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ABSTRACT

Fair predictive algorithms hinge on both equality and trust, yet inherent uncertainty
in real-world data challenges our ability to make consistent, fair, and calibrated
decisions. While fairly managing predictive error has been extensively explored,
some recent work has begun to address the challenge of fairly accounting for
irreducible prediction uncertainty. However, a clear taxonomy and well-specified
objectives for integrating uncertainty into fairness remains undefined. We address
this gap by introducing FairlyUncertain, an axiomatic benchmark for evalu-
ating uncertainty estimates in fairness. Our benchmark posits that fair predictive
uncertainty estimates should be consistent across learning pipelines and calibrated
to observed randomness. Through extensive experiments on ten popular fairness
datasets, our evaluation reveals: (1) A theoretically justified and simple method
for estimating uncertainty in binary settings is more consistent and calibrated than
prior work; (2) Abstaining from binary predictions, even with improved uncertainty
estimates, reduces error but does not alleviate outcome imbalances between demo-
graphic groups; (3) Incorporating consistent and calibrated uncertainty estimates
in regression tasks improves fairness without any explicit fairness interventions.
Additionally, our benchmark package is designed to be extensible and open-source,
to grow with the field. By providing a standardized framework for assessing the
interplay between uncertainty and fairness, FairlyUncertain paves the way
for more equitable and trustworthy machine learning practices.

1 INTRODUCTION

Fairness in machine learning enhances transparency and trust in algorithmic predictions, and is both
a legal and moral imperative given the direct impact predictive models can have on peoples’ lives.
Although extensive research has addressed reducing predictive error disparities among demographic
groups – by tackling limited data, model biases, or structural inequities – achieving fairness also
necessitates accurately assessing the uncertainty associated with each prediction; however, the precise
interplay between algorithmic fairness and uncertainty estimates remains an open question (Bhatt
et al., 2021; Hendrickx et al., 2024).

Assessing the interplay between fairness and uncertainty is challenging due to a lack of principled
objectives for integrating the two notions. Much work has contended with how to define and measure
fairness in predictive models (Lee, 2018; Caton & Haas, 2024; Mitchell et al., 2021; Barocas et al.,
2023; Corbett-Davies et al., 2023). Additionally, predictions made on real-world data have inherent
uncertainty, given factors like noisy individual behavior, measurement errors, and environmental
influences. In statistics and machine learning, a careful typology helps organize these sources
of randomness. Uncertainty or variance that is specific to each observation is said to display
heteroscedasticity (as opposed to homoscedasticity, which is not a function of the observation itself).
Heteroscedastic uncertainty can either be epistemic or aleatoric in nature (Hüllermeier & Waegeman,
2021). Epistemic uncertainty is uncertainty that can be reduced with more data (Chen et al., 2018);
while aleatoric uncertainty is uncertainty that arises from the inherent data distribution, and cannot be
reduced with larger samples. We will focus on models that provide a single uncertainty estimate for
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each observation-specific prediction, but will carefully reason about the aleatoric component of that
uncertainty estimate, with the goal that this quantity is consistent with and calibrated to the data.

As a concrete example, consider the task of predicting student performance on a standardized exam:
one student reliably earns the same score on the test while another student, perhaps because of their
home situation, earns a significantly different score depending on unobservable factors in their daily
life. In Figure 1, we hypothesize about how differing unseen environmental factors might affect
outcome variance. We can produce more accurate epistemic uncertainty estimates by incorporating
more data and improving our predictive model. However, if we cannot have the same student take
the test multiple times, we cannot precisely estimate aleatoric uncertainty because we lack repeated
observations of a student’s performance measuring individual fluctuations under identical conditions.
We provide a typology over uncertainty in predictive modeling in Table 5.

Its worth noting that estimating forms of heteroscedastic uncertainty – uncertainty at the individual
level – in the context of algorithmic fairness has received substantial recent interest (Liu et al.,
2022; Ali et al., 2021; Han et al., 2022; Tahir et al., 2023; Wang et al., 2024b). Some approaches
use ensembles of models to estimate uncertainty while others train models to learn the uncertainty
directly. In both cases, the models are trained through a machine learning pipeline on a particular
architecture with specific hyperparameters. Unfortunately, the estimates can vary substantially with
respect to a model’s depth, activation function, and other settings (Lakshminarayanan et al., 2017;
Guo et al., 2017; Malinin & Gales, 2018). In the next section, we specify consistency and calibration
as axiomatic principles for successful and fair uncertainty estimates; these principles guide our
construction of the FairlyUncertain benchmark.

2 PRELIMINARIES

In Section 2.1, we state guiding axioms for consistent and calibrated uncertainty estimates, as
evaluated by the FairlyUncertain benchmark. First, however, we must define a learning
pipeline (given in Definition 2.1, related to definitions from (Black et al., 2022a; Long et al., 2024)),
and what makes two learning pipelines similar (given in Definition 2.2).
Definition 2.1 (Learning Pipeline). Let T be a training set of n observations with covariates
x1, . . . ,xn ∈ X , protected attributes a1, . . . , an ∈ A, and outcomes y1, . . . , yn ∈ Y . Consider a set
of m hyperparameters λ1, . . . , λm. A learning pipeline P is a randomized training procedure that
takes the training set and hyperparameters to learn a predictive function f : X ×A → Y × R. The
predictive function produces an estimate of the outcome ŷ and uncertainty σ ≥ 0 for given covariates
x and protected attributes a.
Definition 2.2 (Similar Learning Pipelines). For each hyperparameter λj , let τk represent a threshold
that takes on a reasonable value with respect to hyperparameter j. Two learning pipelines P and P ′

(Definition 2.1) are considered similar if they differ only in hyperparameter settings i.e., there is some
j ∈ [m] for which λk = λ′

k except when j = k and |λj − λ′
j | ≤ τj .

2.1 AXIOMS

The FairlyUncertain benchmark focuses on two properties that uncertainty estimates produced
by similar learning pipelines (Definitions 2.1 and 2.2) should satisfy. Let fP be a predictive function
from a learning pipeline P such that fP : (x, a) 7→ (µ, σ) i.e. fP maps inputs x and protected
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Figure 1: Two distributions over observable outcomes. For example, Distribution A can represent
the test scores of a student in a stable home whereas Distribution B can represent the test scores of
a student in an unstable home. While both have the same mean and 80% confidence interval, the
distributions are substantially different as captured by the standard deviation.
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attributes a to a point prediction µ and an estimated standard deviation of the inherent (A) and (B)
types of uncertainty σ for the predicted value of µ. Note if fP is a classification model, µ is a
probability, and if fP is a regression model, µ is a real value.

Now, we are ready to state Axiom 2.3, which formalizes the idea that uncertainty estimates should be
a function of the data rather than of an arbitrary learning pipeline. In other words, similar learning
pipelines applied to the same dataset should produce similar uncertainty estimates.

Axiom 2.3 (Consistency). For f and f ′, which are produced by similar learning pipelines, σ and σ′

should be close. This means that if two learning pipelines are similar, the uncertainty estimates they
produce should not vary much.

This idea is related to the motivation behind selective ensemble and self-consistency ensemble
methods (Black et al., 2022a; Cooper et al., 2024). However, Axiom 2.3 is a property of uncertainty
estimates rather than outcome predictions.

Consistency by itself is not sufficient; a pipeline that always leads to the same predictions is consistent
but not meaningful. This leads to our second property, which posits that uncertainty estimates
should also be calibrated. In other words, uncertainty estimates should always explain observed
heteroscedastic variance.

Axiom 2.4 (Calibration). The predicted uncertainty estimates should satisfy Var(y | x, a) = σ2,
where σ is the estimated standard deviation of the outcome y given covariates x and protected
attributes a. This means the predicted uncertainty σ should match the actual variability observed in
the data, capturing the heteroscedastic nature of the uncertainty. When uncertainty estimates are
biased or incorrect on average, they fail to be calibrated.

Connecting Consistency and Calibration to Fairness Principles. Uncertainty estimation is widely
recognized as a crucial aspect of transparent machine learning practices (Bhatt et al., 2021; Hendrickx
et al., 2024). But how is it connected to the concept of fairness? Uncertainty arises from variability
in training data and randomness in learning algorithms, leading to a distribution of possible models
rather than a single deterministic one. Ignoring this distribution risks making arbitrary decisions,
especially for individuals whose predictions might vary across modeling decisions or other sources
of uncertainty. Such arbitrariness could disproportionately and unfairly affect minority groups in data
Tahir et al. (2023).

Recent work has demonstrated that state-of-the-art fairness interventions can exacerbate predictive
arbitrariness; models with similar fairness and accuracy performance but different parameters can
assign vastly different predictions to individuals, and this arbitrariness is intensified by fairness
constraints (Long et al., 2024; Cooper et al., 2024). Our axiom of consistency for fair uncertainty
estimation builds upon this insight by asserting that uncertainty estimates should not vary significantly
across similar learning pipelines. Furthermore, our axiom of calibration aims to prevent systematic
biases in uncertainty estimates that could disadvantage certain groups. For instance, if uncertainty
is consistently underestimated for a particular group, the model may overstate its confidence in
predictions for that group, leading to unfair treatment (Ali et al., 2021). This leads us to argue
that adhering to the axioms of consistency and calibration are necessary tenets of a fair uncertainty
estimation process.

Once uncertainty estimates are consistent and calibrated1, the next challenge is figuring out how to
integrate them into fair algorithms effectively. Integrating uncertainty in social settings is commonly
done through abstention; for a sample where the level of uncertainty is too high, defer making a
prediction, thereby avoiding unreliable results (Black et al., 2022a; Cooper et al., 2024). Another
method (commonly adopted in regression settings) is to return the uncertainty estimates alongside the
predictions, providing a clearer picture of the confidence in the results and allowing practitioners to
make more informed decisions (Liu et al., 2022; Wang et al., 2024b). In either setting, no consensus
best approach for incorporating uncertainty estimates into fairness interventions has emerged; this
motivates our benchmark, FairlyUncertain.

1We use consistent and calibrated to denote the formal/axiomatic definitions throughout, as opposed to
common usage. Additionally, we note that Axioms 2.3 and 2.4 contain specific assumptions that dictate strategies
for evaluation; different formalizations would lead to different strategies. We acknowledge this limitation, but
argue that any alternative strategies for evaluating uncertainty should intuitively align with each desiderata.
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3 FAIRLYUNCERTAIN : A BENCHMARK FOR UNCERTAINTY IN FAIRNESS

Contributions To the best of our knowledge, FairlyUncertain is a first of its kind fairness
and uncertainty benchmark. Prior work has either provided singular uncertainty evaluations (Cooper
et al., 2024) or extensive fairness benchmarking without methods to incorporate uncertainty (Bird
et al., 2020; Bellamy et al., 2018; Cruz et al., 2022). FairlyUncertain fills the gap, introducing
a variety of tests and experiments, and is designed to be extensible and grow with the literature.
FairlyUncertain supports five binary datasets and five regression datasets off-the-shelf that are
standard to the fair machine learning context; Table 6 (deferred to the Appendix) provides prediction
task summaries for each. All of our code for FairlyUncertain is ready for release as a Python
package (available in the supplementary material); the benchmark is modular, so that uncertainty
methods and datasets can be easily added. The package includes functions to generate all of our
experiments with just a few lines of code (see Appendix C).

Road Map In Section 4, we begin by evaluating consistency and calibration on both classification
and regression tasks. We find that baseline ensemble methods are the most consistent. Additionally,
we find that in classification tasks, complex ensemble-based methods from prior work on uncertainty
are neither consistent nor calibrated. In contrast, methods that directly learn uncertainty parameters
via negative log-likelihood are both consistent and calibrated. Next, we incorporate uncertainty
estimates into making fair decisions. In Section 5, we show that while abstaining from predictions can
improve accuracy, this approach does not reduce the imbalance in outcomes between demographic
groups. In Section 6, our results lead us to advocate for outputting both predictions and uncertainty
estimates in regression tasks. To facilitate this, we introduce Uncertainty-Aware Statistical Parity
(Definition 6.2), a natural generalization of statistical parity in the regression setting that includes
uncertainty estimates. Remarkably, we find that consistent and calibrated uncertainty methods can
reduce Uncertainty-Aware Statistical Parity without any explicit fairness interventions.

4 CONSISTENCY AND CALIBRATION

In this section, we evaluate methods for capturing heteroscedastic uncertainty according to Axioms 2.3
and 2.4. FairlyUncertain provides an evaluation strategy for consistency that investigates the
sensitivity of heteroscedastic uncertainty estimates to hyperparameters in the learning pipeline
(Figure 2). For learning pipelines that vary only in one hyperparameter, we compute uncertainty
estimates and then the standard deviation of these estimates (Table 1).

Measuring calibration is much harder since we cannot observe more samples from the same distribu-
tion (type (A) uncertainty) and would need generated data for type (B). Thus, we devise strategies
which measure uncertainty types (C), (D) and (E) to approximately test calibration in a qualitative
and quantitative manner. Qualitatively, FairlyUncertain measures calibration over similar
groups, based on the following intuition: if estimated uncertainties are calibrated, observations
with higher estimated uncertainties should have higher variation in the test data. Concretely, we
create groups with similar uncertainty estimates; then, within each group, we compute the empirical
standard deviation of the residual difference between true and predicted outcomes (Figure 3).

Now, imagine we have access to the true probability pi that individual i will belong to the positive
class in the binary setting. Then, following the binomial distribution, the true uncertainty as measured
by variance would be σ2 = pi(1− pi). With our quantitative strategy for measuring calibration,
we contend that if we have a prediction for the true probability p̃i ≈ pi then a natural prediction for
the uncertainty as measured by variance is σ̃2 = p̃i(1 − p̃i). A canonical method to evaluate the
goodness of fit given probabilistic assumptions is Negative Log Likelihood (NLL) Fisher (1925).

This leads to the quantitative evaluation given in Table 1, where we make this assumption on
the meaning of uncertainty estimates in binary predictions to offer a clear and simple measure of
calibration based on the NLL of observing the data according to the estimated parameters of the
Binomial distribution, interpreting estimate µ as Binomial probability p (with uncertainty estimate σ
being the standard variance p(1− p)). Because there are existing methods which produce uncertainty
estimates that cannot be interpreted as standard deviations (namely Black et al. (2022a); Cooper et al.
(2024)), when assessing these methods, one should focus on the output of the qualitative assessment
(Figure 3), which provides a more general purpose approach for approximately testing calibration.
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4.1 MODELS AND CLASSIFICATION TASKS

We subject several methods for heteroscedastic uncertainty estimation on binary classification tasks to
our evaluation. Many of the methods we consider rely on an ensemble of k models, where each model
in the ensemble is trained on samples taken randomly with replacement from the training set. For
predictions, these methods simply output the mode prediction of the k models, while for uncertainty
estimates, they differ in their calculations. We’ll let k(0) be the number of models predicting 0 and
k(1) be the number of models predicting 1. Our experiments are run with the following methods:

• The Ensemble computes the standard deviation of the k predictions to estimate uncertainty.
• The Selective Ensemble method of Black et al. (2022a) estimates uncertainty by computing the
p-value of observing the number of negative predictions k(0) and the number of positive predictions
k(1) were they sampled from a binomial distribution with probability 1

2 .
• The Self-consistency Ensemble method of Cooper et al. (2024) estimates uncertainty by computing

a so-called self-consistency metric 1 − 2k(0)k(1)/(k(k − 1)). Since the self-consistency metric
increases with certainty, we will report self-(in)consistency, i.e., 2k(0)k(1)/(k(k − 1)) for parity
with the other approaches.

• The Binomial NLL method contrasts with the ensemble methods by directly estimating uncertainties
under the Binomial assumption e.g. by producing probabilities p that minimize negative log
likelihood on the training set, yielding an uncertainty estimate that is the Binomial standard
deviation σ =

√
p(1− p). We offer a brief formal justification as to why we expect Binomial NLL

to produce good uncertainty estimates in the binary classification setting in Appendix Section D.

Consistency Our first experiment evaluates consistency between similar learning pipelines. We do
this by varying a hyperparameter setting for our model class; ideally, we would select parameters
that affect how the model makes predictions, but shouldn’t substantially affect the error rate of those
predictions. We note that FairlyUncertain makes it easy to experiment with many hyperpa-
rameter settings. In this paper, we first experiment with the XGBoost hyperparameter max_depth;
depth is widely applicable to many kinds of models and there are often many equally-valid settings
(FairlyUncertain ensures that all depths produce models with similar accuracy). The second
is reduction_threshold γ, which is specific to the XGBoost model, and smoothly interpolates be-
tween encouraging more or less complex models through tree splits. Figure 2 plots heteroscedastic
uncertainty estimates for all individuals in each dataset for max_depth (see Figure 8 for the reduc-
tion_threshold plot, and see Figure 12 for a more granular view where we plot the consistency
ranges for each individual in the data, both in the Appendix). For some individuals, all the methods
consistently output the same uncertainty estimates but, for others, estimates produced by the Selective
Ensemble and Self-(in)consistency Ensemble vary drastically. We measure the overall consistency of
each method by computing the empirical standard deviation of the estimates at each depth. Table 1
reports the maximum individual empirical standard deviation for each algorithm and dataset. The
Ensemble algorithm is the most consistent, followed closely by Binomial NLL. We further validate
these experiments with a completely different model class, a neural network with linear layers and
non-linear (ReLU) activations, varying the α weight decay regularizer parameter. Results for this
model class can be found in Figures 9 and 13 in the Appendix.
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Figure 2: This boxplot shows the standard deviation of each individual’s uncertainty estimates across
different max_depth hyperparameter settings. For example, if an individual has the same uncertainty
estimate for each hyper-parameter setting, then their standard deviation is 0 (perfect consistency)
whereas if they vary wildly, the standard deviation is high (not consistent). The Binomial NLL and
Ensemble methods exhibits are the most consistent.
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Table 1: Comparison of calibration and consistency for each algorithm on each binary dataset. Here,
calibration is measured by negative log-likelihood while the consistency is measured by the maximum
individual empirical standard deviation. The ± indicates the standard deviation of these values over
10 iterations. Note that we adopt the Olympic medal convention in all Tables throughout our paper:
gold , silver and bronze cells signify first, second and third best performance, respectively.

Calibration (Negative Log-Likelihood) Consistency
Approach ACS Adult Bank COMPAS German ACS Adult Bank COMPAS German
Ensemble 1.1 ± 0.04 0.9 ± 0.02 0.5 ± 0.02 1.8 ± 0.07 0.97 ± 0.12 0.08 ± 0.00 0.08 ± 0.01 0.09 ± 0.01 0.06 ± 0.00 0.062 ± 0.00
Selective Ens. 1.1 ± 0.05 0.88 ± 0.02 0.5 ± 0.02 1.8 ± 0.08 1.0 ± 0.16 0.45 ± 0.01 0.45 ± 0.01 0.45 ± 0.01 0.44 ± 0.01 0.40 ± 0.02
(In)cons. Ens. 1.0 ± 0.04 0.82 ± 0.03 0.42 ± 0.02 1.5 ± 0.07 0.82 ± 0.13 0.26 ± 0.01 0.26 ± 0.01 0.25 ± 0.01 0.25 ± 0.01 0.21± 0.01
Binom. NLL 0.4 ± 0.01 0.31 ± 0.0 0.2 ± 0.0 0.6 ± 0.01 0.5 ± 0.04 0.10 ± 0.01 0.13 ± 0.01 0.12 ± 0.01 0.07 ± 0.00 0.08 ± 0.01

Calibration (qualitative) The next experiment qualitatively evaluates calibration. For each method,
we identify groups of individuals with similar uncertainty estimates and empirically evaluate the
standard deviation of the residual difference between the observed and predicted outcomes. Results
in Figure 3 demonstrate that predicted uncertainty estimates from the Selective Ensemble and Self-
(in)consistency algorithms do not appear related to the empirical standard deviation. In contrast, the
estimates from the Ensemble and Binomial NLL methods are clearly related to the empirical standard
deviation; we note that the Binomial NLL method most closely tracks the identity line.

Calibration (quantitative) Finally, we quantitatively evaluate calibration by interpreting uncertainty
estimates as the parameter of a fixed distribution. In the binary setting, the distribution is completely
described by a single probability and the Binomial distribution. Table 1 gives the negative log-
likelihood for each method on each dataset. To produce Table 1, we interpret estimates from models
that produce a different kind of uncertainty as a standard deviation for comparison. By design, the
Binomial NLL method minimizes the negative log-likelihood on the training set, so unsurprisingly we
find that the Binomial NLL method also gives the best performance on the test set. Overall, Figures 2
and 3 and Table 1 suggest that the Binomial NLL method produces heteroscedastic uncertainty
estimates that are simultaneously the most consistent and calibrated.

4.2 REGRESSION TASKS

In this section, we turn our attention to evaluating methods for estimating heteroscedastic uncer-
tainty in the regression setting over continuous outcomes. FairlyUncertain contains several
algorithms drawn from the heteroscedastic uncertainty literature.

• The Normal NLL method learns parameters µ and σ that minimize the negative log-likelihood loss
of the normal distribution, given by ℓ(y, µ, σ) = − log σ + 1

2

(
x−µ
σ

)2
.

• The β-NLL method (Seitzer et al., 2022) learns a version of the NLL loss that is multiplied by the
constant σ2β (in our experiments we set β = 1

2 as suggested in the original paper).
• The Faithful NLL method (Stirn et al., 2023) learns mean predictions µ with the standard mean

squared error loss while the standard deviation predictions σ are learned with the NLL loss.
• A natural Ensemble method serves as a point of comparison for these heteroscedastic algorithms:

Ensemble learns an ensemble of models trained on bagged samples of the training set, and outputs
the mean and standard deviation over model predictions.
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Figure 3: For five groups assembled by predicted uncertainty, we plot the average predicted uncertainty
against the empirical standard deviation of the outcomes. An algorithm is perfectly calibrated if
predicted uncertainty equals the empirical standard deviation i.e., the points lie on the dashed identity
line. Note that uncertainty estimates do not always represent variance, so we expect a positive but not
necessarily linear correlation. Additionally, note that this calibration graph also reflects consistency;
a less consistent method will have a more arbitrary grouping leading to a flatter observed slope.
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Table 2: Comparison of Negative Log-Likelihood (NLL) and Consistency for each algorithm on each
dataset. We measure consistency as the maximum over individuals of the standard deviation of the
predictions they receive with respect to the depth of the model.

Calibration (Negative Log-Likelihood) Consistency
Approach Comm. IHDP Insur. Law Twins Comm. IHDP Insur. Law Twins
Ensemble 120.0 ± 21.0 3.9 ± 1.3 21.0 ± 15.0 200.0 ± 21.0 160.0 ± 9.3 0.05 ± 0.01 0.02 ± 0.00 0.03 ± 0.00 0.05 ± 0.01 0.09 ± 0.01
Normal NLL 0.35 ± 0.08 -0.6 ± 0.07 -0.67 ± 0.04 -0.25 ± 0.0 0.41 ± 0.0 0.12 ± 0.01 0.08 ± 0.01 0.09 ± 0.01 0.11 ± 0.01 0.20 ± 0.01
β-NLL 0.34 ± 0.08 -0.6 ± 0.02 -0.65 ± 0.03 -0.25 ± 0.0 0.41 ± 0.0 0.11 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.08 ± 0.00 3.26 ± 7.66
Faithful NLL 0.34 ± 0.11 -0.58 ± 0.01 -0.64 ± 0.03 -0.25 ± 0.0 0.41 ± 0.0 0.12 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 0.09 ± 0.01 0.19 ± 0.01

Using FairlyUncertain, we evaluate these methods for consistency and calibration. We evaluate
consistency in the same manner in the regression setting as we did in the binary setting, varying two
hyperparameters while checking that the maximum deviation of uncertainty estimates remains stable
(see Figure 10 in the Appendix). In Table 2, we see that the Ensemble approach is the most consistent,
although for four of the five datasets, β-NLL performs similarly.

Calibration is also evaluated in the same manner for regression tasks as for binary. Figure 11 in the
Appendix provides the qualitative assessment, while quantitatively Table 2 gives the NLL for each
algorithm on each dataset. Our results demonstrate that though the Ensemble method is consistent,
its predictions are very poorly calibrated. In contrast, all NLL approaches achieve a similar level of
calibration across all five regression datasets. Overall, the various NLL approaches are all comparably
consistent to the Ensemble method and are significantly more calibrated.

5 ABSTAINING ON CLASSIFICATION TASKS

We now turn our attention to incorporating uncertainty estimates into fair algorithms for classification,
to assess their impact on downstream fairness metrics, focusing on the abstention framework where
models are allowed to abstain from making a prediction if the heteroscedastic uncertainty estimates
are too large (Black et al., 2022a; Cooper et al., 2024). FairlyUncertain instantiates this
intervention, allowing models to abstain from predicting under high uncertainty. We find that
while the abstention framework allows models to abstain from incorrect predictions, unsurprisingly
reducing the overall error rate, it does not make the distribution of predictions more balanced between
demographic groups. Moreover, the flexibility afforded by abstention is also its biggest limitation;
if allowed to make almost no predictions, a model can easily achieve optimal performance without
meaningful outputs for the majority of observations. Thus, FairlyUncertain crucially focuses
on the question of abstention rate and how it affects overall error, statistical parity, equalized odds,
etc.

In Figure 5, we see that allowing models to make fewer predictions based on uncertainty estimates
decreases their error. In contrast, a Random baseline (real binary predictions but random uncertainty
estimates) maintains the same error rate. Notice that the Selective Ensemble and Self-(in)consistency
Ensemble produce the same uncertainty estimates for many observations, hence the flat lines. While
abstaining invariably reduces overall error, it has a more chaotic impact on Statistical Parity. Figure
4 shows that abstaining can improve (decrease) or worsen (increase) statistical parity unpredictably
across different data distributions; here, the model behavior resembles the Random uncertainty
prediction baseline. We observe a similar trend in Figure 15, which plots the Equalized Odds fairness
metric (Hardt et al., 2016) against the abstention rate (see Appendix E).

Our benchmark additionally evaluates uncertainty methods against standard baseline and state-of-
the-art fairness algorithms. To construct this comparison, FairlyUncertain tests the Random,
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Table 3: Various evaluation and fairness metrics for each algorithm on the ACS Income (see Ap-
pendix I for definitions). While the abstention framework allows models to reduce their Error Rate, it
does not magically reduce the imbalance in outcomes between demographic groups.

Approach Error Rate Statistical Parity Equalized Odds Equal Opportunity Disparate Impact Predictive Parity False Positive Rate Included %
Baseline 0.22 ± 0.009 0.181 ± 0.023 0.165 ± 0.049 0.165 ± 0.049 1.65 ± 0.136 0.057 ± 0.034 0.083 ± 0.024 100.0 ± 0.0
Threshold Opt. SP 0.233 ± 0.009 0.029 ± 0.021 0.135 ± 0.046 0.063 ± 0.033 0.979 ± 0.07 0.241 ± 0.043 0.134 ± 0.046 100.0 ± 0.0
Threshold Opt. EO 0.226 ± 0.01 0.101 ± 0.03 0.08 ± 0.049 0.079 ± 0.049 1.3 ± 0.113 0.119 ± 0.039 0.024 ± 0.021 100.0 ± 0.0
Exponentiated Grad. SP 0.229 ± 0.011 0.041 ± 0.022 0.117 ± 0.038 0.065 ± 0.04 0.946 ± 0.08 0.203 ± 0.033 0.115 ± 0.038 100.0 ± 0.0
Exponentiated Grad. EO 0.218 ± 0.008 0.101 ± 0.041 0.092 ± 0.049 0.09 ± 0.052 1.3 ± 0.15 0.119 ± 0.045 0.031 ± 0.017 100.0 ± 0.0
Grid Search SP 0.23 ± 0.012 0.083 ± 0.045 0.142 ± 0.064 0.108 ± 0.067 1.04 ± 0.259 0.183 ± 0.048 0.106 ± 0.067 100.0 ± 0.0
Grid Search EO 0.227 ± 0.008 0.148 ± 0.034 0.132 ± 0.07 0.125 ± 0.074 1.48 ± 0.152 0.087 ± 0.048 0.056 ± 0.031 100.0 ± 0.0
FairGBM SP 0.216 ± 0.007 0.046 ± 0.041 0.049 ± 0.027 0.029 ± 0.026 1.13 ± 0.128 0.118 ± 0.062 0.038 ± 0.025 100.0 ± 0.0
FairGBM EO 0.215 ± 0.008 0.142 ± 0.027 0.124 ± 0.035 0.112 ± 0.046 1.47 ± 0.123 0.076 ± 0.045 0.071 ± 0.033 100.0 ± 0.0

Random SP 0.215 ± 0.011 0.142 ± 0.024 0.14 ± 0.043 0.138 ± 0.046 1.49 ± 0.109 0.07 ± 0.05 0.062 ± 0.031 89.1 ± 7.08
Ensemble SP 0.18 ± 0.017 0.159 ± 0.036 0.122 ± 0.055 0.122 ± 0.055 1.58 ± 0.19 0.052 ± 0.039 0.064 ± 0.025 81.7 ± 7.58
Selective Ensemble SP 0.17 ± 0.013 0.17 ± 0.035 0.152 ± 0.059 0.152 ± 0.06 1.69 ± 0.21 0.069 ± 0.045 0.06 ± 0.028 83.2 ± 5.06
Self-(in)consistency SP 0.176 ± 0.028 0.162 ± 0.039 0.156 ± 0.051 0.156 ± 0.051 1.63 ± 0.223 0.078 ± 0.047 0.049 ± 0.026 86.6 ± 7.95
Binomial NLL SP 0.156 ± 0.013 0.164 ± 0.035 0.158 ± 0.063 0.157 ± 0.066 1.67 ± 0.216 0.076 ± 0.061 0.044 ± 0.029 77.3 ± 3.07

Random EO 0.215 ± 0.01 0.147 ± 0.024 0.128 ± 0.045 0.126 ± 0.047 1.51 ± 0.109 0.064 ± 0.047 0.067 ± 0.028 90.2 ± 8.45
Ensemble EO 0.174 ± 0.011 0.17 ± 0.03 0.108 ± 0.052 0.107 ± 0.053 1.64 ± 0.17 0.059 ± 0.046 0.068 ± 0.028 77.8 ± 2.82
Selective Ensemble EO 0.17 ± 0.013 0.171 ± 0.035 0.147 ± 0.058 0.147 ± 0.058 1.69 ± 0.208 0.071 ± 0.044 0.061 ± 0.027 83.3 ± 5.0
Self-(in)consistency EO 0.174 ± 0.022 0.167 ± 0.04 0.154 ± 0.062 0.154 ± 0.062 1.67 ± 0.231 0.064 ± 0.045 0.056 ± 0.027 86.0 ± 6.29
Binomial NLL EO 0.171 ± 0.023 0.158 ± 0.03 0.135 ± 0.054 0.134 ± 0.055 1.61 ± 0.177 0.07 ± 0.054 0.051 ± 0.028 82.8 ± 7.44

Selective Ensemble, Self-(in)consistency, and Binomial NLL methods at inclusion rates between 75%
and 100%. It selects an abstention rate for comparison by optimizing a simple objective function
that is the normalized sum of the Error Rate, Statistical Parity, and Equalized Odds. Table 3 gives
performances on the ACS Income task (Ding et al., 2021) (results for the other datasets appear in
Appendix F). Once again, methods allowed to abstain had lower error (Self-(in)consistency and
Binomial NLL methods had the lowest). However, across 5 of the 6 fairness metrics reported, methods
that did not abstain were the highest performing in terms of fairness. This is surprising, as it seems
directly opposed to one of the main claims in Cooper et al. (2024).
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Figure 5: For an abstention rate r, FairlyUncertain abstains on the r fraction of observations
with the highest uncertainty. For heteroscedastic uncertainty methods, predictions become more
accurate as the model abstains more, while the error rate for the random baseline remains steady.

A natural question arises given the results in Table 3: for which individuals do the abstaining models
choose not to predict? In Figure 17 (deferred to Appendix E), we address this by comparing the
empirical distributions of the overall population and the included (non-abstained) population for each
feature across methods. We compute the average Wasserstein distance between these distributions
(averaged over methods) and plot the feature with the largest distance. The variables with the greatest
differences tend to be protected attributes like marriage status and sex. However, except for the
Binomial NLL distribution on the Adult dataset, these differences are small between the overall
distribution and the one selected through the abstaining process.
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6 UNCERTAINTY AWARE FAIR REGRESSION

So far, we have used FairlyUncertain to demonstrate that incorporating heteroscedastic uncer-
tainty estimates into fair classification algorithms requires care; this is no different in the regression
setting. By outputting both predictions and uncertainty estimates in either setting, downstream users
have the flexibility to apply uncertainty estimates in domain-appropriate ways beyond abstention. For
example, practitioners can flag high uncertainty estimates for manual review (Madras et al., 2018),
combine predictions and uncertainty estimates into domain-specific metrics (Ali et al., 2021), or
discover patterns of high uncertainty that indicate a lack of meaningful features, prompting more data
collection (Chen et al., 2018). Still, it remains an open question how to measure the fairness for models
that output both predictions and uncertainty estimates, particularly for regression models. To address
this, we propose a new fairness metric (included in FairlyUncertain), uncertainty-aware statis-
tical parity (UA-SP) (Definition 6.2), which naturally incorporates the available uncertainty estimates
into the the standard regression-specific form of Statistical Parity (Definition 6.1).

Note that UA-SP (Definition 6.2) applies to models which produce point predictions µ and uncertainty
estimates σ for each observation. These estimates are treated as model-derived inputs to our fairness
metric, not as the underlying true parameters. We model predictions as distributions to incorporate
the inherent uncertainty of model outputs; this approach is particularly salient in settings with
heteroscedastic variance. When the uncertainty estimates are zero, our metric reduces to the standard
statistical parity definition, thus generalizing it to account for variability in predictions due to
uncertainty. The generalized definition assumes that the uncertainty follows a normal distribution
with mean µ and standard deviation σ. The validity of this assumption depends on the setting.

Definition 6.1 (Statistical Parity). Consider a method f : X ×A → Y that outputs a mean prediction.
Then f satisfies statistical parity if Pr(f(X, A) ≥ y|A = a) = Pr(f(X, A) ≥ y) for all protected
groups a ∈ A and outcomes y ∈ Y .

Definition 6.2 (Uncertainty-Aware Statistical Parity (UA-SP)). Consider f : X × A → Y × R
that estimates a mean µ and a standard deviation σ. The predictions induce a randomized function
f̃ : X ×A → Y that samples y ∼ N (µ, σ2). Then f satisfies uncertainty-aware statistical parity if
Pr(f̃(X, A) ≥ y|A = a) = Pr(f̃(X, A) ≥ y) for all protected groups a ∈ A and outcomes y ∈ Y .

Definition 6.2 incorporates uncertainty estimates in a natural way: the predicted distribution is
smoothed for observations with high uncertainty. In contrast, Definition 6.1 holds the algorithms to a
stringent standard even when heteroscedastic variance is large.

In regression settings, Definition 6.1 is often interpreted in terms of a Cumulative Density Function
(CDF) over predictions (Agarwal et al., 2019; Liu et al., 2022); uncertainty-aware statistical parity
(Definition 6.2) shares this interpretation. For methods that only produce predictions, the CDF is
with respect to the randomness of the observations x. For methods that produce predictions and
uncertainty estimates, the CDF is with respect to the randomness of the observations and the induced
randomized function f̃ . Figure 6 gives CDFs for True, Baseline and Normall NLL: here, True
indicates the correct labels in the test data, Baseline indicates a standard regression model without
any fairness intervention, and Normal NLL is the smoothed method as described in Section 4.2 (for
visual clarity, we present comparisons only against Normal NLL, which is similar to Faithful NLL
and more consistent and calibrated than Ensemble and β-NLL).

Figure 6 illustrates how incorporating uncertainty into model predictions effectively smooths the
CDF. In the case of the Twins dataset, we observe that this smoothing is both strong and accurate,
allowing the model to closely capture the true distribution of the labels. Table 4 presents fairness
metrics computed according to either Definition 6.1 or Definition 6.2, depending on whether the
model provides uncertainty estimates. The Normal NLL method significantly outperforms others
in terms of fairness, even surpassing the Ensemble method. Remarkably, the Normal NLL method,
which is both competitively consistent and calibrated, achieves substantial fairness improvements
without any explicit fairness interventions.

6.1 RELATED WORK

Prior work in algorithmic fairness largely focuses on fixed fairness constraints, framing the issue as
optimizing along a Pareto frontier between accuracy and fairness metrics that may conflict (Hardt
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Table 4: Measuring (uncertainy-aware) statistical parity (UA-SP) via Kolmogorov-Smirnov distance:
the maximum over outputs y of the distance between per-group CDFs (Agarwal et al., 2019). Simply
using consistent and calibrated uncertainty methods substantially reduces UA-SP.

Approach Communities IHDP Insurance Law School Twins
True 0.561 ± 0.036 0.153 ± 0.061 0.1 ± 0.022 0.484 ± 0.021 0.161 ± 0.011
Baseline 0.644 ± 0.025 0.144 ± 0.05 0.091 ± 0.019 0.965 ± 0.009 0.404 ± 0.009
Exponentiated Gradient Square 0.638 ± 0.024 0.16 ± 0.053 0.094 ± 0.025 0.902 ± 0.015 0.357 ± 0.01
Exponentiated Gradient Absolute 0.638 ± 0.024 0.157 ± 0.057 0.094 ± 0.025 0.902 ± 0.015 0.359 ± 0.009
Grid Search Square 0.649 ± 0.035 0.167 ± 0.056 0.093 ± 0.025 0.888 ± 0.019 0.357 ± 0.007
Grid Search Absolute 0.649 ± 0.035 0.167 ± 0.056 0.092 ± 0.024 0.888 ± 0.019 0.358 ± 0.007

Ensemble 0.62 ± 0.021 0.101 ± 0.052 0.076 ± 0.022 0.939 ± 0.008 0.389 ± 0.009
Normal NLL 0.37 ± 0.016 0.048 ± 0.028 0.052 ± 0.022 0.196 ± 0.003 0.096 ± 0.002
β-NLL 0.375 ± 0.019 0.045 ± 0.025 0.051 ± 0.022 0.195 ± 0.004 0.096 ± 0.003
Faithful NLL 0.299 ± 0.151 0.042 ± 0.021 0.054 ± 0.02 0.192 ± 0.004 0.095 ± 0.003

et al., 2016; Zafar et al., 2017; Mitchell et al., 2021; Bell et al., 2023; Wang et al., 2024b). More
recent research has introduced uncertainty estimation as a crucial factor in model selection under
fairness. Particularly relevant are Black et al. (2022a) and Cooper et al. (2024), who explore ensemble
approaches to estimate prediction uncertainty based on the standard deviation from an ensemble of
models. These methods, as we have demonstrated, tend to focus on artifacts of the learning pipeline
rather than inherent heteroscedastic uncertainty.

Other studies examine uncertainty estimation through model multiplicity (Black et al., 2022b),
analyze the relationship between inadequate sample sizes and disparate epistemic uncertainty among
subgroups (Chen et al., 2018; Zhang & Long, 2021), and extend abstention frameworks to regression
(Shah et al., 2022). Additionally, tailored inference and prediction models under heteroscedastic
assumptions have been extensively studied in economics and statistics, particularly with Bayesian
inference (White, 1980; MacKinnon, 2012; Rigobon, 2003; Hayes & Cai, 2007; Ji et al., 2020).
The impact of Bayesian conditioning via latent variables on fairness has also been considered as
an alternative to bagging for uncertainty estimation, though calibration of these estimates can be
challenging due to the large space of priors (McNair, 2018; Ji et al., 2020). More recently, loss
functions accommodating heteroscedastic assumptions in machine learning have improved uncertainty
estimation and model robustness (Collier et al., 2020; Abdar et al., 2021), with some work addressing
heteroscedastic pitfalls in log-likelihood-based loss functions (Seitzer et al., 2022; Stirn et al., 2023).

Prior work on uncertainty in fair regression has focused on estimating quantiles – confidence intervals
– for predictions (Liu et al., 2022; Kuzucu et al., 2023; Wang & Wang, 2024). Quantile predictions
are considered fair if they are equally calibrated and accurate for different demographic groups
(Wang et al., 2024b;a). However, quantiles are only valid for a given probability threshold and fail to
adequately describe the distribution. For example, recall how Figure 1 demonstrated how the mean
and quantiles could be the same for two distributions that are substantially different.

7 CONCLUSION

FairlyUncertain actualizes the consistency and calibration axioms in the form of a robust
benchmark for evaluating uncertainty estimates in fair predictions. FairlyUncertain suggests
the following results: In the binary setting, natural uncertainty estimates beat complex ensemble
based approaches and abstaining improves error but not imbalance between demographic groups.
In the regression setting, consistent and calibrated uncertainty methods can reduce distributional
imbalance without any explicit fairness intervention. The current version of FairlyUncertain
is not without limitations: different models (Gorishniy et al., 2021), parameters, and datasets could
be varied to assess consistency, different metrics introduced for calibration, and additional fair-
ness interventions explored. Because of its specialized nature, we expect a net positive social
impact from FairlyUncertain. We hope that the extensible package construction allows
FairlyUncertain to grow with the community.
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A ADDITIONAL COMMENTS ON UNCERTAINTY AND FAIRNESS

As methods for uncertainty estimation in prior work differ on the actual estimation objective (to vary-
ing degrees), we find it useful to provide a precise typology over sources of uncertainty (Hüllermeier
& Waegeman, 2021) in Table 5. This typology helps us to define precise targets for each uncertainty
estimation evaluation strategy in our benchmark.

As an example of how this typology helps describe reasonable uncertainty estimate objectives,
consider the scenario given in Figure 1, which exemplifies both (A) and (B) uncertainty in Table 5.
Producing a fair uncertainty estimate ultimately lies in understanding (A) and (B) uncertainties (Black
et al., 2022a; Cooper et al., 2024), but empirical methods over a fixed data sample can only directly
estimate (C), (D), and (E). A goal of our work is to use estimates of (C)-(E) to assess the consistency
and calibration of approximations for the unmeasurable uncertainties (A) and (B).

Table 5: The following uncertainty typology allows us to speak precisely about sources of uncertainty
we can estimate directly from data, and sources of uncertainty we can only hope to approximate.

Uncertainty Type Description Example
(A) Unmeasurable individual-
level uncertainty

Uncertainty inherent to individual outcomes
that cannot be measured.

A student may experience a unique, random
moment of distraction during a test.

(B) Within-individual variability Uncertainty captured through repeated mea-
surements of an individual.

Scores for one student on tests throughout
the year across different testing conditions.

(C) Across-individual variability Uncertainty arising from differences be-
tween individuals (covariate attributable).

Two students perform differently due to fac-
tors such as access to study resources, etc.

(D) Sampling uncertainty Uncertainty stemming from repeated sam-
pling i.e. process of data collection.

Differing test scores between two random
samples of students from sample variability.

(E) Modeling uncertainty Uncertainty introduced by the modeling
process itself (hyperparameters, etc.).

Different models give slightly different pre-
dictions for the same set of students.

Societal Implications Predictive uncertainty estimation is not merely a technical consideration
but has profound implications for fairness and justice in algorithmic decision-making (Bhatt et al.,
2021; Cooper et al., 2024). Our research contributes the following insight: naively incorporating
uncertainty into fair models can lead to unpredictable and potentially adverse outcomes for certain
demographic groups. For example, our empirical analyses demonstrate that while abstention methods
- where models defer decisions under high uncertainty - can reduce overall error rates, they do not
necessarily improve fairness metrics such as statistical parity or equalized odds. This unpredictability
may exacerbate existing disparities and undermine trust in these systems. Furthermore, the arbitrary
application of uncertainty estimates might violate anti-discrimination laws and regulations. Uncer-
tainty estimation is also integral to procedural justice (Rawls, 2017), which concerns the fairness
of the methods and procedures used to arrive at decisions. By advocating for uncertainty estimates
that are consistent across similar models and calibrated to actual data variability, we provide a more
robust foundation for ethical algorithmic decision-making.
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B FAIRLYUNCERTAIN : DATASETS AND EXPERIMENTAL DETAILS

Experimental Details We use a cluster of 24-core Intel Cascade Lake Platinum 8268 chips to run
the experiments. We use default model hyperparameters except when the experiment explicitly varies
them i.e., for assessing consistency. Our benchmark considers a privileged class and an unprivileged
class for each dataset. The privileged class can be at the intersection of multiple protected features;
for example, “white” (race) and “male” (gender) could become a privileged class subset of “white
males” for evaluation. All fairness metrics in the submitted paper are then binary and are the absolute
difference between the disadvantaged and advantaged group. The benchmark defaults to using the
XGBoost model for all predictive tasks; XGBoost is a fast, state-of-the-art model that generally
outperforms neural models in relatively low data, low dimensional tabular regimes, like most datasets
in our benchmark (Chen & Guestrin, 2016; Grinsztajn et al., 2022; McElfresh et al., 2024).

Table 6: We note that even though ACS Folktables is the improved version of Adult, we include
Adult for parity with prior work (Ding et al., 2021; Cooper et al., 2024); we include COMPAS
and Communities & Crimes for similar parity reasons, although highlight significant concerns with
automating criminal justice (Fabris et al., 2022; Thomas & Pontón-Núñez, 2022).

Datasets (binary) Size # Feat. Goal is to predict... Protected Att.
ACS Ding et al. (2021) 16249 16 whether an individual is employed race
Adult Kohavi et al. (1996) 45222 102 whether individual income exceeds a certain level gender
Bank Marketing Moro et al. (2014) 30488 57 whether clients will subscribe to a product age
COMPAS Angwin et al. (2022) 6167 406 whether a defendant will re-offend gender
German Credit Hofmann (2000) 1000 57 whether an individual has ‘good’ or ‘bad’ credit age

Datasets (regression)
Law School GPA Sander (2004) 22342 4 students’ GPA in law school race
Communities & Crimes Redmond & Baveja (2002) 1994 100 # of per-capita violent crimes in a community race
Insurance Lantz (2019) 1338 8 individual medical costs billed by insurance gender
IHDP Hill (2011) 747 26 the cognitive test scores of infants gender
Twins Almond et al. (2005) 68995 19 the number of prenatal visits race
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C EXAMPLE USAGE FAIRLYUNCERTAIN

1 import fairlyuncertain as fu

2
3 algorithms = {algo_name: fu.algorithms[algo_name] for algo_name in fu.binary_uncertainty}

4
5 results = fu.get_calibration_table_data(is_binary=True, algorithms=algorithms, datasets=fu.binary_datasets, num_runs=10)

6
7 fu.print_table(results)

Figure 7: Complete code for producing the binary calibration table. The package is extensible, with
easy to plug in datasets and algorithms. Each dataset simply needs to implement a loading function
and each algorithm simply needs to output a prediction.
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D ADDITIONAL RESULTS ON CONSISTENCY AND CALIBRATION

Why to Use Binomial NLL for Binary Classification Uncertainty Consider a model f̃ : X×A →
Y × R that outputs binary predictions ỹ and uncertainty estimates σ̃. We can evaluate the NLL of
the estimates by converting them to probabilities. We can solve for probabilities that produce the
estimates σ̃ with the quadratic formula:2

p̃− =
1−

√
1− 4σ̃2

2
p̃+ =

1 +
√
1− 4σ̃2

2
.

Implicitly, Binomial NLL argues that if we had some (σ̃′)2 that was more accurate than the estimated
uncertainty σ̃, then we could get more accurate probability predictions p̃′ from (σ̃′)2. Thus, we
should simply do our best to estimate p̃ (with NLL as the natural objective), which then induces a
standard deviation σ̃. This motivates Binomial NLL and likely explains its strong performance.

Additional experiments In Figure 8, we present boxplots of individual uncertainty predictions
for binary classification, varying the reduction threshold γ for the XGBoost model; the Binomial
NLL method demonstrates greater consistency across different γ values. Figure 10 shows similar
boxplots in the regression setting, varying max_depth (top plot) and reduction threshold γ (bottom
plot), indicating that the Ensemble method is the most consistent across max_depth values, while
other methods exhibit similar consistency levels. Figure 11 illustrates the calibration of various
algorithms in regression by plotting the empirical standard deviation against the predicted uncertainty
using 100 bins. Finally, Figure 12 displays uncertainty plots for binary classification across datasets
and methods, varying max_depth, demonstrating that the Ensemble method produces consistent
uncertainty estimates, whereas the Selective Ensemble method shows large variance and inconsistency
in uncertainty estimates.
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Figure 8: Boxplot displaying the mean, variance, and outliers of individual uncertainty predictions for
the binary classification setting, with varying the reduction_threshold hyperparameter γ (bottom plot)
for the XGBoost model. The Binomial NLL method demonstrates significantly greater consistency
across varying γ values.

Table 7: Comparison of calibration for each algorithm on each binary dataset in terms of Expected
Calibration Error (ECE) Naeini et al. (2015). Note that lower values are better.

Approach ACS Adult Bank COMPAS German
Ensemble 1.08 ± 0.037 0.899 ± 0.023 0.499 ± 0.018 1.79 ± 0.068 0.968 ± 0.12
Selective Ensemble 1.09 ± 0.048 0.876 ± 0.024 0.501 ± 0.024 1.77 ± 0.082 1.05 ± 0.156
Self-(in)consistency 1.02 ± 0.041 0.819 ± 0.027 0.419 ± 0.018 1.52 ± 0.068 0.823 ± 0.125
Binomial NLL 0.396 ± 0.008 0.307 ± 0.004 0.198 ± 0.004 0.598 ± 0.009 0.503 ± 0.036

2The catch is that two probabilities can map to the same standard deviation. Since the model f̃ also makes
predictions ỹ, we will choose the probability p̃ closer to the prediction.
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Figure 9: Boxplot displaying the mean, variance, and outliers of individual uncertainty predictions
for the binary classification setting, with varying the α weight-decay regularization hyperparameter
for the a neural net with linear layers and non-linear activations (e.g. ReLU). The Ensemble method
demonstrates generally greater consistency across varying α values, followed by the Binomiall NLL
method.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

St
an

da
rd

 D
ev

ia
tio

n

Communities

0.02

0.04

0.06

0.08
IHDP

0.00

0.02

0.04

0.06

0.08

0.10
Insurance

0.000

0.025

0.050

0.075

0.100

Law School

0.00

0.05

0.10

0.15

0.20
Twins

Ensemble Normal NLL -NLL Faithful NLL

Standard Deviation of Uncertainty Across max_depth

0.00

0.02

0.04

0.06

0.08

0.10

0.12

St
an

da
rd

 D
ev

ia
tio

n

Communities

0.00

0.05

0.10

IHDP

0.00

0.05

0.10

0.15
Insurance

0.00

0.02

0.04

0.06
Law School

0.00

0.05

0.10

Twins

Ensemble Normal NLL -NLL Faithful NLL

Standard Deviation of Uncertainty Across Reduction Thresholds

Figure 10: Boxplots showing the variance of individual uncertainty predictions for the regression
setting with varying max_depth (top plot) and reduction threshold γ (bottom plot) parameters. The
Ensemble method is the most consistent across the max_depth values, while all other methods exhibit
similar levels of consistency.

D.1 ON CALIBRATION METRICS

Expected Calibration Error (ECE) Naeini et al. (2015) and Negative Log Likelihood (NLL) will differ
fundamentally in their model calibration assessment. Given predictions {pi}Ni=1, uncertainty estimates
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Figure 11: The calibration of various algorithms, using the XGBoost model. We compute calibration
by making 100 bins on the uncertainty measure: we plot the empirical standard standard deviation in
the bin against the predicted uncertainty.
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{σi}Ni=1, and true labels {yi}Ni=1, ECE groups predictions into M confidence bins {Bm}Mm=1 based
on pi, and computes calibration as ECE =

∑M
m=1

|Bm|
N |acc(Bm)− conf(Bm)|, where acc(Bm) =

1
|Bm|

∑
i∈Bm

1{ŷi = yi} and conf(Bm) = 1
|Bm|

∑
i∈Bm

pi.

In contrast, our modified NLL incorporates uncertainty estimates directly by adjusting predicted
probabilities as p̃i = (pi > 0.5) · pa + (pi ≤ 0.5) · pb, where pa = (1 +

√
1− 4σ2

i )/2

and pb = (1 −
√

1− 4σ2
i )/2. We then compute NLL in standard fashion e.g. NLL =

− 1
N

∑N
i=1 [yi log(p̃i) + (1− yi) log(1− p̃i)] .

See Table 7 for results on the metric across each of our methods of calculating uncertainty. ECE
provides an interpretable, aggregate view of calibration by measuring the alignment of predicted
probabilities with empirical accuracy in confidence intervals (Naeini et al, 2015). However, it is
sensitive to binning choices and lacks granularity at the individual prediction level. Our adjusted NLL
method avoids binning, directly incorporating uncertainty estimates to evaluate calibration at a finer
resolution, penalizing overconfident errors and underconfident correct predictions. While this makes
NLL more sensitive to uncertainty quality, it may conflate calibration with model discrimination, and
its dependence on predicted standard deviations assumes valid uncertainty estimates. We’d expect to
prefer something like ECE for global calibration trends, while our NLL-based approach is suited to
uncertainty-aware evaluation at the individual level.
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Figure 12: Plots of uncertainty for the binary classification problem across datasets (rows) and
methods (columns), where we vary the hyperparameter max-depth. Each individual is plotted as a
line, where the line’s higher y-coordinate is the maximum uncertainty estimate over all hyperparameter
settings for that, and the lower y-coordinate is the individual’s minimum uncertainty estimate. Each
individual is also placed along the x-axis at the standard deviation of their uncertainty estimates over
the hyper-parameter settings. The Ensemble method produces consistent uncertainty estimates: the
standard deviation of these estimates is less than 0.1 for all datasets and the uncertainty range starts
close to 0 and increases with the standard deviation of the uncertainty (this is desirable). In contrast,
the Selective Ensemble method produces inconsistent uncertainty estimates: the standard deviation of
the uncertainty predictions is large and the range of the uncertainty predictions is large (especially for
large standard deviations).
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Figure 13: Similar plots of uncertainty for the binary classification problem across datasets (rows)
and methods (columns) to Figure 12, but where the model is a neural network with linear layers
and non-linear activations, and the parameter varying is α weight-decay regularization. Again, the
Ensemble method produces consistent uncertainty estimates: the standard deviation of these estimates
is less than 0.1 for all datasets and the uncertainty range starts close to 0 and increases with the
standard deviation of the uncertainty (this is desirable).
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E BINARY ABSTENTION RESULTS

In Example E.1 below, we construct a predictive setting where abstaining can arbitrarily harm a
standard fairness metric, like equalized odds.
Example E.1 (Abstention Can Harm Fairness Metrics). Consider a binary classification model
evaluated on two demographic groups, A and B, each with NA = NB examples. Both groups contain
an equal number of positive (Y = 1) and negative (Y = 0) examples (NA,1 = NA,0 = NB,1 =
NB,0). Without abstention, the model predicts perfectly, achieving a true positive rate (TPR) and
false positive rate (FPR) of TPRA = TPRB = 1.0 and FPRA = FPRB = 0.0, satisfying equalized
odds. Say the model incorporates abstention based on uncertainty, and for group A, the model has
arbitrarily low uncertainty and continues predicting perfectly (TPRA = 1.0,FPRA = 0.0). However,
the model has high uncertainty for group B, and thus the model abstains on all positive examples
(Y = 1), resulting in TPRB = 0.0, while still predicting negatives correctly (FPRB = 0.0). This
abstention-induced disparity in TPRs (TPRA − TPRB = 1.0) violates the equalized odds fairness
metric to an arbitrary degree.

FairlyUncertain explores how abstaining from binary predictions based on uncertainty affects
error rate, equalized odds, and statistical parity. While it clearly reduces error rate (Figure 14),
abstaining has an unreliable effect on equalized odds (Figure 15) and statistical parity (Figure 16),
similar to the behavior of the Random baseline. Figure 17 shows that the differences in variable
distributions between the overall population and the set selected through the abstaining process are
relatively small, except for the Binomial NLL distribution on the Adult dataset.
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Figure 14: Abstention error rate.
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Figure 15: Abstention equalized odds.
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Figure 16: Abstention statistical parity.
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Figure 17: The variable with the largest difference (as measured by Wasserstein distance) between
the distribution on the overall population and the set selected through the abstaining process. Except
for the Binomial NLL distribution on the Adult dataset, the differences tend to be relatively small.
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Figure 18: Error rate vs. abstained across different uncertainty algorithms. We set an overall
abstention rate r (shown on the x-axis) and plot the error rates for each protected group. Our results
reveal that the algorithms yield varying error levels across protected groups on both the German and
ACS Public Coverage datasets.
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Figure 19: Abstention rate per group vs. overall error rate across different uncertainty algorithms. As
expected, the random baseline exhibits no difference in abstention rates between protected groups, as
its uncertainty estimates are random. In contrast, the Selective Ensemble demonstrates significant
disparities in abstention rates across groups.

25



Preprint

F BINARY FAIRNESS RESULTS

FairlyUncertain fairness benchmark on all five binary datasets. Abstaining reduces the error
rate, and often equalized odds as a result, but has no improvement on statistical parity. Only Predictive
Parity (the difference in the ratio of true positives to all positive labels assigned) was relatively low
for abstaining methods, and is likely explained by none of the fairness methods explicitly optimizing
this parameter.

Approach Error Rate Statistical Parity Equalized Odds Equal Opportunity Disparate Impact Predictive Parity False Positive Rate Included %
Baseline 0.22 ± 0.009 0.181 ± 0.023 0.165 ± 0.049 0.165 ± 0.049 1.65 ± 0.136 0.057 ± 0.034 0.083 ± 0.024 100.0 ± 0.0
Threshold Optimizer SP 0.233 ± 0.009 0.029 ± 0.021 0.135 ± 0.046 0.063 ± 0.033 0.979 ± 0.07 0.241 ± 0.043 0.134 ± 0.046 100.0 ± 0.0
Threshold Optimizer EO 0.226 ± 0.01 0.101 ± 0.03 0.08 ± 0.049 0.079 ± 0.049 1.3 ± 0.113 0.119 ± 0.039 0.024 ± 0.021 100.0 ± 0.0
Exponentiated Gradient SP 0.229 ± 0.011 0.041 ± 0.022 0.117 ± 0.038 0.065 ± 0.04 0.946 ± 0.08 0.203 ± 0.033 0.115 ± 0.038 100.0 ± 0.0
Exponentiated Gradient EO 0.218 ± 0.008 0.101 ± 0.041 0.092 ± 0.049 0.09 ± 0.052 1.3 ± 0.15 0.119 ± 0.045 0.031 ± 0.017 100.0 ± 0.0
Grid Search SP 0.23 ± 0.012 0.083 ± 0.045 0.142 ± 0.064 0.108 ± 0.067 1.04 ± 0.259 0.183 ± 0.048 0.106 ± 0.067 100.0 ± 0.0
Grid Search EO 0.227 ± 0.008 0.148 ± 0.034 0.132 ± 0.07 0.125 ± 0.074 1.48 ± 0.152 0.087 ± 0.048 0.056 ± 0.031 100.0 ± 0.0

Random 0.221 ± 0.009 0.174 ± 0.028 0.154 ± 0.046 0.15 ± 0.052 1.61 ± 0.155 0.044 ± 0.034 0.085 ± 0.024 88.3 ± 6.96
Ensemble 0.2 ± 0.019 0.193 ± 0.032 0.158 ± 0.063 0.155 ± 0.064 1.72 ± 0.18 0.032 ± 0.038 0.093 ± 0.031 89.0 ± 8.04
Selective Ensemble 0.201 ± 0.024 0.183 ± 0.03 0.154 ± 0.049 0.15 ± 0.059 1.69 ± 0.204 0.039 ± 0.037 0.082 ± 0.029 94.1 ± 7.29
Self-(in)consistency 0.188 ± 0.026 0.188 ± 0.028 0.155 ± 0.05 0.15 ± 0.058 1.73 ± 0.198 0.035 ± 0.028 0.081 ± 0.026 89.3 ± 8.87
Binomial NLL 0.176 ± 0.028 0.194 ± 0.021 0.153 ± 0.044 0.149 ± 0.051 1.77 ± 0.138 0.034 ± 0.032 0.08 ± 0.024 82.9 ± 9.5

Table 8: ACS Income. Note that this is reported in Table 3 of the main paper body to 2 significant
digits of precision. This was in order to make the font more legible - all results in this section are
with 3 significant digits.

Approach Error Rate Statistical Parity Equalized Odds Equal Opportunity Disparate Impact Predictive Parity False Positive Rate Included %
Baseline 0.265 ± 0.011 0.25 ± 0.031 0.211 ± 0.04 0.168 ± 0.061 0.479 ± 0.037 0.031 ± 0.03 0.194 ± 0.041 100.0 ± 0.0
Threshold Optimizer SP 0.291 ± 0.016 0.038 ± 0.025 0.14 ± 0.033 0.129 ± 0.046 0.882 ± 0.07 0.034 ± 0.038 0.077 ± 0.031 100.0 ± 0.0
Threshold Optimizer EO 0.288 ± 0.017 0.168 ± 0.028 0.141 ± 0.037 0.069 ± 0.045 0.637 ± 0.042 0.064 ± 0.039 0.139 ± 0.04 100.0 ± 0.0
Exponentiated Gradient SP 0.279 ± 0.008 0.035 ± 0.021 0.091 ± 0.052 0.088 ± 0.055 0.961 ± 0.116 0.152 ± 0.039 0.032 ± 0.02 100.0 ± 0.0
Exponentiated Gradient EO 0.277 ± 0.014 0.176 ± 0.036 0.148 ± 0.034 0.073 ± 0.048 0.62 ± 0.053 0.051 ± 0.04 0.147 ± 0.035 100.0 ± 0.0
Grid Search SP 0.291 ± 0.013 0.077 ± 0.023 0.124 ± 0.07 0.115 ± 0.079 1.01 ± 0.255 0.139 ± 0.08 0.072 ± 0.042 100.0 ± 0.0
Grid Search EO 0.276 ± 0.014 0.221 ± 0.034 0.184 ± 0.037 0.12 ± 0.054 0.557 ± 0.043 0.041 ± 0.046 0.181 ± 0.041 100.0 ± 0.0

Random 0.263 ± 0.012 0.239 ± 0.041 0.205 ± 0.042 0.152 ± 0.077 0.495 ± 0.049 0.028 ± 0.042 0.185 ± 0.043 88.4 ± 8.66
Ensemble 0.248 ± 0.019 0.281 ± 0.044 0.225 ± 0.054 0.21 ± 0.052 0.42 ± 0.036 0.015 ± 0.027 0.191 ± 0.042 89.6 ± 7.63
Selective Ensemble 0.241 ± 0.02 0.271 ± 0.033 0.236 ± 0.05 0.211 ± 0.073 0.412 ± 0.048 0.024 ± 0.022 0.169 ± 0.044 89.0 ± 8.52
Self-(in)consistency 0.251 ± 0.02 0.249 ± 0.04 0.202 ± 0.055 0.183 ± 0.064 0.447 ± 0.045 0.029 ± 0.025 0.162 ± 0.051 93.3 ± 7.86
Binomial NLL 0.236 ± 0.024 0.257 ± 0.034 0.207 ± 0.056 0.175 ± 0.071 0.436 ± 0.037 0.012 ± 0.021 0.166 ± 0.05 87.0 ± 7.32

Table 9: ACS Public Coverage.

Approach Error Rate Statistical Parity Equalized Odds Equal Opportunity Disparate Impact Predictive Parity False Positive Rate Included %
Baseline 0.139 ± 0.002 0.168 ± 0.006 0.092 ± 0.022 0.092 ± 0.022 0.291 ± 0.017 0.037 ± 0.017 0.058 ± 0.005 100.0 ± 0.0
Threshold Optimizer SP 0.185 ± 0.002 0.007 ± 0.007 0.132 ± 0.01 0.024 ± 0.015 0.999 ± 0.037 0.499 ± 0.013 0.132 ± 0.01 100.0 ± 0.0
Threshold Optimizer EO 0.15 ± 0.002 0.122 ± 0.008 0.026 ± 0.018 0.024 ± 0.019 0.53 ± 0.028 0.271 ± 0.03 0.01 ± 0.006 100.0 ± 0.0
Exponentiated Gradient SP 0.15 ± 0.004 0.019 ± 0.009 0.288 ± 0.023 0.288 ± 0.023 0.903 ± 0.045 0.335 ± 0.019 0.054 ± 0.006 100.0 ± 0.0
Exponentiated Gradient EO 0.135 ± 0.002 0.134 ± 0.005 0.034 ± 0.008 0.028 ± 0.012 0.433 ± 0.017 0.11 ± 0.032 0.03 ± 0.006 100.0 ± 0.0
Grid Search SP 0.162 ± 0.004 0.029 ± 0.009 0.359 ± 0.013 0.359 ± 0.013 1.17 ± 0.055 0.412 ± 0.021 0.091 ± 0.009 100.0 ± 0.0
Grid Search EO 0.132 ± 0.001 0.18 ± 0.005 0.075 ± 0.007 0.074 ± 0.009 0.318 ± 0.008 0.018 ± 0.018 0.062 ± 0.005 100.0 ± 0.0

Random 0.139 ± 0.002 0.168 ± 0.006 0.087 ± 0.018 0.087 ± 0.018 0.293 ± 0.017 0.032 ± 0.019 0.058 ± 0.005 87.1 ± 6.8
Ensemble 0.115 ± 0.023 0.171 ± 0.01 0.09 ± 0.028 0.09 ± 0.029 0.24 ± 0.047 0.03 ± 0.019 0.046 ± 0.009 86.6 ± 11.6
Selective Ensemble 0.129 ± 0.008 0.165 ± 0.008 0.105 ± 0.026 0.105 ± 0.026 0.271 ± 0.022 0.032 ± 0.021 0.049 ± 0.008 96.4 ± 2.54
Self-(in)consistency 0.134 ± 0.008 0.166 ± 0.007 0.101 ± 0.029 0.101 ± 0.029 0.276 ± 0.025 0.037 ± 0.021 0.052 ± 0.006 97.9 ± 2.21
Binomial NLL 0.106 ± 0.025 0.153 ± 0.007 0.122 ± 0.053 0.122 ± 0.053 0.263 ± 0.042 0.016 ± 0.01 0.033 ± 0.015 89.6 ± 7.89

Table 10: Adult.
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Approach Error Rate Statistical Parity Equalized Odds Equal Opportunity Disparate Impact Predictive Parity False Positive Rate Included %
Baseline 0.092 ± 0.002 0.012 ± 0.006 0.053 ± 0.027 0.053 ± 0.027 0.925 ± 0.096 0.033 ± 0.016 0.004 ± 0.004 100.0 ± 0.0
Threshold Optimizer SP 0.096 ± 0.002 0.006 ± 0.003 0.023 ± 0.014 0.023 ± 0.015 1.01 ± 0.062 0.038 ± 0.022 0.005 ± 0.003 100.0 ± 0.0
Threshold Optimizer EO 0.097 ± 0.002 0.006 ± 0.004 0.025 ± 0.01 0.025 ± 0.011 0.975 ± 0.06 0.02 ± 0.018 0.003 ± 0.002 100.0 ± 0.0
Exponentiated Gradient SP 0.096 ± 0.002 0.006 ± 0.004 0.032 ± 0.017 0.032 ± 0.017 0.986 ± 0.067 0.035 ± 0.025 0.004 ± 0.003 100.0 ± 0.0
Exponentiated Gradient EO 0.096 ± 0.002 0.005 ± 0.003 0.026 ± 0.015 0.026 ± 0.016 0.99 ± 0.05 0.039 ± 0.025 0.005 ± 0.002 100.0 ± 0.0
Grid Search SP 0.097 ± 0.002 0.009 ± 0.006 0.038 ± 0.021 0.038 ± 0.021 0.93 ± 0.056 0.031 ± 0.031 0.004 ± 0.004 100.0 ± 0.0
Grid Search EO 0.097 ± 0.002 0.009 ± 0.006 0.038 ± 0.021 0.038 ± 0.021 0.93 ± 0.056 0.031 ± 0.031 0.004 ± 0.004 100.0 ± 0.0

Random 0.092 ± 0.002 0.01 ± 0.005 0.049 ± 0.028 0.048 ± 0.029 0.934 ± 0.084 0.031 ± 0.017 0.003 ± 0.003 91.0 ± 7.38
Ensemble 0.045 ± 0.026 0.005 ± 0.004 0.067 ± 0.05 0.067 ± 0.05 0.985 ± 0.135 0.021 ± 0.019 0.001 ± 0.0 84.3 ± 8.45
Selective Ensemble 0.077 ± 0.013 0.007 ± 0.004 0.043 ± 0.035 0.042 ± 0.036 0.922 ± 0.071 0.033 ± 0.021 0.002 ± 0.002 95.7 ± 3.8
Self-(in)consistency 0.076 ± 0.013 0.008 ± 0.007 0.053 ± 0.044 0.053 ± 0.045 0.902 ± 0.109 0.038 ± 0.032 0.002 ± 0.002 95.8 ± 3.82
Binomial NLL 0.067 ± 0.028 0.007 ± 0.005 0.043 ± 0.031 0.043 ± 0.032 0.908 ± 0.074 0.033 ± 0.029 0.001 ± 0.001 92.2 ± 8.74

Table 11: Bank.

Approach Error Rate Statistical Parity Equalized Odds Equal Opportunity Disparate Impact Predictive Parity False Positive Rate Included %
Baseline 0.316 ± 0.012 0.194 ± 0.027 0.188 ± 0.05 0.183 ± 0.054 0.542 ± 0.055 0.075 ± 0.051 0.125 ± 0.039 100.0 ± 0.0
Threshold Optimizer SP 0.344 ± 0.015 0.042 ± 0.025 0.112 ± 0.047 0.074 ± 0.052 0.963 ± 0.107 0.227 ± 0.067 0.09 ± 0.053 100.0 ± 0.0
Threshold Optimizer EO 0.35 ± 0.016 0.065 ± 0.031 0.074 ± 0.048 0.066 ± 0.052 0.82 ± 0.084 0.163 ± 0.067 0.04 ± 0.028 100.0 ± 0.0
Exponentiated Gradient SP 0.329 ± 0.013 0.041 ± 0.025 0.051 ± 0.027 0.038 ± 0.033 0.902 ± 0.069 0.161 ± 0.05 0.028 ± 0.018 100.0 ± 0.0
Exponentiated Gradient EO 0.332 ± 0.014 0.083 ± 0.028 0.085 ± 0.046 0.084 ± 0.047 0.792 ± 0.071 0.164 ± 0.066 0.038 ± 0.025 100.0 ± 0.0
Grid Search SP 0.327 ± 0.015 0.047 ± 0.058 0.112 ± 0.06 0.097 ± 0.063 0.991 ± 0.182 0.176 ± 0.043 0.07 ± 0.042 100.0 ± 0.0
Grid Search EO 0.323 ± 0.012 0.213 ± 0.03 0.224 ± 0.059 0.223 ± 0.06 0.517 ± 0.054 0.088 ± 0.063 0.135 ± 0.034 100.0 ± 0.0

Random 0.317 ± 0.014 0.181 ± 0.025 0.168 ± 0.04 0.154 ± 0.052 0.573 ± 0.051 0.063 ± 0.067 0.12 ± 0.043 86.3 ± 6.72
Ensemble 0.305 ± 0.011 0.201 ± 0.033 0.206 ± 0.06 0.197 ± 0.076 0.5 ± 0.09 0.056 ± 0.048 0.127 ± 0.022 87.8 ± 8.68
Selective Ensemble 0.288 ± 0.015 0.211 ± 0.047 0.213 ± 0.07 0.202 ± 0.088 0.498 ± 0.107 0.054 ± 0.046 0.126 ± 0.032 88.0 ± 7.52
Self-(in)consistency 0.287 ± 0.019 0.213 ± 0.033 0.219 ± 0.071 0.216 ± 0.074 0.485 ± 0.067 0.07 ± 0.06 0.121 ± 0.034 86.9 ± 9.61
Binomial NLL 0.292 ± 0.018 0.206 ± 0.033 0.199 ± 0.058 0.196 ± 0.061 0.5 ± 0.074 0.052 ± 0.047 0.123 ± 0.035 88.7 ± 8.4

Table 12: COMPAS.

Approach Error Rate Statistical Parity Equalized Odds Equal Opportunity Disparate Impact Predictive Parity False Positive Rate Included %
Baseline 0.251 ± 0.025 0.129 ± 0.06 0.147 ± 0.064 0.129 ± 0.07 1.72 ± 0.35 0.082 ± 0.048 0.094 ± 0.067 100.0 ± 0.0
Threshold Optimizer SP 0.258 ± 0.026 0.081 ± 0.059 0.175 ± 0.082 0.152 ± 0.097 1.08 ± 0.469 0.187 ± 0.11 0.078 ± 0.062 100.0 ± 0.0
Threshold Optimizer EO 0.255 ± 0.029 0.155 ± 0.081 0.166 ± 0.077 0.151 ± 0.065 1.75 ± 0.423 0.105 ± 0.105 0.124 ± 0.092 100.0 ± 0.0
Exponentiated Gradient SP 0.264 ± 0.025 0.065 ± 0.056 0.11 ± 0.066 0.089 ± 0.063 1.29 ± 0.371 0.112 ± 0.112 0.063 ± 0.068 100.0 ± 0.0
Exponentiated Gradient EO 0.255 ± 0.029 0.155 ± 0.081 0.166 ± 0.077 0.151 ± 0.065 1.75 ± 0.423 0.105 ± 0.105 0.124 ± 0.092 100.0 ± 0.0
Grid Search SP 0.269 ± 0.023 0.136 ± 0.079 0.175 ± 0.073 0.16 ± 0.072 1.46 ± 0.602 0.086 ± 0.068 0.111 ± 0.078 100.0 ± 0.0
Grid Search EO 0.259 ± 0.038 0.15 ± 0.094 0.197 ± 0.108 0.186 ± 0.109 1.67 ± 0.443 0.109 ± 0.1 0.108 ± 0.073 100.0 ± 0.0

Random 0.25 ± 0.026 0.116 ± 0.057 0.139 ± 0.075 0.107 ± 0.091 1.64 ± 0.315 0.068 ± 0.04 0.087 ± 0.06 92.5 ± 8.25
Ensemble 0.222 ± 0.046 0.125 ± 0.076 0.155 ± 0.088 0.142 ± 0.1 2.04 ± 0.753 0.069 ± 0.077 0.077 ± 0.054 85.4 ± 9.95
Selective Ensemble 0.214 ± 0.045 0.122 ± 0.064 0.176 ± 0.097 0.157 ± 0.113 1.93 ± 0.496 0.082 ± 0.084 0.073 ± 0.047 88.4 ± 8.57
Self-(in)consistency 0.216 ± 0.046 0.109 ± 0.063 0.148 ± 0.084 0.142 ± 0.092 1.85 ± 0.481 0.068 ± 0.087 0.062 ± 0.042 90.3 ± 8.45
Binomial NLL 0.232 ± 0.023 0.107 ± 0.049 0.143 ± 0.085 0.132 ± 0.091 1.68 ± 0.351 0.057 ± 0.034 0.065 ± 0.054 92.6 ± 7.86

Table 13: German.
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G BINARY CALIBRATION WITH DIFFERENT SIZED GROUPS

We find that bigger groups (a smaller number of groups) exhibit more identifiable patterns with a
positive correlation whereas smaller groups (a bigger number of groups) exhibit slightly more noisy
behavior. These results were generated using an underlying XGBoost model.
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Figure 20: For five groups assembled by predicted uncertainty, we plot the average predicted
uncertainty against the empirical standard deviation of the outcomes.
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Figure 21: For ten groups assembled by predicted uncertainty, we plot the average predicted uncer-
tainty against the empirical standard deviation of the outcomes.
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Figure 22: For fifteen groups assembled by predicted uncertainty, we plot the average predicted
uncertainty against the empirical standard deviation of the outcomes.
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Figure 23: For twenty groups assembled by predicted uncertainty, we plot the average predicted
uncertainty against the empirical standard deviation of the outcomes.
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Figure 24: For twenty five groups assembled by predicted uncertainty, we plot the average predicted
uncertainty against the empirical standard deviation of the outcomes.
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Figure 25: For thirty groups assembled by predicted uncertainty, we plot the average predicted
uncertainty against the empirical standard deviation of the outcomes.
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H NOTES ON XGBOOST AND CUSTOMIZING THE LOSS

XGBoost optimizes a loss using its gradient gi for first-order information and its Hessian hi for second-
order information in a relatively standard, higher order optimization framework (see Section 2.2. in
Chen & Guestrin (2016)). Intuitively, gi indicates the direction for improving model predictions,
and hi is useful for determining the curvature or “rate of change” of the loss. During XGBoost tree
construction, each tree is built iteratively in order to correct the “residuals” left by previous trees.
Here, “residuals” refer to the differences between the observed values of the target variable and the
values predicted by the model e.g. the errors in the predictions made by the model. We let

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
, (1)

where w∗
j is the optimal weight for the j-th leaf, Ij represents the set of instances in leaf j, and λ is a

regularizer. Formulating it in this way is the classic balancing act - we want to reduce the loss, but
we regularize against the complexity of the model. Then, when we want to evaluate potential splits
during tree construction, the “gain” from a split is calculated as:

Gain =
1

2

[
(
∑

i∈IL
gi)

2∑
i∈IL

hi + λ
+

(
∑

i∈IR
gi)

2∑
i∈IR

hi + λ
−

(
∑

i∈I gi)
2∑

i∈I hi + λ

]
− γ, (2)

where IL and IR are the instance sets of the left and right child nodes post-split. Thus, specifying a
custom loss for XGBoost simply requires deriving the first order gradient and second order hessian
for a given loss function with arbitrary outputs.
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I FAIRNESS METRICS

Below we provide formulas for the fairness metrics included in our benchmark. Let X denote the set
of features, Y the true label, Ŷ the predicted label, and A the protected attribute (e.g., race, gender).
Note that we generally report these as metrics, which is to say we quantify the degree of fairness
by calculating the absolute difference between the two sides of the equality in each definition. For
disparate impact, we report δ directly.
Definition I.1 (Statistical Parity).

P (Ŷ = 1 | A = a) = P (Ŷ = 1 | A = a′) ∀a, a′ (3)

i.e. the probability of receiving a positive outcome should be the same across all A.

Definition I.2 (Equalized Odds).

P (Ŷ = 1 | A = a, Y = y) = P (Ŷ = 1 | A = a′, Y = y) ∀a, a′, y (4)

i.e. the prediction outcome is conditionally independent of the protected attribute A given Y .

Definition I.3 (Equal Opportunity).

P (Ŷ = 1 | A = a, Y = 1) = P (Ŷ = 1 | A = a′, Y = 1) ∀a, a′ (5)

i.e. the true positive rate is the same across all A.

Definition I.4 (Disparate Impact).

P (Ŷ = 1 | A = a)

P (Ŷ = 1 | A = a′)
≥ δ for some threshold δ (6)

i.e. the ratio of positive outcomes between groups remains close to 1 (typically δ = 0.8).

Definition I.5 (Predictive Parity).

P (Y = 1 | Ŷ = 1, A = a) = P (Y = 1 | Ŷ = 1, A = a′) ∀a, a′ (7)

i.e. precision (the probability of a true positive given a positive prediction) is the same across all A.

Definition I.6 (False Positive Rate Equality).

P (Ŷ = 1 | A = a, Y = 0) = P (Ŷ = 1 | A = a′, Y = 0) ∀a, a′ (8)

i.e. the false positive rate is the same across all A.
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