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ABSTRACT

Large Reasoning Models (LRMs) achieve strong reasoning performance by gen-
erating long chains of thought (CoTs), yet only a small fraction of these traces
meaningfully contributes to answer prediction, while the majority contains repet-
itive or truncated content. Such output redundancy is further propagated after
supervised finetuning (SFT), as models learn to imitate verbose but uninformative
patterns, which can degrade performance. To this end, we incorporate integrated
gradient attribution to quantify each token’s influence on final answers and ag-
gregate them into two segment-level metrics: (1) attribution strength measures
the overall attribution magnitude; and (2) direction consistency captures whether
tokens’ attributions within a segment are uniformly positive or negative (high con-
sistency), or a mixture of both (moderate consistency). Based on these two metrics,
we propose a segment-level selective learning framework to identify important
segments with high attribution strength but moderate consistency that indicate
reflective rather than shallow reasoning. The framework then applies selective SFT
on these important segments while masking loss for unimportant ones. Experiments
across multiple models and datasets show that our approach improves accuracy
and output efficiency, enabling more effective learning from long reasoning traces.

1 INTRODUCTION

Recent Large Reasoning Models (LRMs) (Jaech et al., 2024; Guo et al., 2025; Yang et al., 2025)
have demonstrated strong capabilities in solving complex problems. Their effectiveness is largely
attributed to test-time scaling by increasing computation during inference to produce extended chains
of thought (CoT) (Wei et al., 2022) that include detailed problem understanding, step-by-step solution
processes, and comprehensive verification. These long-CoT trajectories have also become valuable
supervisory resources for cold-start supervised finetuning (SFT) (Muennighoff et al., 2025).

However, current reasoning CoTs often span thousands of tokens, of which only a small fraction
meaningfully contributes to reaching the correct answer or improving confidence (Sui et al., 2025).
A substantial portion consists of redundant repetition or incomplete truncated thoughts (Wang
et al., 2025d), as illustrated in Fig. 1 (left). More critically, verbosity without substance actively
degrade reasoning performance as CoT length increases (Wu et al., 2025; Huang et al., 2025). This
phenomenon is also evident by the right-top panel of Fig. 1 where incorrect CoTs are typically
correlated with more segments and tokens than correct CoTs for the same queries. Training LLMs on
verbose CoT supervision with sparse positive contribution further exacerbates these issues. Models
learn to imitate redundant behaviors, waste learning capacity on trivial continuations, and fail to
prioritize the crucial high-impact parts of reasoning sequences Lin et al. (2024). As a result, finetuned
models tend to achieve limited accuracy gains and generate inefficient outputs.

Prior studies have explored various strategies to identify important parts in long reasoning chains to
construct compressed CoT supervision for efficiency purposes. However, they either focus on fine-
grained token-level analysis (Xia et al., 2025b) that neglects semantic integrity and fails to interpret
redundancy in terms of meaningful reasoning units, or rely on segment-level perplexity (Cui et al.,
2025a) or entropy (Li et al., 2025b) calculations. These indirect metrics provide not entirely consistent
signals of importance and are prone to both false positives and false negatives. False positives occur
when methods overemphasize superficial scaffolding text (e.g., “So, let’s calculate step by step”)
that contributes little to actual reasoning yet serves as linguistic bridges whose removal disrupts
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Questions: Find the last three digits of the product of the positive roots of 
$\\sqrt{1995}x^{\\log_{1995}x}=x^2.$

…Find the last three digits of the product of the positive roots of the equation √(1995) * 
x^(log_{1995} x) = x² ….\n\nSo, 1995² = (2000 - 5)^2 = 2000² - 2*2000*5 + 5² = 
4,000,000 - 20,000 + 25.\n\nCalculating that:\n\n4,000,000 - 20,000 = 
3,980,000.\n\nThen, 3,980,000 + 25 = 3,980,025.\n\nSo, 1995² is 3,980,025.\n\nTherefore, 
the productof the positive roots is 3,980,025. The last three digits are 025, which is 25, 
but wait, 025 is three digits, so it's 025.                            Attribution Stre. 22%

Wait, … verify if 1995² is indeed 3,980,025.\n\nCalculating 1995 * 1995:\n\nI can 
compute 2000 * 2000 = 4,000,000.\n\nThen, 2000 * (-5) = -10,000.\n\nSimilarly, (-5) * 
2000 = -10,000.\n\nAnd (-5) * (-5) = 25.                             Attribution Stre. 8%

… Alternatively, let me compute 1995 * 1995 as (2000 - 5)^2, which is 2000² - 2*2000*5 
+ 5², which is 4,000,000 - 20,000 + 25, which is indeed 3,980,025. So that part is 
correct.\n\nSo, 3,980,025, last three digits are 025 … Attribution Stre. 6%

Truncated Verification

… double-check my calculations to be sure I didn't make any mistakes.\n\nFirst, the 
original equation:√(1995) * x^(log_{1995} x) = x².I took log base 1995 of both sides, … 
3,980,025. So, yes, the last three digits are 025.                    Attribution Stre. 14%

Repeated Calculation

… let me compute 1995 * 1995 another way to confirm.\n\nCompute 1995 * 2000 = 
3,990,000.\n\nSubtract 1995 * 5 = 9,975.\n\nSo, 3,990,000 - 9,975 = 3,980,025. Yep, 
same result.\n\nTherefore, … box is \\boxed{025}.                Attribution Stre. 37%

Wait, but 025 is 25, but in terms of three digits, it‘s written    Attribution Stre. 13%    
as 025…three digits are 025. So, the answer should be 025.    Direction Consistency 0.9
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Figure 1: Left: An illustrative CoT with important (green blocks) and redundant segments (gray
blocks). Our metrics distinguish important from redundant segments (repetitions, truncations, super-
ficial clarifications) with low strength and extremely high consistency. “Attribution Stre.” denotes
normalized strength across all segments. Right-top: Segment and token counts in correct vs. incorrect
CoTs for the same queries. Right-bottom: Cumulative distribution function (CDF) of normalized
segment strength in correct and incorrect CoTs, with segment ordered in descending strength.

subsequent textual coherence. False negatives arise when methods filter out independent verification or
intermediate conclusions that, while exhibiting low-entropy and their removal not affecting linguistic
fluency, significantly enhance the probability of reaching correct final answers. Consequently, existing
methods cannot accurately and comprehensively distinguish truly important segments from various
forms of redundant content that meaninglessly contribute to reasoning accuracy.

In this work, we systematically identify important segments that directly contribute to correct answer
prediction within long CoTs, and show that unimportant segments cluster into distinctive redundant
patterns. Specifically, we utilize integrated gradient (IG) attribution (Sundararajan et al., 2017)
to calculate each token’s direct influence on improving correct answer prediction and aggregate
token-level attributions at the segment level to obtain two metrics: (1) Attribution strength quantifies
the overall magnitude of a segment’s influence on the model’s prediction by summing absolute IG
values within each segment with length normalization. (2) Attribution direction consistency is defined
as the ratio between the absolute sum of signed IG attributions and the sum of absolute IG attributions,
captures how uniformly a segment contributes in one direction (either positively or negatively toward
the correct answer). Extremely high consistency often reflects shallow reasoning, such as segments
with uniformly positive token IGs but serve as superficial clarification (see the penultimate segments
in Fig. 1 left). In contrast, moderate consistency indicates more reflective reasoning that mixes
supportive and corrective attribution within a segment, which is more critical for problem solving.

We first verify significant redundancy in long CoTs using attribution strength, showing that 30∼40%
of segments accumulate over 80% of total attribution in both correct and incorrect CoTs (Fig. 1,
right-bottom). Building on this insight, we propose a segment-level selective learning framework that
learns the most critical parts of long CoTs leveraging attribution strength and direction consistency.
It identifies segments with high strength but moderate consistency as important, filtering out redun-
dancies like repeated content, truncated thoughts, and dispensable clarifications with minimal gains
on correct answer probability. Unlike pruning-based SFT methods that compress CoT supervision
but compromise accuracy, our framework applies selective SFT (Lin et al., 2024) that trains only on
important segments while masking loss for unimportant ones. This acts as implicit regularization by
preventing overfitting to uninformative content. Experiments across multiple models and datasets,
using both self-generated and reference long CoTs, show that our method outperforms full-CoT SFT
by improving reasoning efficacy (up to 4.7%) while reducing output length (up to 18%). Notably,
our important segment identification can be broadly applied to other contexts, such as emphasizing
policy gradient updates on important content in reinforcement learning.
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2 METHODOLOGY

2.1 PRELIMINARY

A long-form CoT typically comprises multiple segments, each focusing on distinct aspects such as
detailed problem understanding, intermediate reasoning exploring different solutions, or multiple
verification process. Moreover, it inevitably contains redundant content, including repeated or
truncated thought, and excessive clarification of self-evident facts, which diminishes the overall
quality and efficiency of the CoT. To facilitate segment-level importance analysis of long CoTs,
we first partition each long CoT T into multiple segments T = {S1, S2, ..., Sn} using common
transition keywords (e.g., “\n\nWait”, “\n\nAlternatively” ) that naturally occur within reasoning
traces, following (Lu et al., 2025). The complete list of segmentation keywords is in the Appendix C.2.

Importance Definition We define a segment within the full reasoning trace as important if it
contributes to the final answer prediction, either by guiding transition from incorrect to correct
answers or by enhancing confidence of correct answers. An intuitive approach is to sequentially
append segments and force answer generation when adding each new segment to compute the change
in correct answer probability as its attribution. However, this method underestimates segments that
contribute indirectly, such as problem understanding or exploration of incorrect alternatives, which
may not immediately improve answer prediction but establish crucial foundations for subsequent
reasoning steps. Leave-one-out methods that mask individual segments and measure their effect on
the final prediction, suffer from the same limitation, as omitting these segments typically does not
significantly alter final answer prediction when their subsequent content remains intact. Therefore,
we adopt a more principled approach using integrated gradients (IG) (Sundararajan et al., 2017) to
measure each segment’s attribution to the final answer prediction.

2.2 INTEGRATED GRADIENTS BASED SEGMENT IMPORTANCE

IG measures input token attribution by computing partial derivatives of the model output with respect
to each input feature along a straight-line interpolation path from an uninformative baseline to the
actual input embedding. By accumulating gradients across all interpolated points, IG estimates
the total attribution of each input token to the final prediction. This approach captures both direct
and indirect influences, making it particularly suitable for identifying the importance of reasoning
segments that may contribute implicitly rather than immediately affecting the final answer prediction.

Formally, given a model F , an input token embedding x and its baseline value x′ (typically the
padding token embedding), the integrated gradient for the i-th input dimension is formulated as

IGi(x) = (xi − x′
i)×

∫ 1

α=0

∂F (x′ + α · (x− x′))

∂xi
dα (1)

≈ (xi − x′
i)×

1

J

J∑
j=1

∂F (x′ + j/J · (x− x′))

∂xi
(2)

where xi and x′
i refer to the i-th dimension of x and x′, respectively. The integral is approximated

using J interpolation steps where j denotes the j-th step.

Segment-level Aggregation After computing IG attribution of each input token as IG(x) =∑
i IGi(x), we aggregate them at the segment level to obtain segment-wise importance scores. While

IG values can be either positive or negative, where positive values indicate increased likelihood of
predicting the correct answer and negative values indicate a decrease, tokens with negative IG values
should not be dismissed as unimportant. Negatively attributed tokens may represent incorrect but
necessary exploratory reasoning that ultimately guides the model toward the correct solution. For
example, initial segments often exhibit overall negative IG sums, but these segments are typically
important for establishing problem understanding and initial exploration. Therefore, we utilize the
absolute IG value of each token to capturing the magnitude of influence regardless of direction.

We aggregate the absolute IG values for all tokens within each segment and define two segment-level
measures: (1) Attribution Strength: computed as the sum of absolute IG values within the segment
with square root length normalization applied to prevent bias toward longer segments; (2) Attribution

3
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Direction Consistency: measures the extent to which a segment exhibits consistent positive or negative
contributions versus internally conflicting mixed attributions.

Formally, given a segment S = {o1, . . . , oN} with N tokens, where each token on is associated with
an IG value IG(on), we define the segment-level attribution strength and direction consistency as:

Strength(S) =

∑
on∈S |IG(on)|√

N
, Consistency(S) =

∣∣∑
on∈S IG(on)

∣∣∑
on∈S |IG(on)|

. (3)

To ensure strength comparability across all segments within a CoT, we further normalize all strength
scores across the set of segments {S1, S2, . . . , SM}. Specifically, for each segment Sm, the normal-
ized attribution strength is defined as

Strength′(Sm) =
Strength(Sm)∑M
j=1 Strength(Sj)

. (4)

2.3 SEGMENT-LEVEL SELECTIVE LEARNING

Important Segment Identification We utilize our segment-level metrics to distinguish critical
segments from unimportant ones for more targeted learning of long CoTs. Important segments should
exhibit higher attribution strengths that occupy a substantial portion of total attribution across all
segments, and moderate rather than extremely high attribution direction consistency. Extremely
consistent attribution directions (most positive or most negative) may indicate shallow reasoning (e.g.,
dispensable explanation of final answers or uninformative exploration, as analyzed in Appendix A)
while moderate consistency often reflect reflective and critical reasoning patterns where the model
explores different possibilities, refines its understanding, and eliminates incorrect content, which are
more valuable for learning effective reasoning strategies. Specifically, given a CoT with segments
{S1, S2, . . . , SM}, we first rank segments in descending order of their normalized attribution strength.
Let π be a permutation such that:

Strength′(Sπ(1)) ≥ Strength′(Sπ(2)) ≥ . . . ≥ Strength′(Sπ(M)) (5)

We then identify the minimal number of top-ranked segments k∗ whose cumulative attribution exceeds
a predefined threshold τ (e.g., 80%):

k∗ = arg min
k∈1,2,...,M

{
k∑

i=1

Strength′(Sπ(i)) ≥ τ

}
(6)

Finally, we define the important segment set as those among the top-k∗ segments whose attribution
direction consistency is below a threshold β (e.g., 0.8), while the remaining as unimportant ones.

Simportant =
{
Sπ(i)

∣∣ i ≤ k∗, Consistency(Sπ(i)) ≤ β
}

(7)

Selective SFT Long-CoT trajectories serve as valuable supervisory resources for cold-start of
reasoning models via SFT, which optimizes parameters θ using the cross-entropy loss over all tokens.

LSFT (θ) = − 1

T

T∑
t=1

logP (ot|o<t, q; θ) (8)

where T denotes the length of the reasoning trajectory, ot is the predicted token at position t,
o<t = {o1, o2, . . . , ot−1} represents the preceding token sequence, and q is the input query.

To mitigate learning from meaningless parts, prior efficiency works mainly prune redundant portions
of each complete CoT, yielding more concise supervision, but pruning typically degrades performance.
Instead, we follow (Lin et al., 2024) and propose to selectively train only on tokens within important
segments. This strategy ensures that parameter updates are driven solely by the most critical reasoning
parts, while preserving coherence of the full trajectory. The selective SFT loss is formulated as:

LSelective-SFT(θ) = − 1∑
t I(ot)

T∑
t=1

I(ot) logP (ot|o<t, q; θ) (9)

where I(ot) indicating whether token ot belongs to a segment Sm with Sm ∈ Simportant.

4
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3 SEGMENT IMPORTANCE ANALYSIS

Before applying our segment-level selective learning strategy, we first validate that our importance
metric effectively distinguishes meaningful reasoning parts from redundant behaviors and determine
the optimal hyperparameters τ and β.

Analysis Setup We conduct an investigation on self-generated long reasoning trajectories from
the LIMO datasets (Ye et al., 2025) using R1-Distill-Qwen2.5-7B (Guo et al., 2025). From 32
candidate samples per problem, we select the shortest correct and incorrect outputsm, split them
into segments and compute their attribution strength and consistency. Segments are ranked as Eq. 5,
with cumulative attribution averaged across percentage intervals, as illustrated in the top-right part of
Fig. 1. The analysis reveals that only 30%∼40% of segments contribute significantly (80%) to the
final prediction, regardless of correctness, while most segments exhibit low attribution. This verifies
substantial redundancy in long CoTs and motivates our approach for identifying important segments.

3.1 IMPORTANT VERSUS UNIMPORTANT SEGMENTS

We aggregate important and unimportant segments, respectively from all correct reasoning outputs1

and compare the distinct patterns exhibited by these two subsets. We first intuitively set the threshold
τ = 80%, β = 0.95 as Eq. 6, 7 for this comparative analysis.
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Figure 2: Change (∆) in correct answer confi-
dence across different segment types.

1. Important segments yield greater improve-
ment in correct answer predictions. We se-
quentially append segments to the input and en-
force answer generation after adding each new seg-
ment to compute the change ∆ in correct answer
confidence relative to without that segment. The
model’s confidence on the correct answer is defined
as the probability that it generates the correct an-
swer. We empirically estimate this correct answer
confidence by calculating the fraction of multiple
temperature-sampled generations (i.e., 32 samples)
that produce the correct answer. As shown in Fig. 2,
segments with higher attribution strength (top 80%
of total attribution), and moderate direction consis-
tency achieve significantly larger gains in correct
answer confidence compared to their counterparts.
This suggests that segments with high strength but
moderate consistency reflect the critical exploratory reasoning that contribute to accurate predictions.

2. Important segments exhibit relatively lower perplexity and entropy. We calculate the log
perplexity and entropy of all tokens in each long reasoning trace and aggregate them at the segment
level to compare the linguistic properties between important and unimportant segments. As shown
in Fig. 3, important segments consistently exhibit significantly lower log perplexity and entropy
compared to unimportant segments. This indicates that our identified critical segments tend to be more
predictable and carry lower uncertainty, likely reflecting processes such as problem understanding,
logical deduction or essential computations that follow more constrained patterns. In contrast,
unimportant segments, such as incomplete truncations associated with higher uncertainty (Wang et al.,
2025d), as well as verbose explanations or dispensable elaborations that exhibit higher variability and
greater linguistic freedom, resulting in higher perplexity and entropy.

3. Unimportant segments are more characterized by repetition or incomplete truncation. We
further examine whether unimportant segments are closely associated with redundant reasoning
behaviors such as repetition and incomplete truncation. To this end, we calculate BLUE similarity
of each segment against all preceding segments within the same CoT (rightmost panel, Fig.3).
Unimportant segments exhibit overall higher BLEU similarity scores compared to important segments.
In particular, unimportant segments contain substantially more highly repetitive content (e.g., BLEU
> 0.8) that reiterate previously established reasoning. In addition, we prompt Qwen3-8B (Yang
et al., 2025) to assess whether each segment is incompletely truncated, meaning that subsequent

1We focus on correct reasoning outputs, as our objective is to leverage reliable reasoning traces for SFT.
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Figure 3: Log perplexity, entropy and BLEU similarity of important versus unimportant segments.

segments failing to logically follow it (as implemented in Appendix B). The results show that 49% of
unimportant segments are classified as truncated compared with only 26% of important segments.
These results demonstrate that unimportant segments identified by our method are more strongly
associated with repetition and truncation, contributing minimal additional value to the reasoning chain
and can even introduce noise that obscures the logical flow. We additionally analyze the positional
distribution of important versus unimportant segments within each CoT in Appendix A.

3.2 HYPERPARAMETER SEARCH

0.55 0.65 0.75 0.85 0.95
Threshold 

0

2

4

6

8

10

12

 C
or

re
ct

 A
ns

we
r C

on
fid

en
ce

 (%
)

Important Unimportant Important-Unimportant

Figure 4: Change in correct answer confidence
(∆) across different segment types under varying
τ . The red star marks the selected threshold τ∗.

To determine the optimal threshold τ for identify-
ing high-impact segments for targeted training, we
adopt a greedy search strategy by selecting τ∗ that
maximizes the difference in correct answer confi-
dence change ∆ between resulted important and
unimportant segments while minimizing false neg-
atives (i.e., ensuring that unimportant segments
exhibit the lowest confidence gain). As shown in
Fig. 4, we set the optimal threshold as τ = 0.7.
On average, this setting yields about 33% of seg-
ments classified as important, accounting for 45%
of the tokens within each self-generated CoT. This
imbalance is because important segments tend to
be longer, whereas unimportant ones often either
repeat part of the previous content or are prema-
turely truncated in the middle. We further ablate
different values of β under τ = 0.7 and provide
experimental comparison of varying τ on overall
performance in Appendix D and identify β = 0.8 as the optimal consistency threshold.

4 EXPERIMENTS

4.1 SETUP

Training Details We compare our selective SFT on IG-based important segments against standard
SFT on full long CoT supervision, experimenting both instruction-following and reasoning baseline
models of different scales: R1-Distill-Qwen2.5-1.5B, R1-Distill-Qwen2.5-7B (Guo et al., 2025) and
Qwen2.5-7B-Instruct (Team, 2024). We use 817 high-quality questions from the LIMO mathematical
dataset (Ye et al., 2025) and evaluate both provided and self-generated CoT supervision. For self-
generated supervision, we prompt R1-Distill-Qwen2.5-7B to generate 32 candidate responses per
question and select the shortest correct response for training (as described in Sec. 3). We utilize
provided higher-quality CoT supervision for R1-Distill-Qwen2.5-1.5B and R1-Distill-Qwen2.5-7B,
and self-generated CoTs for Qwen2.5-7B-Instruct. We apply the same hyperparameter configurations
of τ = 0.7 and β = 0.8 to both sources of CoT supervision (as their hyperparameter search in

6
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Sec. 3.2 shows similar results). All models are fine-tuned with full parameters with a maximum
sequence length of 16384. Additional training details are provided in Appendix C.3. We also provide
model performance under different combination of τ and β in Appendix D.

Evaluation Details We conduct evaluation on both in-domain and out-of-domain benchmarks follow-
ing the similar setup in (Ye et al., 2025). The in-domain benchmarks include Math500 (Hendrycks
et al., 2021), AMC23, AIME24 and AIME25 while GPQA-Diamond (Rein et al., 2024), Min-
erva (Lewkowycz et al., 2022) and OlympiadBench (He et al., 2024) are out-of-domain. We report
accuracy using greedy decoding, and pass@1 and pass@6 metrics using temperature sampling
(temperature=0.6, top-p=1.0) as no universally optimal decoding strategy exists across all models
and benchmarks. We employ a zero-shot chain-of-thought setting, with the maximum response
length capped at 32,768 tokens. For larger benchmarks (MATH500, GPQA-Diamond, Minerva, and
OlympiadBench), we sample 6 responses per instance, while for smaller benchmarks (AMC23 and
AIME24), we sample 32 responses per instance. We compute the average token count across all
sampled outputs as the response length.

4.2 MAIN RESULTS

Table 1 reports the overall comparison across six benchmarks. Relative to the baseline performance
without SFT training, our segment-level selective SFT consistently outperforms full CoT SFT on
both in-domain and out-of-domain datasets, across different baseline models and under both greedy
decoding and temperature sampling. In addition, compared to full CoT SFT, our approach achieves a
substantial reduction in token usage, leading to better optimization while simultaneously improving
output efficiency. Notably, the gains in both accuracy and token reduction are more pronounced
under greedy decoding. This is because the randomness in multiple temperature sampling tends to
smooth out and partially offset the advantages of training. Nevertheless, even under such stochastic
conditions, our approach still yields measurable improvements, underscoring its robust effectiveness.

Table 1: Comparison results on different baseline models. “Overall” reports the average accuracy
under greedy decoding, or pass@1 and pass@6 under temperature sampling, together with the average
output token count over all benchmarks. The percentages in parentheses indicate the relative accuracy
improvement and token reduction of our method compared to full CoT SFT during generation. The
best results are highlighted in bold.

Models In Domain Out of Domain Overall
MATH500 AMC23 AIME24 GPQA Minerva Olympiad Acc./Pass@1 Pass@6 Length

Greedy Decoding
R1-Distill-Qwen-1.5B 70.6 52.5 16.7 27.3 21.7 31.4 36.7 / 20244

Full CoT SFT 80.8 70.0 26.7 25.3 26.8 39.4 44.8 / 16520
Segment Selective SFT 82.4 60.0 40.0 28.8 27.6 42.8 46.9 (↑4.7%) / 13506 (↓18.2%)

R1-Distill-Qwen-7B 85.8 85.0 46.7 42.9 38.2 47.9 57.7 / 12518
Full CoT SFT 91.2 90.0 50.0 42.4 41.2 57.9 62.1 / 9693

Segment Selective SFT 95.2 90.0 56.7 40.4 46.3 58.7 64.5 (↑3.9%) / 8499 (↓12.3%)

Qwen2.5-7B-Instruct 77.0 50.0 10.0 38.9 34.9 37.5 41.4 / 1405
Full CoT SFT 77.2 55.0 23.3 38.9 29.8 40.9 44.2 / 10317

Segment Selective SFT 76.6 57.5 23.3 44.4 30.5 41.5 45.6 (↑3.2%) / 9852 (↓4.5%)

Temperature Sampling
R1-Distill-Qwen-1.5B 84.0 73.3 29.8 32.8 32.0 44.8 49.5 71.1 9791

Full CoT SFT 85.1 74.7 35.1 31.0 32.0 47.3 50.9 72.4 10043
Segment Selective SFT 85.1 75.9 36.1 32.8 31.9 48.1 51.7 (↑1.6%) 73.2 (↑1.1%) 9388 (↓6.5%)

R1-Distill-Qwen-7B 92.8 90.5 54.2 46.3 45.5 57.7 64.5 79.2 7593
Full CoT SFT 93.6 91.5 60.2 41.8 45.6 60.3 65.5 79.2 7934

Segment Selective SFT 93.3 91.9 61.0 42.3 45.8 60.3 65.8 (↑0.5%) 80.0 (↑1.0%) 7709 (↓2.8%)

Qwen2.5-7B-Instruct 75.7 51.9 12.0 36.9 35.4 37.2 41.5 60.2 910
Full CoT SFT 77.0 55.4 16.4 38.9 31.6 40.8 43.4 66.0 9902

Segment Selective SFT 77.1 58.5 16.4 43.7 32.4 41.9 45.0 (↑3.7%) 66.5 (↑0.8%) 9195 (↓7.1%)

4.3 ABLATION STUDY

To investigate the contributions of our important segment identification and selective SFT, we conduct
an ablation study using R1-Distill-Qwen-1.5B with results averaged across datasets. Taking full
CoT SFT as the baseline, we compare two categories Pruned CoT SFT according to our identified
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important segments and Selective SFT using various criteria: (1) randomly selecting roughly 33%
of segments from each CoT; (2) selecting the top 45% of tokens ranked by absolute IG values;
(3) Selecting the top 45% of tokens ranked by original IG values; (4) Selecting only high-strength
segments; (5) selecting segment with high strength and moderate direction consistency (our method).
These ratios are chosen to ensure the amount of selected content is comparable across methods.

As shown in Table 2, pruning unimportant segments degrades accuracy, whereas our selective learning
can improve SFT performance while reducing token usage. Among selective SFT, our IG-based

Table 2: Ablation study on R1-Distill-Qwen-1.5B.
Our important segments have high attribution
strength and moderate direction consistency.

Methods Greedy Sampling
Acc. Length Pass@1 Length

Full CoT SFT 44.8 16520 50.9 10043
Pruned CoT SFT 43.9 15097 49.2 7766

Selective SFT
Random Segments 45.1 15138 50.8 10117
High-Abs-IG Tokens 46.1 14612 50.8 9495
High-Orig.-IG Tokens 45.2 14747 50.3 9876
High Strength Segments 46.9 14715 51.4 9466
Our Important Segments 46.9 13506 51.7 9388

important segments outperforms random seg-
ments and token-level selection based on ab-
solute or original IG values, with absolute IG
values proving more effective than original IGs
for identifying importance. Furthermore, the
improvement over only high-strength segments
shows that incorporating moderate direction con-
sistency can further filter out low-impacted seg-
ments to achieve greater token reduction without
accuracy loss. Overall, these consistent improve-
ments demonstrate that segment-level granular-
ity better preserves reasoning coherence than
token-level selection, and our IG-based strength-
consistency criterion effectively identifies the
most contributive reasoning components.

4.4 COMPARISON TO EXISTING SEGMENT IMPORTANCE MEASURES

To demonstrate the superiority of our IG-based importance segment identification, we apply Selective
SFT using our identified segments and compare against alternative importance measures: (1) First-
Correct Solution (Chen et al., 2024): retaining the first correct answer and all preceding segments
as important; (2) Confidence-Gain Segments (Xu et al., 2025): identifying segments that directly
improve the model’s confidence in the correct answer compared to when the segment is removed
(as described in Sec. 3.1). (3) Segment Perplexity (Cui et al., 2025b): identifying critical segments
whose removal leads to a substantial increase in CoT perplexity. (4) Segment Entropy Li et al.
(2025a): prioritizing segments with higher aggregated token-level entropy as they indicate greater
informational contribution. We set thresholds for methods (3) and (4) to ensure the selected important
content occupies approximately the same 45∼50% token ratio as our method for a fair comparison.

Results averaged across all datasets on R1-Distill-Qwen-1.5B are shown in Table 3. Our method
consistently outperforms others in both accuracy and token reduction, demonstrating its abil-
ity to more precisely identify segments that are truly contributive to reasoning, while perplex-
ity and entropy are not entirely consistent signals of importance. The weak performance of

Table 3: Selective SFT performance on important
segments using different importance measures on
R1-Distill-Qwen-1.5B. Accuracy and token length
are averaged across all datasets.

Methods Greedy Sampling
Acc. Length Pass@1 Length

Full CoT SFT 44.8 16520 50.9 10043

First-Correct Solution 46.2 15238 51.0 9492
Confidence-Gain Segments 44.7 15479 50.3 9856

Segment Perplexity 44.7 14973 50.2 9816
Segment Entropy 44.5 16288 51.2 10148

IG-based Important Segments 46.9 13506 51.7 9388

Confidence-Gain Segments stems from its ne-
glect of indirectly contributive segments, such
as those supporting early-stage question under-
standing or eliminating incorrect solution paths,
as evident in its identification of only 24% of
segments on average. Notably, our approach sur-
passes First-Correct Solution, suggesting that
segments beyond the first correct answer, such
as answer verification or alternative solutions,
are also meaningful by improving correct an-
swer confidence. Moreover, it achieves greater
token reduction than First-Correct Solution, indi-
cating it can more selectively mask unnecessary
segments before the first correct answer.

8
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4.5 PRUNING-BASED COMPARISON

We further apply our IG-based importance segment identification to segment-level CoT pruning
for SFT, and compare against other strategies introduced in Sec. 4.4. We do not compare with
token-level pruning methods as they would significantly disrupt text coherence and fluency in
long CoTs and severely degrades SFT performance. We adjust thresholds for our method and
compared methods (3) and (4) to prune nearly 30% of tokens from unimportant segments, as excessive
pruning ratios substantially impact SFT performance. As shown in Table 4, our method better
maintains performance in both decoding settings, compared to other CoT pruning strategies. Among
them, First-Correct Solution performs best because it retains consecutive and complete reasoning

Table 4: Performance of different segment-level pruning
methods for CoT SFT on R1-Distill-Qwen-1.5B. Accu-
racy and token length are averaged across all datasets.

Methods Greedy Sampling
Acc. Length Pass@1 Length

Full CoT SFT 43.5 17140 50.7 10163

First-Correct Solution 45.2 11987 47.2 6846
Confidence-Gain Segments 40.3 11344 44.5 4180

Segment Perplexity 38.6 15892 47.9 8847
Segment Entropy 43.4 14321 45.9 7307

IG-based Important Segments 43.9 15097 49.2 7766

processes, while other methods inevitably
affect the information coherence of supervi-
sions, leading to more severe performance
drops and limited token reduction in long-
CoT scenarios. However, performance still
declines after First-Correct Solution prun-
ing. Compared to Table 3, these results fur-
ther demonstrate the effectiveness of our
proposed segment-level selective learning
across various importance metrics, which
can maintain or even improve performance
while reducing token consumption.

5 RELATED WORK

LLMs Reasoning Efficiency LRMs exhibit strong reasoning capabilities but typically generate
verbose and redundant traces, leading to high computational costs and error accumulation (Sui et al.,
2025; Wang et al., 2025a;d). Recent research explores various approaches to improve reasoning
efficiency, which can be grouped into four categories. First, prompt-based methods design input
prompts to control task difficulty and token budgets (Han et al., 2025; Renze & Guven, 2024). Second,
decoding strategies dynamically reduce redundancy and shorten outputs during inference (Wang
et al., 2025c; Liao et al., 2025). Third, latent reasoning approaches represent reasoning trajectories
in latent spaces (Hao et al., 2024; Deng et al., 2024). Finally, training-based methods use SFT on
compressed CoT supervision (Xia et al., 2025a; Lu et al., 2025) and reinforcement learning (RL) with
conciseness rewards (Yuan et al., 2025; Lou et al., 2025). We focus on SFT-based methods, as they
better balance efficiency and performance while serving as essential cold starts for RL-based training.

Importance Measurement To construct compressed CoT supervision for SFT-based methods, a key
direction is to measure importance of different parts within full CoTs and prune less important content.
Token-level methods typically utilize token logits and entropy to prioritize salient tokens but ignore
semantic coherence (Xia et al., 2025a; Cheng et al., 2025; Wang et al., 2025b) Segment-level methods
assess importance at segment granularity, better aligning with human reasoning units (Li et al., 2025a;
Cui et al., 2025b). Moreover, Xu et al. (2025) propose leave-one-out and greedy forward selection
to estimate segment attribution. Unlike these indirect measures, we use integrated gradients–based
attribution method to quantify the direct contribution of each segments to final answer predictions.

Selective Training Recent research challenges traditional full sequence learning paradigm that
uniformly optimizes loss on all tokens (Lai et al., 2024; Lin et al., 2025). Lin et al. (2024) selectively
apply loss only to useful tokens and improve pretraining performance. Hans et al. (2024) propose
training on randomly selected token prevents memorization without performance degradation. Kim
et al. (2025) groups tokens in each sample by importance and optimizes weighted loss that adap-
tively emphasizes challenging groups. In this work, we propose a segment-level selective learning
framework that masks unimportant segments labeled by our importance measurement during SFT.

6 CONCLUSION

In this work, we proposed a segment-level selective learning framework for more effective learning
from long reasoning traces. By incorporating integrated gradient attribution, we introduced two
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segment-level metrics: attribution strength and attribution direction consistency to identify important
segments with high strength but moderate consistency from full CoTs. Selective SFT on these
segments improves both reasoning accuracy and reduces output length, outperforming full-CoT SFT.
Our approach provides a principled way to identify critical reasoning segments and offers broader
potential for emphasizing policy updates on targeted content in reinforcement learning.

REPRODUCIBILITY STATEMENT

To support reproducibility, we provide detailed descriptions of our metrics and framework in Sec. 2
and Appendix C.4. Additionally, we include comprehensive implementation details to reproduce our
results in Sec. 4.1 and Appendix. C.3, covering hyperparameters selection, training and evaluation
details, training frameworks. We will release our data and code after the anonymous review process.
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A POSITIONAL DISTRIBUTIONAL OF SEGMENTS IMPORTANCE

We analyze the positional distribution of segment importance within long CoTs by identifying the
decision segment, defined as the first segment that derives the correct answer. We observe 40%
of important segments appear after the decision segment, indicating that additional verification
or exploration beyond the initial correct answer can still play a crucial role. In contrast, 57% of
unimportant segments occur before the decision segment, suggesting that the search for the correct
answer often involves redundant behaviors such as repetition and truncation. This also highlights
that simply splitting by decision segments may introduce a considerable number of false positives
and false negatives (Wang et al., 2025d). A finer-grained analysis further reveals that most low-
strength unimportant segments (64%) occur before the decision segment. In contrast, the majority
of high-consistency unimportant segments (72%) appear after it. Combined with Figure 3.1 shows
that high-consistency segments typically induce minimal improvement in correct-answer confidence,
this suggests that once the correct answer is found, such segments are prone to shallow or redundant
elaboration as formalized verification or reinforcement of the already-found answer rather than
introducing deeper critical examination.

B INCOMPLETELY TRUNCATED SEGMENT IDENTIFICATION

To determine whether a given segment is complete or truncated by alternative content, we employ
Qwen3-8B with a carefully designed prompt template. The template, shown in Table 5, describes the
task and includes few-shot examples. It instructs the model to first reason step by step in thinking
mode, and then output a final judgment on whether Segment 2, given the surrounding context of
Segment 1 and Segment 3, is a truncated segment. We frame this as a 0/1 classification task rather
than using Yes/No answers, since we find that restricting the output to binary digits yields more
reliable performance.

For each segment, we conduct up to two inference rounds. In round 1, the model runs in thinking
mode with a token budget of 2000, temperature 0.2, top_p 0.7, and repetition_penalty 1.1. If the
model fails to reach to a conclusion in this round, we will inject an Early-Stopping Prompt (as
shown in Table 6), and run the model in round 2, with temperature 0.1, top_p 0.7, max_tokens 1000,
and repetition_penalty 1.1. The input for round 2 consists of the original input and the Round 1
output, followed by the injected Early-Stopping Prompt.

C SUPPLEMENTARY IMPLEMENTATION DETAILS

C.1 LLM USAGE

Our use of LLMs in this paper comprises two main components: writing assistance and tools for
data analysis and construction. During writing, we utilize ChatGPT 5 and Claude Sonnet 4 to help
polish the exposition. For data analysis and construction, as described in Section 4.1, we employ
R1-Distill-Qwen2.5-7B to generate its CoT trajectories leading to correct answers as supervision for
SFT, and to compute integrated gradient attributions on each token.

C.2 SEGMENTATION KEYWORDS

To partition each long CoT into individual segments, we select transition keywords following (Lu
et al., 2025) which includes “But”, “Wait”, “Alternatively”, “However”, “Hmm”, “Hmmm”, “Not
sure”, “Going back”, “Backtrack”, “Trace back”, and “Another”. Specifically, most of our keywords
are directly adopted from (Lu et al., 2025) , including “\n\nWait”, “\n\nAlternatively”, “\n\nHowever”,
“\n\nNot sure”, “\n\nGoing back”, “\n\nBacktrack”, “\n\nTrace back”, “\n\nAnother”. We prepend
“\n\n” to each keyword because many LRMs naturally structure their reasoning output with paragraph
breaks, making this prefix a reliable delimiter for identifying reasoning segments. Our keywords
differ from Lu et al. (2025) in two ways. First, instead of the broad keyword “But”, we use more
specific variants including “\n\nBut wait”, “\n\nBut alternatively” and “\n\nBut just to”. This change
is motivated by empirical observations that LRMs, especially smaller distilled models like R1-Distill-
Qwen2.5-7B, tend to use “But” as conversational fillers rather than a meaningful reasoning transition.
Second, we exclude fillers such as “Hmm” and “Hmmm”, which we also find to be frequently
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Prompt for Judging Truncated Segments

I will provide you with 3 segments of text which are generated continuously by a reasoning model.
Each segment itself represents a complete thinking step, and the 3 segments together represent 3
continuous thinking steps during the reasoning process.

Your task:
Taking Segment 1 and Segment 3 as context, determine whether Segment 2 is a "truncated" segment,
i.e., an unfinished thinking step.

Example of a non-truncated segment:
> But let me double-check my calculations to be sure I didn’t make any mistakes.\n\nFirst, the original
equation:\n\n√(1995) * x^(log_1995 x) = x^2.\n\nI took log base 1995 of both sides, correctly applied
the logarithm rules, and ended up with a quadratic in y = log_1995 x. Solving that quadratic gave me
two solutions, which translated back to x gave me two roots. Multiplying them gave me 1995², which
is 3,980,025. So, yes, the last three digits are 025.
The above segment shows a complete thought process, because: 1. Internally, this segment has a clear
logic, where calculations and reasoning are derived progressively. 2. It reaches a conclusion, which
is the final answer to this reasoning step. 3. Externally, if given more context, this segment may
continue or refute it’s previous segment, and the next segment may also continue reasoning based on
this segment, which forms a coherent reasoning chain.

Example of a truncated segment:
> Wait, hold on a second. Let me verify if 1995² is indeed 3,980,025.\n\nCalculating 1995 * 1995:\n\nI
can compute 2000 * 2000 = 4,000,000.\n\nThen, 2000 * (-5) = -10,000.\n\nSimilarly, (-5) * 2000 =
-10,000.\n\nAnd (-5) * (-5) = 25.
The above segment is a truncated segment, because: 1. Internally, this segment lacks a clear logic,
and it only shows partial calculations without reaching the final conclusion of 1995². 2. Externally, if
given more context, this segment may abandon it’s previous segment, and the next segment may also
abandon this segment, which breaks the reasoning chain.

Now, based on the definitions and examples above, please judge whether Segment 2 is a truncated
segment. Here are the given 3 segments:
Segment 1:
> {SEGMENT 1}
Segment 2:
> {SEGMENT 2}
Segment 3:
> {SEGMENT 3}

Please reason step by step, and answer "1" or "0" in the following format:

My final answer is:\n\n$$\n\boxed{1 or 0}\n$$

NOTE:
- The final answer must be either "1" or "0", which means yes or no that Segment 2 is a truncated
segment.
- The final answer must be in \boxed{} format.
- You must not explain anything more after giving the final answer.

Table 5: The prompt for judging truncated segments using Qwen3-8B.

Early-Stopping Prompt

\n\n Considering the limited time by the user, I have to immediately stop reasoning and give the
answer (1 or 0) directly now.\n</think>\n\n My final answer is:\n\n

Table 6: Early-stopping prompt for terminating the model’s thinking process.
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used as verbal habits instead of genuine segment boundaries. These design choices aim to balance
generalizability across LRMs while ensuring that segmented reasoning units are meaningful rather
than overly fragmented.

To illustrate the effectiveness of our method using different keywords, we also experiment with using
the exact keyword list from (Lu et al., 2025). We apply these keywords to segment the original
LIMO CoTs and retrain R1-Distill-Qwen2.5-1.5B. This results in much finer-grained segmentation,
increasing the average number of segments from 22.5 to 33.5 per reasoning trace. The selective SFT
results in Table 7 show that this finer segmentation leads to higher accuracy and more concise outputs.
We attribute this to that LIMO traces are generated by higher-quality models (e.g., DeepSeek-R1,
QwQ-32B), whose reasoning contains fewer meaningless fillers. In such cases, finer segmentation
yields more precise identification of important reasoning units.

Table 7: Results on R1-Distill-Qwen-1.5B using new transition keywords from (Lu et al., 2025).

Methods Greedy Sampling
Acc. Length Pass@1 Length

R1-Distill-Qwen-1.5B 36.7 20244 49.5 9791
Full CoT SFT 44.8 16520 50.9 10043
Segment Selective SFT (Original Keywords) 46.9 13506 51.7 9388
Segment Selective SFT (New Keywords) 51.5 12646 51.5 9167

C.3 TRAINING & EVALUATION DETAILS

All models are trained using the Unsloth training framework (Daniel Han & team, 2023). Specifically,
we train R1-Distill-Qwen2.5-1.5B and R1-Distill-Qwen2.5-7B for 10 epochs respectively with a
learning rate of 3e-5 and 1.5e-5. For Qwen2.5-7B-Instruct which does not original support long-chain
reasoning, we adopt a two-stage SFT strategy that first conducts full CoT training for 7 epochs with
a learning rate of 1.5e-5, and continued training for 4 additional epochs using only the identified
important segments, with a learning rate of 8e-6. For a fair comparison, the full CoT SFT baseline is
trained with the same two-stage schedule. All experiments employ a cosine learning rate schedule.
The overall performance (including greedy accuracy, sampling pass@1, pass@6 and output length)
reported in this paper is calculated using macro averaging across all datasets, treating each dataset as
equally important.

C.4 METHODOLOGY DETAILS

For calculating token-level integrated gradients, we use J = 50 interpolation steps to estimate
the integral in the IG computation for the cost-precision trade-off as indicated by (Sundararajan
et al., 2017) that 20∼300 integration steps typically approximate the path integral within about 5%
approximation error. We specifically utilize R1-Distill-Qwen2.5-7B to calculate token IG values on
both reference long CoTs provided by the LIMO dataset and self-generated long CoT supervisions by
Distill-Qwen2.5-7B. Each costs roughly 7 (GPU×hours), compared to the 8 (GPU×hours) required
for a full SFT run of the same 7B model. In deploying our method and all baselines, we additionally
include the first and last segments which are responsible for establishing the problem understanding
and for explicitly formatting the final answer, together with the identified important segments as
learning objectives in both selective SFT and pruning-based settings. For segment-level aggregation,
we have explored several strategies: (1) length-normalized summation, (2) direct summation, and (3)
averaging the top 20% of token IG values. We find that the first two achieve comparable performance,
while length-normalized summation better mitigates bias toward longer segments.

D DIFFERENT THRESHOLD HYPERPARAMETERS

We further experiment with different selection of the hyperparameters τ and beta on R1-Distill-
Qwen2.5-1.5B. We first explore different values of β ∈ {0.7, 0.8, 0.9} under a fixed τ = 0.7 and
report the temperature sampling results in the left panel of Figure 5. We observe that β = 0.8 achieves
the best performance, which is also adopted as the main experimental setting in our paper. Based on
β = 0.8, we further validate whether τ = 0.7 indeed achieves the best experimental performance as
expected in our hyperparameter search. We vary τ ∈ {0.6, 0.7, 0.8, 0.9} as shown in the right panel
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of Figure 5. Results show that as τ increases, more segments are selected as important among all
candidates. Consequently, the token reduction after training becomes smaller. However, performance
decreases because higher τ introduces more false positives, and a denser loss mask negatively impacts
training. Overall, τ = 0.7 and β = 0.8 constitute our final experimental setting.

0.7 0.8 0.9
Threshold 

50.0

50.5

51.0

51.5

52.0

9000

9500

10000

10500
Pass@1
Output Length

0.6 0.7 0.8 0.9
Threshold 

50.0

50.5

51.0

51.5

52.0

9000

9500

10000

10500
Pass@1
Output Length

Figure 5: Model performance under different hyperparameters τ and β.

E ADDITIONAL RESULTS ON LLAMA3.1-8B-INSTRUCT.

To further demonstrate the effectiveness of our method beyond the Qwen model family, we addition-
ally train LLama3.1-8B-Instruct using the LIMO dataset. As shown in Table 8, Segment Selective
SFT still achieves performance improvement, demonstrating that our method generalizes well to a
different model family.

Table 8: Comparison results on LLaMA3.1-8B-Instruct.

Methods Greedy Sampling
Acc. Length Pass@1 Length

LLaMA3.1-8B-Instruct 24.0 9691 23.5 4161
Full CoT SFT 30.4 17474 33.0 15067
Segment Selective SFT 33.8 16005 33.5 14669
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