observation aligns with recent
findings on “text-only forgetting” in VLMs Zhang et al. (2024b); Ratzlaff et al. (2025), which show
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Table 6: Results of ablation study: Vision-SR1 v.s. Vision-SR1 w/o visual perception self-reward.

General Visual Understanding Visual Math & Hallucination
Methods MMMU MMMU RealWorld VisNum Math MATH Hallusion Ave.
-Pro QA Bench Verse  -Vision Bench
Vision-SR1 (3B) 40.8 49.6 66.1 41.9 45.8 29.3 68.3 48.8
= w/o self-reward 40.0 48.0 62.6 41.6 45.1 30.2 65.8 47.6
Vision-SR1 (7B) 40.7 52.2 69.2 43.5 54.5 36.2 68.9 52.2
= w/o self-reward 42.8 51.8 67.3 35.7 52.6 344 67.8 50.3

that visual instruction tuning can impair language reasoning (particularly in mathematics) depending
on the underlying LLM. Second, compared to Vision-R1, our method proved more effective at
mitigating performance degradation on text-only mathematical benchmarks (MATH-500, GMS8K)
and yielded larger gains on general knowledge tasks (MMLU-Pro, SuperGPQA). This indicates
that separating the optimization signals for visual perception and language reasoning helps preserve
text-only competencies, while still enabling improvements from multimodal training.

B.2.2 ABLATION STUDY ON SELF-REWARD

We train a control version of our model without the visual reasoning self-reward and Multi-Reward
Policy Optimization (Vision-SR1 w/o self-reward). This ablated model still follows a structured
output (visual perception, CoT reasoning, and answer) but is optimized only with answer and for-
mat rewards. The self-visual reward for self-evaluating visual reasoning and Multi-Reward Policy
Optimization are removed. We note the only difference between Vision-SR1 w/o self-reward and
Vision-R1 (Huang et al., 2025b) lies in the output structure, i.e., using different system prompts,
while all supervision signals (answer reward and format rewards) remain the same. Interestingly,
our system prompt yields slightly better performance (+1.0 on average). Table 6 reports the ablation
results. We find that not including visual reasoning reward and Multi-Reward Policy Optimiza-
tion could lead to overall worse VLM task performance compared to including them in the training
process.

17



	Introduction
	Method
	Preliminary: Reinforcement Learning for VLM with Verifiable Reward
	Steps 1: Self-Rewarding VLM via Reasoning Decomposition
	Step 2: Multi-Reward Optimization with Multi-Advantage Loss Computation.
	Theoretical Analysis
	Data Preparation

	Experiments
	Baseline Methods
	Benchmarks and Metrics
	Experimental Results
	Vision-SR1 v.s. Baseline Methods
	Ablation study on Spatial Reasoning and Language Shortcut Datasets
	Analysis on Language Shortcut


	Related Work
	Post-Training Vision-Language Models
	Self-Rewarding Reinforcement Learning

	Conclusion and Future Work
	Appendix
	The Use of Large Language Models (LLMs)

	Experiment Details
	Prompt Templates
	LLM-as-a-Judge Prompt
	Analysis on Text-only Reasoning
	Ablation Study on Self-Reward



