
Cross-device Federated Architecture Search

Stefanos Laskaridis∗
Samsung AI Center

Cambridge, UK
mail@stefanos.cc

Javier Fernandez-Marques∗
Samsung AI Center

Cambridge, UK
j1.fernandez@samsung.com

Lukasz Dudziak∗

Samsung AI Center
Cambridge, UK

l.dudziak@samsung.com

Abstract

Federated learning (FL) has recently gained considerable attention due to its ability
to learn on decentralised data while preserving client privacy. However, it also
poses additional challenges related to the heterogeneity of the participating devices,
both in terms of their computational capabilities and contributed data. Meanwhile,
Neural Architecture Search (NAS) has been successfully used with centralised
datasets, producing state-of-the-art results in constrained or unconstrained settings.
However, such centralised datasets may not be always available for training. Most
recent work at the intersection of NAS and FL attempts to alleviate this issue in a
cross-silo federated setting, which assumes homogeneous compute environments
with datacenter-grade hardware. In this paper we explore the question of whether
we can design architectures of different footprints in a cross-device federated
setting, where the device landscape, availability and scale are very different. To this
end, we design our system, FedorAS, to discover and train promising architectures
in a resource-aware manner when dealing with devices of varying capabilities
holding non-IID distributed data. We present empirical evidence of its effectiveness
across different settings, spanning across three different modalities (vision, speech,
text), and showcase its better performance compared to state-of-the-art federated
solutions, while maintaining resource efficiency.

1 Introduction

As smart devices become omnipresent where we live, work and socialise, the ML-powered services
that these provide grow in sophistication. This ambient intelligence has undoubtedly been sustained
by recent advances in Deep Learning (DL) across a multitude of tasks and modalities. Parallel to this
race for state-of-the-art performance in various in DL benchmarks, mobile and embedded devices
also became more capable to accommodate new Deep Neural Network (DNN) designs [36], some
even integrating specialised accelerators to their System-On-Chips (SoC) (e.g. NPUs) to efficiently
run DL workloads [3]. These often come in various configurations in terms of their compute/memory
capabilities and power envelopes [4] and co-exist in the wild as a rich multi-generational ecosystem
(system heterogeneity) [76]. These devices bring intelligence through users’ interactions, also innately
heterogeneous amongst them, leading to non-independent or identically distributed (non-IID) data in
the wild (data heterogeneity).

Powered by the recent advances in SoCs’ capabilities and motivated by privacy concerns [72] over the
custody of data, Federated Learning (FL) [57] has emerged as a way of training on-device on user data
without it ever directly leaving the device premises. However, FL training has largely been focused
on the weights of a static global model architecture, assumed to be runnable by every participating
client [39]. Not only may this not be the case, but it can also lead to subpar performance of the overall

∗Indicates equal contribution.

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

training process in the presence of stragglers or biases in the case of consistently dropping certain
low-powered devices. On the opposite end, more capable devices might not fully take advantage of
their data if the deployed model is of reduced capacity to ensure all devices can participate [51].

Parallel to these trends, Neural Architecture Search (NAS) has become the de facto mechanism to
automate the design of DNNs that can meet the requirements (e.g. latency, model size) for these to
run on resource-constrained devices. The success of NAS can be partly attributed to the fact that these
frameworks are commonly run in datacenters, where high-performing hardware and/or large curated
datasets [42, 23, 20, 38, 60, 60] are available. However, this also imposes two major limitations on
current NAS approaches: i) privacy, i.e. these methods were often not designed to work in situations
when user’s data must remain on-device; and, consequently, ii) tail data non-discoverability, i.e.
they might never be exposed to infrequent or time/user-specific data that exist in the wild but not
necessarily in centralized datasets. On top of these, the whole cost is born by the provider and separate
on-device modelling/profiling needs to be done in the case of hardware-aware NAS [25, 71, 44],
which has mainly focused on inference performance hitherto.

Motivated by the aforementioned phenomena and limitations of the existing NAS methods, we
propose FedorAS, a system that performs NAS over heterogeneous devices holding heterogeneous
data in a resource-aware and federated manner. To this direction, we cluster clients into tiers based on
their capabilities and design supernet comprising operations covering the whole spectrum of compute
complexities. This supernet acts both as search space and a weight-sharing backbone. Upon federation,
it is only partially and stochastically shared to clients, respecting their computational and bandwidth
capabilities. In turn, we leverage resource-aware one-shot path sampling [27] and adapt it to facilitate
lightweight on-device NAS. In this way, networks in a given search space are not only deployed
in a resource-aware manner, but also trained as such, by tuning the downstream communication
(i.e. the subspace explored by each client) and computation (i.e. FLOPs of sampled paths) to meet
the device’s training budget. Once federated training of the supernetwork has completed, usable
pretrained networks can be extracted even before performing fine-tuning or personalising per device,
thus minimising the number of extra on-device training rounds to achieve competitive performance.

In summary, in this work we make the following contributions:

• We propose a system for resource efficient federated NAS that can be applied in cross-device set-
tings, where partial device participation, device and data heterogeneity are innate characteristics.

• We implement a system called FedorAS (Federated nAS) that leverages a server-resident
supernet enabling weight sharing for efficient knowledge exchange between clients, without
directly sharing common model architectures with one another.

• We propose a novel aggregation method named OPA (OPerator Aggregation) for weighing
updates from multiple “single-path one-shot” client updates in a frequency-aware manner.

• We empirically evaluate the performance and convergence of our system under IID and non-IID
settings across different datasets, tasks and modalities, spanning different device distributions
and compare our system’s behaviour against state-of-the-art FL techniques.

2 Background & Motivation

Federated Learning. A typical FL pipeline is comprised of three distinct stages: given a global
model initialised on a central server, ω(t=0)

g , i) the server randomly samples k clients out of the
available K (k ≪ K for cross-device; [10] k = K for cross-silo setting) and sends them the current
state of the global model; ii) those k clients perform training on-device using their own data partition,
Di, for a number of epochs and send the updated models, ω(t)

i , back to the server after local training is
completed; finally, iii) the server aggregates these models and a new global model, ω(t+1)

g , is obtained.
This aggregation can be implemented in different ways [57, 68, 52]. For example, in FedAvg [57]
each update is weighted by the relative amount of data on each client: ω(t+1)

g =
∑k

i=0
|Di|∑k

j=0 |Dj |
ω
(t)
i .

Stages ii) and iii) repeat until convergence. The quality of the global model ωg can be assessed: on
the global test set; by evaluating the fit of the ωg to each participating client’s data (Di) and derive
fairness metrics [53]; or, by evaluating the adaptability of the ωg to each client’s data or new data
these might generate over time, this is commonly referred to as personalised FL [26, 50].

Contrary to traditional distributed learning, cross-device FL performs the bulk of the compute on a
highly heterogeneous [39] set of devices in terms of their compute capabilities, availability and data

2

0 100 200 300 400 500 600 700
FLOPS (M)

78

80

82

84

86

88

90

Te
st

 a
cc

ur
ac

y
(%

)

Tier 1 Tier 2 Tier 3 Tier 4

Client
participation
gap

CIFAR10 - IID (LDA =1000)

0 100 200 300 400 500 600 700
FLOPS (M)

78

80

82

84

86

88

Te
st

 a
cc

ur
ac

y
(%

)

Tier 1 Tier 2 Tier 3 Tier 4

Client
participation
gap

CIFAR10 - non-IID (LDA =1.0)

Tier-unaware
Tier-aware (naive)
Tier-aware (FedorAS)

Figure 1: For three LDA settings, 160 architectures are randomly sampled from a ResNet-like search space
and trained on a CIFAR-10 FL setup with 100 clients, with 10 clients participating on each round for a total of
500 rounds. Clients are uniformly assigned to a tier, resulting in 25 clients per tier. Given sufficient data and
ignoring tier limits, model performance tends to improve as its footprint (FLOPS) increases (black crosses).
However, when models are restricted to only train on clients that support them (tier-aware), the lack of data
severely restricts the performance of more capable models (red dots). FedorAS successfully overcomes the
challenges of tier-aware FL and outperforms existing system heterogeneous baselines, as shown later in Fig. 3.

distribution. In such scenarios, a trade-off between model capacity and client participation arises:
larger architectures might result in more accurate models which may only be trained on a fraction
of the available devices; on the other hand, deploying smaller footprint networks could target more
devices – and thus more data – for training, but these might be of inferior quality (gap in Fig. 1).

Neural Architecture Search. NAS is usually defined as a bi-level optimisation problem:

a⋆ = argmin
a∈A

L(ω∗
a(Dt), Dv), where ω∗

a(Dt) = argmin
ωa

L(ωa, Dt) (1)

where A is a finite (discrete) set of architectures to search from (a search space), L is a loss function,
ωa are weights of a model with architecture a, and D{v,t} are validation and training datasets,
respectively. The main challenge of NAS comes directly from the fact that in order to assess quality
of different architectures (outer optimisation), we have to obtain their optimal weights which entitles
conducting full training (inner optimisation).

There exist multiple approaches to speed up NAS [63, 55, 24, 16, 25, 81, 1, 56, 69, 27, 58]. More
relevant to our work are those utilising the concept of a supernet [15, 7]; where a single model that
encapsulates all possible architectures from the search space is created and trained. Specifically, a
supernet is constructed by defining an operator that incorporates all candidate operations (the set of
which we denote by Ol) for each searchable layer l. A common choice is to define it as a weighted
sum of candidates’ individual outputs yl =

∑
o∈Ol

α
(o)
l ∗ o(yl−1), where factors {α(o)

l }o∈Ol
of each

layer l can be defined differently for different methods (e.g, continuous parameters [55, 16, 24] or
random one-hot vectors [27]). Importantly for us, methods that use sparse weighting factors can
avoid executing operations associated with zero weights, saving both memory and compute [16, 27].

After a supernet has been constructed and trained, searching for a⋆ is usually performed by either
investigating architectural parameters [55, 24, 16], or using zero-th order optimisation methods to
directly solve the outer loop of Eq. 1 while approximating ω∗

a with weights taken from the supernet
(thus avoiding the costly inner optimisation) [47, 27]. The final model can then be retrained in
isolation using either random initialisation or weights from the supernet as a starting point.

Challenges of Federated NAS. As highlighted before, devices in the wild exhibit different compute
capabilities and can hold non-IID distributed data, resulting in system and data heterogeneity. In the
context of NAS, system heterogeneity has a particularly significant effects, as we might no longer be
able to guarantee that any model from our search space can be efficiently trained on all devices. This
inability can be attributed to insufficient compute power, limited network bandwidth or unavailability
of the client at hand. Consequently, some of the models might be deemed worse than others not
because of their worse ability to generalise, but because they might not be exposed to the same subsets
of data as others – as shown in Fig. 1, where we show models of different footprint trained across
client of varying capabilities under constrained (tier-aware) and full (tier-unaware) participation.

3 The FedorAS Framework

FedorAS is a resource-aware Federated NAS framework that combines the best of both worlds:
learning from clients across all tiers and yielding models tailored to each tier that benefit from this
collective knowledge.

3

. . .

 For each client, sample a subspace
without exceeding budget

batch batch batch ...

On-device training with budget-aware path sampling

+

Layer-wise histogram-informed supernet aggregation

Stage 1
Fed. Supernet

Training

Stage 2
Per-Tier Search

Stage 3
Per-Tier

Finetuning

Updated supernet.
End of round

2

3

Server
receives
models

Supernet

Supernet at round0

1

Not part of the subspace that this
client received from the server

Figure 2: Training process workflow with FedorAS.

Workflow. FedorAS’ workflow consists of three stages (Fig. 2): i) supernet training, ii) model
search and validation and iii) model fine-tuning. First, we train the supernet in a resource-aware and
federated manner (Stage 1, Sec. 3.1). We then search for models from the supernet with the goal of
finding the best architecture per tier (Stage 2, Sec. 3.2). Models are effectively sampled, validated
on a global validation set and ranked per tier. These architectures and their associated weights act
as initialisation to the next phase, where each model is fine-tuned in a per-tier manner (Stage 3.
Sec. 3.3). The end goal of our system is to have the best possible model per each cluster of devices.

Design rationale. We build our system around the concept of a supernet to facilitate weight-sharing
between architectures of various footprints. Operations in the supernet are samplable from paths
(i.e. models) of different footprint. As such, while normally large models would not be directly
trained on data of low-tier clients, our design allows for indirectly sharing this knowledge through
the association of the same operation to different paths. To ensure efficient training of a supernet,
we chose to base our approach on SPOS [27] and adapt it (see Eq. 4) since its training procedure
is lightweight, introducing very little overhead in terms of memory consumption and/or required
floating-point operations, especially compared to [55]. Last, we opted for clustering devices into
“tiers” based on their computational capabilities and search for an architecture for each tier as a
balance between having one model to fit all needs [29] and a different architecture per client [59].

3.1 SuperNet Training

0 Search space & models. First, we define the search space in terms of a range of operators options
per layer in the network that are valid choices to form a network. This search space resides as a whole
on the server and is only partially communicated to participating clients of a training round to keep
communication overheads minimal. Specific models (i.e. paths) consist of selections of one operator
option per layer, sampled in a single-path-one-shot manner on-device per local iteration.

1 Subspace sampling. It is obvious that communicating the whole space of operators along with
the associated weights to each device becomes quickly intractable, especially bearing in mind that
communication is usually a primary bottleneck in Federated Learning [39, 51]. To this direction,
FedorAS adopts a uniform parameter size budget, BΦcomm , and samples2 the search space for operators
until this limit is hit (Eq. 2). Setting the limit to half the size of a typical network deployed for a task
worked sufficiently well in our experiments and in fact accelerated convergence (Sec. 4.4).

L∑
l=0

∑
o∈Ol

1Ôl
(o)Φcomm(o) < BΦcomm , Ôl ⊆ Ol (2)

where L is the number of layer in the supernet, Ol the candidate and Ôl the selected operations in
layer l, 1 a unit vector of valid operations and Φcomm a measure of DNN size (e.g. #parameters).

In terms of sampling strategies, we experimented with uniform operator sampling, which we found to
work sufficiently well and provide uniform coverage over the search space. It is also worth noting that
a different subspace (not necessarily mutex) could be selected for each participating client in a round.

2Non-parametric operations are always sent downstream and layers without such options are prioritised to guarantee a valid network.

4

2 Client-side sampling & local training. Participating clients receive the subspace sampled on the
server, {Ôl}Ll=0, from which they sample a single operator on every layer. This constitutes a path
along the supernet (pL) representing a single model. For every batch, clients sample paths that do
not surpass the assigned training budget BTier

Φtrain
. Throughout this work, we consider Φtrain(·) to be a

cost function that counts the FLOPs of a given operator. This FLOPs limit is defined per tier so that
a network does not exceed the capabilities of the target device. Our goal is to sample valid paths
uniformly, to ensure systematic coverage of the entire (sub) search space during training:

pL =

L⋃
l=0

ol ∼ U{Ôl} s.t.
L∑

l=0

Φtrain(ol) < BTier
Φtrain

(3)

However, realising Eq. 3 efficiently is not a trivial task. Originally [27], the authors considered a naive
approach of repeatedly sampling a path until it fits the given budget, which results in non-negligible
overhead if the probability of finding a model under the threshold is low. Were we to employ such a
method, the most restricted devices, for which the set of eligible models is the smallest, would be the
ones burdened with the largest overhead. Therefore, we propose a greedy approximation in which
operations are selected sequentially. Specifically, in order to obtain a path pL = {oi}Li=0 we sample
operations layer-by-layer, according to a random permutation σ, in such a way that the i-th operation
is chosen from the candidates for layer σ(i) whose total overhead would not violate the constraint:

oi ∼ U{ o : o ∈ Ôσ(i) ∧
i∑

j=0

Φtrain(oj) + Φtrain(o) < BTier
Φtrain

} (4)

We can ensure that Eq. 4 can always obtain a valid architecture without resampling if layers have
Identity among their candidate operations and prioritising the selection of those which do not.

After having sampled the path, a model is instantiated and a single optimization step using a single
batch of data is performed. The number of samples passing through each operator are kept and
communicated back to the server, along with the updates, for properly weighting updated parameters
upon aggregation, as we will see next.

3 Aggregation with OPA. An operator gets stochastically exposed to clients data. This stems from
subspace sampling and client-side path sampling. As such, naively aggregating updates in an equi-
weighed manner (Plain-Avg) or total samples residing on a client (FedAvg [57]) would not reflect
the training experience during a round. For this reason, we propose OPA, OPerator Aggregation, an
aggregation method that weights updates based on the relative experience of an operator across all
clients that have updated that operator. Concretely, our method is generalisation of FedAvg where
normalisation is performed independently for each layer, rather than collectively for full models.
In order to enable that, we keep track of how many examples were used to update each searchable
operation ol, independently on each client, and later use this information to weight updates. Formally:

ω(t+1)
g (ol) =

∑k

i=0

|D(t)
i,ol

|∑k
j=0 |D(t)

j,ol
|
ω
(t)
i (ol) if |C(t)

ol | > 1

ω
(t)
g (ol) otherwise

(5)

where ω
(t)
g (·) are global weights, ω(t)

i (·) are local weights of client i at global step t, |D(t)
i,ol

| is the

number of samples having backpropagated through an operator ol for client i in round t, and C
(t)
ol

is the set of clients i s.t. |D(t)
i,ol

| > 0. Updates to ω
(t)
g happen only if |C(t)

ol | > 1 in order to protect
the privacy of single clients. Finally, if an operation is always selected, then Eq. 5 recovers FedAvg,
which means we can effectively use OPA throughout the model and not only for searchable layers.

3.2 Model Search & Validation
After training the supernet, a search phase is implemented to discover the best trained architecture
per device tier. Models are sampled with NSGA-II [22] and evaluated on a global validation set. The
rationale behind selecting the NSGA-II algorithm for our search is the fact that it is multi-objective
and allows us for efficient space exploration with the goal of optimising for model size in a specific
tier and accuracy. Other search algorithms can be used in place of NSGA-II, based on the objective at
hand. At the end of this stage, we have a model architecture per tier, already encompassing knowledge
across devices of different tiers, which serves as initialisation for further training.

5

Table 1: Datasets for evaluating FedorAS. We par-
tition CIFAR-10/100 following the Latent Dirichlet
Allocation (LDA) partitioning [35], with each client
receiving approximately equisized training sets. For
CIFAR-10, we consider α ∈ {1000, 1.0, 0.1} configu-
rations, while for CIFAR-100, we adopt α = 0.1 [68].
The remaining datasets come naturally partitioned.

Dataset Search Number Number Target TaskSpace Clients Examples

CIFAR10 CNN-L 100 50K Image classification
CIFAR100 CNN-L 500 50K Image classification
Speech Commands CNN-S 2, 112 105.8K Keyword Spotting
Shakespeare RNN 715 38K Next char. prediction

0 100 200 300 400 500 600 700
FLOPS (M)

70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5
90.0

Te
st

 a
cc

ur
ac

y
(%

)

Tier 1 Tier 2 Tier 3 Tier 4

Tier-unaware
Tier-aware (naive)
FjORD

FjORD-LDA
FedorAS

Figure 3: FedorAS outperforms other approaches (de-
tails in Appendix D.7). CIFAR-10 (non-IID, α=1.0).
FjORD is represented as a line as it can switch between
operating points on-the-fly via Ordered Dropout.

3.3 Fine-tuning Phase

Subsequently, we move to train each of the previously produced models in a federated manner across
all eligible clients. This means that architectures falling in a specific tier, in terms of footprint, can be
trained across clients belonging to that tier and above. Our hypothesis here is that compared to regular
FL where one needs to trade off capacity of participation, FedorAS allows for better generalisation
due to knowledge sharing through its supernet structure. Here we use conventional FedAvg and
partial client participation per round, again with the goal of training a single network per tier.

4 Evaluation

This section provides a thorough evaluation of FedorAS across different tasks to show its performance
and generality. First, we compare FedorAS to existing approaches in the context of federated NAS
in the cross-device and cross silo setting. Next, we we draw from the broader FL literature and
showcase our technique’s performance gains compared to homogeneous and heterogeneous federated
solutions (Sec. 4.2). This can be traced back to the benefits of supernet weight sharing; as such
we, subsequently, quantify its contribution by comparing it to FedorAS with randomly initialised
networks trained on eligible clients in a federated way (Sec. 4.3) without weight sharing. Last, we
showcase the contribution of specific components of our system through an ablation study (Sec. 4.4)
and also the performance and behaviour of alternative search methods (Sec. 4.5).

4.1 Experimental Setup

Datasets & Baselines. Datasets are summarised in Tab. 1. More information in Appendix D.

Search space. The adopted search spaces are specific to the dataset and task at hand, both in terms of
size and type of operators. In general, we assume our highest tier of model sizes to coincide with
a typical network footprint used for that task in the FL literature (e.g. ResNet-18 for CIFAR-10).
Nevertheless, there may be operators in the space that cannot be sampled in some tiers due to their
footprint. FedorAS sets the communication budget BΦcomm to be half the size of the supernet. The
full set of available operators per task is provided in the Appendix D.3.

Clusters definition. In our experiments, we cluster clients based on the amount of operations they
can sustain per round of training (#FLOPs), for simplicity. Other resources (e.g. #parameters, energy
consumption) can be used in place or in conjunction with FLOPs. More details in Appendix D.4.

4.2 Performance evaluation

Federated NAS. We start the evaluation by comparing our system with existing works in the federated
NAS domain. Specifically, we find two systems that perform federated NAS, namely FedNAS [29]
and SPIDER [59] and compare in the cross-device and cross-silo settings. In the former setting, we
adapt FedNAS to support partial participation and compare their technique to FedorAS under the
same cross-device settings in CIFAR-10. Results are shown in Tab. 2, showing FedorAS performing
1.04% better than FedNAS on CIFAR-10α=1 and 48.7% on CIFAR-10α=0.1, for the same training
memory footprint. Further details can be found in Appendix D.6. At the same time, while running
in cross-silo setting is not the main focus of FedorAS, we have adapted our experimental setting to
match that of FedNAS and SPIDER. Results are shown in Tab. 3 with FedorAS performing +11.6%
and -1.3% than the baselines, respectively, on the test set of their selected settings.

6

Table 2: Cross-device federated NAS on CIFAR-10.
Dataset Method Mem. Peak (MB) Perf. (%)

CIFAR10α=1

FedNAS 3837 90.02
FedNAS (adj. batch size) 1919 85.45
FedorAS 1996 86.46±0.32

CIFAR10α=0.1

FedNAS 3837 65.28
FedNAS (adj. batch size) 1919 54.84
FedorAS 1996 81.53±0.29

Table 3: Cross-silo federated NAS on CIFAR-10.
Dataset Method Validation acc. Test acc. #clients

CIFAR10α=0.5

FedNAS personalised∗ 90.4±2.4 - 20
FedNAS global - 81.2 16
FedorAScross-silo 97.2±0.4 90.6±0.2 20

CIFAR10α=0.2
SPIDER - 92.00±2.0 8
FedorAScross-silo - 90.82 8

∗FedNAS reports validation acc for this setting.

Comparison with Random Search. We further compare our search with a random search baseline –
which is a naive way of running FL NAS in our experimental setting (the same search space, etc.) –
and find that FedorAS performs significantly better at an average of +5.11pp, +3.24pp, +12.84pp,
+9.27pp, +0.25p across tiers for CIFAR-10α={1000,1,0.1}, CIFAR-100 and Shakespeare, respectively.
Only in the case of SpeechCommands did our search result in -0.87pp of accuracy on average. We
suspect this is an artifact of insufficiently-long fine-tuning which means models might not have
converged (suggested by a high variance). Detailed results are provided in Appendix E.

Federated Learning baselines. Next, we compare the performance of FedorAS with different
federated baselines, including homogeneous [68] and system heterogeneous frameworks [33, 43, 64].
In the former setting, we compare with results from [68] on CIFAR100α=0.1. FedorAS performs
1 percentage point (pp) better than the FedAvg baseline, at 45.84%, but at a fraction of the cost3.
Simultaneously, retraining the discovered model from scratch using random initialisation under the
same training setting as the baseline results in 11.43 pp higher accuracy than the best FedAdam
(63.94% vs 52.50%), showcasing the quality of FedorAS-produced bespoke architectures.

With respect to heterogeneous baselines (ZeroFL [64], FjORD[33]), we see that FedorAS consistently
leads to models with higher accuracy across tiers that are in the respective clients’ computational
budget (Tab. 4). At the same time, we depict how FedorAS performs compared to FjORD and
randomly selected architectures trained naively in a resource-aware manner in Fig. 3. One can clearly
see that the degrees of architectural freedom that our solution offers leads to significantly better
accuracy per resource tier. Notably, we perform 15.20% and 12.58% better on average than FjORD
on CIFAR-10 and Shakespeare, respectively, while still respecting client eligibility.

While model accuracy may not seem to scale proportionally to their size, we attribute this to the
limited participation eligibility of clients, an innate trait of system heterogeneous landscape. Normally,
this can cause performance gaps due to limited exposure to federated data (Fig. 1). We argue that
FedorAS is able to bridge this gap (+0.03 points (p) avg), by means of weight sharing and OPA,
+1.72 p more effectively than FjORD (avg Tier 4 vs Tier 1 gap across datasets).

Additional results. Additional results on the convergence and fairness of FedorAS as well as
alternative client allocation [43] to clusters are provided in Appendix G, H and I, respectively.

Table 4: Comparison with heterogeneous federated baselines. FedorAS performs better across datasets.
Dataset Method MFLOPs Params (M) Performance

CIFAR10α=1000

ZeroFLs=90% [64] 557‡ 11.17 82.82±0.64

FjORDLDA [33] [35, 139, 313, 556] [0.70, 2.79, 6.28, 11.16] [78.19±1.20, 78.63±1.31, 78.25±1.06, 77.19±0.85]
FedorASper tier [111, 140, 256, 329] [2.96, 2.93, 3.35, 4.32] [89.40±0.19, 89.60±0.15, 89.64±0.22, 89.24±0.29]

CIFAR10α=1

ZeroFLs=90% [64] 557‡ 11.17 81.04±0.28

FjORDLDA [33] [35, 139, 313, 556] [0.70, 2.79, 6.28, 11.16] [78.54±0.12, 79.25±0.51, 78.66±0.29, 77.35±0.44]
FedorASper tier [116, 183, 262, 330] [2.59, 2.90, 3.55, 4.31] [85.99±0.13, 86.30±0.41, 86.34±0.19, 86.46±0.32]

CIFAR10α=0.1 FjORDLDA [33] [35, 139, 313, 556] [0.70, 2.79, 6.28, 11.16] [61.43±0.39, 60.81±1.42, 59.72±5.19, 57.44±3.53]
(Acc. (%) ↑ is better) FedorASper tier [117, 159, 238, 345] [2.17, 3.13, 2.49, 2.61] [81.01±0.46, 81.53±0.29, 80.64±0.66, 80.85±0.28]

Shakespeare FjORD [33] [1, 3, 7, 11, 17] [0.01, 0.04, 0.08, 0.14, 0.21] [4.44±0.07, 3.91±0.10, 3.87±0.13, 3.87±0.13, 3.87±0.13]
(Perplexity ↓ is better) FedorASper tier [7, 12, 15, 21, 24] [0.09, 0.15, 0.18, 0.26, 0.30] [3.43±0.01, 3.39±0.04, 3.38±0.03, 3.40±0.01, 3.42±0.01]

SpeechCommands Oort [43]† 2382 21.29 62.20
(35 classes) PyramidFL [48]† 2382 21.29 63.84
(Accuracy (%) ↑ is better) FedorAS⋆best 10 0.63 70.10
† [43, 48] perform client selection based on system heterogeneity and are provided for context. FLOPs computed assuming the common [80] 40×51 MFCC features input.
‡ [64] speeds-up training w/ highly-sparse convs, attainable only with specialised h/w. ⋆ result obtained from the best model of setup in Appendix F.

4.3 Supernet weight-sharing with FedorAS
Here, we evaluate the impact of weight sharing through FedorAS’ supernet. We compare the
performance of FedorAS’ models to the same architectures models, but trained end-to-end in a
federated manner, across all four datasets. With this comparison, we aim to showcase that FedorAS

3
1.11 vs 0.16 GFLOPS, 11.4M vs 1.62M parameters, 4000 vs 850 global rounds (750 rounds of supernet training and 100 rounds of model finetuning)

7

Table 5: Models discovered by FedorAS benefit from weight sharing across tiers. Models resulted from the
search stage in FedorAS and subsequently FL-finetuned are compared to models using the same architecture but
trained end-to-end in an FL manner (i.e. randomly initialised, rand-init) on eligible clients.

Dataset Clients Setting Partitioning Initialisation Classes Tier 1 Tier 2 Tier 3 Tier 4

CIFAR-10 100 Standard

IIDα=1000
Supernet 10 89.40±0.19 89.60±0.15 89.64±0.22 89.24±0.29
rand-init 89.05±0.17 87.84±0.38 86.18±0.38 81.27±0.81

non-IIDα=1.0
Supernet 10 85.99±0.13 86.30±0.41 86.34±0.19 86.46±0.32
rand-init 87.12±0.44 86.29±0.86 85.10±0.44 80.10±1.92

non-IIDα=0.1
Supernet 10 81.01±0.46 81.53±0.29 80.64±0.66 80.85±0.28

(Acc. (%) ↑ is better) rand-init 70.61±2.16 70.30±1.90 68.29±0.49 64.87±1.48

CIFAR-100 500 Standard non-IIDα=0.1
Supernet 100 45.25±0.13 45.84±0.18 45.42±0.39 45.07±0.71

(Acc. (%) ↑ is better) rand-init 36.30±0.96 39.26±1.21 39.06±1.32 36.77±1.32

Speech Commands 2112 Standard given Supernet 12 80.19±1.78 80.47±1.69 81.0±1.58 80.56±0.40
(Acc. (%) ↑ is better) rand-init 81.92±1.32 79.94±0.84 78.57±1.42 79.36±1.67

Dataset Clients Setting Partitioning Initialisation Classes Tier 1 Tier 2 Tier 3 Tier 4 Tier 5
Shakespeare 715 Standard given Supernet 90 3.43±0.01 3.39±0.04 3.38±0.03 3.40±0.01 3.42±0.01

(Perplexity ↓ is better) rand-init 3.44±0.03 3.50±0.02 3.47±0.08 3.52±0.07 3.60±0.04

not only comes up with better architectures, but it also effectively transfers knowledge between tiers
through its supernet structure and OPA aggregation scheme. In order to accomplish that, we first train
with FedorAS across the three stages described in Sec. 3 (supernet-init). Subsequently, we take the
output architectures from our system, randomly initialise them and train end-to-end in a federated
manner, where each model trains across all eligible clients (rand-init). Results are presented in Tab. 5.

Indeed, models benefit from being initialised from a supernet across cases; this means that weight-
sharing mitigates both the limited model capacity of the lower-tier and the limited data exposure of
large models. The accuracy improvement is further magnified as non-IID-ness increases, leading up
to +15 pp over rand-init. Results on different tasks of the same dataset presented in Appendix F.

4.4 Ablation study
Next, we measure the contribution of specific components of FedorAS to the quality and performance
of these models. To this direction, we firstly compare the performance of our system’s aggregation
compared to naive averaging. Subsequently, we measure the impact of sending smaller subspaces to
clients for supernet training. We provide indicative results on CIFAR-10α=0.1.

OPA vs. naive averaging. OPA compared to FedAvg leads to increased accuracy by +1.2, +0.9,
+1.01 and +1.78 pp for tiers 1-4, respectively. More details in Appendix G.

Subspace sampling size. FedorAS samples the supernet before communicating it to a client. For
CIFAR-10 (α = 1.0) and when BΦcomm is set to 22.3M parameters (i.e. allowing sending whole
supernet), FedorAS yields 85.48%, 86.73%, 86.50% average accuracies across tiers for full, 1/2 and
1/4 of the size of the search space, respectively. Thus, not only is the overhead of communication
reduced with FedorAS, but convergence to the same level of accuracy is faster. We hypothesise that
this is due a better balance in the exploration vs. exploitation trade-off. More details in Appendix G.

4.5 Evaluation of the Search Phase
In order to assess the quality of models during search (Stage 2), so far we have needed a proxy dataset
to evaluate different paths and rank them. We consider this as a set of examples that each application
provider has centrally to measure the quality of their deployed models in production settings.

Validation set size. Nevertheless, the size and representativeness of the centralised dataset might
affect the quality of the search. To gauge the sensitivity of the end models to the underlying
distribution of the validation set, we sample down the validation set, as a held-out portion of the
clients datasets, to 20% and 50% of the original size. We find no noticeable impact on the quality of
the final models. Detailed results are presented in Appendix J.1.

Federated search. There may be also cases where no such dataset can be centralised. To this
direction, we test whether our search can operate under a federated setting with partial participation
in order to faithfully rank the quality of models stemming from the supernet. In this setting, we have
implemented a federated version of NSGA-II. Instead of candidate models being evaluated on the
same validation set, they are stochastically evaluated on sampled federated client datasets [62]. We
hypothesise it is possible to maintain faithful ranking of models compared to centralised evaluation
if enough clients are leveraged to evaluate models, at the cost of increased communication cost.
Furthermore, we expect the overall cost of achieving robust evaluation to increase as non-IID-ness
and #clients increase, and the instantaneous cost of sending models to decrease over time, as NSGA-II
converges to well-performing models (i.e. decreased diversity of models). Fig. 4 shows results for

8

1 2 3 4 5 6 7 8 9 10
No. of FE rounds per NSGA-II iter.

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

Ke
nd

al
l-

CIFAR10LDA = 0.1

Tier 1
Tier 2
Tier 3
Tier 4

1 2 3 4 5 6 7 8 9 10
No. of FE rounds per NSGA-II iter.

20

40

60

80

100

120

Av
g.

 to
ta

l c
om

m
. c

os
t (

GB
)

CIFAR10LDA = 0.1
Tier 1
Tier 2
Tier 3
Tier 4

1 3 5 7 9 11 13 15 17 19 21 23 25 27
NSGA-II iteration

20

40

60

80

Av
er

ag
e

su
pe

rn
et

 si
ze

 (M
B)

CIFAR10LDA = 0.1

Tier 1
Tier 2
Tier 3
Tier 4

Figure 4: Ranking quality & cost of federated evaluation (FE) of models for CIFAR-10α=0.1 during federated
search. Each time a new population of models is evaluated, a minimal supernet encompassing selected models is
sent to a sample of clients: left) ranking correlation between scores produced by FE & centralised evaluation
(CE), as a function of FE rounds (↑ rounds = ↑ clients); middle) total communication cost of sending all
necessary supernets to all clients, to run a full search; right) changes in the supernet size as NSGA-II progresses.

CIFAR10α=0.1, with extra results and details presented in Appendix J.2. Our experiments support the
aforementioned conjectures. Noticeably, even under highly non-IID settings, we can attain faithful
FE at a reasonable cost (4 rounds to Kendall-τ>0.8 for the results presented in Fig. 4).

5 Related Work
Data and system heterogeneity. Traditionally, works on heterogeneous FL have focused on tackling
the statistical data heterogeneity [70, 49, 34, 26, 53] or minimising the upstream communication
cost [45, 41, 74, 28, 5] of sending updates from client to servers, as the primary bottleneck in the
federated training process. However, it has become apparent that computational disparity becomes an
equally important barrier for contributing knowledge in FL. As such, lately, there has been a line of
work focusing on this very problem, where the discrepancy between the dynamics of different clients
affects the convergence rate or fairness of the deployed system. Specifically, such solutions draw from
efficient ML and attempt to dynamically alter the footprint of local models my means of structured
(PruneFL [37]), unstructured (Adaptive Federated Dropout [12], LotteryFL [46]) or importance-based
pruning (FjORD [33]), quantisation (AQFL [2]), low-rank factorisation (FedHM [77]), sparsity-
inducing training (ZeroFL [65]) or distillation (GKT [30]). However, each approach has limitations,
either because they involve extra training overhead [30] and residence of multiple DNN copies in
memory [2], or because they require specialised hardware for performance gains ([65, 12]). Last, some
of the architectural changes proposed may not offer the degrees of freedom that NAS exposes [33, 77,
46] or may have a different optimisation objective altogether (i.e. personalisation [46]).

Federated NAS. The concept of performing NAS in a federated setting has been visited before
in the literature [29, 59, 78, 79, 54]. However, current solutions vary greatly in their approaches
and goals, with most of them being applied and applicable to the cross-silo setting, where full
participation and small number of participants are expected. Specifically, one of the first works
in the area was FedNAS [29], which adopts a DARTS-based approach and aims to find a globally
good model for all clients, to be personalised at a later stage. This approach requires the whole
supernet to be transmitted and kept in memory for architectural updates, which leads to excessive
requirements (Fig. 2) that make it largely inapplicable for cross-device setups spanning many clients
of limited capabilities partially participating in training. To mitigate this requirement, [78] proposes
an RL-based approach for cross-silo FL-based NAS. Despite the intention, it still incurs significant
overheads due to RL-based model sampling convergence and single model training per client. A
somewhat different approach is adopted by HAFL [54], which leverages graph hypernetworks as a
means to generate outputs of a model. While interesting, performance and scalability are not on par
with current state-of-the-art. On the front of personalisation, FedPNAS [31] searches for architectures
with a shared based component across clients and a personalised component. However, this work is
only aimed at IID vision tasks and involves a meta-step for personalisation, which increases training
overheads significantly. At the other extreme for cross-silo personalised FL, SPIDER [59] aims at
finding personalised architectures per client. It requires the whole space on-device and federation
is accomplished through a second static on-device network. These non-negligible overheads make
porting this approach to the cross-device setting non-trivial.

In contrast, FedorAS brings Federated NAS to the cross-device setting and is designed with resource
efficiency and system heterogeneity in mind. This way, communication and computation cost is kept
within the defined limits, respecting the runtime on constrained devices. Crucially, our system does
not assume full participation of clients and is able to efficiently exchange knowledge through the
supernet weight sharing and generalise across different modalities and granularity of tasks.

9

6 Conclusion
In this work, we have presented FedorAS, a system that performs resource-efficient federated NAS
in the cross-device setting. Our method offers significantly lower overhead compared to existing
federated NAS techniques, while achieving state-of-the-art performance compared to heterogeneous
FL solutions, by means of effective weight sharing and flexible resource-aware training.

References
[1] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas Donald Lane. Zero-cost

proxies for lightweight NAS. In International Conference on Learning Representations (ICLR), 2021.

[2] Ahmed M Abdelmoniem and Marco Canini. Towards mitigating device heterogeneity in federated learning
via adaptive model quantization. In Proceedings of the 1st Workshop on Machine Learning and Systems,
EuroMLSys ’21, pages 96–103, New York, NY, USA, April 2021. Association for Computing Machinery.

[3] Mario Almeida, Stefanos Laskaridis, Ilias Leontiadis, Stylianos I Venieris, and Nicholas D Lane. EmBench:
Quantifying Performance Variations of Deep Neural Networks across Modern Commodity Devices. In The
3rd International Workshop on Deep Learning for Mobile Systems and Applications (EMDL), pages 1–6,
2019.

[4] Mario Almeida, Stefanos Laskaridis, Abhinav Mehrotra, Lukasz Dudziak, Ilias Leontiadis, and Nicholas D.
Lane. Smart at what cost? characterising mobile deep neural networks in the wild. In Proceedings of
the 21st ACM Internet Measurement Conference, IMC ’21, page 658–672, New York, NY, USA, 2021.
Association for Computing Machinery.

[5] Mohammad Mohammadi Amiri, Deniz Gunduz, Sanjeev R Kulkarni, and H Vincent Poor. Federated
Learning with Quantized Global Model Updates. arXiv preprint arXiv:2006.10672, 2020.

[6] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova. Secure
Single-Server aggregation with (Poly)Logarithmic overhead. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 1253–1269. Association for Computing
Machinery, New York, NY, USA, October 2020.

[7] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc V. Le. Understanding
and simplifying one-shot architecture search. In International Conference on Machine Learning (ICML),
2018.

[8] Axel Berg, Mark O’Connor, and Miguel Tairum Cruz. Keyword Transformer: A Self-Attention Model for
Keyword Spotting. In Proc. Interspeech 2021, pages 4249–4253, 2021.

[9] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Titouan Parcollet, and Nicholas D. Lane. Flower:
A friendly federated learning research framework, 2020.

[10] Keith Bonawitz et al. Towards Federated Learning at Scale: System Design. In Proceedings of Machine
Learning and Systems (MLSys), 2019.

[11] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for Privacy-Preserving machine
learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, pages 1175–1191, New York, NY, USA, October 2017. Association for Computing Machinery.

[12] Nader Bouacida, Jiahui Hou, Hui Zang, and Xin Liu. Adaptive federated dropout: Improving communica-
tion efficiency and generalization for federated learning. In IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pages 1–6, 2021.

[13] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent neural networks.
In International Conference on Learning Representations (ICLR), 2017.

[14] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. CoRR, October 2017.

[15] Andrew Brock, Theo Lim, James M. Ritchie, and Nick Weston. SMASH: One-shot model architecture
search through hypernetworks. In International Conference on Learning Representations (ICLR), 2018.

[16] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task and
hardware. In International Conference on Learning Representations (ICLR), 2019.

10

[17] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

[18] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder-decoder approaches, 2014.

[19] D. Coimbra de Andrade, S. Leo, M. Loesener Da Silva Viana, and C. Bernkopf. A neural attention model
for speech command recognition. ArXiv e-prints, August 2018.

[20] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Scharwächter, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset. In CVPR Workshop on
The Future of Datasets in Vision, 2015.

[21] S. Davis and P. Mermelstein. Comparison of parametric representations for monosyllabic word recognition
in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing,
28(4):357–366, 1980.

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[23] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 248–255,
2009.

[24] Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1761–1770, 2019.

[25] Łukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas Lane.
Brp-nas: Prediction-based nas using gcns. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 10480–10490.
Curran Associates, Inc., 2020.

[26] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized Federated Learning with Theoretical
Guarantees: A Model-Agnostic Meta-Learning Approach. Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[27] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single
path one-shot neural architecture search with uniform sampling. In European Conference on Computer
Vision, pages 544–560. Springer, 2020.

[28] Pengchao Han, Shiqiang Wang, and Kin K Leung. Adaptive Gradient Sparsification for Efficient Federated
Learning: An Online Learning Approach. In IEEE International Conference on Distributed Computing
Systems (ICDCS), 2020.

[29] C He, M Annavaram, and S Avestimehr. Fednas: Federated deep learning via neural architecture search.
arXiv e-prints, 2020.

[30] Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated learning
of large cnns at the edge. Advances in Neural Information Processing Systems, 33:14068–14080, 2020.

[31] Minh Hoang and Carl Kingsford. Personalized neural architecture search for federated learning, 2022.

[32] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780,
nov 1997.

[33] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos I Venieris, and Nicholas D
Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with ordered dropout. arXiv
preprint arXiv:2102.13451, 2021.

[34] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The Non-IID Data Quagmire of
Decentralized Machine Learning. In International Conference on Machine Learning (ICML), 2020.

[35] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data distribu-
tion for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[36] Andrey Ignatov, Radu Timofte, Andrei Kulik, Seungsoo Yang, Ke Wang, Felix Baum, Max Wu, Lirong
Xu, and Luc Van Gool. Ai benchmark: All about deep learning on smartphones in 2019. In International
Conference on Computer Vision (ICCV) Workshops, 2019.

11

[37] Yuang Jiang, Shiqiang Wang, Víctor Valls, Bong Jun Ko, Wei-Han Lee, Kin K. Leung, and Leandros
Tassiulas. Model pruning enables efficient federated learning on edge devices. IEEE Transactions on
Neural Networks and Learning Systems, pages 1–13, 2022.

[38] William M. Fisher John S. Garofolo, Lori F. Lamel et al. Timit acoustic-phonetic continuous speech corpus.
In Linguistic Data Consortium, Philadelphia, 1983.

[39] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

[40] Jiawen Kang, Zehui Xiong, Dusit Niyato, Shengli Xie, and Junshan Zhang. Incentive mechanism for
reliable federated learning: A joint optimization approach to combining reputation and contract theory.
IEEE Internet of Things Journal, 6(6):10700–10714, 2019.

[41] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha Suresh, and Dave
Bacon. Federated Learning: Strategies for Improving Communication Efficiency. In NeurIPS Workshop
on Private Multi-Party Machine Learning, 2016.

[42] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Citeseer, 2009.

[43] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury. Oort: Efficient federated
learning via guided participant selection. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 19–35. USENIX Association, July 2021.

[44] Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju Hwang. Help: Hardware-adaptive efficient latency
prediction for nas via meta-learning. In Advances in Neural Information Processing Systems (NeurIPS),
2021.

[45] Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran Chen. Hermes: an efficient federated
learning framework for heterogeneous mobile clients. In Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, MobiCom ’21, pages 420–437, New York, NY, USA,
October 2021. Association for Computing Machinery.

[46] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai Li. Lotteryfl: Empower
edge intelligence with personalized and communication-efficient federated learning. In 2021 IEEE/ACM
Symposium on Edge Computing (SEC), pages 68–79, 2021.

[47] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang, Xiaodan Liang, Liang Lin, and Xiaojun Chang.
Blockwisely supervised neural architecture search with knowledge distillation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[48] Chenning Li, Xiao Zeng, Mi Zhang, and Zhichao Cao. Pyramidfl: A fine-grained client selection framework
for efficient federated learning. In Proceedings of the 28th Annual International Conference on Mobile
Computing and Networking, MobiCom ’22. Association for Computing Machinery, 2022.

[49] Daliang Li and Junpu Wang. FedMD: Heterogenous Federated Learning via Model Distillation. In NeurIPS
2019 Workshop on Federated Learning for Data Privacy and Confidentiality, 2019.

[50] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated learning
through personalization. In International Conference on Machine Learning, pages 6357–6368. PMLR,
2021.

[51] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated Learning: Challenges,
Methods, and Future Directions. IEEE Signal Processing Magazine, 2020.

[52] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

[53] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in federated learning.
In International Conference on Learning Representations, 2020.

[54] Or Litany, Haggai Maron, David Acuna, Jan Kautz, Gal Chechik, and Sanja Fidler. Federated learning
with heterogeneous architectures using graph hypernetworks, 2022.

[55] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations (ICLR), 2019.

12

[56] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18,
page 7827–7838, Red Hook, NY, USA, 2018. Curran Associates Inc.

[57] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pages 1273–1282. PMLR, 2017.

[58] Bert Moons, Parham Noorzad, Andrii Skliar, Giovanni Mariani, Dushyant Mehta, Chris Lott, and Tijmen
Blankevoort. Distilling optimal neural networks: Rapid search in diverse spaces. arXiv:2012.08859, 2020.

[59] Erum Mushtaq, Chaoyang He, Jie Ding, and Salman Avestimehr. SPIDER: Searching personalized neural
architecture for federated learning. CoRR, December 2021.

[60] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on, pages 5206–5210. IEEE, 2015.

[61] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
Advances in Neural Information Processing Systems (NeurIPS), pages 8026–8037, 2019.

[62] Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris Kluivers, Rogier van Dalen, Chi Wai
Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al. Federated evaluation and tuning for on-device
personalization: System design & applications. arXiv preprint arXiv:2102.08503, 2021.

[63] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via
parameters sharing. In International Conference on Machine Learning (ICML), pages 4095–4104, 2018.

[64] Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao, Yan Gao, Titouan Parcollet, and Nicholas Don-
ald Lane. ZeroFL: Efficient on-device training for federated learning with local sparsity. In International
Conference on Learning Representations, 2022.

[65] Xinchi Qiu, Titouan Parcollet, Javier Fernandez-Marques, Pedro Porto Buarque de Gusmao, Daniel J
Beutel, Taner Topal, Akhil Mathur, and Nicholas D Lane. A first look into the carbon footprint of federated
learning. arXiv preprint arXiv:2102.07627, 2021.

[66] Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, and Yoshua Bengio. Light gated recurrent units for
speech recognition. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(2):92–102,
apr 2018.

[67] Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku Rouhe, Samuele Cornell, Loren Lugosch, Cem
Subakan, Nauman Dawalatabad, Abdelwahab Heba, Jianyuan Zhong, Ju-Chieh Chou, Sung-Lin Yeh,
Szu-Wei Fu, Chien-Feng Liao, Elena Rastorgueva, François Grondin, William Aris, Hwidong Na, Yan
Gao, Renato De Mori, and Yoshua Bengio. SpeechBrain: A general-purpose speech toolkit, 2021.
arXiv:2106.04624.

[68] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv
Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International Conference on
Learning Representations, 2021.

[69] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and Tong Zhang. Bridging the gap between
sample-based and one-shot neural architecture search with bonas. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
1808–1819. Curran Associates, Inc., 2020.

[70] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated Multi-Task Learning.
In Advances in Neural Information Processing Systems (NeurIPS), 2017.

[71] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V.
Le. MnasNet: Platform-aware neural architecture search for mobile. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[72] Nguyen Truong, Kai Sun, Siyao Wang, Florian Guitton, and YiKe Guo. Privacy preservation in federated
learning: An insightful survey from the gdpr perspective. Computers & Security, page 102402, 2021.

13

[73] Roman Vygon and Nikolay Mikhaylovskiy. Learning efficient representations for keyword spotting with
triplet loss. In Speech and Computer, pages 773–785. Springer International Publishing, 2021.

[74] Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. ATOMO: Communication-Efficient Learning via Atomic Sparsification. Advances in Neural
Information Processing Systems (NeurIPS), 2018.

[75] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018.

[76] C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazelwood, E. Isaac, Y. Jia, B. Jia,
T. Leyvand, H. Lu, Y. Lu, L. Qiao, B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang,
B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang. Machine Learning at Facebook: Understanding Inference
at the Edge. In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 331–344, 2019.

[77] Dezhong Yao, Wanning Pan, Yao Wan, Hai Jin, and Lichao Sun. Fedhm: Efficient federated learning for
heterogeneous models via low-rank factorization. arXiv preprint arXiv:2111.14655, 2021.

[78] Dixi Yao, Lingdong Wang, Jiayu Xu, Liyao Xiang, Shuo Shao, Yingqi Chen, and Yanjun Tong. Federated
model search via reinforcement learning. In 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), pages 830–840, July 2021.

[79] Chunhui Zhang, Xiaoming Yuan, Qianyun Zhang, Guangxu Zhu, Lei Cheng, and Ning Zhang. Towards
tailored models on private AIoT devices: Federated direct neural architecture search. Corr, February 2022.

[80] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. Hello edge: Keyword spotting on
microcontrollers, 2018.

[81] Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen Zhang, and Wanli
Ouyang. Econas: Finding proxies for economical neural architecture search. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

14

Table of Contents
A Introduction 15

B Broader Impact 16

C Limitations & Future Work 16

D Detailed Experimental Setup 16
D.1 Implementation . 16
D.2 Datasets . 16
D.3 Search Spaces . 17
D.4 Tiers: definition and client assignment . 18
D.5 Hyperparameters . 20
D.6 Cross-device Federated NAS evaluation . 21
D.7 Baselines . 22

E Comparison against random search 23

F Impact of weight-sharing on different task training 24

G Convergence and Impact of Supernet Sampling 24

H Fairness 25

I Different allocation of clients to tiers 26

J Evaluation of the Search Phase 26
J.1 Sensitivity to size of validation set . 26
J.2 Federated Search . 27

A Introduction

This Appendix extends the content of the main paper by providing support material to the study
presented in Sec. 3, 4 and, additional insights about FedorAS. Concretely, the Appendix is divided
into three main blocks of extra content:

• Impact and Limitations. We concisely present the broad impact and limitations of our
work as well as future research directions in Sec. B, C.

• Experimental Setup. Sec. D provides details on the libraries used to build FedorAS, the
datasets considered for experiments as well as the hyperparameters used to obtain the results
presented in Section 4. Crucially, we provide a detailed description of the search spaces
utilised in for each dataset domain, how tiers are defined and, a concise description of each
baseline method included in this work.

• Additional Experiments. Sec. E through H study different aspects of FedorAS such as:
i) learning multiple tasks using the supernet in Sec. F; or ii) the convergence behaviour
in Sec. G; iii) the fairness aspect of FedorAS; or under new scenarios altogether, such as:
iv) an alternative procedure to assign clients to tiers in Section I; or iv) alternative search
methods in Sec. J.

Overall, the following content substantially extends what is already presented in the main text.

15

B Broader Impact

Our system, FedorAS, performs federated and resource-aware NAS in the cross-device setting.
Despite the benefits illustrated compared to centralised NAS and cross-silo FL solutions, running
Neural Architecture Search is still a resource-demanding process, in terms of compute, memory
and network bandwidth. While FedorAS’s target devices can be of significantly lower TDP (i.e.
smartphones and IoT devices vs. server-grade GPUs) – with consequences on the overall energy
consumption of training [65] – they are resources not directly owned by the operator. As such, special
care needs to be taken with respect to how many device resources are leveraged at any point in, so as
not hinder the usability of the device or invoke monetary costs to the user [40].

C Limitations & Future Work

Despite the challenges addressed by FedorAS, our prototype has certain limitations. First and
foremost, we have opted to cluster devices (i.e. in tiers) based on their FLOPS. While it is perfectly
normal to divide clusters based on other criteria (e.g. memory, latency, energy) or in a multi-objective
manner, we have kept it simple. Moreover, one can opt for biased sampling of i) clients participating
in a round, ii) the subspace they get communicated and iii) the paths sampled from that subspace, we
opted for uniform sampling for all of the above for simplicity, uniform coverage of the search space
and fairness in participation. We leave the exploration of such strategies as future work. Last but not
least, we have considered privacy-enhancing techniques, such as Differential Privacy [14] or Secure
Aggregation [11, 6], as orthogonal to our scheme. Combining Federated NAS with such strategies
can expose interesting trade-offs of exploration-exploitation-privacy budgets that could be explored
in the future.

D Detailed Experimental Setup

D.1 Implementation

FedorAS was implemented on top of the Flower (v0.18) [9] framework and PyTorch (v1.11.0) [61].
We run all our experiments on a private cloud cluster in a simulated manner, across four iterations
each and report averages and standard deviations.

D.2 Datasets

We partition CIFAR-10/100 following the Latent Dirichlet Allocation (LDA) partitioning [35],
with each client receiving approximately equisized training sets. For CIFAR-10, we consider
α ∈ {1000, 1.0, 0.1} configurations, while for CIFAR-100, we adopt α = 0.1 as in [68]. The
remaining datasets come naturally partitioned.

CIFAR-10/100. The CIFAR-10 datasets contains 10k and 50k 32x32 RGB images in its test and
training sets respectively comprising ten classes. The goal is to classify these images correctly.
Similarly, CIFAR-100 follows an identical partitioning but, this time, across 100 classes (fine lebels)
or 20 superclasses (coarse labels). Both CIFAR datasets have a uniform coverage across their classes.

SpeechCommands. The Speech Commands datasets [75] is comprised of 105,829, 16KHz 1-second
long audio clips of a spoken word (e.g. "yes", "up", "stop") and the task is to classify these in a 12
or 35 classes setting. The datasets comes pre-partitioned into 35 classes and in order to obtain the
12-classes version, the standard approach [8, 19, 73] is to keep 10 classes of interest (i.e. "yes", "no",
"up", "down", "left", "right", "on", "off", "stop", "go"), place the remaining 25 under the "unknown"
class and, introduce a new class "silence" where no spoken word appear is the audio clip. In this
work we consider SpeechCommandsV2, the most recent version of this dataset. The dataset spans
three disjoint set of speakers: 2112 form the training set, 256 for validation and, 250 for testing.
In FedorAS, the supernet training phase makes uses of the 2112 clients in the training partition
only. The results are obtained by measuring the performance of the discovered models on the data
of the 250 clients comprising the test set. Data is not uniformly distributed and some clients have
more data than others. This dataset is processed by first extracting MFCC [21] features from each
audio clip [80, 8]. Across our experiments we extract 40 MFCC features from a MelSpectrogram
where each audio signal is first sub-sampled down to 8KHz and then sampled using 40ms wide time

16

windows strided 20ms appart. This results in 1-second audio clip being transformed into a 1×40×51
input that can be passed to a CNN.

Shakespeare. This dataset is built [17, 57] from The Complete Works of William Shakespeare and
partitioned in such a way data that from each role in the play is assigned to a client. This results in a
total of 1,129 partitions where the average number of samples per device is 3.7K and the standard
deviation 6.2K samples. This makes Shakespeare a relatively imbalanced dataset. The task is to
correctly predict the next character in a dialog given the previously seen characters in the sentence.
The vocabulary considered has 86 English characters as well as four special tokens: start and end of
sentence, padding and out-of-vocabulary tokens.

D.3 Search Spaces

We assume that the largest model in the search space is the maximal size that any of the clients
can handle. The minimum cost is set to the fixed cost of the network (i.e. cost of non-searchable
components). Given this range, and number of clusters C, we define the first and last clusters at
prctl, prctr percentiles of a randomly sampled set of models from the search space and linearly scale
the C − 2 clusters in-between. All supernet search spaces are depicted in Fig. 5 and described below.

C
on

v(
3)

O
pe

ra
tio

n
1

O
pe

ra
tio

n
2

O
pe

ra
tio

n
3

O
pe

ra
tio

n
4 D
S

C
on

v(
3)

C
on

v(
2)

G
lo

ba
l p

oo
lin

g

Li
ne

ar

repeated 4 times

O
pe

ra
tio

n
1

S
ki

p
1

S
ki

p
2

O
pe

ra
tio

n
2

E
m

be
dd

in
g

Li
ne

ar

c=64 c=same

c=prev*1.5
s=2

C
on

v(
3)

O
pe

ra
tio

n
1

O
pe

ra
tio

n
2

G
lo

ba
l p

oo
lin

g

Li
ne

ar

repeated 2 times

c=16 c=same

C
on

v(
1)

Av
g.

 P
oo

l(3
)

c=prev*1.5
s=2

O
pe

ra
tio

n
1

c=same
C

on
v(

1)

Av
g.

 P
oo

l(3
)

c=prev*1.5
s=2

repeated 2 times

d=8

d=128

Figure 5: Summary of models used in our experiments: left) CIFAR-10 and CIFAR-100, middle) Speech
Commands, right) Shakespeare. Blocks highlighted in blue are fixed, orange blocks represent searchable layers.
c – output channels, s – stride, d – output feature dimension, DSConv – depthwise separable convolution.
Whenever a layer has more than one input they are added. All convolutions are followed by BN and ReLU. For
convolution and pooling operations, numbers in parentheses represent window sizes.

CIFAR-10 and CIFAR-100. We use a ResNet-like search space similar to the one used in, for
example, Cai et al. [16]. Specifically, our model is a feedforward model with a fixed (i.e. non-
searchable) stem layer followed by a sequence of 3 searchable blocks, each followed by a fixed
reduction block. A standard block consists of 4 searchable layers organized again in a simple
feedforward manner. Operations within a standard block preserve shape of their inputs, but are
allowed to change dimensions of intermediate results. On the other hand, the goal of reduction
blocks is to reduce spatial resolution (2× in each dimension) and increase number of channels (1.5×).
Reduction blocks are fixed throughout and consists of a depthwise separable convolution 3× 3, with
the first part performing spatial reduction and the second increasing the number of channels, and a
standard 2× 2 convolution applied to a residual link. The sequence of blocks is finished with a global
average pooling per-channel and a classification layer outputting either 10 or 20/100 logits, which
is the only difference between the two models. Each convolution operation is followed by a batch
normalization (BN) and ReLU.

In our experiments we considered the following candidate operations:

• standard convolution 1× 1 with BN and ReLU

• depthwise separable convolution 3 × 3 with expansion ratio (controlling the number of
intermediate channels) set to {0.5, 1, 2}, with each expansion ratio being an independent
choice in our search space

• MobileNet-like block consisting of a convolution with kernel size k and expansion ratio
e, followed by a Squeeze-and-Excitation layer, followed by a 1× 1 convolution reverting
the channels expansion, we considered {(k = 1, e = 2), (k = 3, e = 0.5), (k = 3, e =
1), (k = 3, e = 2)}

• identity operation

17

The stem layer was set to a 3× 3 convolution outputting 64 channels.

Speech Commands. The model follows the one used for the CIFAR datasets but is made more
lightweight – to roughly match what can be found in the literature – by reducing stem channels to 16
and including only 1 (resp. 2) searchable operations in the first (resp. last) two blocks. Additionally,
reduction block only includes a single 1 × 1 convolution, that changes the number of channels,
followed by a 3 × 3 average pooling that reduces spatial dimensions. We also include additional
candidate operations:

• standard convolution 3× 3

• depthwise separable convolution with kernel size 1 and expansion ratio 2

All other operations from the CIFAR model are also included.

Shakespeare. We base our design on the model used by FjORD. [33]. Specifically, the model
is a recurrent network that begins with a fixed embedding layer outputting 8-dimensional feature
vector per each input character. This is then followed by a searchable operation #1 that increases
dimensionality from 8 to 128; in parallel, we have a searchable skip connection #1 operation whose
output is added to the output of the operation #1. Later there is another searchable operation #2 with
its own skip connection #2, both keeping the hidden dimension at 128. Again, their outputs are added
and passed to the final classification layer.

Candidate operations for each of the four searchable layers are mainly the same, with minor adjust-
ments made to make sure a valid model is always constructed. These include:

• an LSTM layer [32],
• a GRU layer [18],
• a LiGRU layer with tanh activation [66],
• a QuasiRNN layer [13],
• a simple Linear layer (no recurrent connection) followed by a sigmoid activation,
• a 1D convolution with kernel 5 spanning time dimension (looking at the current character

and 4 previous ones), followed by a sigmoid activation (no normalisation),
• identity operation (only included in later operation, after feature dimension has been in-

creased to 128),
• zero operation, outputting zeros of the correct shape (only included in skip connection

layers).

For LiGRU and QuasiRNN we used implementations provided by the Speechbrain project [67], after
minor modifications. For others, we used standard operations from PyTorch. All operations were
used as unidirectional. We did not use any normalisation throughout the model.

D.4 Tiers: definition and client assignment

With FedorAS the discovery and training of architectures happens in a tier-aware fashion as a
federated process. In this work we considered splitting each search space along the FLOPs dimensions
(but other splits are possible, e.g: energy, peak-memory usage, etc – or a combination of these). Fig. 6
illustrates the span in terms of model parameters and FLOPs of each search space presented in D.3
and the split along the FLOPs dimensions for each of them. These search spaces vary considerably in
terms of size and span, which motivated us to use different number of tiers or client-to-tier assignment
strategies. Tab. 6 shows the the FLOPs ranges considered for each tier, the number of models in those
sub-spaces exposed to FedorAS as well as the ratio of models in the entire search space that fall onto
each tier.

18

Table 6: This table summarises how each search space is split into tiers. Parameters ρL and ρH are used to
conveniently split the FLOPs axis for each dataset and present challenging scenarios for FedorAS. The last
column refers to the percentage of the total clients that are assigned to each tier.

Dataset [ρL, ρH] Tier FLOPs range # Models Portion(%) Clients (%)

CIFAR-10 [0.0, 0.95]

T1 [0, 120.9M] 239.4·1012 12.92% 25%
T2 (120.9M, 223.2M] 1089.4·1012 58.80% 25%
T3 (223.2M, 325.4M] 477.2·1012 25.75% 25%
T4 (325.4M, 716.0M] 46.9·1012 2.53% 25%

CIFAR-100 [0.0, 0.9]

T1 [0, 111.5M] 168.4·1012 9.09% 25%
T2 (111.5M, 204.3M] 975.4·1012 52.64% 25%
T3 (204.3M, 297.1M] 609.5·1012 32.89% 25%
T4 (297.1M, 716.0M] 99.7·1012 5.38% 25%

CIFAR-100 [0.0, 0.9]

T1 [0, 111.5M] 168.4·1012 9.09% 50%
T2 (111.5M, 204.3M] 975.4·1012 52.64% 25%

(multi-task setting T3 (204.3M, 297.1M] 609.5·1012 32.89% 12.5%
of Appendix F) T4 (297.1M, 716.0M] 99.7·1012 5.38% 12.5%

SpeechCommands [0.3, 0.925]

T1 [0, 5.0M] 827.5·103 46.71% 80%
T2 (5.0M, 7.5M] 617.4·103 34.85% 1.25%
T3 (7.5M, 10.1M] 260.2·103 14.69% 1.25%
T4 (10.1M, 20.0M] 66.4·103 3.75% 17.5%

Shakespeare [0.1, 0.77]

T1 [0, 7.8M] 316 13.48% 20%
T2 (7.8M, 12.8M] 577 24.54% 20%
T3 (12.8M, 17.8M] 787 33.48% 20%
T4 (17.8M, 22.8M] 473 20.14% 20%
T5 (22.8M, 33.8M] 196 8.37% 20%

Identifying FLOPs ranges for each tier. Regardless of the dataset, we follow a common approach
to divide the FLOPs dimension that each dataset spans. The main aim is to finely control how many
models fall onto the smallest/largest tier, given that these are considerably sparse regions of the
entire search space. If we were to evenly split the FLOPs dimension, almost no architecture would
fall onto the largest tier. To simplify the process of defining where each tier’s boundaries lie, we
follow these steps which require two hyperparameters: (1) we construct a long array of FLOPs from
models sampled from the search space and this array is then sorted from lowest to highest; then,
(2) we normalise this array of FLOPs and compute the cumulative sum of such normalised array;
finally, (3) we identify the lower limit of the highest tier as maximum FLOPs value found in the first
ρN, ρ ∈ [0, 1], elements of the array where N is the number of samples taken (we found 100K to
work well). Essentially, we find the FLOPs for which the approximated PDF over the FLOPS of a
given search space doesn’t surpass ρ. Once that FLOPs value is identified, the FLOPs range is evenly
split for the tiers below and the higher limit for the largest tier becomes the maximum FLOPs a model
in the search space can have. This is the approach for CIFAR-10 and CIFAR-100 as illustrated in
Fig. 6 (a) and (b). For SpeechCommands and Shakespeare we introduce a similar approach to give a
wider range to the smallest tier. We refer to ρL and ρH as the PDF ratios to identify the boundaries
splitting Tier1&2 and Tier3&4 respectively. The concrete values for each dataset as well as the
FLOPs values for each tier boundary are shown in Tab. 6.

Clients to tiers assignment. For CIFAR-10/100 clients are uniformly assigned to a cluster of devices
or tier. For these datasets we consider four tiers, so each ends up containing 25% the clients resulting
in 25 clients for CIFAR-10 and 125 clients for CIFAR-100. Similarly, for Shakespeare clients are
also uniformly assigned to a tier, resulting in 143 clients per tier. For SpeechCommands, we designed
a more challenging setup and divide the clients into tiers as follows: 80% of clients are assigned to
be tier-1 devices, 17.5% are Tier-4 devices and the rest is evenly split into Tier-2 and Tier-3. This
distribution better represents the the types of systems in the wild that perform keyword-spotting [80],
where the majority of the commercially deployed systems run these applications on low end CPUs or
microcontrollers due to their always-on nature. Across datasets, the client-to-tier assignments was
done irrespective of the amount of data these contained or distribution over the labels. An alternative
client to tier allocation is provided in Sec. I.

19

100 200 300 400 500 600 700
FLOPs (M)

1

2

3

4

5

6

Pa
ra

m
s (

M
)

Tier 1
Tier 2

Tier 3
Tier 4

(a) CIFAR-10

100 200 300 400 500 600 700
FLOPs (M)

1

2

3

4

5

6

Pa
ra

m
s (

M
)

Tier 1
Tier 2

Tier 3
Tier 4

(b) CIFAR-100

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
FLOPs (M)

0.2

0.4

0.6

0.8

1.0

Pa
ra

m
s (

M
)

Tier 1
Tier 2

Tier 3
Tier 4

(c) SpeechCommands

0 5 10 15 20 25 30 35
FLOPs (M)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pa
ra

m
s (

M
)

Tier 1
Tier 2
Tier 3

Tier 4
Tier 5

(d) Shakespeare

Figure 6: For each search space, we randomly sample 500 architectures and color code them based on the
tier they belong to. Vertical dashed lines represent the boundaries between device tiers. For Shakespeare, the
majority of the candidate operators in the searchspace include just linear layers or no-op layers, as a results the
number of FLOPs grows almost linearly with the model of parameters.

D.5 Hyperparameters

Here we present the hyperparameters used across all datasets and tasks to generate the results
presented in Sec. 4. In Tab. 7 we show the hyperparamters utilised for the first stage in the FedorAS
framework: federated training of the supernet. After this stage, the best model for each tier is
extracted from the supernet and then, they get finetuned in a per-tier aware manner (i.e. clients in
tier T and above can finetune a model that belong to tier T). The hyperparameters of these two
consecutive stages are shown in Tab. 8.

Table 7: Hyperparameters used for the federated supernet training stage in FedorAS, as described in Sec. 3.1.
The learning rate is kept fixed during this stage. In all datasets, the aggregation strategy followed the proposed
histogram-informed methodology OPA, first presented in Sec. 3.1.

Dataset # Federated # Clients # Local Local Batch LR Momentum Gradient
Rounds per round Epochs Optimizer Size Clipping

CIFAR-10 500 10 50 SGD 128 0.1 0.9 N
CIFAR-100 500/750 10 25 SGD 64 0.1 0.9 N
SpeechCommands 750 21 25 SGD 64 0.1 0.9 N
Shakespeare 500 16 5 SGD 4 1.0 0.0 Y

20

Table 8: Hyperparameters used by FedorAS to search for the best model in the supernet and finetune them in a
tier-aware fashion as described in Sec. 3.2 and Sec. 3.3 respectively. Searching iterations shown are allocated
per-tier (i.e. CIFAR-10 has 4 tiers so a total of 4K valid models would be considered during the search). Cosine
LR scheduling gradually reduces the initial LR (shown in the table) by an order of magnitude over the span
of the the finetuning process. For Shakespeare, step LR decay worked best. This is applied at rounds 50 and
75, each decreasing the LR by a factor of 10×. SpeechCommands assigns different search iterations based on
the ratio of clients assigned to each tier. FedorAS scales the amount of search for valid models within the tier
accordingly. For Shakespeare, the sub-searchspaces that yield Tier-1 and Tier-5 models are smaller than for the
other tiers, we therefore consider fewer search iterations.

Dataset # Tiers # Search # Finetune # Clients Local Batch LR LR Other
Iterations Rounds per round Epochs Size Scheduling Hyperparams

CIFAR-10 4 1000 100 6 1 32 0.01 cosine momentum=0.9
CIFAR-100 4 1000 100 6 1 32 0.01 cosine momentum=0.9
SpeechCommands 4 500/2000 100 21 1 32 0.01 cosine momentum=0.9
Shakespeare 5 100/150 100 16 1 4 1.0 step g.clipping=5

Regarding the rand-init results (i.e. models discovered by FedorAS but trained from scratch –
discarding the weights given by the supernet) we present the hyperparameters in Tab. 9. These
hyperparameters were the ones used to generate the results in Tab. 5 and 12 as well as Fig. 3. In
Sec. 4.2, we present a CIFAR-100 result that largely outperforms existing federated baseline of [68].
This was achieved by a model discovered by FedorAS but trained in the rand-init setting following
the setup as in [68]: 10 clients per round for 4k rounds using batch 20, starting learning rate of 0.1
decaying to 0.01 following a cosine scheduling.

Table 9: The architectures discovered by FedorAS can also be trained from scratch. This table contains the
hyperparameters utilised to generate the rand-init results shown in Tab. 5 and 12. Training of these baselines is
also performed in a tier-aware fashion. Cosine LR scheduling gradually reduces the initial LR (shown in the
table) by an order of magnitude over the span of the the finetuning process. For Shakespeare, step LR decay
worked best. This is applied at rounds 250 and 375, each decreasing the LR by a factor of 10×.

Dataset # Federated # Clients Local Batch LR LR Other
Rounds per round Epochs Size Scheduling Hyperparams

CIFAR-10 500 10 1 32 0.1 cosine momentum=0.9
CIFAR-100 500 10 1 32 0.1 cosine momentum=0.9
SpeechCommands 500 21 1 32 0.1 cosine momentum=0.9
Shakespeare 500 16 1 4 1.0 step g.clipping=5

D.6 Cross-device Federated NAS evaluation

In Tab. 2 of Sec. 4.2 we compared FedorAS against FedNAS in the cross-sile setting with 100 clients
and 10 clients randomly sampled on each round. Both methods follow a substantially different
approach as far as NAS is concern and, as a result, FedNAS has a significantly higher memory peak
than FedorAS for the same batch size. For example, for a batch size of 64 images, FedorAS sees a
memory peak of 998MB whereas FedNAS requires 7674MB. Similarly, both methods translate in
different compute footprints for each client. For example, FedNAS requires on average 716 GFLOPs
per client (assuming each client), while clients in FedorAS need 280 GFLOPs for the same amount of
local epochs and data in the client. Due to these differences, we aimed at normalising these aspects to
make the comparison fair. These results are shown in Tab. 10, which extends the content of Tab. 2.

21

Table 10: Cross-device federated NAS on CIFAR-10. We compare FedorAS and FedNAS while normalising
aspects that are critical to on-device training: namely the number of FLOPs clients do in a given round and the
memory peak seen over the course of such training. The later directly impacts on which devices a particular
model could be trained on. We normalise memory peak by lowering the batch size that FedNAS uses (from 32 to
16) and reduce the number of local epochs in FedorAS down to 20 to match the FLOPs of typical FedNAS client.
For further context, we maintain the results of FedorAS with 50 local epochs – the setting used throughout the
majority of the experiments in this paper.

Dataset Method Local Epochs Batch Mem. Peak (GB) GFLOPs/client Perf. (%)

CIFAR10α=1

FedNAS 10 32 3837 1431 90.02
FedNAS 10 16 1919 1431 85.45
FedorAS 20 128 1996 1402 87.21±0.15

FedorAS 50 128 1996 3504 86.46±0.32

CIFAR10α=0.1

FedNAS 10 32 3837 1431 65.28
FedNAS 10 16 1919 1431 54.84
FedorAS 20 128 1996 1402 79.41±0.31

FedorAS 50 128 1996 3504 81.53±0.29

D.7 Baselines

In this section we faithfully describe what each baseline represents in the experiments of the main
paper and the appendix to clarify with what we are comparing in each section.

Tier-unaware (Fig.3): This baseline represents model architectures that have been trained end-to-
end in a federated manner without any awareness of client eligibility. We are using FedAvg with
hyperparameters similar to those presented in Tab. 9.

Tier-aware (Fig.3): This baseline adds client eligibility awareness to the previous baseline. This
means that models of certain footprint can be trained only on clients of the eligible cluster and above.

FjORD [33] (Fig.3, Tab. 4): FjORD is a baseline that is tackling system heterogeneity by means of
Ordered Dropout. This particular variant is assuming the experimental setup of the original paper
which shards the CIFAR-10 dataset per client without LDA. The Shakespeare setup remains the same
as ours.

FjORD-LDA [33] (Fig.3, Tab. 4): For this baseline, we implemented FjORD and ran it on the same
number of clusters as FedorAS, with LDA for CIFAR-10.

FedNAS [29] (Tab. 2, 3): FedNAS was one of the first papers attempting to perform NAS in a
federated setting. Its search is DARTS-based and it was primarily aimed for the cross-silo setting.
Cross-device FL NAS of limited scale (20 total clients with 4 clients sample per round) was also
showcased in the original paper. We adjusted the code of FedNAS to perform cross-silo and cross-
device FL NAS with setups of varying training footprints by adjusting the amount of local epochs
and batch size. We have kept the original search space.

SPIDER [59] (Tab. 3): SPIDER is another paper performing personalised Federated NAS in the
cross-silo setting. As there is no publicly available codebasse, we assume their setting with FedorAS
and compare on CIFAR-10.

ZeroFL [64] (Tab. 4): For this baseline, we borrow the results of respective paper for
CIFAR-10α={1,1000}, which assumes the same setup as ours. We present the results for sparsity
level of 90% and annotate its footprint as the original model FLOPS and the number of non-zero
parameters.

Oort [43] (Tab. 4): The Oort framework proposes a participation sampling criterion by which clients
are sampled based on their utility (i.e. how much their data can contribute to the global model) while
also taking the device capabilities into consideration. Over the course of FL training, the sampling of
clients with high data and system utility is prioritised to reduce the time needed to convergence. For
SpeechCommands (see Tab. 4), Oort made use of a ResNet-34 model.

PyramidFL [48](Tab. 4): At a high-level, PyramidFL proposes a framework similar to that in Oort.
The core difference between these two methods is that PyramidFL leverages more fine-grained
statistics when assessing the contribution potential (i.e. utility) of the selected clients. It also uses
ResNet-34 for SpeechCommands.

22

rand-init (Tab. 5, 12, 14): This baseline refers to the concept of running the search, coming up with
an architecture and subsequently re-initialising the weights and running a conventional federated
training setup. It shows vanilla scaling that would be obtained if we simply trained identified models
in a standard way, using random initialization and full FL training using standard practices. Model
architectures are kept the same between FedorAS and “rand-init” experiments. Models belonging to
higher tiers, as a whole, are never trained on data belonging to devices from lower tiers.

E Comparison against random search

In the main paper we compare our FedorAS to the state-of-the-art methods from the literature
(Sec. 4.2) and also investigate the impact of initializing models with weights from a supernet
(Sec. 4.3). Here we present one more important baseline for any NAS algorithm - comparison to
a random search. Specifically, while we have already shown that models found by FedorAS in
most cases benefit from supernet training, this does constitute a conclusive argument justifying the
necessity of the entire process in a broader context. Perhaps there exist models that do not need to be
initialized from a supernet but, since the focus of our work is on supernet training, we missed them
due to biased conditioning?

Table 11: Comparison of performance of models found with FedorAS and with a simple random search.

Dataset FedorAS Random search

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

CIFAR-10 (α = 1000) 89.40±0.19 89.60±0.15 89.64±0.22 89.24±0.29 - 86.03±0.13 86.39±0.28 85.18±0.26 79.84±0.75 -
CIFAR-10 (α = 1.0) 85.99±0.13 86.30±0.41 86.34±0.19 85.58±0.55 - 83.68±0.25 84.50±0.31 84.30±0.38 79.65±0.18 -
CIFAR-10 (α = 0.1) 81.01±0.46 81.53±0.29 80.64±0.66 80.85±0.28 - 66.75±0.74 70.85±1.53 69.00±0.18 66.08±2.29 -
CIFAR-100 45.25±0.13 45.84±0.18 45.42±0.39 45.07±0.71 - 34.41±0.90 37.64±0.46 36.98±0.64 35.45±0.90 -
SpeechCommands 80.19±1.78 80.47±1.69 81.00±1.58 80.56±0.40 - 82.84±1.08 81.17±0.26 81.10±0.74 80.61±0.61 -
Shakespeare 3.43±0.01 3.39±0.04 3.38±0.03 3.40±0.01 3.42±0.01 3.86±0.33 3.54±0.28 3.45±0.32 3.80±0.30 3.60±0.39

Figure 7: For each dataset, we randomly sample their search space and train these models end-to-end. We
repeat this process (with new samples) three times, and overlap the scatter plots of different runs (i.e. red, green,
blue). Then, for each tier we average the best performing models across each of the three runs and plot the result
as a dashed horizontal line with grey area representing ± standard deviation. The compute budget allocated to
generate the data for each plot is equivalent to the cost of running FedorAS, which also yields one model per tier.

In order to check this hypothesis we run a simple random search algorithm, to get an estimate of the
expected best case performance of models from our search spaces when trained following standard
FL procedure. This simple baseline was allowed to train random models until the total training cost
exceeded the cost of running FedorAS – this turned out to be equivalent to roughly 40 fully-trained
models. After we run out of the training budget, we simply get the best model for each tier as our

23

solution to NAS. We repeated the entire process 3 times for each search space and report average and
standard deviation compared to the average performance of models found by FedorAS in Tab. 11.
Additionally, we also plot detailed performance of each model trained during this process in Fig. 7
for the sake of completeness. Noticeably, FedorAS achieves significantly better results in almost
all cases, with SpeechCommands being the only exception. We suspect this is due to problem with
fine-tuning rather than architectures themselves – specifically, we witness accuracy of the discovered
models can vary significantly as we repeat the fine-tuning process (this is also visible in the case of
full training, although the extend is smaller). Consequently, although on average FedorAS performs
slightly worse, in many cases the best results surpass that of random search – because of that we
suspect that fine-tuning for longer would improve FedorAS’s performance. We leave this for future
work, considering that a single shortcoming like that does not seem significant in the light of the rest
of our results.

F Impact of weight-sharing on different task training

In this section, we expand on the analysis of Sec. 4.3. Specifically for CIFAR-100 and SpeechCom-
mands, we also create a second scenario, where not all clients train in the same domain of labels. For
CIFAR-100, there are 20 superclasses that are coarse-grained categories of the 100 standard labels.
In contrast, for SpeechCommands, there are 12 and 35-class label sets, with the latter annotating
the “other” class more specifically. In both cases, we assume a non-uniform distribution of clients
to clusters, assuming that most data (75-80%) reside on lower-tier devices, whereas the two higher
tier-devices (holding 20-25% of data) can train on the fine-grained label set. Our aim is to test whether
few data allocation on the high tier devices can benefit from the knowledge and feature extraction
learned from the coarse-grained label set. We adopt two different setups. For CIFAR-100, we train
both tasks simultaneously, having essentially two distinct linear layers across tiers (1,2) and (3,4). We
call this setup multi-task. On the other hand, for SpeechCommands, we train all clients on the same
coarse domain and subsequently transfer learn a fine-grained 35 classes linear layer for the client of
tiers (3,4). We fine-tune the linear layer keeping the rest of the network frozen for 25 epochs and then
allow for finetuning of the whole network for another 100. We present the results in Tab. 12.

Table 12: Models discovered by FedorAS benefit from weight sharing across tiers compared to models using the
same architecture but trained end-to-end on clients that support them. Models derived from a FedorAS supernet
outperform their baselines by large margins in most cases. First part: accuracy, second part: perplexity.

Dataset Clients Setting Partitioning Mode Classes Tier 1 Tier 2 Tier 3 Tier 4

CIFAR-100 500 Multi-task non-IIDα=0.1
FedorAS [20, 20, 100, 100] 57.93±0.31 57.86±0.7 38.63±0.74 37.68±0.73
rand-init 41.64±0.26 42.45±0.58 27.11±0.64 21.28±1.26

Speech
Commands

2112 Transfer given FedorAS
12 → 35

67.06±2.12† 66.87±1.85† 67.65±1.59 68.49±1.47

rand-init 64.99±1.41† 65.03±0.69† 66.55±2.2 66.84±0.87

† Trained only on clients belonging to Tier 3 and 4.

In both cases FedorAS learns better models and transfer knowledge from the low-tiers to high-tiers
and vice-versa through weight sharing of the supernet. Indicatively, for CIFAR-100 we are able
to achieve +14.91 pp (percentage points) of accuracy compared to training the same architectures
end-to-end on eligible devices. Similarly, we achieve +1.6 pp higher accuracy for SpeechCommands.

G Convergence and Impact of Supernet Sampling

The proposed OPA aggregation scheme converges faster than an alternative aggregation method that
does FedAvg of the updated supernets. We show this in Fig. 8. When supernets from each client
participating in the round get aggregated with OPA, the resulting supernet is consistently better in
terms of validation accuracy than when aggregation is done with FedAvg. This difference becomes
more evident as BΦcomm is reduced, i.e., as smaller portions of the supernet are sent to the clients. In
Fig. 8 (d) we asses the feasibility of reducing the number of rounds and end the federated supernet
training stage when validation accuracy reaches approximately 70%. Those points correspond to
250 rounds and 150 rounds for the setting when 50% and 25% of the supernet is sent to the clients,
respectively. The results that these settings yield show a significant loss (compared to their respective
settings but over 500 rounds) and we therefore also run the same settings but when allowing for
50 additional runs. We observe a significant jump in per-tier model performance. We leave as

24

future work investigating alternative metrics to more accurately (but without incurring into heavy
computational costs) measure the quality of the supernet at any given training iteration and leverage
this to better inform an early stopping mechanism to further reduce communication costs.

(a) Sending whole of the supernet (BΦcomm = 22.3M) (b) Sending 50% of the supernet (BΦcomm = 11.15M)

(c) Sending 25% of the supernet (BΦcomm = 5.58M) (d) Impact of fewer rounds

Figure 8: Results using OPA compared to FedAvg in FedorAS for CIFAR-10 non-IID (α = 1.0) with fixed
hyperparameters. Each sub-plot contains two plots: first a scatter plot that visualises the federated supernet
training (Sec. 3.1) in the first 5k steps and the per-tier search stage (Sec. 3.2) the remaining steps; and, a bar
plot that shows the average test accuracies of each tier after federated finetuning (Sec. 3.3). For (a)-(c), the
training setups are identical with the exception of using either OPA or FedAvg. Both settings perform 500
rounds of federated supernet training using 10 clients per round (i.e. 5k steps). Every 10 rounds, the supernet
is evaluated on the global validation set by randomly sampling paths and a dot is added to the plot. In the
context of reduced communication budget, OPA largely outperforms FedAvg, requiring fewer federated rounds
to reach the same validation accuracy. This difference is more noticeable when sending 50% of the supernet
(roughly corresponding to the size of a ResNet18 model). In (d) we measure the quality of the models found
when the supernet training phase ends once 70% validation accuracy is reached – the highest reached by FedAvg
in (a)-(c) – and show competitive performance of models derived from OPA-aggregated supernets. By extending
the training phase by 50 rounds, we observe large improvements in the quality of the final models.

H Fairness

Up to this point, we have reported on the global test accuracy, which is a union over the test sets of
the clients for all datasets but SpeechCommands, which defines a separate set of clients mutually
exclusive to the ones participating in federated training. In this section we want to measure how
the ability of our system to aggregate knowledge across tiers during supernet training affects the
fairness in participation. We quantify this through variance and worst-case statistical measures of
client performance on their respective test set. These test sets are considered to be following the same
distribution (LDA or pre-split) of their train and validation sets.

Results are shown on Tab. 13 for the different datasets offering per-client test data splits for all clients.
It can be seen that FedorAS leads consistently to better performance compared to end-to-end FL
trained networks of the same architectures, where only eligible clients can train models. With respect
to the standard deviation of per client performance, we witness FedorAS offering lower variance,
except for the case of CIFAR-100. We consider this to be a consequence of our significantly higher
accuracy. Similar behaviour, is also witnessed when we measure variance per tier of devices. Last,
we also showcase the worst-case result of a clients performance in the last column of the table.

An in-depth view of how each client behaves is depicted in Fig. 9 for CIFAR-10, where we show
performance of Fedoras vs. end-to-end FL-trained models per client.

25

Table 13: Quantification of fairness with per client accuracy statistics, comparing end-to-end with FedorAS’s
performance. We report on the mean, standard deviation per tier and across tiers and minimum performance
(min accuracy or max perplexity) across datasets with per-tier client test sets. Lower standard deviation is better.

Dataset Mode # Total Perf. Perf. Worst
Clients (across tiers) (per tier) Perf.

CIFAR-10 Fedoras 100 81.36±8.58 [82.43±7.87, 81.41±9.34, 81.78±8.49, 79.80±8.42] 47.00
(Acc. (%) ↑ is better) rand-init 65.70 ±13.11 [67.43±12.29, 66.10±14.05, 66.14±13.02, 63.12±12.76] 11.00

CIFAR-100 Fedoras 500 45.61±13.15 [44.46±13.81, 45.51±12.28, 45.19±13.15, 47.29±13.15] 5.00
(Acc. (%) ↑ is better) rand-init 31.08±12.12 [30.72±13.16, 30.65±11.27, 30.43±11.25, 32.52±12.59] 0.00

Shakespeare Fedoras 715 2.93±1.01 [2.93±0.97, 2.94±0.99, 2.88±1.03, 2.98±1.04, 2.94±1.01] 8.43
(Perplexity ↓ is better) rand-init 3.07±1.10 [3.07±1.05, 3.08±1.10, 3.02±1.13, 3.11±1.13, 3.07±1.10] 8.36

72 58 34 46 30 51 4 42 64 55 54 22 9 84 68 79 85 3 91 43 53 80 1 83 76 40 69 38 41 24 15 37 50 0 71 10 17 35 6 98 48 14 65 88 56 21 29 94 28 44 11 7 92 13 77 70 8 74 95 39 73 31 82 59 62 99 25 97 36 19 12 67 52 49 60 86 75 90 23 66 78 32 57 89 27 45 93 5 61 63 47 33 18 96 81 26 87 16 2 20

Client ID
0

20

40

60

80

Ac
cu

ra
cy

 (%
)

rand-init
FedorAS

Figure 9: Accuracy per client of FedorAS vs. end-to-end (rand-init) FL-trained models (same architecture) on
CIFAR-10. Accuracy is quantified on each client’s dataset from the model associated with that device’s tier and
error bars represent the standard deviation of accuracy between different runs. Across runs, the allocation of
data to clients does not change. Ordered by ascending end-to-end accuracy.

I Different allocation of clients to tiers

In this experiment, contrary to what was described in Appendix D.4, we adopt the device capabilities
trace from Oort [43] for our device to cluster allocation and performed training on CIFAR-10 and
CIFAR-100. Results are depicted on Tab. 14. It can be witnessed that FedorAS is able to operate even
under harsher heterogeneity conditions and still output competitive models in the federated setting.

Table 14: FedorAS performance under [43] device clustering. We see that performance still scales well, albeit
taking an impact due to more extreme system heterogeneity compared to results from Tab. 5. This hints that
weight-sharing through our supernet works well under varying device allocation settings.

Dataset #clients Method Perf.

CIFAR10α=1
100 (10) FedorASper tier [87.77±0.09, 87.43±0.28, 87.15±0.42, 87.01±0.11]
100 (10) rand-init [85.83±1.24, 83.91±0.98, 83.21±0.60, 79.10±1.63]

CIFAR100α=0.1
500 (10) FedorASper tier [44.33±0.81, 43.83±0.89, 43.72±0.82, 43.22±1.02]
500 (10) rand-init [34.88±0.28, 33.76±2.53, 32.72±0.68, 30.77±2.30]

J Evaluation of the Search Phase

J.1 Sensitivity to size of validation set

In order to more meaningfully examine the impact of the validation set size, we run experiments
on all datasets with 20% and 50% of the size of the initial global validation set. This means that
during Stage-II of FedorAS, architectures sampled from the supernet are scored using a fraction of
the global validation set. These validation subsets are extracted uniformly. After obtaining the best
performing models for each tier, these are fine-tuned in a federated fashion (Stage-III in FedorAS)

26

for 100 rounds just like it was done for Tab. 5. We maintain the same hyperparameters as those used
to generate Tab. 5. Results are depicted in Tab. 15 for all datasets.

Table 15: Test accuracy for different sample size of validation set. Results are shown as relative change in final
test accuracy for each tier compared to the scenario where the whole validation set is used. Results for each
dataset are averaged over three runs.

Dataset Clients Partitioning Val set prct. Classes Tier 1 Tier 2 Tier 3 Tier 4

CIFAR-10 100

IIDα=1000

1.0 10 89.40±0.19 89.60±0.15 89.64±0.22 89.24±0.29

0.5 -0.31 -0.10 -0.14 +0.03
0.2 -0.06 -0.17 -0.19 -0.02

non-IIDα=1.0

1.0 10 85.99±0.13 86.30±0.41 86.34±0.19 85.58±0.55

0.5 +0.06 -0.18 +0.19 -0.19
0.2 -0.05 +0.02 -0.28 -0.29

non-IIDα=0.1

1.0 10 81.01±0.46 81.53±0.29 80.64±0.66 80.85±0.28

0.5 +0.63 -0.5 -0.29 -0.14
0.2 +0.78 +0.13 -1.55 -0.09

CIFAR-100 500 non-IIDα=0.1

1.0 100 45.25±0.13 45.84±0.18 45.42±0.39 45.07±0.71

0.5 -0.10 +0.01 -0.27 -0.38
0.2 +0.07 +0.11 +0.32 -0.60

Speech
Commands

2112 given
1.0 12 80.19±1.78 80.47±1.69 81.0±1.58 80.56±0.40

0.5 +0.40 +0.64 +0.25 +1.76
0.2 -0.98 -0.40 -1.49 +1.08

Dataset Clients Partitioning Val set prct. Classes Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

Shakespeare 715 given
1.0 90 3.43±0.01 3.39±0.04 3.38±0.03 3.40±0.01 3.42±0.01

0.5 -0.004 -0.000 -0.014 -0.015 -0.004
0.2 -0.002 -0.07 -0.003 +0.003 -0.008

J.2 Federated Search

In this Section, we provide additional details and results concerning our federated variant of NSGA-II,
discussed in Sec. 4.5 of the main paper. Below, we provide some context about how the algo-
rithm works, how we setup the federated experiments and commentary of the results on CIFAR-
10{1000,1,0.1} and CIFAR-100.

Algorithm details. Federation is achieved by delegating evaluation of models to individual clients.
This means that evaluation is done stochastically on clients’ local datasets. This setting is similar
to Federated Evaluation in [62]. In order to avoid sending a large number of models to clients, thus
saving communication cost, we leverage the fact that NSGA-II operates in “batches" of models – in
each iteration, a number of models (i.e. sample size) from the population is selected to produce new
models that replace the ones not selected. Since models from a single “batch” are all selected at the
same time, we do not need to evaluate them sequentially. Instead, considering that weights between
architectures are shared, we can construct a minimal supernet that encapsulates all selected models
and send it to relevant clients. This way, we can achieve parallel evaluation of all selected models
and optimal4 communication cost for a given “batch”.

Experimental setting. The experimental setting is following exactly what was used in other ex-
periments. Specifically, population and sample sizes were the same as the ones used in centralised
NSGA-II (128 and 64, respectively), and federated evaluation (FE) rounds were analogous to rounds
during federated training of the supernet from which models to evaluate were extracted. Concretely,
number of clients, allocation of clients to tiers, allocation of data to clients, number of available
clients per round, and client selection mechanism were all exactly the same for FE as the ones used
during the relevant Stage 1 of FedorAS.

However, to present more meaningful results, we assumed that as we fluctuate the number of clients
used to evaluate models (number of evaluation rounds) additional clients are always unique. In other
words, reshuffling and "forgetting" of clients is happening only between federated NSGA-II iterations.
Consequently, it is possible that: i) if all clients are used to evaluate a model (e.g. 10 evaluation
rounds for CIFAR-10), FE is equivalent to centralised evaluation; ii) with a relatively small number
of FE rounds, it is possible that one set of models produced by NSGA-II is evaluated on a completely
disjoint set of data to another “batch”; iii) similarly, we do not enforce in any way that all clients have
to be used (unless we use all clients in a single iteration of NSGA-II). Finally, keeping consistent
with the rest of the paper, we performed evaluation in a tier-aware manner, meaning that models
belonging to higher tiers could only access a subset of all validation data based on client eligibility.

4
Optimal in the sense of communicating paths once and not accounting for orthogonal techniques such as compression, etc.

27

1 2 3 4 5 6 7 8 9 10
No. of FE rounds per NSGA-II iter.

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Av
er

ag
e

Ke
nd

al
l-

CIFAR10LDA = 1
Tier 1
Tier 2
Tier 3
Tier 4

1 2 3 4 5 6 7 8 9 10
No. of FE rounds per NSGA-II iter.

20

40

60

80

100

120

Av
g.

 to
ta

l c
om

m
. c

os
t (

GB
)

CIFAR10LDA = 1
Tier 1
Tier 2
Tier 3
Tier 4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
NSGA-II iteration

0

20

40

60

80

Av
er

ag
e

su
pe

rn
et

 si
ze

 (M
B)

CIFAR10LDA = 1

Tier 1
Tier 2
Tier 3
Tier 4

1 2 3 4 5 6 7 8 9 10
No. of FE rounds per NSGA-II iter.

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

Ke
nd

al
l-

CIFAR10LDA = 0.1

Tier 1
Tier 2
Tier 3
Tier 4

1 2 3 4 5 6 7 8 9 10
No. of FE rounds per NSGA-II iter.

20

40

60

80

100

120

Av
g.

 to
ta

l c
om

m
. c

os
t (

GB
)

CIFAR10LDA = 0.1
Tier 1
Tier 2
Tier 3
Tier 4

1 3 5 7 9 11 13 15 17 19 21 23 25 27
NSGA-II iteration

20

40

60

80

Av
er

ag
e

su
pe

rn
et

 si
ze

 (M
B)

CIFAR10LDA = 0.1

Tier 1
Tier 2
Tier 3
Tier 4

1 3 5 7 9 11 13 15 17 19
No. of FE rounds per NSGA-II iter.

0.6

0.7

0.8

0.9

Av
er

ag
e

Ke
nd

al
l-

CIFAR100LDA = 0.1
Tier 1
Tier 2
Tier 3
Tier 4

1 3 5 7 9 11 13 15 17 19
No. of FE rounds per NSGA-II iter.

0

50

100

150

200

250

300

Av
g.

 to
ta

l c
om

m
. c

os
t (

GB
)

CIFAR100LDA = 0.1
Tier 1
Tier 2
Tier 3
Tier 4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
NSGA-II iteration

20

40

60

80

Av
er

ag
e

su
pe

rn
et

 si
ze

 (M
B)

CIFAR100LDA = 0.1

Tier 1
Tier 2
Tier 3
Tier 4

Figure 10: Ranking quality & cost of federated evaluation (FE) of models during federated search. Each time a
new population of models is evaluated, a minimal supernet encompassing selected models is sent to a sample of
clients: left) ranking correlation between scores produced by FE & centralised evaluation (CE), as a function of
FE rounds (↑ rounds = ↑ clients); middle) total communication cost of sending all necessary supernets to all
clients, to run a full search; right) changes in the supernet size as NSGA-II progresses.

This is the reason why relevant curves finish at a different maximum number of FE rounds, that is
a smaller number of FE rounds (i.e. Federated NSGA-II iterations) is needed to exhaust the set of
eligible clients.

Results. Fig. 10 complements Fig. 4 and presents results across three different experimental settings,
with varying level of non-IID-ness (α ∈ {1, 0.1}) and number of clients ({100, 500}). As conjectured
in the main paper, we can observe that the cost of achieving the same fidelity of FE increases with
both the level of non-IID-ness and the number of clients. Specifically, Kendall-τ of 0.8 is achieved
at approximately three FE rounds for {α = 1, clients = 100}, and increases to four and six for
{α = 0.1, clients = 100} and {α = 0.1, clients = 500}, respectively. At the same time, we can see
that regardless of the setting NSGA-II tends to produce smaller supernets as the search progresses,
suggesting that searching for longer does not have to incur proportional increase in the communication
cost.

28

	
	Introduction
	Background & Motivation
	The FedorAS Framework
	SuperNet Training
	Model Search & Validation
	Fine-tuning Phase

	Evaluation
	Experimental Setup
	Performance evaluation
	Supernet weight-sharing with FedorAS
	Ablation study
	Evaluation of the Search Phase

	Related Work
	Conclusion
	Appendix

	
	Introduction
	Broader Impact
	Limitations & Future Work
	Detailed Experimental Setup
	Implementation
	Datasets
	Search Spaces
	Tiers: definition and client assignment
	Hyperparameters
	Cross-device Federated NAS evaluation
	Baselines

	Comparison against random search
	Impact of weight-sharing on different task training
	Convergence and Impact of Supernet Sampling
	Fairness
	Different allocation of clients to tiers
	Evaluation of the Search Phase
	Sensitivity to size of validation set
	Federated Search

