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ABSTRACT

Codistillation has been proposed as a mechanism to share knowledge among
concurrently trained models by encouraging them to represent the same func-
tion through an auxiliary loss. This contrasts with the more commonly used
fully-synchronous data-parallel stochastic gradient descent methods, where dif-
ferent model replicas average their gradients (or parameters) at every iteration
and thus maintain identical parameters. We investigate codistillation in a dis-
tributed training setup, complementing previous work which focused on extremely
large batch sizes. Surprisingly, we find that even at moderate batch sizes, models
trained with codistillation can perform as well as models trained with synchronous
data-parallel methods, despite using a much weaker synchronization mechanism.
These findings hold across a range of batch sizes and learning rate schedules, as
well as different kinds of models and datasets. Obtaining this level of accuracy,
however, requires properly accounting for the regularization effect of codistilla-
tion, which we highlight through several empirical observations. Overall, this
work contributes to a better understanding of codistillation and how to best take
advantage of it in a distributed computing environment.

1 INTRODUCTION

Several recent improvements in the performance of machine learning models can be attributed to
scaling the training of neural network models (He et al., 2016; Goyal et al., 2017; Vaswani et al.,
2017; Devlin et al., 2018; Shoeybi et al., 2019; Huang et al., 2019; Kaplan et al., 2020; Lepikhin
et al., 2020; Brown et al., 2020). Most approaches to scaling up training leverage some form of data
parallelism (using multiple workers to compute gradients on different training samples in parallel),
and the most common approach to data-parallel training is synchronous first-order optimization.

In synchronous data-parallel training, several replicas of a neural network model are created, each
on a different worker. The workers process different mini-batches locally at each step using an opti-
mizer such as Stochastic Gradient Descent (SGD) or Adam (Kingma & Ba, 2015), and the replicas
synchronize (i.e., average either gradients or parameters) at every step by communicating either with
a centralized parameter server (Li et al., 2014) or using all reduce (Goyal et al., 2017). More
computing resources can be used in parallel by increasing the number of workers, effectively in-
creasing the batch size used to compute a stochastic gradient. Increasing the batch size reduces the
gradient’s variance and ideally makes it possible to increase the learning rate in proportion to the
number of workers. By doing so, the number of steps required to reach a given model quality is
also reduced in proportion to the number of workers, and a near-linear speedup is achieved (Goyal
et al., 2017). However, it has been observed that the linear learning rate scaling strategy leads to
performance degradation for very large batch sizes (Goyal et al., 2017), and even with more prin-
cipled learning rate scaling mechanisms, synchronous SGD with larger batches eventually yields
diminishing returns (Johnson et al., 2020).

Synchronous data-parallel methods ensure that all models are precisely synchronized at every step
during training. This incurs substantial communication overhead, which increases with the number
of replicas, and can quickly become a bottleneck limiting the processing units’ utilization (e.g., GPU
or TPU), especially when devices communicate over commodity interconnects such as Ethernet.
A number of approaches have been proposed to reduce communication overhead, including using
mixed-precision (Jia et al., 2018) or other forms of compression (Alistarh et al., 2017; Bernstein
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et al., 2018), reducing the frequency of synchronization to not occur after every optimizer step (Stich,
2018; Yu et al., 2019), using gossip-based methods for approximate distributed averaging (Lian
et al., 2017; Assran et al., 2019; Wang et al., 2020), or using some combination thereof (Wang &
Joshi, 2018; Koloskova et al., 2020).

Codistillation is an elegant alternative approach to distributed training with reduced communication
overhead (Anil et al., 2018). Rather than synchronizing models to have the same weights, codistilla-
tion seeks to share information by having the models represent the same function (i.e., input-output
mapping). Codistillation accomplishes this by incorporating a distillation-like loss that penalizes
the predictions made by one model on a batch of training samples for deviating from the predictions
made by other models on the same batch. In practice, a worker updating one model can compute
the predictions made by another model by reading checkpoints of the other model and performing
an additional forward pass. Previous work has demonstrated that codistillation is quite tolerant to
asynchronous execution using stale checkpoints, e.g., using another model’s checkpoint from up to
50 updates ago without observing a significant drop in accuracy (Anil et al., 2018).

Anil et al. (2018) focuses on the very large batch setting. For example, when training a ResNet-50 on
ImageNet, codistilling two models and using batch size 16k per model achieves substantially better
performance than training with synchronous SGD and batch size 32k, although the final accuracy
is still significantly lower than that achieved by synchronous SGD with a smaller batch size (e.g.,
8k or smaller). This performance boost is attributed to an ensembling-like effect introduced by the
codistillation loss.

In this paper we study codistillation at moderate batch sizes, i.e., before the performance of syn-
chronous SGD begins to degrade. We demonstrate that it is possible to use codistillation in this
regime without losing accuracy. For example, when training a ResNet-50 on ImageNet, we show
that codistilling two models, each model using a batch size of 256, achieves comparable perfor-
mance to training a single model using synchronous SGD with batch size 512. Furthermore, this
holds across a range of batch sizes.

Achieving this performance parity involves modifying the way that explicit regularization is used
in conjunction with codistillation. This modification stems from new insights into codistillation.
Specifically, we demonstrate that codistillation has a regularizing effect. Thus, while increasing the
batch size in synchronous SGD helps training by reducing the gradient variance, we conjecture that
codistillation helps in a complementary manner via this regularization. Because it has a regular-
izing effect, care needs to be taken when using codistillation in conjunction with other forms of
regularization, such as L2 regularization (weight decay), to avoid over-regularizing. We also evalu-
ate the sensitivity of codistillation to different hyper-parameters like the frequency of reading new
checkpoints and learning rate schedule.

Overall, our findings complement previous work on codistillation (Anil et al., 2018; Zhang et al.,
2018). We summarize below our main contributions:

1. To the best of our knowledge, we demonstrate for the first time that models trained with
codistillation can perform as well as models trained with traditional parallel SGD methods
even when trained with the same number of workers and same number of updates, despite
using a much weaker synchronization mechanism (Section 3). Previous work at the inter-
section of codistillation and distributed training used extremely large batch sizes and more
workers than the parallel SGD counterparts.

2. Complementing the existing work on codistillation, we show that codistillation acts as a
regularizer (Section 4). Our work demonstrates that explicitly accounting for its regular-
ization effect is a key ingredient to using codistillation without losing accuracy (compared
to parallel SGD methods).

2 CODISTILLATION: BACKGROUND AND RELATED WORK

Codistillation is proposed as a mechanism for sharing information between multiple models being
trained concurrently (Anil et al., 2018; Zhang et al., 2018). In typical multi-phase distillation, first,
a teacher model is trained using standard supervised learning, and then a student model is trained to
predict the outputs of the teacher model without any updating of the teacher. In contrast, when two
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Algorithm 1: Codistillation
Input: Loss function L(y, ŷ) and codistillation loss function D(y, y′)
Input: Model architecture fθ(x) and initial model parameters {θ1i : i = 1, . . . , n}
Input: Number of iterations K, learning rates {ηk}Kk=1, and penalty coefficients {αk}Kk=1

1 for k = 1, . . . ,K do
2 for i = 1, . . . , n do
3 x, y = get next minibatch()

4 θk+1
i = θki − ηk∇θi

(
L(y, fθki (x)) + αk 1

n−1
∑
j 6=iD

(
fθki (x), fθkj (x)

))
5 end
6 end

or more models codistill, there is only one phase, and in addition to minimizing the usual supervised
loss on the training data, an additional loss term is used to share information between models by
encouraging each model to make similar predictions to the other(s).

Codistillation, as described in Zhang et al. (2018), is shown in Algorithm 1. Here, n ≥ 2 models are
trained concurrently. The ith model is updated on line 4 by taking a gradient step to minimize the
combination of a standard supervised loss function L (e.g., cross-entropy or MSE) and a distillation-
like loss D which penalizes differences between the predictions made by model i and those made
by model j, averaged over all other models j 6= i. Zhang et al. (2018) and Anil et al. (2018)
both report using Kullback-Liebler (KL) divergence for D in their experiments, although Anil et al.
(2018) mentions that other options are possible (e.g., mean squared error between the logits of
different models). Zhang et al. (2018) does not explicitly include a penalty parameter αk, and
instead (implicitly) takes αk = 1 for all k.

Anil et al. (2018) focuses on codistillation as a mechanism for scaling distributed training, and
demonstrates that using codistillation allows for better scaling with larger batch sizes than conven-
tional synchronous parallel SGD. When different models reside on different GPUs, implementing
line 4 requires that the devices communicate. Anil et al. (2018) proposes to have workers exchange
parameter checkpoints, and these checkpoints are updated periodically rather than after every itera-
tion. This leads to some delay, i.e., actually using θk

′

j with k′ < k in line 4. However, it is argued
that such delay is tolerable for codistillation because large changes in parameters θ do not necessar-
ily correspond to large changes to the function fθ. Experimentally, it is reported that exchanging
checkpoints every 50 updates does not noticeably degrade performance in their setup. Anil et al.
(2018) also reports using a burn-in period since, “in the beginning of training, the distillation term
in the loss is not very useful or may even be counterproductive.” During the burn-in period of the
first K̂ � K steps, the models train independently; i.e., αk = 0 for k = 1, . . . , K̂. Below we find
that codistillation can tolerate large delays (e.g., updating checkpoints after hundreds or thousands
of updates) without any burn-in period and without any significant loss in accuracy.

One common application of distillation is to train a single model to mimic an ensemble’s predictions
to avoid the computational overhead of deploying an ensemble. Motivated by this, previous works
(Anil et al., 2018; Zhang et al., 2018) explore the connection between codistillation and ensemble
methods, showing that two models trained using codistillation achieve performance close to that of
ensembling two independently-trained models. Anil et al. (2018) also conducts an experiment that
compares codistilling two models with simply using label smoothing as a regularizer when training
one model, and reports that codistillation performs significantly better.

3 CODISTILLATION, SYNCHRONOUS SGD, AND REGULARIZATION

The aim of this section is to demonstrate that codistillation can be used as a mechanism for dis-
tributed training without losing accuracy, even when used in conjunction with batch sizes that are
not particularly large. To achieve this, we also show that regularization needs to be handled care-
fully. Typical training regimes use some form of regularization to avoid overfitting. For example,
the common practice is to use L2 regularization (weight decay) when training convolutional net-
works (Goyal et al., 2017) and to use label smoothing when training neural machine translation
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(b) Top-1 Validation Accuracy
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Figure 1: Comparing all reduce and codistillation for training ResNet50 on ImageNet. We
codistill two models using batch size 256 for each, and the model trained with all reduce uses
batch size 512. All experiments are run on 16 GPUs. We report the (a) training loss and (b) top-1
validation accuracy. We observe that compared to all reduce, the model trained with codistilla-
tion underfits, obtaining higher training loss and lower top-1 accuracy. (c) Examining the difference
in parameters from initialization over the course of training further suggests that codistillation has a
regularizing effect that impacts performance, since parameters remain closer to their initial values.

models (Ott et al., 2018). Directly incorporating codistillation on top of existing training pipelines
can lead to underfitting. We begin this section by illustrating this point.

3.1 CODISTILLATION “OUT OF THE BOX” CAN OVER-REGULARIZE

We train a ResNet50 (He et al., 2016) model to perform image classification on the ImageNet
dataset (Russakovsky et al., 2015). To begin, we compare training a single synchronous SGD model
using batch size 512 with codistilling two models using batch size 256 per model. In both cases we
perform training using 16 GPUs and batch size 32 per GPU. Similar to Anil et al. (2018), we follow
the training procedure proposed in Goyal et al. (2017) for the learning rate warmup, learning rate
schedule, L2 regularization, and other hyperparameters. Specifically, synchronous SGD training
(all reduce) is run for 90 epochs. The learning rate starts at 0.1, regardless of batch size, and is
warmed up over the first five epochs to 0.1 × b/256, where b is the effective batch size across all
workers (e.g., 512 when using synchronous SGD and 16 GPUs). The learning rate is then decreased
by a factor of 0.1 at the beginning of epochs 30, 60, and 80.

When training with codistillation, workers read the checkpoints of the other model once every 2500
updates. At this frequency of checkpoint reading, we did not observe any benefit to using a burn-in
period. We experimented with reading checkpoints more frequently and also did not observe any
improvement in performance. When training with two models and batch size 256, we use the same
total number of GPUs (16) as an all reduce model with batch size 512, as well as the same
number of gradient updates per GPU (with each update processing a mini-batch of size 32). Hence,
when training using codistillation we only train the two models for 45 epochs (so that the number
of updates per codistilled model is the same as the number of updates performed by all reduce
using the same total number of GPUs) and scale all milestones in the learning rate schedule by half,
i.e.., warming up over the first 2.5 epochs, and decreasing at epochs 15, 30, and 40.

In Fig. 1(a) and 1(b), we observe that the model trained with codistillation achieves higher training
loss and lower top-1 accuracy (around 2% lower) compared to the model trained with synchronous
SGD. The codistillation performance is calculated using one of the two models (model 1) being
codistilled. This suggests that although the codistillation loss may provide a useful training signal,
without other modifications it is not sufficient to achieve the same accuracy as synchronous SGD
using the same number of GPUs.

Since both training loss and validation accuracy are affected, we hypothesize that the problem stems
from over-regularization. To further investigate this we plot the change in model weights, relative to
their initialization, over the course of training in Fig. 1(c). We observe that parameters do not move
as far in parameter space when training with codistillation as they do when using synchronous SGD,
providing further evidence that codistillation acts as a regularizer.
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(a) ResNet50
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(b) ResNeXt101

Figure 2: Comparing all reduce and codistillation for ResNet50 and ResNeXt-101 models on
the ImageNet dataset, with decreasing weight decay and a shifted learning rate decay schedule
compared to Goyal et al. (2017). Both methods achieve similar values of top-1 validation accuracy.

3.2 ACCOUNTING FOR CODISTILLATION’S REGULARIZATION EFFECT BRIDGES THE GAP

Motivated by the observations above, we conduct an experiment using less explicit regularization
when training with codistillation. Goyal et al. (2017) recommends using a constant L2 regularization
of 10−4 throughout training. We propose to start with the same initial value (10−4), reduce it to 10−5

after the first learning rate decay, and reduce it further to 0 after the second learning rate decay. When
training with codistillation, we observe that the model’s training loss saturates slower and we shift
the learning rate schedule by a few epochs to account for this (from 15, 30, 40 to 18, 38, 44).

In Fig. 2(a), we compare the top-1 validation accuracy on ImageNet for the ResNet50 model trained
with codistillation and all reduce, with the above-mentioned modifications to the codistilla-
tion setup. Accounting for codistillation’s regularization effect helps narrow the performance gap,
with all reduce now performing only marginally better (76.1% for all reduce vs 75.9% for
codistillation). We verify that with a constant L2 regularization of 10−4 throughout training, codis-
tillation performs much worse than all reduce, implying that the improved performance is not
only from the modified learning rate schedule; see Fig. 12 in the Appendix. To validate that the
improvement is not specific to the ResNet50 architecture, we repeat the experiment using the larger
ResNeXt101, ResNet152 (Fig. 9 in Appendix) and ResNext152 (Fig. 10 in Appendix) architectures.
In Fig. 2(b), we observe that codistillation performs marginally better than all reduce. We be-
lieve that the larger ResNeXt101 may benefit more from codistillation due to having more capacity
than the ResNet50. The training loss curves for both models are shown in Fig. 8 in the Appendix.

In synchronous SGD (all reduce), more workers can be added to increase the effective batch
size (summed across all workers). This reduces the gradient’s variance and the model can be trained
with a larger learning rate and fewer steps, while maintaining a similar level of accuracy (Goyal
et al., 2017). In Fig. 3 and Table A.2, we demonstrate a similar effect with codistillation. As one
doubles the batch size per worker (and hence doubles the effective batch size), the learning rate can
also be doubled and the model reaches similar performance in half the number of steps.

The experiments above use the step-wise learning rate schedule described in Goyal et al. (2017). We
want to ascertain that our findings are not dependent on this specific learning rate schedule. Hence
we train the ResNet50 and ResNeXt101 models with the cosine learning rate schedule (He et al.,
2019). In Fig. 4, we observe that the final validation performance for the two approaches is very
close, confirming that codistillation works consistently across different learning rate schedules. The
corresponding training loss plots are shown in Fig. 11 in the Appendix.

So far, all our experiments have focused on the ImageNet dataset and the ResNet family of mod-
els. Next, we evaluate the codistillation mechanism for neural machine translation (NMT). Specif-
ically, we train the “big” transformer model (Vaswani et al., 2017) (6 blocks in the encoder and
decoder networks) on the WMT’16 En-De translation dataset, following the setup described in Ott
et al. (2018). We note that for codistillation, reducing the explicit regularization is again important
for achieving performance comparable to all reduce (see details in Appendix, Section A.1).
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(a) Training Loss
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(b) Validation Accuracy

Figure 3: Codistillation scales well across multiple values of batch size per worker. Each time we
double the batch size per worker, we scale the learning rate schedule by a factor of two and perform
half the number of updates. We do not observe any significant degradation in (a) training loss or (b)
validation accuracy across a wide range of batch sizes. The training loss and validation accuracy for
different batch sizes are also provided in Table A.2.
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(a) ResNet50
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Figure 4: Comparing all reduce and codistillation for ResNet50 and ResNeXt101 models on the
ImageNet dataset, using a cosine learning rate schedule (He et al., 2019). We observe that the final
validation performance for the two approaches is very close, confirming that codistillation works
consistently across different learning rate schedules.
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Figure 5: Comparing all reduce and codis-
tillation using “big” transformer model on
WMT’16 En-De dataset. Models trained using
all reduce and codistillation both reach sim-
ilar NLL on the validation dataset.

This observation is in line with our previous ob-
servations on convolutional models. In Fig. 5,
we observe that the model trained with codis-
tillation reaches a similar validation loss as the
model trained with all reduce. This con-
firms that codistillation with adjusted regular-
ization schedule also extends to NMT. The cor-
responding training plot is shown in Fig. 14 in
the Appendix.

There are several important aspects of the above
results that are worth emphasizing. (i) Unlike
prior work on codistillation, we train both se-
tups with the same number of workers for the
same number of steps. We believe this con-
straint to be particularly important to better un-
derstand the impact of codistillation on many
practical distributed training workflows. (ii)
Our objective is not to show that codistillation
can outperform all reduce, and our initial
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Figure 6: Final validation top-1 accuracy and training loss of a ResNet-50 model when trained using
a fraction of the full training data. We observe as smaller fractions of training data are used (and
model starts overfitting), codistillation setup increasingly improves over the all reduce setup in
terms of validation accuracy.

expectation was actually that replacing all reduce by codistillation would degrade the perfor-
mance when using the same number of updates (as suggested in Fig. 1), since codistillation is a
much weaker form of synchronization. With these experiments, we want to quantify this perfor-
mance loss and understand how we can minimize it. Interestingly, we find that the performance gap
can be narrowed down significantly, with codistillation even outperforming all reduce in some
settings (Fig. 4(b)). (iii) We believe that previous works did not investigate the regularization effect
of codistillation because they focused on the ensembling effect obtained by increasing the number
of workers. Being aware of the regularization effect and explicitly accounting for it is important
when using codistillation in practice, as seen in Fig. 2.

4 CODISTILLATION HELPS REDUCE OVERFITTING

Section 3 illustrated that applying codistillation in addition to other forms of regularization can result
in over-regularizing, and progressively reducing the explicit regularization helps improve training
and generalization. This section further explores the regularizing effect of codistillation by examin-
ing settings where we expect the model to overfit.

We simulate a scenario where the ResNet50 model is likely to overfit in a controlled way by training
the model using only a fraction of the full ImageNet training set. When training on (1/k)th of
the training set, we multiply the number of epochs by k so that the total number of model updates
performed is the same as when training with the full training set. The learning rate and weight decay
schedules are also modified accordingly. As we train on less data, we expect the model to overfit,
i.e., to obtain lower training loss and lower validation accuracy.

In Figure 6, we indeed observe that overfitting occurs when using less training data. However,
the overfitting is less severe when training using codistillation, providing further support for the
hypothesis that codistillation acts as a regularizer.

An interesting side-effect of this observation is that codistillation could be an interesting alternative
to all reduce for training over-parameterized models. We further verify this hypothesis by train-
ing a “big” Transformer model for a small NMT dataset (IWSLT 2014 German-English translation
dataset that contains 153K training sentences, 7K development sentences, and 7K test sentences).
The model trained with codistillation achieves a validation NLL of 2.31 whereas the model trained
with all reduce reaches a validation NLL of 2.37.

5 ROBUSTNESS TO UPDATE FREQUENCY AND LEARNING RATE

To further understand the codistillation setup, we conduct additional ablations examining the effect
of some hyper-parameter choices.
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Figure 7: Evaluating the robustness of codistillation setup by varying the frequency of exchanging
checkpoints (left) and learning rate (right) when training ResNet50 on ImageNet dataset. While
there are some gains by using a higher frequency, the results do not degrade too much with a lower
frequency. The learning rate can be increased from 0.1 to 0.2 without hurting the performance.

In distributed training, model weights are exchanged regularly between the training workers. In
synchronous SGD, model parameters are communicated every gradient update, via all reduce,
which introduces the large communication overhead. In codistillation, the frequency of reading
model checkpoints should be treated as a hyper-parameter and should be tuned for the specific use
cases. Zhang et al. (2018) always uses the most recent version of the model for computing the
codistillation loss, equivalent to reading a new checkpoint at every iteration. Anil et al. (2018)
reports exchanging checkpoints every 50 updates.

In the ImageNet results presented in Sections 3 and 4, we exchange the model checkpoints once
every 2500 updates. In Fig. 7(a), we evaluate how the validation performance for the ResNet models
varies with the frequency of exchanging the checkpoints). The curve corresponding to 1× is the
baseline setup, with checkpoints exchanged every 2500 updates. Label 2× denotes the case where
checkpoints are exchanged twice as frequently (every 1250 updates), and other curves similarly
show 0.5× and 4×. The corresponding training loss curves are shown in Fig. 15(a) in the Appendix.
We observe that the setup is quite robust to the frequency of exchange. Although there are some
small improvements by using a higher frequency, the results do not degrade too much with a lower
frequency. Similar trends hold for the Transformer model (for language translation task), as shown
in Fig. 16(a) in the Appendix.

In Fig. 7(b), we vary the base learning rate when training the codistillation model on the ImageNet
dataset, using the setup proposed in Goyal et al. (2017) and report the accuracy on the validation
dataset. We observe that increasing the learning rate from 0.1 to 0.2 has almost no impact on the
validation accuracy. Beyond that, higher learning rates hurt the validation accuracy more. The
corresponding plot with the training loss is shown in Fig. 15(b) in the Appendix.

6 CONCLUSION

In this work, we demonstrate for the first time (to the best of our knowledge), that even for moderate
batch sizes, models trained with codistillation can perform as well as models trained with traditional
parallel SGD methods (while using comparable computational resources). Complementing existing
works, we show that codistillation acts as a regularizer, and that accounting for this property is
essential when using codistillation. There are several exciting and potentially impactful directions
for extending our understanding of codistillation. One important direction is to codistill more than
two models. The loosely synchronized nature of codistillation potentially allows using different
topologies for determining which models codistill together. Zhang et al. (2018) does consider one
version of the setup, where all models codistill with each other, but they do so in a non-distributed
setting. Another possible future work will be to consider codistillation between models that are
different, e.g., in terms of architecture, capacity, or hyper-parameters, and evaluate if that improves
performance over the standard knowledge distillation based approaches.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The code for all experiments is implemented using PyTorch 1.5 (Paszke et al., 2017). All experi-
ments are run for 3 seeds and plots report the average over all seeds. The codistillation loss is the
mean squared error between the logits of the two models (without centering them, as we found in
preliminary experiments that centering yielded similar results).

The experiments involving the ImageNet dataset are based on the setup proposed in Goyal et al.
(2017). We consider two schedules to control the value of the codistillation loss coefficient αk – the
constant schedule, αk = 1 for all k, and the step-wise schedule where we increase αk every time we
decrease the learning rate. We did not find any significant difference in the performance of the two
cases and report the performance for the case where αk increases by 0.5 every time we decrease the
learning rate.

The experiments for translation tasks use the FairSeq library (Ott et al., 2019). These experiments
are based on the setup proposed in Ott et al. (2018). We consider two schedules to control the value
of αk - the constant schedule and the exponential schedule where we increase αk by a factor γ = 1.1
every epoch. We find in Fig. 17 that the exponential schedule works better than the constant alpha
schedule (2.12 vs 2.15 validation perplexity), and this is the schedule we use in all other experiments
on this task. When training the translation models with codistillation, we explicitly reduce the
amount of regularization (to account for regularization added by codistillation) by removing the
label smoothing loss.

A.2 ADDITIONAL RESULTS ON IMAGENET
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(a) ResNet50
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Figure 8: Comparing the training loss for the all reduce and codistillation setups for ResNet50
and ResNeXt-101 models (respectively) on the ImageNet dataset, with decreasing weight decay and
a shifted learning rate decay scheduled compared to Goyal et al. (2017). While the all reduce
setup reaches a lower training loss, the performance on the validation dataset (in terms of top-1
validation accuracy) is very similar for the two setups (for both models) as shown in Fig. 2.

In Fig. 8, we plot the training loss for the ResNet50 (left) and ResNeXt101 (right) models for the
ImageNet dataset with some variations to the setup proposed in Goyal et al. (2017), as in Section 3.2.
Specifically, Goyal et al. (2017) recommends using a constant L2 weight decay set to 10−4 through-
out training. Keeping the initial value of this weight decay to 10−4, we reduce it to 10−5 after the
first learning rate decay and further to 0 after the second learning rate decay. We also modify the
learning rate schedule from Goyal et al. (2017), which is based on how the training loss changes
(and saturates) during training. Due to the regularization effect of codistillation, we observe that
the model’s training loss saturates slower and we shift the schedule by a few epochs to account for
this (from 15, 30, 40 to 18, 38, 44). We note that for both models, the all reduce setup reaches
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a lower training loss. Despite this, the performance on the validation dataset (in terms of top-1
validation accuracy) is very similar for the two setups (for both models) as shown in Fig. 2.
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(a) Training Loss
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Figure 9: Comparing the training loss and validation accuracy (respectively) for the all reduce
and codistillation setups on the ImageNet dataset, with decreasing weight decay and a shifted learn-
ing rate decay scheduled compared to Goyal et al. (2017). While the all reduce setup reaches a
lower training loss, the performance on the validation dataset (in terms of top-1 validation accuracy)
is very similar for the two setups.
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(b) Validation Accuracy

Figure 10: Comparing the training loss and validation accuracy (respectively) for the all reduce
and codistillation setups on the ImageNet dataset, with decreasing weight decay and a shifted learn-
ing rate decay scheduled compared to Goyal et al. (2017). While the all reduce setup reaches a
lower training loss, the performance on the validation dataset (in terms of top-1 validation accuracy)
is very similar for the two setups.

In Fig. 11, we show the training performance for ResNet50 and ResNeXt101 models when using
the cosine learning rate schedule (He et al., 2019). Again, while the all reduce setup reaches a
lower training loss, the performance on the validation dataset (in terms of top-1 validation accuracy)
is very similar for the two setups (for both models) as shown in Fig. 4.

In Fig. 12 we verify that the good performance observed in Fig. 2 is not due only to the shifted
learning rate schedule. We observe that, indeed, with this shifted schedule, if we keep the L2 weight
decay to a constant value of 10−4 throughout training, then codistillation is significantly worse than
all reduce both in terms of training loss and validation accuracy.

In synchronous SGD (all reduce), more workers can be added to increase the effective batch
size (summed across all workers). The increased batch size reduces the gradient’s variance and the
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(a) ResNet50
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Figure 11: Comparing the training loss for the all reduce and codistillation setups for ResNet50
and ResNeXt-101 models (respectively) on the ImageNet dataset, using the cosine learning rate
schedule proposed in He et al. (2019). While the all reduce setup reaches a lower training loss,
the performance on the validation dataset (in terms of top-1 validation accuracy) is very similar for
the two setups (for both models) as shown in Fig. 4.
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(a) Training Loss
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Figure 12: Comparing the training loss (left) and validation accuracy (right) of the all reduce
and codistillation setups with the ResNet50 model on the ImageNet dataset. The training setup is the
same as in Fig. 2(a), with one difference – the L2 weight decay is kept at a constant value of 10−4
throughout training. These plots show that when we do not account for the regularization effect of
codistillation, the codistillation model’s performance lags behind all reduce.

model can be trained with a larger learning rate and fewer steps, while maintaining a similar level
of accuracy (Goyal et al., 2017). In Fig. 3 and Table A.2, we demonstrate a similar effect with
codistillation. As one doubles the batch size per worker (and hence doubles the effective batch size),
the learning rate can also be doubled and the model reaches similar performance in half the number
of steps.

Batch Size Training Loss Validation Accuracy
2× 128 1.12 75.61
2× 256 1.08 75.92
2× 512 1.12 75.51
2× 1024 1.13 75.45
2× 2048 1.14 75.26
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Figure 13: Evaluating codistillation setup by varying the value of αk. Note that the value is not
changed during training and hence αk is denoted by α.

A.3 EFFECT OF VARYING α

In Fig 13, we evaluate codistillation setup by varying the value of αk. Note that the value is not
changed during training and hence αk is denoted by α.

A.4 ADDITIONAL RESULTS ON WMT’16 EN-DE
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Figure 14: Comparing all reduce and codistillation setups using the “big” transformer model
on the WMT’16 En-De dataset. The model trained using codistillation performs worse in terms of
training performance, but generalizes well to the validation dataset, as seen in Fig. 5.

In Fig. 14 we plot the training loss of the all reduce and codistillation setups on the WMT’16
En-De dataset. We observe that codistillation has a higher training loss, but almost matches the
validation loss of all reduce as shown in Fig. 5.

A.5 ADDITIONAL RESULTS ON CODISTILLATION’S ROBUSTNESS

To further understand the codistillation setup, we conduct additional ablations examining the effect
of some hyper-parameter choices.

In Fig. 15(a), we compare the training performance of ResNet50 models trained on the ImageNet
dataset, as we vary the frequency of exchanging the checkpoints. The curve corresponding to 1×
is the baseline setup, with checkpoints exchanged every 2500 updates. Label 2× denotes the case
where checkpoints are exchanged twice as frequently (every 1250 updates), and other curves sim-
ilarly show 0.5× and 4×. The training loss is robust to changes to the frequency, reaching very
similar values across the whole range. The corresponding top-1 validation accuracy is shown in
Fig. 7(a).

In Fig. 15(b), we vary the base learning rate when training the codistillation model on the ImageNet
dataset, using the setup proposed in Goyal et al. (2017) and report the loss on the training dataset.
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Figure 15: Evaluating the training loss robustness of the codistillation setup by varying the frequency
of exchanging checkpoints (left) and learning rate (right) when training a ResNet50 model on the
ImageNet dataset. The training loss is robust to changes to the frequency, reaching very similar
values across the whole range. The learning rate can be increased from 0.1 to 0.2 without hurting
the training performance.

We observe that increasing the learning rate from 0.1 to 0.2 has almost no impact on the training
loss. Beyond that, higher learning rates affect the training loss more. The corresponding plot with
the top-1 validation accuracy is shown in Fig. 7(b) and exhibits a similar trend.

In Fig. 16, we vary the frequency of exchanging the model checkpoints for the Transformer model.
We note that more frequent updates lead to a higher validation loss initially, but as training continues,
this setup eventually outperforms (slightly) the one with less frequent updates. Overall, the model’s
performance does not decline drastically even when we exchange checkpoints 2.5 times less often.

In Fig. 17, both the initial value of α (codistillation loss coefficient) and γ (scaling factor for α)
are varied when training the Transformer model. Since we are using a geometric progression for
increasing the value of α, changing γ alone can increase α to very large values, thus making training
unstable. Hence, for each γ ∈ {1, 1.1, 1.5} we vary the initial α to achieve optimal results. The case
of γ = 1 corresponds to keeping α constant. This case slightly under-performs as compared to the
cases where we vary α.
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Figure 16: Evaluating the robustness of codistillation for the Transformer model by varying the
frequency of exchanging checkpoints. The performance does not degrade when exchanging check-
points less frequently.
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Figure 17: Evaluating the robustness of codistillation for the Transformer model by varying the
initial value of α and γ. Given the nature of geometric progression, we perform a sweep over α to
achieve optimal performance for each γ ∈ {1, 1.1, 1.5}. The case of γ = 1 corresponds to keeping
α constant. This case slightly under-performs as compared to the cases where we increase α over
time.
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