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Abstract

Fusion-in-decoder (FID) (Izacard and Grave,001
2020) is a generative question answering (QA)002
model that leverages passage retrieval with a003
pre-trained transformer and pushed the state of004
the art on single-hop QA. However, the com-005
plexity of multi-hop QA hinders the effective-006
ness of the generative QA approach. In this007
work, we propose a simple generative approach008
(PATHFID) that extends the task beyond just an-009
swer generation by explicitly modeling the rea-010
soning process to resolve the answer for multi-011
hop questions. By linearizing the hierarchical012
reasoning path of supporting passages, their013
key sentences, and finally the factoid answer,014
we cast the problem as a single sequence predic-015
tion task. To facilitate complex reasoning with016
multiple clues, we further extend the unified017
flat representation of multiple input documents018
by encoding cross-passage interactions. Our ex-019
tensive experiments demonstrate that PATHFID020
leads to strong performance gains on two multi-021
hop QA datasets: HotpotQA and IIRC. Besides022
the performance gains, PATHFID is more inter-023
pretable, which in turn yields answers that are024
more faithfully grounded to the supporting pas-025
sages and facts compared to the baseline FID026
model.027

1 Introduction028

Leveraging knowledge to make complex reasoning029

has been a fundamental problem of artificial intel-030

ligence. Open-domain question answering (QA)031

(Voorhees, 1999) is an integral part of such a line of032

research with impactful applications (Esteva et al.,033

2020; Zhang et al., 2020), where the task is to034

answer general domain questions by gathering evi-035

dence from a large collection of documents. While036

super-human level performance has been achieved037

on single-passage reading comprehension dataset038

like SQuAD (Rajpurkar et al., 2016), open-domain039

QA still has a long way to go, especially for ques-040

tions requiring more complex reasoning. The main041

challenge in the task of complex QA, namely multi- 042

hop QA, is that it requires a QA system to combine 043

multiple pieces of evidence from multiple docu- 044

ments (Welbl et al., 2018; Talmor and Berant, 2018; 045

Yang et al., 2018). Even for single-hop QA, it has 046

been shown challenging for extractive QA models 047

to effectively aggregate evidence from the com- 048

bined pool of multiple passages, which has been 049

the focus of recent work (Clark and Gardner, 2018; 050

Min et al., 2019; Guu et al., 2020). 051

Recent work (Lewis et al., 2020b; Min et al., 052

2020) has demonstrated the promise of a genera- 053

tive approach at combining evidences from mul- 054

tiple passages for answer generation. Thanks 055

to large pre-trained transformers like T5 (Raffel 056

et al., 2020), Izacard and Grave (2020) introduced 057

fusion-in-decoder (FID) that leverages passage re- 058

trieval with generative models for open-domain 059

QA, achieving state-of-the-art scores across several 060

single-hop QA benchmarks. However, we observe 061

that the success of the FID model does not extend 062

to multi-hop QA, which is corroborated by the find- 063

ings in (Xiong et al., 2021). Further, the FID model 064

is a rather opaque model in terms of interpretation 065

of the answer generation process. This capability 066

becomes especially important for multi-hop QA, 067

which requires sequential reasoning across multiple 068

evidences from the pool of retrieved passages. 069

In this work, we propose PATHFID, a genera- 070

tive QA model that learns to generate an answer 071

along with a reasoning path to improve its capa- 072

bility of multi-hop reasoning. PATHFID extends 073

multi-hop QA beyond just answer generation by 074

explicitly modeling the full reasoning path to re- 075

solve the answer with a generative sequence-to- 076

sequence model. To this end, we cast the problem 077

as a single sequence prediction task that simulta- 078

neously models reasoning path consisting of sup- 079

porting passages and facts, and eventually the fac- 080

toid answer. Furthermore, we extend PATHFID to 081

allow for cross-passage interactions between the 082
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Figure 1: An example of multi-hop question from HotpotQA dataset. It requires fusing multiple evidences (supporting facts)
from multiple passages in a certain order to arrive at the correct answer. We formulate the entire problem as a single sequence
prediction of the linearized hierarchical path ending with the answer.

retrieved passages to obtain more expressive repre-083

sentations from the encoder to facilitate modeling084

a complex reasoning chain by the decoder. Fig-085

ure 1 shows an example of our task formulation,086

and Figure 2 shows an overview of our approach.087

We evaluate our proposed approach on two multi-088

hop QA datasets: HotpotQA (Yang et al., 2018)089

and IIRC (Ferguson et al., 2020). Our extensive090

experiments demonstrate that (i) PATHFID leads091

to significant performance gains over FID on an-092

swer generation, (ii) PATHFID is the first generative093

model unlocking the possibility of generating the094

reasoning path jointly with the answer while achiev-095

ing competitive performance on supporting fact ex-096

traction metric as well. Besides the performance097

gains, PATHFID is able to expose the underlying098

reasoning process behind the answer generation,099

which allows us to conduct a much finer-grained100

qualitative and quantitative analysis on the model’s101

behavior, providing insights into further improv-102

ing and better understanding generative models for103

multi-hop QA.104

2 Problem Setup and Background105

In this section, we formally introduce the problem106

setup and establish the necessary background.107

2.1 Multi-hop Question Answering108

We first describe the multi-hop QA task in a general109

way. We assume that a collection of K passages110

are given for a question q: Dq = {p1, p2, . . . , pK},111

where Dq can be a pre-defined set, or it can also112

be an output from a text retrieval system (e.g.,113

DPR (Karpukhin et al., 2020) and MDR (Xiong114

et al., 2021)) in an open-domain QA setting. That115

is, in the case of the open-domain setting, Dq is116

a subset of a large collection of passages, such as117

Wikipedia. The task is to generate an answer string118

a given q and Dq. In addition, we aim at identify- 119

ing which passages provide evidence, and which 120

sentences in them are describing the evidence. Fig- 121

ure 1 shows a comprehensive example of the task 122

definition, where we can see that some sentences 123

(called supporting facts) in the two paragraphs are 124

crucial to answer the question. Moreover, there is a 125

reasoning flow: the question → the first paragraph 126

→ the second paragraph, which is called a reason- 127

ing path in previous work (Asai et al., 2020). The 128

overall task is then to predict the reasoning path 129

along with the supporting facts, and the answer. 130

2.2 Fusion-in-Decoder Model (FID) 131

Fusion-in-Decoder (FID) is a generative reader 132

based on a sequence-to-sequence architecture, ini- 133

tialized from pre-trained models such as T5 (Raf- 134

fel et al., 2020) or BART (Lewis et al., 2020a). 135

It consists of an encoder (Enc) and a decoder 136

(Dec). First, it constructs a single block of text 137

bn := question: q title: tn context: pn 138

of concatenated evidence from each passage-title 139

pair (pn, tn) together with the question (q). Then, 140

each of the resulting evidence block bn is indepen- 141

dently encoded into |bn| × d-dimensional output 142

representations, which are then concatenated to 143

form a unified input representation 144

X = [Enc(b1);Enc(b2); . . . ,Enc(bN )] (1) 145

of dimension (
∑

n |bn|)×d where |bn| denotes the 146

length of the n-th block bn in number of tokens. 147

Note that, the motivation behind this strategy is to 148

avoid the expensive quadratic self-attention com- 149

putation on the encoder-side, effectively reducing 150

the complexity from O((
∑

|bn|)2) to O(
∑

|bn|2). 151

Then, the overall answer generation is modeled 152

as a conditional generation pθ(a|X) given X con- 153

suming the unified input representation X, where 154
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θ represents the set of all model parameters. The155

model is trained to minimize the cross-entropy loss156

for generating answer tokens on the decoder side.157

At inference time, FID first computes X based on158

the retrieved passages, and then decodes the answer159

token by token following pθ(ai|a<i,X) with the160

learned model parameters θ.161

3 PATHFID Reader for Multi-hop QA162

In this section, we introduce a generative reader163

(PATHFID) for K-hop QA that jointly generates164

an alternating sequence of passage-level and fact-165

level clues on the reasoning path by more explicit166

fusion of evidence from the pool of input passages167

to arrive at the correct answer.168

3.1 Overview of PATHFID169

As illustrated in Figure 2, PATHFID employs a sin-170

gle sequence-to-sequence architecture that indepen-171

dently encodes the input passages after inserting172

special fact markers (<fi>) before the i-th sentence173

of each passage. Conditioning on the concatenation174

of token-level input representations per passage, its175

decoder then generates the linearized hierarchical176

reasoning path obtained by concatenating the se-177

quence of passage titles and their corresponding178

supporting fact pointers followed by the answer.179

Each segment on the reasoning path is separated180

by special markers in a way that makes it possible181

to uniquely recover the individual segment predic-182

tions after decoding in the inference time.183

3.2 Extending Multi-hop QA beyond Answer184

Generation185

The opaqueness of the FID model, which makes186

understanding of the reasoning process more diffi-187

cult, motivated our approach and its emphasis on188

exposing the reasoning path. Instead of only model-189

ing answer generation, we propose to jointly model190

it with the full reasoning path in an hierarchical191

fashion to derive the answer in a unified way using192

multi-task maximum likelihood training.193

3.2.1 Global Input Representation194

We utilize the core input encoding architecture195

from FID approach (Section 2.2) by introducing a196

new passage representation that will facilitate sup-197

porting fact generation on the reasoning path as il-198

lustrated in Figure 2. To this end, we independently199

encode each input passage-title pair (pn, tn) along200

with the question q as a separate block b
path
n :=201

question: q title: tn context: p
path
n202

where we redefine the context representation by in- 203

serting special tokens (<fi>) before each sentence 204

of the passage as 205

ppath
n := <f1> s(1)n <f2> s(2)n · · · <fln> s(ln)n (2) 206

where s
(i)
n denotes the i-th sentence of passage pn, 207

and ln is the number sentences it contains. Hav- 208

ing redefined the input blocks (bpath
n ) per passage, 209

we then compute the global input representation 210

similar to Eq. 1 by 211

Xpath
q = [Enc(b

path
1 );Enc(b

path
2 ); . . . ;Enc(b

path
N )]

(3)
212

Note that sentence indicators (<fi>) are shared 213

across all passages, encouraging a more hierarchi- 214

cal passage representation by explicitly breaking 215

them down into sentence-level sub-blocks using 216

the same indicator tokens. 217

3.2.2 Hierarchical Reasoning Path as a 218

Sequence 219

The hierarchical design of reasoning path is in- 220

spired by the human reasoning process for multi- 221

hop QA task. More precisely, if a question q re- 222

quires K-hop reasoning, then we process these 223

K passages in a sequential order alternating be- 224

tween their passage-level and sentence-level evi- 225

dence until we reach the answer. To this end, let 226

Rq = {pr1 , pr2 , . . . , prK} with ri ∈ [1, N ] denote 227

the sequence of passages from the larger pool Dq 228

reflecting this reasoning process for locating the 229

answer a for question q. As shown in Figure 2, 230

we define the hierarchical reasoning path as a lin- 231

earized sequence of blocks of passage titles and 232

supporting facts followed by the answer block 233

Ypath
q := [Tr1 ;Er1 ;Tr2 ;Er2 ; · · · ;TK ;ErK ;A] (4) 234

where Tri represents the i-th title block obtained 235

by inserting a special token (<title-i>) before 236

the title trj and A denotes the answer block derived 237

by prepending a special token (<answer>) to the 238

answer a as illustrated in Figure 2. On the other 239

hand, i-th supporting fact block is defined as the 240

sequence of fact indicators following <facts-i> 241

token by 242

Eri := <facts-i> <fj1> <fj2> · · · <fjmi
> (5) 243

where {j1, j2, . . . , jmi} denote the indices of key 244

sentences to leverage from passage pri to transi- 245

tion to the next evidence on the reasoning process 246
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Figure 2: PATHFID model overview. Each question+passage block is encoded in parallel, which are then concatenated in to a
long flat sequence of vector representations. The decoder then consumes this long sequence and generates the full reasoning
path, which is then uniquely parsed into the final answer along with the supporting facts exposing the underlying reasoning.

Rq for question q, and 1 ≤ mi ≤ lri denotes the247

number of supporting facts. Note that fact indica-248

tors <fi> are shared between the contexts ppath
n of249

input blocks (Eq. 2) and supporting fact blocks250

(Eq. 5) on the target reasoning path to allow the251

decoder to follow along the sequential reasoning252

Rq by pointing to the facts Eri of passage pri .253

3.3 Encoding Cross-Passage Interactions254

(PATHFID+)255

PATHFID enables more explicit evidence fusion256

through the reasoning path to guide the model to257

towards correct answer in a structured way. How-258

ever, it still relies on the decoder to combine all259

the clues together, which might still struggle due to260

lack of cross-passage interactions as input blocks261

are encoded independently. To address this poten-262

tial limitation, we propose PATHFID+, where we263

further extend PATHFID in a way that enables cross-264

passage interaction by redefining the input block265

consisting of a pair of passages (pn1 , pn2) as266

bpath+
n1,n2

:= question: q267

<title-1> tn1 <context-1> ppath
n1

268

<title-2> tn2 <context-2> ppath
n2

269

assuming that a set of passage pairs (pn1 , pn2) are270

available for model to consume. In particular, we271

derive a set of pairs of passages from the initial272

set Dq by D+
q = {(p∗, p1), (p∗, p2), . . . , (p∗, pN )}273

where p∗ corresponds to the first passage that is pos-274

sible to immediately hop to from question q, which 275

may be determined by another model, or by execut- 276

ing the original PATHFID on Dq in our case. Global 277

input representation X
path+
q is obtained similarly 278

(Eq. 3) by except encoding the new blocks bpath+
n1,n2 279

allowing for cross-passage interactions, while the 280

target reasoning path Y
path+
q remains the same as 281

Y
path
q . Note that <title-i> special markers are 282

shared between new input block b
path+
n1,n2 and target 283

reasoning path Y
path+
q to provide the model with 284

additional clue regarding the first passage on the 285

reasoning path while still relaying the complete 286

evidence fusion to the decoder via information re- 287

dundancy encoded in X
path+
q . 288

3.4 Training and Inference 289

Having defined global input representation X
path
q , 290

the decoder autoregressively generates the rea- 291

soning path Y
path
q per token at each step by fol- 292

lowing self-attention, cross-attention on the en- 293

tire X
path
q , and feed-forward modules. So, the 294

overall reasoning path generation is modeled as 295

conditional generation pθpath(Y
path
q |Xpath

q ). The 296

model then is trained to minimize J(θpath) = 297

−
∑|Ypath

q |
i=1 log pθ(yi|y<i,X

path
q ) with teacher forc- 298

ing over a training set of {(q, a,Dq)}. 299

In the inference, the decoder consumes the in- 300

put representation X
path
q computed by encoder, and 301

generates the full reasoning path token by token. 302

We then post-process the decoded sequence using 303
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the answer indicator (<answer>) to first obtain304

the answer, followed by recursively parsing the305

remaining sequence using the special separator to-306

kens (<title-k>, <facts-k>) to reconstruct307

the title and retrieve its relevant sentences at each308

hop k. As illustrated in Figure 2, the final result of309

the inference can be summarized into a dictionary310

which maps each generated passage title to the list311

of sentence pointers as well as the final answer.312

4 Experiments313

4.1 Datasets and General Setup314

We conduct experiments on two multi-hop question315

answering datasets: HotpotQA and IIRC.316

HotpotQA (Yang et al., 2018) is a large-scale317

human-annotated dataset including 113K multi-318

hop questions. It focuses on using documents from319

Wikipedia as the source of information for answer-320

ing questions rather than knowledge bases as in321

other multi-hop QA datasets (Welbl et al., 2018;322

Talmor and Berant, 2018). The answer for each323

question in HotpotQA is extracted from 10 para-324

graphs in the distractor setting, while it is allowed325

to use the entire Wikipedia for the full wiki setting.326

There are two main question types bridge (80%)327

and comparison (20%) in the corpus. While both328

types require reasoning over two passages, bridge329

questions often require identifying the bridge entity330

in the first passage to correctly hop to the second331

one, which contains the answer. Each question332

is also provided with the annotation of 2 support-333

ing passages and up to 5 corresponding relevant334

sentences as their supporting facts. Since our pro-335

posed approach is a reader model that reasons over336

a given set of evidence documents, we primarily337

focus our experiments on the distractor setting1.338

IIRC (Ferguson et al., 2020) is a dataset of more339

than 13K human-written questions over paragraphs340

from English Wikipedia, where crowdworkers had341

access only to initial paragraph and list of hyper-342

links to other relevant Wikipedia articles, with343

the missing information occurring in one or more344

linked documents. This annotation design encour-345

aged less lexical overlap between the questions346

and the contexts that actually contain the answer.347

This dataset presents unique challenges compared348

to HotpotQA because (1) it additionally requires349

discrete/numerical reasoning and identification of350

1See Appendix C for PATHFID results in open-domain
setting using MDR (Xiong et al., 2021) as the retriever.

unanswerable questions, which adds up to 4 differ- 351

ent possible answer types (span, binary, numerical, 352

unanswerable), and (2) about 30% of questions 353

require reasoning over more than 2 passages in- 354

cluding the main passage. 355

Evaluation Metrics. We use standard metrics 356

exact-match (EM) and F1 scores for measuring the 357

quality of predicted answers. For HotpotQA exper- 358

iments, we are also able to evaluate PATHFID on 359

supporting fact predictions using the official met- 360

rics (Support-EM, Support-F1), which measures 361

the performance of the reader model in correctly 362

identifying the supporting facts from the relevant 363

passages. Note that this metric implicitly requires 364

correctly identifying relevant passages among the 365

distractors as well. For our experiments on IIRC 366

dataset, similar to the baseline model constructed 367

in the original work (Ferguson et al., 2020), we 368

follow the evaluation methods used by DROP (Dua 369

et al., 2019). 370

Implementation Details. We use pre-trained T5- 371

large encoder-decoder (Raffel et al., 2020) to ini- 372

tialize the models in our experiments. We train the 373

model with batch size of 64 with constant learn- 374

ing rate of 1e-4 for 10 epochs. We use maximum 375

length of 256 (resp. 512) tokens for input blocks of 376

PATHFID (resp. PATHFID+), while the maximum 377

target sequence length is set to be 64. However, the 378

sequence truncation is performed on the reasoning 379

path excluding answer part for sequences of length 380

longer than 64 tokens. All the experiments are con- 381

ducted on a machine with 4 or 8 many 40GB A100 382

GPUs. Our code is based on Huggingface Trans- 383

formers (Wolf et al., 2020). Please see Appendix 384

for further details on the hyperparameter settings. 385

4.2 Main Experiments: HotpotQA 386

4.2.1 Overall Results 387

We present our main results on the HotpotQA dis- 388

tractor setting in Table 1. We report results on the 389

HotpotQA development set in comparison with the 390

previous published methods. PATHFID reader pro- 391

vides 1.4% absolute gain on answer EM score in 392

comparison to FID model. Moreover, it achieves 393

competitive supporting fact predictions of 59.3% 394

support-EM and 85.7% support-F1 as a result of 395

path generation compared to strong extractive mod- 396

els such as (Asai et al., 2020). In summary, PATH- 397

FID establishes the usefulness of modeling the full 398

reasoning path along with answer generation for 399

multi-hop QA. More notably, PATHFID+ achieves 400
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Answer Support
Methods EM F1 EM F1

Baseline (Yang et al., 2018) 44.4 58.3 22.0 66.7
DFGN (Qiu et al., 2019) 55.4 69.2 - -
QFE (Nishida et al., 2019) 53.7 68.7 58.8 84.7
SAE (Tu et al., 2020) 61.3 74.8 58.1 85.3
SAE-large (Tu et al., 2020) 67.7 80.8 63.3 87.4
Graph Recurrent Retriever (Asai et al., 2020) (base) 52.7 65.8 57.4 84.6
Graph Recurrent Retriever (Asai et al., 2020) (wwm) 68.0 81.2 58.6 85.2
Gated Memory Flow (Shao et al., 2021) 69.6 83.0 64.7 89.0
This Work
FID* (Izacard and Grave, 2020) 64.4 77.8 - -
PATHFID 65.8 78.9 59.3 85.7
PATHFID+ 72.7 84.2 64.9 88.7

Table 1: Results on the development set of HotpotQA distractor setting in comparison with previous work. FID* indicates that
the reported results are obtained by our implementation following the training details in the paper.

Criterion FID PATHFID PATHFID+
Pred Answer Grounded in Gold Passages 93.9 95.3 97.7
Pred Answer Grounded in Gold Supports 90.8 92.1 95.6

Gold Answer Grounded in Pred Passages - 96.2 98.0
Gold Answer Grounded in Pred Supports - 95.3 97.4

Pred Answer Grounded in Pred Passages - 96.4 97.5
Pred Answer Grounded in Pred Supports - 90.3 94.3

Table 2: How faithfully grounded are the gold/predicted an-
swers in gold/predicted supporting facts?

a quite significant performance gain across all the401

central evaluation metrics, demonstrating the im-402

portance of cross-passage interactions. Overall re-403

sults validate the effectiveness of the two central404

modeling contributions of our proposed method.405

Next, we present further analysis and discussion406

on the unique advantages of PATHFID approach407

under a few central questions which motivated our408

research at the first place.409

4.2.2 Analysis410

How faithfully grounded are the generated an-411

swers on supporting facts? In Table 2, we present412

a detailed analysis comparing different models in413

terms of the faithfulness of their generated an-414

swers on both gold and predicted supporting facts.415

The first row focuses on the passage-level answer416

grounding computed by the percentage of the an-417

swers found in one of the gold supporting passages,418

while the second row reports the same analysis419

on sentence-level. We can observe that PATHFID420

models significantly improves on how faithfully421

the generated answers are grounded on the support-422

ing facts both at passage-level and sentence-level423

granularities. The next two rows provide further424

insight into the quality of the generated support-425

ing facts by PATHFID models by measuring how 426

often the gold answer can be found in them. This 427

analysis shows that the generated supporting facts 428

are of quite high-quality including the gold answer 429

for more than 95.3% and 96.2% at sentence-level 430

and passage-level, respectively. The last two rows 431

measure the faithfulness of the generated answers 432

on the model generated supporting facts, which is 433

not applicable to FID model as it does not perform 434

supporting fact prediction. We observe that the 435

generated answers are quite faithfully grounded on 436

the predicted supporting facts, showing the path 437

generation not only improves the answer EM per- 438

formance but also successfully grounds them on 439

the evidence it generates as part of the full reason- 440

ing path. It is important clarify that the extractive 441

reader models can be guaranteed to output perfectly 442

grounded answers simply by locating the answer in 443

their predicted supporting facts. On the other hand, 444

it is difficult for generative models to ensure 100% 445

answer grounding simply due to its generative na- 446

ture. However, we are able to provide additional 447

evidence validating the answers generated by PATH- 448

FID are significantly grounded in the supporting 449

facts it generates, which might implicitly indicate 450

that the generated reasoning path tightly aligns with 451

the model’s underlying process for answer genera- 452

tion. Although this is a strong evidence, it is still 453

quite implicit in exposing the model’s prediction 454

process, so we see our approach as a step in the 455

right direction rather than a complete solution. 456

Performance breakdown by the number of sup- 457

porting facts and question types. In Table 3, we 458
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Answer-EM Support-EM
Comparison Bridge Comparison Bridge

# Supp Facts FID PATHFID FID PATHFID FID PATHFID FID PATHFID

2 70.4 71.8 63.3 64.6 - 86.7 - 70.0
3 66.1 68.2 62.7 63.1 - 43.4 - 30.7
4 62.2 63.8 64.3 66.5 - 5.4 - 26.2
>=5 83.3 87.5 60.0 65.0 - 0.0 - 3.8

Table 3: Performance breakdown on Answer-EM and Support-EM by question type and the number of gold supporting facts
(rows). Since FID does not generate supporting facts, corresponding columns are left empty.

Figure 3: PATHFID model evolution on the HotpotQA Dev set
during training. T1-EM, T2-EM, indicate the model’s accu-
racy on predicting the title-1 and title-2 on the reasoning path.
Similarly F1-EM, and F2-EM denote the model’s accuracy on
predicting set of supporting facts in passage-1 and passage-2.

compare the performance of models by breaking459

them down based on the number of gold supporting460

sentences and the question type (e.g., bridge and461

comparison). Our first observation is that PATHFID462

provides consistent improvement on answer-EM463

score over FID across both the question types and464

different number of supporting facts required to465

answer the question. Surprisingly, both models466

perform considerably well on the comparison ques-467

tions even when it requires at least 5 supporting468

facts. A more important reason behind the per-469

formance breakdown analysis was to understand470

how the supporting fact prediction of PATHFID471

would change as the number of gold supporting472

facts grows. Although it starts degrading on ex-473

amples with more than 2 supporting facts, it still474

achieves more than 25% Support-EM for bridge475

questions with up to 4 supporting facts. Recalling476

the average performance on the whole dataset is477

less than 60%, we conclude this result might be sat-478

isfactory enough, especially for a fully generative479

model on a very strict evaluation metric.480

Analyzing the evolution of sub-tasks during481

joint training with PATHFID. In Figure 3, we482

present the evolution of PATHFID model on the Hot- 483

potQA development set at every 500 training steps. 484

We observe that while the model more quickly 485

picks up the patterns for title generation, it takes 486

much longer for it to reach to a reasonable level of 487

fact prediction. As one would expect, the general 488

trend in the evolution of different segments (title-1, 489

facts-1, title-2, facts-2, answer) of the reasoning 490

path mostly follows the difficulty of the correspond- 491

ing sub-task although all the sub-tasks are jointly 492

formulated and trained in an end-to-end fashion. 493

On the other hand, it seems counter-intuitive for 494

model to reach to a better accuracy on predicting 495

the facts of the second passage (F2-EM) on the 496

reasoning path earlier despite having a better accu- 497

racy on (T1-EM). However, one can also interpret 498

it as a result of stronger feedback provided by the 499

answer segment of the reasoning path as most of 500

the ground-truth answers are contained in the facts 501

of the second passage. 502

4.3 Experiments: IIRC 503

In addition to our main experiments presented in 504

greater detail, we also conduct experiments on 505

IIRC dataset to verify the generalization of the pro- 506

posed approach. To this end, we closely follow 507

the authors’ model-free retrieval setting (referred 508

to as Oracle L+C in Table-3) because the model 509

checkpoints for the baseline retrieval model are not 510

available in the public release. We use a python 511

script2 provided in the open-sourced repository to 512

replicate the same setting for a fair comparison. 513

In Table 4, we present the results on the devel- 514

opment set for our proposed PATHFID and PATH- 515

FID+ in comparison with the baseline reported 516

in the original paper (Ferguson et al., 2020) and 517

our implementation of the FiD (Izacard and Grave, 518

2https://github.com/jferguson144/
IIRC-baseline/blob/main/make_drop_style.
py
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Answer
Methods EM F1

IIRC* (Ferguson et al., 2020) 63.9 69.2
FID** (Izacard and Grave, 2020) 63.4 69.1
This Work
PATHFID 65.2 70.5
PATHFID+ 68.1 72.9

Table 4: Experimental results on IIRC dataset in model-free
retrieval setting comparing the proposed method against two
baselines. * indicates that the result is taken directly from
the original paper (Ferguson et al., 2020) (see their Table-3),
while ** indicates that we obtain the result of FID with our
implementation.

2020) baseline. FID model obtains a compara-519

ble F1 with IIRC baseline with a slightly worse520

exact-match performance. However, the proposed521

PATHFID approach is able to provide 1.3% and522

1.4% improvement in F1 score over the two base-523

lines. Furthermore, PATHFID+ extension leads to524

the best performance achieving 4.7% and 4.2% EM525

score improvement in absolute value over the FID526

baseline and IIRC baseline, respectively. Our exper-527

imental results validate the benefit of the proposed528

approach on the IIRC dataset, suggesting strong529

evidence for the generalizability of our approach.530

5 Related Work531

Multi-hop question answering. Research on532

multi-hop QA aims to tackle complex questions533

that require reasoning across multiple pieces of ev-534

idence in multiple documents (Welbl et al., 2018;535

Yang et al., 2018; Ferguson et al., 2020). In par-536

ticular, the HotpotQA dataset (Yang et al., 2018)537

provides both the closed and open-domain settings538

to evaluate multi-hop reading comprehension mod-539

els. Compared to single-hop QA, such complex540

questions pose additional challenges; reader mod-541

els (and/or retriever models) are required to capture542

relationships between documents, instead of inde-543

pendently processing each document. This is chal-544

lenging because the number of document combina-545

tions exponentially grows, and even the document546

orders also matter as shown in Asai et al. (2020)547

and Xiong et al. (2021). In existing work (Xiong548

et al., 2019; Qi et al., 2021; Li et al., 2020; Xiong549

et al., 2021), most of the reading comprehension550

models follow a span extraction architecture (De-551

vlin et al., 2019) with minor modifications.552

Generative question answering. Especially after553

the emergence of the SQuAD dataset (Rajpurkar554

et al., 2016), neural extractive QA models have555

been widely studied. An underlying assumption is 556

that we can extract a short text span (or a phrase) 557

as an answer, but it is not always the case in reality. 558

Motivated by this, the generative QA approach has 559

also been investigated (Hewlett et al., 2017; Fan 560

et al., 2019). Recent advances on pre-trained trans- 561

formers have pushed this direction; for example, 562

Lewis et al. (2020a) jointly trained a generative 563

QA model along with a text retrieval model, and 564

Roberts et al. (2020) explored an ambitious ap- 565

proach to directly generate an answer without any 566

evidence documents. We focused on the fusion- 567

in-decoder model (Izacard and Grave, 2020); they 568

claimed that the decoder might be good at aggregat- 569

ing information across multiple documents. How- 570

ever, we have shown that it is not trivial in the 571

multi-hop reasoning task, and pushed the model’s 572

ability to jointly learn to predict reasoning paths. 573

Open-domain question answering. Open-domain 574

QA (Voorhees, 1999) is practically important, 575

which requires a system to retrieve relevant doc- 576

uments to answer a given question. The task is 577

recently gaining much attention, thanks to the de- 578

velopment of large-scale datasets like HotpotQA, 579

SQuAD Open (Chen et al., 2017), Natural Ques- 580

tions Open (Kwiatkowski et al., 2019; Lee et al., 581

2019), etc. Pre-trained transformer models like 582

BERT (Devlin et al., 2019) have accelerated the 583

development of neural text retrievers (Lee et al., 584

2019; Karpukhin et al., 2020; Asai et al., 2020; 585

Xiong et al., 2021; Liu et al., 2021) in the retriever- 586

reader framework (Chen et al., 2017). We have 587

investigated the effectiveness of our method in the 588

multi-hop open-domain QA task (see Appendix C) 589

using an existing external retriever component. 590

6 Conclusion 591

In this work, we propose a generative question an- 592

swering (QA) approach that models multi-hop QA 593

as a single sequence prediction task. It learns to 594

generate an answer along with a reasoning path to 595

improve its capability of multi-hop reasoning. Our 596

experiments on prominent multi-hop QA bench- 597

marks, HotpotQA and IIRC, validate the promise 598

and effectiveness of our proposed method PATH- 599

FID and its extension PATHFID+. Future work will 600

explore (1) our PATHFID approach more closely 601

with text retrieval models in open-domain QA sce- 602

narios and (2) more explicit grounding on the input 603

information to make our approach even more inter- 604

pretable and controllable. 605
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A Visualizing the Correlation between826

Evidence and Answer827

Figure 4: Visualizing the correlation between evidence and
answer prediction for COMPARISON questions.

Figure 5: Visualizing the correlation between evidence and
answer prediction for BRIDGE questions.

In Figure 4 and 5, we visualize the correlation828

between supporting evidence and answer predic-829

tion performances for comparison and bridge ques-830

tion types, respectively. To obtain these plots,831

we first split the examples into 10 buckets where832

n-th bucket contains the examples with support-833

F1 score in (10 ∗ (n − 1), 10 ∗ n] percentile for834

n = {1, 2, . . . , 10}. Then, we take the average an-835

swer prediction accuracy (both EM and F1) over836

these examples for each bucket, and report this837

number on the y-axis of the plot at the correspond-838

ing support-F1 bucket on the x-axis, while drop-839

ping the empty buckets. Note that x = 0 corre-840

sponds to examples with support-F1 score of 0.841

Also note that the size of a data point on the figure842

reflects the number of examples in the correspond-843

ing bucket as also indicated by the legend. From844

Figures 4 and 5, we can observe that the accuracy of845

the generated answers is significantly lower, 30%846

for bridge and 10% for comparison, for the first847

bucket with zero support-F1 compared to buckets848

with positive support-F1 score. This suggests that849

the model has a difficult time figuring out the an-850

swer when the supporting evidence prediction is 851

poor. Another observation that holds for both cat- 852

egories is the general trend of increased answer 853

quality as the supporting fact prediction improves. 854

Combining these two points provide additional ev- 855

idence (in addition to Table 2 in the main paper) 856

implicitly supporting the answer generation pro- 857

cess of PATHFID being grounded on the generated 858

supporting facts, which is generated as the prefix of 859

the answer segment in the full decoded reasoning 860

path sequence during inference. 861

B Analyzing the Benefit of Joint Training 862

In Table 5, we present the results of a case study 863

where we analyze the benefit of multi-task training 864

on the passage chain prediction. The first row of 865

the table shows the results for training PATHFID 866

only to predict the sequence of titles for the gold 867

passages (i.e., [t1-t2]), which is just a subsequence 868

of the full reasoning path obtained by discarding 869

facts and the answer. The second row is another 870

variant, where we add the answer back to the lin- 871

earized target sequence while still excluding the 872

segments corresponding to the facts. The last row 873

correspond to the full reasoning path generation, 874

which is corresponding to the original formulation 875

of PATHFID as described in Section 3 and illus- 876

trated in Figure 2. Comparing first two rows in 877

Table 5, we can immediately observe that including 878

answer segment in the target reasoning path (i.e., 879

[t1-t2-answer]) boosts the performance across the 880

board although in principle it makes the task more 881

complicated while utilizing the same underlying 882

model capacity. Further including segments corre- 883

sponding to FACTS (sentences within supporting 884

passages) in addition to answer segment (i.e., [t1- 885

f1-t2-f2-answer] – full reasoning path) boosts the 886

title-EM even further, especially before applying 887

title reconstruction post-processing step. Although 888

the objective of the first task (i.e., [t1-t2]) is per- 889

fectly aligned with the evaluation metric used in 890

Table 5, the performance of the resulting model 891

remains inferior compared to jointly modeling the 892

same task with the answer (and/or supporting facts) 893

prediction. These two observations elicit a com- 894

pelling evidence regarding the benefit of jointly 895

modeling the sub-tasks of multi-hop QA as single 896

sequence capturing the full reasoning path. 897
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Generated-Title EM Reconstructed-Title EM
Reasoning Path Passage-1 Passage-2 Passage-Chain Passage-1 Passage-2 Passage-Chain

[t1-t2] 74.3 74.8 71.6 75.4 75.4 72.9
[t1-t2-answer] 74.8 75.0 71.8 75.8 75.8 73.3
[t1-f1-t2-f2-answer] 75.0 75.1 71.9 76.0 75.6 73.3

Table 5: The effect of joint training as a case study on title prediction performance of PATHFID variants trained with different
target reasoning paths. Generated-Title column corresponds to ordered passage chain prediction performance in exact-match
(EM), while Reconstructed-Title version is computed after applying title reconstruction post-processing described in Section E.

Answer Support
Methods EM F1 EM F1

GoldEn Retriever (Qi et al., 2019) - 49.8 - 64.6
Semantic Retrieval (Nie et al., 2019) 46.5 58.8 39.9 71.5
Transformer-XH (Zhao et al., 2020) 50.2 62.4 42.2 71.6
Graph Recurrent Retriever (Asai et al., 2020) (wwm) 60.5 73.3 49.3 76.1
Graph Recurrent Retriever (Asai et al., 2020) (base) 52.7 65.8 47.9 75.0
HopRetriever (Li et al., 2020) 62.1 75.2 52.5 78.9
HopRetriever-plus (Li et al., 2020) 66.6 79.2 56.0 81.8
MDR-Electra (Top-50 paths) (Xiong et al., 2021) 61.7 74.3 - -
MDR-FiD (Top-50 paths) (Xiong et al., 2021) 61.7 73.1 - -
Our Models
FID* (Top-25 paths) 54.0 66.0 - -
PATHFID (Top-25 paths) 55.8 67.9 49.0 74.1
PATHFID+ (Top-25 paths) 59.8 72.4 52.8 76.6
On Dev∗ Evaluation
PATHFID+ (Top-25 paths) 70.2 81.5 60.9 86.3

Table 6: Results for open-domain setting using MDR (Xiong et al., 2021) as the retriever. Dev∗ refers to the development set
where the retrieved passages are expanded with the gold passage (as an oracle setting) to account for the cases where the retriever
fails to retrieve the gold passages. FID* indicates our implementation.

C Case Study: Full-Wiki Setting with898

Multi-hop Dense Retriever899

In this subsection, we evaluate PATHFID900

in open domain setting of HotpotQA lever-901

aging a recently proposed multi-hop dense902

retriever (MDR) (Xiong et al., 2021) for903

passage retrieval. Unlike distractor setting,904

MDR returns a set of passage pairs DMDR
q =905

{(p(1)1 , p
(2)
1 ), (p

(1)
2 , p

(2)
2 ), . . . , (p

(1)
N , p

(2)
N )} for906

question q, where each passage p
(i)
n comes with a907

title t
(i)
n , being retrieved from Wikipedia corpus.908

This setting naturally fits into how we formulate909

PATHFID+, which operates on the pairs of input910

passages as introduced in Section 3.3, where911

we simply set D+
q = DMDR

q . For experiments912

with FID and PATHFID, which operate on set of913

single input passages, we simply split the pairs914

into single passages, ending up with 2K passages915

when using top-K retrieved paths from MDR. 916

We present our results for this setting in Table 6. 917

Similar to our observation in distractor setting, 918

PATHFID provides a significant (%1.8) answer 919

EM score improvement over FID, while also 920

achieving a quite competitive performance on the 921

supporting fact prediction compared to strong 922

discriminative models (Asai et al., 2020; Li et al., 923

2020) optimized for better retrieval performance. 924

Most notably, PATHFID+ provides significant 925

gains over PATHFID, achieving 59.8% answer-EM 926

and 52.8% supporting fact EM score, showing the 927

importance of encoding cross-passage interactions. 928

It is important to note here that our results with 929

PATHFID+ is not directly comparable to the reader 930

results from MDR (Xiong et al., 2021) because 931

we are able to only use top-25 retrieved paths due 932

to hardware limitations. Finally, we also evaluate 933

the same PATHFID+ model on Dev∗ obtained by 934
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Answer Support
Model Size Top-K Paths EM F1 EM F1
T5-BASE Top-25 56.6 69.1 51.9 75.7
T5-LARGE Top-25 59.8 72.4 52.8 76.6

Table 7: Full-wiki results with PATHFID+ comparing two
different T5 model sizes.

adding the pair of gold passages in DMDR
q , where935

we aim to isolate the error propagation from the936

underlying retriever. Table 6 shows that both the937

answer and supporting fact prediction performance938

improves quite significantly, showing the potential939

impact that developments on retriever side of the940

problem can also make.941

D The Effect of Model Size for Future942

Reference943

As discussed in Section E, fine-tuning PATHFID+944

with T5-large initialization might require signif-945

icant resources and non-trivial memory efficient946

optimization (e.g., gradient checkpointing). To pro-947

vide a baseline with a smaller model for future948

research, here we include the results of PATHFID+949

with T5-base initialization using the same setting950

reported in Table 6 in the main paper. As presented951

in Table 7, although the performance difference on952

the supporting fact prediction is relatively small953

( 1%), answer prediction performance drops signif-954

icantly (by 3.2%) when we switch from T5-large to955

T5-base. However, working with T5-base is much956

more efficient in terms of resources and iteration957

time for building baselines, trying out new ideas958

and thought experiments. So, we hope this baseline959

will be helpful for future research.960

E More on Training and Implementation961

Details962

Hop ordering. HotpotQA benchmark provides an-963

notation only for unordered gold passages, without964

explicitly specifying which passage corresponds965

to the k-th hop (e.g., first-hop, second-hop, etc.)966

on the reasoning path. In our implementation, we967

combine the heuristic strategies applied by GRR968

(Asai et al., 2020) and MDR (Xiong et al., 2021).969

More precisely, if only one of the gold passages970

contains the answer, then we take the passage that971

includes the answer span as the final passage. If972

the answer span is included in both passages, we973

break the tie by falling back to the hyperlink-based974

ordering strategy proposed by GRR (Asai et al.,975

2020).976

Post-processing for passage title reconstruction. 977

Note that PATHFID generates the titles of the pas- 978

sages on the reasoning path token by token includ- 979

ing the separator tokens. However, the decoder 980

might fall into some minor errors during the gener- 981

ation process, which may cause the resulting titles 982

to end up slightly different from the original ones. 983

To account for such minor errors, we leverage the 984

set of titles coming from the input passages and 985

find the most similar among them to our generated 986

passage titles based on token-level F1-score. We 987

call this process title reconstruction and apply it 988

while reporting the performance for supporting fact 989

predictions. Table 5 shows the benefit of title re- 990

construction for mitigating such minor generation 991

errors. On the other hand, the small performance 992

boost suggests that titles PATHFID already gener- 993

ates quite faithful title predictions. 994

Model selection. For all the models reported in 995

this work, we perform evaluation at every 500 steps 996

during training by decoding the whole development 997

set on a separate machine in a non-blocking fash- 998

ion. We then select the best model based on the 999

answer exact-match score performance. However, 1000

since PATHFID variants generate more than just 1001

the answer, it can be leveraged to optimize for a 1002

more holistic metric including the supporting fact 1003

prediction performance, offering further control on 1004

model selection. We leave further exploration of 1005

this phenomenon to future work. 1006

Scaling to larger evidence pools for full-wiki set- 1007

ting. As briefly noted in Appendix C, we report 1008

results in full-wiki setting using only top-25 paths 1009

returned by MDR (Xiong et al., 2021) due to hard- 1010

ware constraints. More precisely, a single training 1011

example becomes impossible to fit into GPU mem- 1012

ory (40GB) even for top-25 paths for PATHFID+ 1013

model with T5-large initialization. To make the 1014

training feasible, we resort to gradient checkpoint- 1015

ing3 which trades off GPU memory with speed. 1016

However, in this case, even with 25 retrieved paths, 1017

training PATHFID+ for 10K steps with batch size of 1018

64 using gradient accumulation takes 19 hours on 1019

8 A100 GPUs with 40GB memory each, which is 1020

one of the most prominent limitations hurdling the 1021

progress for this line of research. Further research 1022

on making generative approaches with large pre- 1023

trained models more efficient without losing on the 1024

performance side holds a great potential impact to 1025

accelerate the progress of fully generative models 1026

3https://pytorch.org/docs/stable/checkpoint.html
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parameter FID PATHFID PATHFID+
initialization t5-large t5-large t5-large
learning rate 1e-4 1e-4 1e-4
learning rate schedule constant constant constant
batch size 64 64 64
gradient checkpointing no no no
maximum input length 256 256 512
maximum output length 32 64 64
warmup ratio 0 0 0
gradient clipping norm 1.0 1.0 1.0
training epoch 10 10 10
weight decay 0 0 0

Table 8: Hyperparameters for experiments on HotpotQA Dis-
tractor setting.

parameter FID PATHFID PATHFID+
initialization t5-large t5-large t5-large
learning rate 1e-4 1e-4 1e-4
learning rate schedule constant constant constant
batch size 64 64 64
gradient checkpointing no no no
maximum input length 256 256 512
maximum output length 32 64 64
warmup ratio 0 0 0
gradient clipping norm 1.0 1.0 1.0
training epoch 10 10 10
weight decay 0 0 0

Table 9: Hyperparameters for experiments on IIRC dataset.

parameter FID PATHFID PATHFID+
initialization t5-large t5-large t5-large
learning rate 1e-4 1e-4 1e-4
learning rate schedule constant constant constant
batch size 64 64 64
gradient checkpointing yes yes yes
maximum input length 256 256 512
maximum output length 32 64 64
warmup ratio 0 0 0
gradient clipping norm 1.0 1.0 1.0
training steps 10K 10K 10K
weight decay 0 0 0
top-K path retrieval 25 25 25

Table 10: Hyperparameters for experiments on HotpotQA
Full-wiki setting.

for question answering.1027

F Hyperparameter Settings1028

In Tables 9, 8 and 10, we provide the full set of1029

important hyperparameters used for the models re-1030

ported both in the main paper (HotpotQA-distractor1031

and IIRC) and in the Appendix C (HotpotQA-1032

fullwiki), respectively.1033

G Qualitative Analysis1034

In this section, we provide examples comparing1035

the predictions of FID and PATHFID over bridge1036

and comparison question types. Each of the exam-1037

ple Table 11, 12, 13 in the next pages follows a1038

similar structure, where we include gold answer,1039

FID answer prediction, PATHFID answer (and full1040

path) prediction, and 5 supporting passages (out1041

of 10) for the brevity of presentation. Among the1042

input passages, the first two correspond to gold pas-1043

sages, for which we include the full content as well1044

as highlighting the key supporting facts/sentences1045

with orange color. The following three passages 1046

are presented as a subset of the distractors, for each 1047

of which we include a one-line content unless it 1048

plays a crucial role in distracting at least one of 1049

the models in making a wrong prediction. In this 1050

case, we also add the content of this particular pas- 1051

sage as well as highlighting the specific distractor 1052

span/sentence causing the failure of either FID or 1053

PATHFID. 1054
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Question The Memphis Hustle are based in a suburb of a city with a population of what in
2010?

Input Passages

1. Memphis Hustle: <f1> The Memphis Hustle are an American professional
basketball team of the NBA G League announced to begin play for the 2017–18
season as an affiliate of the Memphis Grizzlies of the National Basketball Asso-
ciation (NBA). <f2> Based in the Memphis suburb of Southaven, Mississippi,
the team will play their home games at the Landers Center.
2. Southaven, Mississippi: <f1> Southaven is a city in DeSoto County, Missis-
sippi, United States. <f2> It is a suburb of Memphis, Tennessee, and a principal
city in the Memphis metropolitan area. <f3> The 2010 census reported a popu-
lation of 48,982, making Southaven the third largest city in Mississippi. <f4>
Southaven is traversed from north to south by the I-55/I-69 freeway. <f5> The
city’s name derives from the fact that Southaven is located south of Whitehaven,
a neighborhood in Memphis.
3. Lakeland, Tennessee: Lakeland is a city in Shelby County, Tennessee, and a
suburb of Memphis. The population was 12,430 at the 2010 census.
4. Marion, Arkansas: Marion is a city in and the county seat of Crittenden
County, Arkansas ...
5. West Memphis, Arkansas: West Memphis is the largest city in Crittenden
County, Arkansas ...
...

Gold Answer 48,982
FID Answer 12,430
PATHFID Answer 48,982

PATHFID Output <title-1> Memphis Hustle <facts-1> <f1> <f2> <title-2> Southaven, Mississippi
<facts-2> <f1> <f2> <f3> <answer> 48,982

Table 11: BRIDGE-type question example, where PATHFID predicts the correct answer while FID fails to do so. The third
passage is the distractor causing FID to make a wrong prediction due to the highlighted sentence in red.
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Question What government position was held by the woman who portrayed Corliss Archer
in the film Kiss and Tell?

Input Passages

1. Kiss and Tell (1945 film): <f1> Kiss and Tell is a 1945 American comedy
film starring then 17-year-old Shirley Temple as Corliss Archer. <f2> In the film,
two teenage girls cause their respective parents much concern when they start to
become interested in boys. <f3> The parents’ bickering about which girl is the
worse influence causes more problems than it solves.
2. Shirley Temple: <f1> Shirley Temple Black (April 23, 1928 – February 10,
2014) was an American actress, singer, dancer, businesswoman, and diplomat
who was Hollywood’s number one box-office draw as a child actress from 1935
to 1938. <f2> As an adult, she was named United States ambassador to Ghana
and to Czechoslovakia and also served as Chief of Protocol of the United States.
3. Meet Corliss Archer (TV series): Meet Corliss Archer is an American televi-
sion sitcom that ...
4. Meet Corliss Archer: Meet Corliss Archer, a program from radio’s Golden
Age, ran from ...
5. Charles Craft: Charles Craft (May 9, 1902 – September 19, 1968) was an
English-born ...
...

Gold Answer Chief of Protocol
FID Answer United States ambassador
PATHFID Answer Chief of Protocol of the United States

PATHFID Output <title-1> Kiss and Tell (1945 film) <facts-1> <f1> <title-2> Shirley Temple
<facts-2> <f2> <answer> Chief of Protocol of the United States

Table 12: BRIDGE-type question example, where both PATHFID and FID fail to predict the exact gold answer. Although the
generated answers are wrong, they can both be acceptable by humans. On the other hand, both answers fail in EM accuracy, but
PATHFID manages to perfectly generate the reasoning path starting from the right sentence of the correct first passage, then
jumping to correct second-hop passage, followed by identifying its key sentence (<f2>), then finally locating answer in the right
part of this evidence, but only failing in getting the span perfectly, which still rewards it with a reasonable F1 score. However,
this example is also important in showing the possible ambiguities in questions and strictness of the exact-match accuracy metric.

Question Which band, Letters to Cleo or Screaming Trees, had more members?

Input Passages

1. Screaming Trees: <f1> Screaming Trees was an American rock band formed
in Ellensburg, Washington in 1985 by vocalist Mark Lanegan, guitarist Gary Lee
Conner, bass player Van Conner and drummer Mark Pickerel. <f2> Pickerel
had been replaced by Barrett Martin by the time the band reached its most
successful period. <f3> Although widely associated with grunge, the band’s
sound incorporated hard rock and psychedelic elements. <f4> During Screaming
Trees’ existence the band released seven studio albums, five EPs, and three
compilations.
2. Letters to Cleo: <f1> Letters to Cleo are an alternative rock band from Boston,
Massachusetts, best known for the 1994 single, "Here & Now", from their full-
length debut album, "Aurora Gory Alice". <f2> The band’s members are Kay
Hanley, Greg McKenna, Michael Eisenstein, Stacy Jones, Scott Riebling, and
later, Tom Polce.
3. Change Has Come: Change Has Come was the only recording the Screaming
Trees released ...
4. Jamboree (Beat Happening album): Jamboree is the second album by Beat
Happening, released ...
5. Gary Lee Conner: Gary Lee Conner (born Lee Gary Conner on August 22,
1962 in Fort Irwin ...
...

Gold Answer Letters to Cleo
FID Answer Screaming Trees
PATHFID Answer Letters to Cleo

PATHFID Output <title-1> Screaming Trees <facts-1> <f1> <title-2> Letters to Cleo <facts-2>
<f1> <f2> <answer> Letters to Cleo

Table 13: COMPARISON-type question example, where PATHFID predicts the correct answer while FID fails to make a correct
prediction.
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