
Published in Transactions on Machine Learning Research (03/2023)

ChemSpacE: Interpretable and Interactive Chemical Space
Exploration

Yuanqi Du yd392@cornell.edu
Cornell University

Xian Liu alvinliu@ie.cuhk.edu.hk
The Chinese University of Hong Kong

Nilay Shah nshah76@g.ucla.edu
University of California Los Angeles

Shengchao Liu liusheng@mila.quebec
Mila, Université de Montréal

Jieyu Zhang jieyuz2@cs.washington.edu
University of Washington

Bolei Zhou bolei@cs.ucla.edu
University of California Los Angeles

Reviewed on OpenReview: https: // openreview. net/ forum? id= C1Xl8dYCBn

Abstract

Discovering meaningful molecules in the vast combinatorial chemical space has been a long-
standing challenge in many fields, from materials science to drug design. Recent progress
in machine learning, especially with generative models, shows great promise for automated
molecule synthesis. Nevertheless, most molecule generative models remain black-boxes,
whose utilities are limited by a lack of interpretability and human participation in the
generation process. In this work, we propose Chemical Space Explorer (ChemSpacE), a
simple yet effective method for exploring the chemical space with pre-trained deep generative
models. Our method enables users to interact with existing generative models and steer the
molecule generation process. We demonstrate the efficacy of ChemSpacE on the molecule
optimization task and the latent molecule manipulation task in single-property and multi-
property settings. On the molecule optimization task, the performance of ChemSpacE is
on par with previous black-box optimization methods yet is considerably faster and more
sample efficient. Furthermore, the interface from ChemSpacE facilitates human-in-the-loop
chemical space exploration and interactive molecule design. Code and demo are available
at https://github.com/yuanqidu/ChemSpacE.

1 Introduction

Designing new molecules with desired properties is crucial for a wide range of tasks in drug discovery and
materials science (Chen et al., 2018). Traditional pipelines for molecule design require exhaustive human
effort and domain knowledge to explore the vast combinatorial chemical space, making them exceedingly
difficult to scale. Recent studies exploit deep generative models to tackle this problem by encoding molecules
into a meaningful latent space, from which random samples can be drawn and then decoded into new
molecules. Such deep molecule generative models can facilitate the design and development of new drugs
and materials (Lopez et al., 2020; Sanchez-Lengeling & Aspuru-Guzik, 2018).
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Despite the promising results of deep generative models for molecule generation, much less effort has been
made in understanding the internal representation of molecules and the underlying working mechanisms of
these models, which are key to interpretable and interactive AI-empowered molecule design. Most existing
models are based on deep neural networks or black-box optimization methods, which lack transparency and
interpretability (Samek et al., 2019). Outside of the molecule generation domain, many attempts have been
made to improve the interpretability of deep learning models from various aspects, e.g., representation space
(Zhou et al., 2016), model space (Guo et al., 2021), and latent space (Shen et al., 2020; Shen & Zhou, 2021).
In molecule generation, interpretability can be studied from two perspectives: (1) the interpretation of the
learned latent space where traversing the value of latent vectors could lead to smooth molecular property
change, and (2) the interpretation of the chemical space where adjusting molecular properties could further
provide insight to smooth and consistent structure change of molecules (i.e. structure-activity relationships).

Furthermore, it remains difficult to generate molecules with desired properties. Previous works tackle the
problem with reinforcement learning-based, latent space optimization-based, and searching-based methods
to achieve property control of the generated molecules (Shi et al., 2020; Jin et al., 2018a). Specifically, rein-
forcement learning-based algorithms (You et al., 2018a) equip the model with rewards designed to encourage
the models to generate molecules with specific molecular properties. Latent space optimization-based algo-
rithms take advantage of the learned latent space of molecule generative models and optimize the molecular
properties via Bayesian Optimization (Liu et al., 2018). Searching-based algorithms, on the other hand,
directly search the discrete, high-dimensional chemical space for molecules with optimal properties (Kwon
et al., 2021). However, these works often have three major issues. (1) They require many expensive oracle
calls to provide feedback (i.e., property scores) on the intermediate molecules generated during the searching
or optimization process (Huang et al., 2021). (2) They often only focus on the outcome of the process while
ignoring its intermediate steps which can provide crucial insights into the rules that govern the process to
chemists and pharmacologists. (3) They focus on local gradients and put less emphasis on exploring global
directions in the chemical/latent space.

To tackle the above challenges, we propose a simple yet effective method to explore the chemical space for
molecule generation by interpreting the latent space of pre-trained deep generative models. The motivation
for our approach is based on the emergent properties of the latent space learned by molecule generative mod-
els (Gómez-Bombarelli et al., 2018; Zang & Wang, 2020): (1) molecules sharing similar structures/properties
tend to cluster in the latent space, (2) interpolating two molecules in the latent space leads to smooth changes
in molecular structures/properties. Thus, we develop ChemSpace Explorer, a model-agnostic method to ma-
nipulate molecules in the latent space of molecule generative models. It has broad applications ranging from
molecule optimization to chemical space interpretation. Specifically, ChemSpace Explorer first identifies the
property separation hyperplane which defines the binary boundary for some molecular property (e.g., drug-like
or drug-unlike) in the learned latent space of a generative model. Based on the identified property separation
hyperplane, it then estimates the latent directions that govern molecular properties, navigating which can
enable smooth change of molecular structures and properties without model re-training. This manipulation
process improves the interpretability of deep generative models by navigating their latent spaces and enables
human-in-the-loop exploration of the chemical space and molecule design. It allows users to manipulate the
properties of generated molecules by leveraging the steerability and interpretability of molecule generative
models. To the best of our knowledge, this work is the first attempt to achieve interactive molecule discovery
by steering pre-trained molecule generative models.

Our experiments demonstrate that our method can effectively steer state-of-the-art molecule generative
models for latent molecule manipulation with a small amount of training/inference time, data, and oracle
calls. To quantitatively measure the performance of latent molecule manipulation, we design two new
evaluation metrics, strict success rate and relax success rate, which explain the percentage of successful
manipulation paths with smooth property-changing molecules. In addition, we compare ChemSpacE with
a gradient-based optimization method that traverses the latent space of molecule generative models on the
molecule optimization task. To facilitate interactive molecule design and discovery for practitioners, we
further develop an interface for real-time interactive latent molecule manipulation and smooth molecular
structure/property change. We summarize the main contributions as follows:
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Figure 1: ChemSpacE framework: (1) a pre-trained molecule generative model generates many molecules
from random vectors sampled from the latent space, (2) an off-the-shelf oracle function is used to predict
molecular properties of the generated samples in the chemical space, (3) ChemSpacE identifies directions in
the latent space which govern molecular properties via the property separation hyperplane.

• We explore a new task called latent molecule manipulation, which aims to steer the latent space
of molecule generative models to manipulate the chemical properties of the output molecule and
facilitate human-in-the-loop molecule design.

• We develop an efficient model-agnostic method named ChemSpacE for latent molecule manipulation,
which can be incorporated in various pre-trained state-of-the-art molecule generative models without
needing to re-train or modify them.

• We demonstrate the effectiveness and efficiency of our method in molecule optimization and achieving
human-in-the-loop molecule design through comprehensive experiments. We further develop an
interface to exhibit interactive molecule discovery and design.

2 Problem Formulation of Latent Molecule Manipulation

Molecule Generative Models. In molecule generation, a generative model M encodes the molecular
graph X as a latent vector Z ∈ Rl where l is the latent space dimension, and then decodes the latent vector
back to the molecular graph. Variational auto-encoders (VAE) (Kingma & Welling, 2013) and flow-based
models (Flow) (Rezende & Mohamed, 2015) are the two most commonly used models for molecule generation,
which typically encode the data from the molecular space to a latent space of Gaussian distribution. The
encoding and decoding process can be formulated as:

z = f(x), x′ = g(z), (1)

where x and x′ are the ground-truth and reconstructed/sampled data respectively, and z ∈ Z represents a
latent vector in the latent space, f(·) and g(·) are the encoder and generator/decoder of the generative model.
Note that we simplify the expression here to represent the general latent space that we seek to navigate in
both VAEs and Flows. In practice, VAEs resort to a reparametrization trick such that z = µ + σ ⊙ ϵ, where
ϵ ∼ N (0, I).

Latent Molecule Manipulation Formulation. To leverage the steerability and interpretability of
molecule generative models, we explore a new task, latent molecule manipulation, which interprets and
steers the latent space of generative models in order to manipulate the properties of the output molecules.
To be specific, a deep generative model contains a generator g : Z → X , where Z ∈ Rl stands for the
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l-dimensional latent space, which is commonly assumed to be a Gaussian distribution (Kingma & Welling,
2013; Rezende & Mohamed, 2015). There exist property functions fP which define the property space P
via P = fP (X). The input to latent molecule manipulation is a list of n molecules X = {x1, x2, · · · , xn}
and a list of m molecular properties P = {p1, p2, · · · , pm}. We aim to manipulate one or more molec-
ular properties p of a given molecule in k consecutive steps and output the manipulated molecules with
properties p′ = {p(1), p(2), · · · , p(k)}. By manipulating the given molecule, we can observe the alignment of
Z → X → P, where the relationship between Z and X explains the latent space of molecule generative
models and the relationship between X and P reveals the correlations between molecular structures and
properties. By traversing the latent space, we can generate molecules with continuous structure/property
changes.

Evaluation Criteria. We need to evaluate the latent molecule manipulation task with respect to both
smooth structure change and the smooth property change. Thus, we design two new evaluation metrics, strict
success rate (SSR) and relaxed success rate (RSR), that measure the quality of the identified latent direction
in controlling the molecular property. For calculating the strict success rate, we consider a manipulation
path to be successful only if we generate molecules with monotonically-changing properties and structures
in consecutive k steps of manipulation. The constraints are formulated as follows:

ϕSP C(x, k, f) = 1[∀ i ∈ [k],s.t., f(x(i)) − f(x(i+1)) ≤ 0], (2)
ϕSSC(x, k, δ) = 1[∀ i ∈ [k],s.t., δ(x(i+1), x(1)) − δ(x(i), x(1)) ≤ 0], (3)

ϕDIV (x, k) = 1[∃ i ∈ [k],s.t., x(i) ̸= x(1)], (4)

where f is a property function which calculates certain molecular property, δ denotes structure similarity
between molecules x(i), x(i+1) generated in two adjacent manipulation steps. ϕSP C defines the strict property
constraint; ϕSSC defines the strict structure constraint; ϕDIV defines the diversity constraint. The strict
success rate is defined as:

SSR − L(P, X, k) = 1
|P | × |X|

∑
p∈P,x∈X

1[ϕSP C(xp, k, fp) ∧ ϕSSC(xp, k) ∧ ϕDIV (xp, k)], (5)

As monotonicity is rather strict, we propose a more relaxed definition of success rate, namely relaxed success
rate, constructed via relaxed constraints, as follows:

ϕRP C(x,k, f, ϵ) = 1[∀ i ∈ [k], s.t., f(x(i)) − f(x(i+1)) ≤ ϵ], (6)

ϕRSC(x,k, δ, γ) = 1[∀ i ∈ [k], s.t., δ(x(i+1), x(1)) − δ(x(i), x(1)) ≤ γ], (7)

ϕDIV (x,k) = 1[∃ i ∈ [k], s.t., x(i) ̸= x(1)], (8)

where ϵ is a predefined tolerance threshold that weakens the monotonicity requirement. We also provide two
implementations of relaxed success rate, which define different tolerance variables ϵ, one with a local relaxed
constraint (RSR-L) and the other with a global relaxed constraint (RSR-G). For the global constraint, we
obtain ϵ by calculating the possible values (ranges) of the molecular properties in the training dataset, while
for the local constraint, we obtain ϵ by calculating the possible values (ranges) of the molecular properties
only in the specific manipulation paths. The formulation of RSR-L and RSR-G is as follows:

RSR − L(P, X, k, ϵl, γ) = 1
|P | × |X|

∑
p∈P,x∈X

1[ϕRP C(xp, k, fp, ϵl) ∧ ϕRSC(xp, k, γ) ∧ ϕDIV (xp, k)], (9)

RSR − G(P, X, k, ϵg, γ) = 1
|P | × |X|

∑
p∈P,x∈X

1[ϕRP C(xp, k, fp, ϵg) ∧ ϕRSC(xp, k, γ) ∧ ϕDIV (xp, k)], (10)

While it is more challenging for the model to pass RSR-L with a local constraint (smaller range) when
evaluating a successful path, it has an added benefit in that it takes into account the ability of the model to
manipulate one molecular property (i.e., the larger the range, the higher the tolerance score, thus the better
chance to achieve successful manipulation).
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(c) Latent Property Boundary (c) Latent Molecule Cluster (b) Interpolation

Figure 2: (a) Molecule clusters in the latent space, where the number represents structure similarity (Bajusz
et al., 2015). The red box denotes the base molecule and the x and y axes represent two random orthogonal
directions to manipulate. (b) Linear interpolation of two (top and bottom) molecules. (c) The latent property
boundary for QED is visualized for MoFlow trained on ZINC by reducing the dimension of the latent vectors
by PCA.

3 ChemSpacE for Latent Molecule Manipulation

3.1 Latent Cluster Assumption

We examine the properties of the latent space learned by generative models and have the following obser-
vations: (1) molecules with similar structures tend to cluster together in the latent space, (2) interpolating
two molecules x1 and x2, represented by latent vectors z1 and z2, can lead to a list of intermediate molecules
whose structures/properties gradually change from x1 to x2. As molecular structures determine molecular
properties (Seybold et al., 1987), the observations imply that molecules with similar values of a certain
molecular property would cluster together, and interpolating between two molecules with different values
of the molecular property could lead to gradual changes in their molecular structure. As shown in Fig. 1,
there may exist two groups of molecules, drug-like and drug-unlike, where each group cluster together and
linearly interpolating between two latent vectors with one molecule from each group could lead to a direction
that crosses the property separation boundary. These observations also match the analysis from the prior
work (Gómez-Bombarelli et al., 2018; Zang & Wang, 2020). To verify our assumption, we visualize the latent
space of the pre-trained MoFlow model in Fig. 2. The left figure shows that molecules close together in the
latent space are similar in structure, the middle figure shows that interpolating between two molecules in
the latent space could lead to smooth structure changes, and the right figure shows that a latent boundary
is present for the QED property in the pre-trained MoFlow model.

3.2 Identifying Latent Directions

Latent Separation Boundary. With the verifications shown above and the previous work of analyzing
the latent space of generative models (Shen et al., 2020; Bau et al., 2017; Jahanian et al., 2019; Plumerault
et al., 2020), we assume that there exists a separation boundary which separates groups of molecules for
each molecular property (e.g., drug-like and drug-unlike) and the normal vector of the separation boundary
defines a latent direction which controls the degree of the property value (Fig. 1). When z moves toward
and crosses the boundary, the molecular properties change accordingly (e.g., from drug-unlike to drug-like).
A perfect separation boundary would have molecules with different properties well separated on different
sides. From that, we can find a separation boundary for each molecular property with a unit normal vector
n ∈ Rl, such that the distance from any sample z to the separation boundary as:

d(z, n) = nT z. (11)
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Latent Direction. In the latent space, the molecular structure and property change smoothly towards
the new property class when z moves towards the separation boundary and vice versa, where we assume
linear dependency between z and p:

fP (g(z)) = α · d(z, n), (12)

where fP is an oracle function and α is a degree scalar that scales the changes along that corresponding
direction. Extending the method to multiple molecular property manipulation, we have:

fP (g(z)) = ANT z, (13)

where A = Diag(a1, · · · , am) is the diagonal matrix with linear coefficients for each of the m molecular
properties and N = [n1, · · · , nm] represents normal vectors for the separation boundaries of m molecular
properties. We have the molecular properties P following a multivariate normal distribution via:

µP = E(ANT z) = ANT E(z) = 0, (14)
ΣP = E(ANT zzT NAT ) = ANT E(zzT )NAT = ANT NAT . (15)

We have all disentangled molecular properties in P if and only if ΣP is a diagonal matrix and all directions
in N are orthogonal with each other. Nevertheless, not all molecular properties are purely disentangled with
each other. In that case, molecular properties can correlate with each other and nT

i nj is used to denote the
entanglement between the i-th and j-th molecular properties in P .

3.3 Latent Molecule Manipulation

After we find the separation boundary and identify the latent direction, to manipulate the generated
molecules towards desired properties, we first move from the latent vector z along the direction n with
a degree scalar α, giving the new latent vector

z′ = z + αn. (16)

The expected property value of the new manipulated molecule is (with k as a scale factor):

fP (g(z + αn)) = fP (g(z)) + kα. (17)

For single-property manipulation, we can simply take the identified direction, but when multiple properties
correlate with each other, we need to determine whether the two directions are entangled or disentangled.
We can then take the disentangled and positively correlated attributes of the directions as the new direction:

n = n1 + (1[n1⊙n2≥0]) ⊙ n2. (18)

4 Experiments

4.1 Setup

Datasets. We use three molecule datasets, QM9 (Ramakrishnan et al., 2014), ZINC250K (Irwin & Shoichet,
2005), and ChEMBL (Mendez et al., 2019). QM9 contains 134k small organic molecules with up to 9 heavy
atoms (C, O, N, F). ZINC250K (Gómez-Bombarelli et al., 2018) is a sampled set of 250K molecules from
ZINC, a free database of commercially-available compounds for drug discovery with an average of ∼23
heavy atoms. ChEMBL is a manually curated database of bioactive molecules with drug-like properties and
contains ∼1.8 million molecules.

Baselines. We include two baseline methods of identifying the latent direction that governs the molecular
property and one gradient-based method, which optimizes the molecular property of the generated molecules
via gradient ascent/descent for comparison. Random manipulation randomly samples latent directions
for molecular properties. Largest range manipulation draws latent vectors from the training set and
defines the directions via calculating the direction between one molecule with the largest property score
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Table 1: Quantitative Evaluation of latent molecule manipulation over a variety of molecular properties
(numbers reported are strict success rate in %. The best performances are bold.)

Dataset Model Avg. QED pLogP SA DRD2 JNK3 GSK3B MolWt

QM9

M
oF

lo
w

Random 1.65 1.50 0.00 0.50 0.00 0.00 0.00 0.50
Largest 3.43 1.50 1.00 0.50 0.00 1.50 0.00 0.50
Gradient-based N/A 3.50 6.00 6.50 2.00 8.00 8.50 7.50
ChemSpacE 37.52 12.50 9.00 10.00 11.00 45.50 16.50 10.50

H
ie

rV
A

E Random 29.29 1.00 1.50 0.50 0.50 1.00 1.00 0.50
Largest 30.69 0.50 0.00 0.00 0.50 2.00 0.00 0.50
ChemSpacE 66.23 27.00 32.00 35.00 41.50 51.50 30.00 39.50

ZINC

M
oF

lo
w

Random 4.25 1.50 1.50 2.50 3.00 3.50 1.50 2.00
Largest 5.61 1.50 6.50 2.00 6.00 2.50 4.00 1.50
Gradient-based N/A 1.50 9.50 0.50 2.00 15.50 23.00 0.00
ChemSpacE 58.08 52.00 53.50 51.50 55.00 56.50 55.50 53.50

ChEMBL

H
ie

rV
A

E Random 25.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Largest 22.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ChemSpacE 47.70 0.50 3.00 3.00 6.00 7.50 5.50 4.50

and another molecule with the smallest property score for each molecular property. The gradient-based
method optimizes the molecular property of the generated molecules by searching for a latent vector with
the optimized molecular property via gradient ascent/descent. More specifically, it requires pre-training a
property predictor on the latent space that first initializes a latent vector and then optimizes the latent
vector to maximize/minimize the output of the predicted property value.

Molecular Properties. QED is a quantitative estimate of drug-likeness. PLogP refers to the partition
coefficient logarithm of octanol-water which measures the lipophilicity and water solubility. SA denotes the
synthesis accessibility score. MolWt denotes the molecular weight. DRD2, JNK3 and GSK3B are three
binding affinity scores.

Implementation Details. We take publicly available pre-trained models from their respective GitHub
repositories for HierVAE (Jin et al., 2020) and MoFlow (Zang & Wang, 2020). All the molecular properties
are calculated by RDKit (Landrum et al., 2013) and TDC (Huang et al., 2021). We utilize the implementation
of linear models (linear SVM) from Scikit-learn (Pedregosa et al., 2011). More details are available in
Appendix A.

Interactive Demo. An interactive demo for latent molecule manipulation is provided at https://
drive.google.com/drive/folders/1N036p_5OfvGZybgPJ3Vw1ONXHVepimSR?usp=sharing and one exam-
ple is shown in Fig. 4 (right).

4.2 Quantitative Evaluation of latent molecule manipulation

In Tables 1 and 2, we report the quantitative evaluation results for both single property and multi-property
latent molecule manipulation. Table 1 shows the strict success rate and relaxed success rate-L/G while Table
2 reports the training and inference times, data requirements, and number of oracle calls from evaluations on
212 molecular properties over 200 randomly generated molecules. From the tables, we obtain the following
insights:

(1) Our proposed method, ChemSpacE, as the first attempt for latent molecule manipulation, achieves
excellent performance in both single and multi-property manipulation of molecules with two state-of-the-art
molecule generative models (VAE-based and Flow-based). For some important molecular properties (e.g.,
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Table 2: Efficiency in terms of training/inference time, data, and number of oracle calls of ChemSpacE
compared to the gradient-based method.

Model Dataset Training(s) Inference/Path(s) # Data # Oracle calls

Gradient-based QM9 137.03 0.02 120k 120k
ZINC 1027.26 0.04 200k 200k

ChemSpacE QM9 0.05 0 300 300
ZINC 0.95 0 400 400

Speedup QM9 2740× 0.02 ↑ 400× 400×
ZINC 1080× 0.04 ↑ 500× 500×

Table 3: Single property constrained molecule optimization for Penalized-logP on the ZINC dataset with
four comparison methods (δ is the threshold for similarity between the optimized and base molecules).

MoFlow ChemSpacE
δ Improvement Similarity Success Improvement Similarity Success

pLogP

0.0 8.61 ± 5.44 0.30 ± 0.20 98.88% 9.94 ± 6.09 0.18 ± 0.14 100%
0.2 7.06 ± 5.04 0.43 ± 0.20 96.75% 7.17 ± 5.59 0.42 ± 0.21 96.00%
0.4 4.71 ± 4.55 0.61 ± 0.18 85.75% 4.16 ± 4.43 0.65 ± 0.20 84.38%
0.6 2.10 ± 2.86 0.79 ± 0.14 58.25% 1.76 ± 2.40 0.81 ± 0.15 59.63%

DRD2

0.0 9.99 × 10−3 ± 2.82 × 10−2 0.29 ± 0.17 100% 2.12 × 10−2 ± 1.84 × 10−2 0.05 ± 0.06 100%
0.2 7.66 × 10−3 ± 2.66 × 10−2 0.36 ± 0.13 100% 5.49 × 10−3 ± 1.46 × 10−2 0.34 ± 0.14 99.13%
0.4 1.24 × 10−3 ± 2.36 × 10−3 0.52 ± 0.12 98.60% 1.04 × 10−3 ± 1.83 × 10−3 0.57 ± 0.16 95.75%
0.6 1.67 × 10−4 ± 4.10 × 10−4 0.78 ± 0.14 85.20% 1.79 × 10−4 ± 4.15 × 10−4 0.80 ± 0.15 83.00%

JNK3

0.0 2.75 × 10−2 ± 2.22 × 10−2 0.39 ± 0.21 99.40% 4.79 × 10−2 ± 2.15 × 10−2 0.19 ± 0.15 100%
0.2 2.34 × 10−2 ± 2.04 × 10−2 0.44 ± 0.19 98.80% 3.24 × 10−2 ± 2.21 × 10−2 0.39 ± 0.17 99.38%
0.4 1.33 × 10−2 ± 1.54 × 10−2 0.60 ± 0.16 95.60% 1.94 × 10−2 ± 1.88 × 10−2 0.58 ± 0.15 97.13%
0.6 6.27 × 10−3 ± 1.04 × 10−2 0.79 ± 0.16 77.80% 9.27 × 10−3 ± 1.38 × 10−2 0.76 ± 0.14 85.00%

GSK3β

0.0 5.09 × 10−2 ± 4.35 × 10−2 0.40 ± 0.22 98.60% 1.21 × 10−1 ± 4.82 × 10−2 0.15 ± 0.12 100%
0.2 4.21 × 10−2 ± 3.72 × 10−2 0.47 ± 0.19 97.40% 7.66 × 10−2 ± 5.01 × 10−2 0.35 ± 0.15 99.50%
0.4 2.87 × 10−2 ± 3.02 × 10−2 0.58 ± 0.15 95.20% 3.87 × 10−2 ± 3.64 × 10−2 0.57 ± 0.16 97.63%
0.6 1.34 × 10−2 ± 2.34 × 10−2 0.76 ± 0.14 85.60% 1.54 × 10−2 ± 2.28 × 10−2 0.78 ± 0.15 86.63%

QED), we (with MoFlow) achieve a 52% manipulation strict success rate on the ZINC dataset, outperforming
the baseline methods 6× on average.

(2) The baseline (random manipulation) method sometimes “finds” directions that control molecular prop-
erties. As shown in Fig. 2, the molecules are well-clustered in the latent space with respect to structures
that determine molecular properties (Seybold et al., 1987). However, the largest range manipulation method
performs worse possibly due to its strong assumption in determining the direction via the molecules with
extreme property values (largest property and smallest property values) in the dataset.

(3) The ChemSpacE method outperforms the popular gradient-based method in generating smooth manip-
ulation paths, time, and data efficiency. As shown in Table 2, ChemSpacE speeds up the training time by
at least 1000×, and reduces data requirements and the number of oracle calls necessary by at least 400×.

More results can be found in Appendix Tables 5 and 6.

4.3 Quantitative Evaluation of Molecule Optimization

We further compare our methods under the common molecule optimization setting through two tasks:
single property constrained optimization and multi-property constrained optimization. Beginning with a set
of candidate molecules, we aim to optimize their molecular properties while maintaining the structural
similarity1 of the optimized molecules to the base molecules. This setting is relevant to many drug discovery
tasks where one needs to optimize the properties of a given molecule while keeping the structure similar.

Single Property Constrained Optimization. We evaluate our method against four previous works (Jin
et al., 2018a; You et al., 2018a; Zang & Wang, 2020; Eckmann et al., 2022) with the exact same set of molecules

1In practice, we use the Tanimoto similarity of the Morgan fingerprint Rogers & Hahn (2010).
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on the penalized logP property and test four different similarity constraint thresholds. We report the property
improvement and similarity compared to the base molecule as well as the percentage of successfully optimized
molecules within the threshold in Table 3. In addition, we evaluate on three more real-world properties,
activities at the targets DRD2, JNK3, and GSK3β, under the same constrained optimization setting. In
our reported results, ChemSpacE is manipulating over the latent space learned by MoFlow, as MoFlow
leverages a gradient-based method that traces the local gradient leading to property improvements in every
step while we take on a more efficient way by learning the global improvement direction and following it for
all steps. We perform surprisingly well and even better than the gradient-based method used in MoFlow,
thus empirically supporting our assumption about latent space exploration.
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Figure 3: Illustrations of multi-property constrained optimization. The Tanimoto similarity between base
and optimized molecules is 0.709 (top row) and 0.647 (bottom row) respectively.

Multi-Property Constrained Optimization. As no previous work reports on multoi-property con-
strained optimization, we propose to optimize QED and penalized logP as a multi-property constrained
optimization task. We also propose two simple baselines: (1) we add up the two properties (QED and penal-
ized logP) to be optimized as a new objective and run single-property constrained optimization on it, (2) we
take into account the two gradient directions of the properties and in each step of gradient ascent, we move
in both directions. As shown in Appendix (Table 8), we demonstrate the capability of ChemSpacE for effi-
cient multi-objectiven constrained optimization. Our method improves both QED and penalized logP more
than the two gradient-based methods. We showcase two examples in Fig. 3 that demonstrate ChemSpacE’s
ability to optimize molecules and achieve desired property improvements while maintaining high structure
perseverance.

QED

LogP

QED 0.447
LogP -1.293

QED 0.459
LogP -0.189

QED 0.475
LogP 0.339

QED 0.484
LogP 0.585

QED 0.475
LogP 0.339

QED 0.484
LogP 0.585

Figure 4: Manipulating QED and LogP properties of sampled molecules simultaneously with the MoFlow
model trained on the QM9 dataset (the repeated molecules are removed for better visualization) (left). A
Real-time Interactive System Interface. Please refer to the Appendix D video for a demo of interactive
molecule discovery (right).
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4.4 Qualitative Evaluation of Latent Molecule Manipulation and Interpretation

In Fig. 5, we visualize the property distributions of QED, MolWt and LogP along a 7-step manipulation
path. For each step, we draw a property distribution. The candidate molecules are at place 0 and we attempt
to manipulate the molecular property to the left (lower) and the right (higher). From the figure, we can
clearly observe that the property distribution shifts to the left and right accordingly when we manipulate
the molecule to the left and right. For example, when we manipulate the molecules three steps to the left,
the range of QED shifts from [0, 0.7] to [0, 0.5]; when the molecules are manipulated three steps to the right,
there are far more molecules that have QED > 0.5 than the base distribution. Similar trends can also be
seen for MolWt and LogP.

Figure 5: Visualization of molecular property distribution shifts while manipulating molecules with MoFlow
on the QM9 dataset (0 denotes the randomly sampled base molecule and +x and −x denote manipulation
directions and steps).

Single Property Manipulation. To qualitatively evaluate the performance of our method for latent
molecule manipulation, we randomly select the successful manipulation paths from all three generative
models in Fig. 6. The figures show that our method successfully learns interpretable and steerable directions.
For example, for HierVAE in Fig. 6, we can find that gradually increasing LogP of a molecule may lead to
the removal of the heavy atoms O and N from the structure. With respect to QED, the molecule drops
double bonds, as well as heavy N and O atoms, when increasing QED for the HierVAE model. A similar
trend can be observed in the MoFlow model that increasing QED drops double bonds and O atoms on the
left of Fig. 6.

Multi-Property Manipulation. When it comes to multi-property manipulation, the goal is to control
multiple molecular properties of a given molecule at the same time. In Fig. 4 (left), we show how our method
manipulates multiple molecular properties. For simplicity, we remove the duplicate molecules and only leave
the distinct molecules during the manipulation. From the figure, we can observe some correlations between
LogP and QED since when we increase QED, LogP also increases accordingly.

Figure 6: Manipulating QED, MolWt and LogP properties of sampled molecules. The backbone model is
MoFlow and HierVAE trained on QM9 dataset.
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5 Related Work

Molecule Generation. Recent studies have explored a variety of deep generative models for molecule
generation (Du et al., 2022), including variational autoencoders (VAEs) (Jin et al., 2018a), generative ad-
versarial networks (GANs) (De Cao & Kipf, 2018), reinforcement learning models (Olivecrona et al., 2017;
Zhou et al., 2019; Yang et al., 2021), etc (Yang et al., 2020; Xie et al., 2021), normalizing flows (Mad-
hawa et al., 2019; Shi et al., 2020; Luo et al., 2021), and energy-based models (EBMs) (Liu et al., 2021).
For instance, JT-VAE (Jin et al., 2018a) proposes a VAE-based architecture to encode both atomic graphs
and structural graphs for efficient molecule generation. MolGAN (De Cao & Kipf, 2018) exploits GANs
for molecule generation, where discriminators are used to encourage the model to generate realistic and
chemically-valid molecules. MRNN (Popova et al., 2019) extends the idea of GraphRNN (You et al., 2018b)
to formulate molecule generation as an auto-regressive process. GCPN (You et al., 2018a) formulates the
molecule generation process as a reinforcement learning problem where it connects atoms in a step-by-step
fashion to obtain a molecule and uses reward for steerable generation. GraphNVP (Madhawa et al., 2019)
introduces normalizing flows for molecule generation, where the generation process is invertible. Later works
improve nomralizing flow-based molecule generative models by introducing auto-regressive generation (Shi
et al., 2020), valency correction (Zang & Wang, 2020), and discrete latent representation (Luo et al., 2021).
GraphEBM (Liu et al., 2021) introduces an energy-based model for molecule generation. More recently,
diffusion models have been applied to molecule generation (Niu et al., 2020; Jo et al., 2022; Vignac et al.,
2022).

Controllable Molecule Generation. One practical application of molecule generation is to generate new
molecular samples with specific properties. Early work (Segler et al., 2018) involved biasing the distribution
of the data and training generative models with known desired properties to generate molecules with those
properties. In contrast, recent works have focused on leveraging latent space gradient-based (Jin et al.,
2018a; You et al., 2018a; Hoffman et al., 2020; Winter et al., 2019), reinforcement learning-based (Shi et al.,
2020; Zang & Wang, 2020; Blaschke et al., 2020), and searching-based (Brown et al., 2019; Yang et al.,
2020; Kwon et al., 2021) approaches to generate molecules with desired properties. Latent space gradient-
based methods are flexible and can work directly on both molecules (Fu et al., 2022) and the learned latent
vectors (Gómez-Bombarelli et al., 2018; Jin et al., 2018b; Winter et al., 2019; Griffiths & Hernández-Lobato,
2020; Notin et al., 2021). Reinforcement learning-based methods usually formulate controllable generation
as a sequential decision-making problem and require a score-function to reward the agent. Searching-based
approaches (Brown et al., 2019; Yang et al., 2020; Kwon et al., 2021; Renz et al., 2019; Fu et al., 2020; Xie
et al., 2021; Maziarz et al., 2021) can search over the chemical space for molecules with desired properties
by defining a set of discrete actions. Additionally, some works (Chenthamarakshan et al., 2020; Das et al.,
2021) leverage the learned latent space and achieve controllable generation by accepting/rejecting sampled
molecules based on a molecular property predictor.

6 Conclusion, Limitations and Future Work

In this work, we propose a simple yet effective method called ChemSpacE to generate molecules with desired
properties by leveraging the steerability and interpretability of pre-trained generative models. Furthermore,
our interface demonstrates promising applications of interactive molecule design and discovery. Nevertheless,
we acknowledge two limitations of this work, (1) it cannot yet study the activity cliff phenomenon, (2) it
lacks theoretical analyses explaining why the latent space of deep generative models can be learned with
property boundaries. Studying the activity cliff, a phenomenon in which structurally similar molecules
may have very different potencies against the same target (Stumpfe et al., 2014) is a very challenging task
that requires specific benchmark datasets, and reliable oracle functions for molecule generation, making it
beyond the scope of this study. We expect that an enhanced understanding of the chemical space will lead
to promising directions of study in understanding such challenging phenomena. Furthermore, although it
has been widely observed that semantic directions can be found in the latent space of generative models and
exploited for data editing, we believe that the theoretical underpinnings of these observations are not well
understood and merit further study. Finally, we hope ChemSpacE opens up a new research avenue to study
the interpretability and steerability of molecule generative models for achieveing interactive design.
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Appendix for
“ChemSpacE: Interpretable and Interactive

Chemical Space Exploration”

A Experiment Protocols

Pre-trained Models. We apply ChemSpacE, as well as baselines, on two state-of-the-art molecule gen-
erative models with publicly available pre-trained models. HierVAE (Jin et al., 2020) embeds molecular
structure motifs into a hierarchical VAE-based generative model; MoFlow (Zang & Wang, 2020) designs a
normalizing flow-based model which learns an invertible mapping between input molecules and latent vec-
tors. Molecular Properties. We study molecular properties identified in the chemistry community through
open-source cheminformatics software, RDKit (Landrum et al., 2013) and protein binding affinity, synthesis
accessibility oracles in TDC (Huang et al., 2021). In total, we analyze 212 molecular properties from multiple
dimensions, including distributions, inter-correlations, etc. Details can be found in Appendix G. Due to the
page limit, we mainly report results for 7 molecular properties, including 4 very common yet important ones,
drug-likeness (QED), molecular weight (MolWt), partition coefficient (LogP), synthesis accessibility (SA),
and 3 binding affinity scores. For continuous molecular properties, we take the molecules with largest and
smallest properties for training the linear models.

Quantitatively, we evaluate the ability of the model to manipulate the given molecular property of molecules
with the proposed strict success rate and relaxed success rate-L/G metrics (see Sec. 2). We evaluate
the model’s efficiency by comparing the training process of the linear models with a neural network-based
predictor for a commonly used optimization-based method in terms of training/inference time, data, and
number of oracle calls. Qualitatively, we visualize latent molecule manipulation including property distribu-
tion shift during manipulation, single and multiple property manipulations.

Hyperparameters. ChemSpacE does not entail many hyperparameters, the only important one is the
manipulation range which is critical to the exploration degree of the latent space. For latent molecule
manipulation experiments, as we would like a gradual change over the molecular structure and property,
we set the range as [−1, 1]. While for molecule optimization task, it requires more aggressive exploration
strategies to reach the expected latent area which poses optimal property values. We utilize [−100, 100]
and [−30, 30] for single property optimization and multi-property optimization experiments respectively. We
report the results for single property optimization with ranges from [1, 5, 10, 15, 20, 30, 50, 100] in Table 4.

B Extended Latent Molecule Manipulation Experiments

B.1 Molecule Generation Evaluation

We evaluate the Validity, Novelty and Uniqueness of the generated molecules as proposed in Kusner
et al. (2017) in Table 9. We can observe that ChemSpacE not only improves the success rate from the
baseline methods, but also in general improves the novelty and uniqueness during manipulation.

B.2 Multi-property Latent Molecule Manipulation Evaluation

We evaluate multi-property (penalized logp, QED) latent molecule manipulation over 200 randomly sampled
molecules on ZINC dataset in Table 5.

C Extended Molecule Optimization Experiments

We report more experiments about single property and multi-property optimization in this section. In
Table 4, pushing further across the property separation boundary increases the improvement for molecule
optimization but lowers the similarity scores.
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Table 4: Single property constrained molecule optimization for Penalized-logP on ZINC dataset with differ-
ent manipulation ranges of ChemSpacE (δ is the threshold for similarity between the optimized and base
molecules).

ChemSpacE-1 ChemSpacE-5
δ Improvement Similarity Success Improvement Similarity Success
0.0 2.61 ± 2.55 0.71 ± 0.23 83.25% 3.33 ± 3.74 0.67 ± 0.26 84.25%
0.2 2.56 ± 2.51 0.72 ± 0.22 97.1% 3.17 ± 3.60 0.69 ± 0.23 84.13%
0.4 2.26 ± 2.28 0.75 ± 0.20 77.25% 2.62 ± 3.08 0.73 ± 0.20 78.13%
0.6 1.34 ± 1.54 0.84 ± 0.14 57.0% 1.43 ± 1.54 0.84 ± 0.14 57.38%

ChemSpacE-10 ChemSpacE-15
δ Improvement Similarity Success Improvement Similarity Success
0.0 4.97 ± 4.86 0.57 ± 0.27 90.75% 5.92 ± 5.11 0.51 ± 0.26 93.75%
0.2 4.70 ± 4.71 0.60 ± 0.24 90.13% 5.62 ± 5.05 0.55 ± 0.23 93.25%
0.4 3.43 ± 3.96 0.69 ± 0.20 82.38% 3.96 ± 4.28 0.73 ± 0.20 84.25%
0.6 1.67 ± 2.32 0.82 ± 0.15 59.00% 1.73 ± 2.35 0.81 ± 0.15 59.63%

ChemSpacE-20 ChemSpacE-30
δ Improvement Similarity Success Improvement Similarity Success
0.0 6.62 ± 5.57 0.46 ± 0.25 94.40% 7.77 ± 6.34 0.39 ± 0.24 96.38%
0.2 6.11 ± 5.14 0.51 ± 0.22 93.75% 6.50 ± 5.40 0.48 ± 0.22 94.50%
0.4 4.22 ± 4.50 0.65 ± 0.19 85.13% 4.47 ± 4.73 0.64 ± 0.19 85.88%
0.6 1.79 ± 2.36 0.81 ± 0.15 59.88% 1.78 ± 2.37 0.81 ± 0.15 60.25%

ChemSpacE-50 ChemSpacE-100
δ Improvement Similarity Success Improvement Similarity Success
0.0 8.80 ± 6.35 0.30 ± 0.21 98.38% 9.94 ± 6.09 0.18 ± 0.14 100%
0.2 6.99 ± 5.53 0.44 ± 0.21 95.00% 7.17 ± 5.59 0.42 ± 0.21 96.00%
0.4 4.45 ± 4.65 0.63 ± 0.19 85.38% 4.16 ± 4.43 0.65 ± 0.20 84.38%
0.6 1.87 ± 2.56 0.80 ± 0.15 60.13% 1.76 ± 2.40 0.81 ± 0.15 59.63%

17



Published in Transactions on Machine Learning Research (03/2023)

Table 5: Quantitative Evaluation of latent molecule manipulation for Multiple Properties. (-R denotes
model with random manipulation, MoFlow-1 and MoFlow-2 denote two variants of gradient-based baseline
methods, RSR(L) denotes relaxed success rate-L, RSR(G) denotes relaxed success rate-G).

Metric MoFlow-1 MoFlow-2 ChemSpacE
SSR-both 28.00 27.00 62.00

RSR(L)-both 29.50 28.00 63.00
RSR(G)-both 41.00 38.50 76.00

Table 6: Quantitative Evaluation of latent molecule manipulation over a variety of molecular properties
(numbers reported are relaxed success rate-L / relaxed success rate-G in %. The best performances are
bold.)

Dataset Model Avg. QED LogP SA DRD2 JNK3 GSK3B MolWt

QM9

M
oF

lo
w

Random 27.21 / 32.31 1.50 / 2.00 0.00 / 3.00 1.00 / 3.00 0.00 / 46.00 4.00 / 4.00 0.00 / 15.50 1.50 / 55.00
Largest 29.28 / 35.20 3.00 / 8.00 1.00 / 7.00 1.00 / 2.00 0.50 / 42.50 6.00 / 6.00 0.50 / 7.50 1.00 / 58.00
Gradient-based N/A 4.50/6.50 6.50/8.50 8.50/13.00 3.00/15.0 10.50/10.50 10.50/17.50 8.50/22.00
ChemSpacE 53.97 / 61.56 16.00 / 28.00 13.50 / 28.00 17.50 / 39.50 17.50 / 72.50 58.50 / 58.50 21.50 / 49.00 15.00 / 72.00

H
ie

rV
A

E Random 2.62 / 26.06 1.00 / 1.00 1.50 / 1.50 0.50 / 0.50 0.50 / 1.50 1.00 / 5.50 1.00 / 3.00 0.50 / 2.50
Largest 3.25 / 27.33 0.50 / 1.00 0.00 / 1.50 0.00 / 5.50 0.50 / 4.00 2.00 / 8.50 0.00 / 2.50 0.50 / 1.50
ChemSpacE 46.72 / 61.49 27.00 / 35.00 32.00 / 44.00 35.00 / 42.00 41.50 / 48.50 51.50 / 60.00 30.00 / 33.50 39.50 / 45.50

ZINC

M
oF

lo
w

Random 35.85 / 41.70 3.50 / 6.00 2.50 / 7.50 3.50 / 6.50 5.50 / 79.00 4.00 / 56.50 1.50 / 27.50 4.50 / 12.50
Largest 37.46 / 43.12 3.00 / 4.50 9.00 / 15.50 2.00 / 6.00 8.00 / 81.50 4.00 / 67.50 4.00 / 33.00 3.00 / 14.50
Gradient-based N/A 1.50/2.00 10.50/15.50 1.00/2.50 2.50/5.50 18.00/21.50 23.50/28.50 0.50/1.50
ChemSpacE 60.54 / 63.23 53.50 / 57.00 57.00 / 73.50 54.00 / 61.50 55.50 / 65.50 57.50 / 63.50 56.00 / 68.00 56.00 / 71.00

ChEMBL

H
ie

rV
A

E Random 0.24 / 18.20 0.00 / 0.00 0.00 / 0.50 0.00 / 0.50 0.00 / 2.00 0.00 / 0.00 0.00 / 1.00 0.00 / 0.00
Largest 0.25 / 17.88 0.00 / 0.00 0.00 / 2.50 0.00 / 0.00 0.00 / 0.50 0.00 / 1.00 0.00 / 0.00 0.00 / 2.00
ChemSpacE 13.76 / 36.26 0.50 / 2.50 3.00 / 3.50 3.00 / 5.00 6.00 / 11.00 7.50 / 15.00 5.50 / 9.00 4.50 / 9.00

D ChemSpacE Demo

As shown in Fig. 7(right), we design an interactive real-time system for latent molecule manipulation,
where the user can click random to randomly sample a molecule and freely select which model to inter-
pret, which property to interpret, and tuning the slide bar manipulates the molecule accordingly in real-
time. The demo video is anonymously provided at https://drive.google.com/drive/folders/1N036p_
5OfvGZybgPJ3Vw1ONXHVepimSR?usp=sharing.

Figure 7: Optimizing molecular properties with optimization-based method.
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Table 7: Single property molecule optimization for Penalized-logP and QED on the ZINC dataset
Method N QED pLogP

ZINC
Top 5 0.948 ±1.47e − 4 4.287 ±0.138
Top 10 0.948 ±1.44e − 4 4.180 ±0.154
Top 25 0.948 ±2.18e − 4 3.998 ±0.181

MoFlow
Top 5 0.948 ±1.26e − 4 3.972 ±0.075
Top 10 0.948 ±1.38e − 4 3.879 ±0.110
Top 25 0.948 ±2.37e − 4 3.766 ±0.118

ChemSpacE
Top 5 0.948 ±1.41e − 4 3.933 ±0.020
Top 10 0.948 ±1.71e − 4 3.879 ±0.068
Top 25 0.948 ±2.43e − 4 3.777 ±0.101

Table 8: Constrained multi-property molecule optimization for Penalized-logP and QED on the ZINC dataset
with two variants of gradient-based methods (δ is the threshold for similarity between the optimized and
base molecules).

MoFlow-1
δ QED Improvement QED % Improvement pLogP Improvement pLogP % Improvement Similarity Success
0.0 0.17 ± 0.11 42.06 ± 35.69% 4.49 ± 3.87 51.00 ± 29.36% 0.44 ± 0.24 91.50%
0.2 0.16 ± 0.11 37.84 ± 32.16% 4.42 ± 3.78 51.26 ± 28.96% 0.48 ± 0.21 90.75%
0.4 0.12 ± 0.10 29.53 ± 27.45% 3.64 ± 3.43 44.61 ± 29.34% 0.61 ± 0.17 73.25%
0.6 0.07 ± 0.08 17.44 ± 20.36% 1.85 ± 2.18 26.38 ± 25.59% 0.78 ± 0.15 41.13%

MoFlow-2
δ QED Improvement QED % Improvement pLogP Improvement pLogP % Improvement Similarity Success
0.0 0.18 ± 0.12 45.09 ± 39.71% 4.67 ± 4.23 50.74 ± 28.79% 0.41 ± 0.23 92.88%
0.2 0.16 ± 0.11 40.12 ± 35.36% 4.48 ± 3.78 51.32 ± 29.11% 0.47 ± 0.20 91.50%
0.4 0.13 ± 0.10 31.25 ± 29.87% 3.70 ± 3.37 45.16 ± 29.27% 0.60 ± 0.17 74.88%
0.6 0.07 ± 0.08 17.61 ± 20.88% 1.97 ± 2.51 26.74 ± 26.30% 0.78 ± 0.15 41.88%

ChemSpacE
δ QED Improvement QED % Improvement pLogP Improvement pLogP % Improvement Similarity Success
0.0 0.20 ± 0.12 50.75 ± 41.77% 4.66 ± 4.34 50.01 ± 24.36% 0.34 ± 0.23 76.38%
0.2 0.18 ± 0.11 42.70 ± 32.87% 4.36 ± 3.50 51.57 ± 28.27% 0.45 ± 0.19 76.75%
0.4 0.14 ± 0.10 33.59 ± 27.92% 3.78 ± 3.49 46.07 ± 28.09% 0.58 ± 0.16 63.13%
0.6 0.08 ± 0.08 20.12 ± 22.33% 1.80 ± 1.81 26.77 ± 24.75% 0.77 ± 0.15 32.13%
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Table 9: Quantitative Evaluation of Latent Manipulation.
Datasets Models Validity (%) Novelty (%) Uniqueness (%)

QM9

MoFlow 100.00 98.23 98.27
Random 91.60 91.60 8.06
Largest 40.75 40.75 9.32

ChemSpacE 91.63 88.71 24.23

QM9

HierVAE 100.00 79.39 95.14
Random 100.00 84.53 28.91
Largest 100.00 84.05 27.26

ChemSpacE 100.00 79.66 34.81

ZINC

MoFlow 100.00 100.00 100.00
Random 69.98 69.98 29.04
Largest 43.36 43.36 24.87

ChemSpacE 71.26 71.26 15.82

ChEMBL

HierVAE 100.00 94.03 99.45
Random 100.00 84.53 28.91
Largest 100.00 93.00 55.09

ChemSpacE 100.00 94.24 56.58

E Molecule Representations

Molecule Graph. A molecule can be presented as a graph X = (V, E , E, F ), where V denotes a set of
N vertices (i.e., atoms), E ⊆ V × V denotes a set of edges (i.e., bonds), F ∈ {0, 1}N×D denotes the node
features (i.e., atom types) and E ∈ {0, 1}N×N×K denotes the edge features (i.e., bond types). The number
of atom types and bond types are denoted by D and K, respectively.

F Molecule Generative Models

In Table 10, we summarize a list of representative molecule generative models, which span various types of
deep generative models, including the type of generative models, the type of generation process and whether
latent space is learned. We also provide the formulation for two types of deep generative models (VAE and
Flow) in Section F that are very popular for molecule generation task.

Table 10: A summary of mainstream molecule generative models.
Prior Work Generative Model Sequential Latent Space
JT-VAE (Jin et al., 2018a) VAE ✓ ✓
CGVAE (Liu et al., 2018) VAE ✓ ✓
MRNN (Popova et al., 2019) RNN ✓
GraphNVP (Madhawa et al., 2019) Flow ✓
GCPN (You et al., 2018a) RL ✓
GraphAF (Shi et al., 2020) Flow ✓
MoFlow (Zang & Wang, 2020) Flow ✓
HierVAE (Jin et al., 2020) VAE ✓ ✓
GraphEBM (Liu et al., 2021) EBM
GraphDF (Luo et al., 2021) Flow ✓
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F.1 Molecule Generative Model Formulation

VAE. gets a lower bound (ELBO) for the data log probability by introducing a proposal distribution.

log p(x) = log
∫

z

p(x|z)p(z)dz

≥ log[Eq(z|x)[p(x|z)] + KL(q(z|x)||p(z))]
(19)

Flow. The key of Flow model is to design a invertible function with the following nice property:

z0 ∼ p0(z0)
zi = fi(zi−1)
zi−1 = f−1

i (zi)

pi(zi) = pi−1(zi−1)
∣∣∣detdf−1

i

dzi

∣∣∣ = pi−1(f−1
i (zi))

∣∣∣detdf−1
i

dzi

∣∣∣,
(20)

where fi is invertible function. To be more concrete, we can take z0 as some tractable noise distribution,
like Gaussian distribution, and repeating this for K steps will lead to the data distribution, i.e.,:

x = zK = fK ◦ fK−1 ◦ ... ◦ f1(z0).

Thus, the log likelihood of the data is as follows:

log p(x) = log pK(zK)

= log pK−1(zK−1) − log
∣∣∣det dfK

dzK−1

∣∣∣
= log pK−2(zK−2) − log

∣∣∣det dfK−1

dzK−2

∣∣∣ − log
∣∣∣det dfK

dzK−1

∣∣∣
= ...

= log p0(z0) −
K∑

i=1
log

∣∣∣det dfi

dzi−1

∣∣∣
(21)

G Study of Molecular Properties

List of Molecular Properties. In total, study 208 molecular properties from the open chemistry
library RDKit2 and 4 important molecular properties including synthesis accessibility and bind-
ing affinity scores from TDC3. They are MaxEStateIndex, MinEStateIndex, MaxAbsEStateIndex,
MinAbsEStateIndex, qed, MolWt, HeavyAtomMolWt, ExactMolWt, NumValenceElectrons, NumRad-
icalElectrons, MaxPartialCharge, MinPartialCharge, MaxAbsPartialCharge, MinAbsPartialCharge,
FpDensityMorgan1, FpDensityMorgan2, FpDensityMorgan3, BCUT2D_MWHI, BCUT2D_MWLOW,
BCUT2D_CHGHI, BCUT2D_CHGLO, BCUT2D_LOGPHI, BCUT2D_LOGPLOW, BCUT2D_MRHI,
BCUT2D_MRLOW, BalabanJ, BertzCT, Chi0, Chi0n, Chi0v, Chi1, Chi1n, Chi1v, Chi2n, Chi2v, Chi3n,
Chi3v, Chi4n, Chi4v, HallKierAlpha, Ipc, Kappa1, Kappa2, Kappa3, LabuteASA, PEOE_VSA1,
PEOE_VSA10, PEOE_VSA11, PEOE_VSA12, PEOE_VSA13, PEOE_VSA14, PEOE_VSA2,
PEOE_VSA3, PEOE_VSA4, PEOE_VSA5, PEOE_VSA6, PEOE_VSA7, PEOE_VSA8, PEOE_VSA9,
SMR_VSA1, SMR_VSA10, SMR_VSA2, SMR_VSA3, SMR_VSA4, SMR_VSA5, SMR_VSA6,
SMR_VSA7, SMR_VSA8, SMR_VSA9, SlogP_VSA1, SlogP_VSA10, SlogP_VSA11, SlogP_VSA12,
SlogP_VSA2, SlogP_VSA3, SlogP_VSA4, SlogP_VSA5, SlogP_VSA6, SlogP_VSA7, SlogP_VSA8,
SlogP_VSA9, TPSA, EState_VSA1, EState_VSA10, EState_VSA11, EState_VSA2, EState_VSA3, ES-
tate_VSA4, EState_VSA5, EState_VSA6, EState_VSA7, EState_VSA8, EState_VSA9, VSA_EState1,

2https://www.rdkit.org/docs/index.html
3https://tdcommons.ai/
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VSA_EState10, VSA_EState2, VSA_EState3, VSA_EState4, VSA_EState5, VSA_EState6,
VSA_EState7, VSA_EState8, VSA_EState9, FractionCSP3, HeavyAtomCount, NHOHCount, NOCount,
NumAliphaticCarbocycles, NumAliphaticHeterocycles, NumAliphaticRings, NumAromaticCarbocycles,
NumAromaticHeterocycles, NumAromaticRings, NumHAcceptors, NumHDonors, NumHeteroatoms,
NumRotatableBonds, NumSaturatedCarbocycles, NumSaturatedHeterocycles, NumSaturatedRings,
RingCount, MolLogP, MolMR, fr_Al_COO, fr_Al_OH, fr_Al_OH_noTert, fr_ArN, fr_Ar_COO,
fr_Ar_N, fr_Ar_NH, fr_Ar_OH, fr_COO, fr_COO2, fr_C_O, fr_C_O_noCOO, fr_C_S, fr_HOCCN,
fr_Imine, fr_NH0, fr_NH1, fr_NH2, fr_N_O, fr_Ndealkylation1, fr_Ndealkylation2, fr_Nhpyrrole,
fr_SH, fr_aldehyde, fr_alkyl_carbamate, fr_alkyl_halide, fr_allylic_oxid, fr_amide, fr_amidine,
fr_aniline, fr_aryl_methyl, fr_azide, fr_azo, fr_barbitur, fr_benzene, fr_benzodiazepine, fr_bicyclic,
fr_diazo, fr_dihydropyridine, fr_epoxide, fr_ester, fr_ether, fr_furan, fr_guanido, fr_halogen, fr_hdrzine,
fr_hdrzone, fr_imidazole, fr_imide, fr_isocyan, fr_isothiocyan, fr_ketone, fr_ketone_Topliss, fr_lactam,
fr_lactone, fr_methoxy, fr_morpholine, fr_nitrile, fr_nitro, fr_nitro_arom, fr_nitro_arom_nonortho,
fr_nitroso, fr_oxazole, fr_oxime, fr_para_hydroxylation, fr_phenol, fr_phenol_noOrthoHbond,
fr_phos_acid, fr_phos_ester, fr_piperdine, fr_piperzine, fr_priamide, fr_prisulfonamd, fr_pyridine,
fr_quatN, fr_sulfide, fr_sulfonamd, fr_sulfone, fr_term_acetylene, fr_tetrazole, fr_thiazole, fr_thiocyan,
fr_thiophene, fr_unbrch_alkane, fr_urea, sa, drd2, jnk3, gsk3b.

However, not all of the molecular properties are varied in the three datasets. Specifically,
QM9 contains 29 frozen molecular properties, NumRadicalElectrons, SMR_VSA8, SlogP_VSA12,
SlogP_VSA7, SlogP_VSA9, EState_VSA11, VSA_EState10, fr_C_S, fr_N_O, fr_SH, fr_azide, fr_azo,
fr_barbitur, fr_benzodiazepine, fr_diazo, fr_hdrzine, fr_hdrzone, fr_isocyan, fr_isothiocyan, fr_nitroso,
fr_phos_acid, fr_phos_ester, fr_prisulfonamd, fr_sulfide, fr_sulfonamd, fr_sulfone, fr_thiazole,
fr_thiocyan, fr_thiophene, ZINC contains 4 frozen molecular properties, NumRadicalElectrons,
SMR_VSA8, SlogP_VSA9, fr_prisulfonamd and ChEMBL contains only 3 frozen molecular properties,
SMR_VSA8, SlogP_VSA9, fr_prisulfonamd.

Inter-correlations of molecular properties. In Fig. 8, we visualize the linear correlations between each
pair of molecular properties across three datasets. From the heatmaps, we can observe that there are no
linear correlations between half of the molecular properties, and similar patterns are observed in ZINC and
ChEMBL datasets.

Figure 8: Inter-correlation heatmaps for studied molecular properties in QM9, ZINC and ChEMBL datasets.

Molecular Property Distributions. We visualize 7 molecular property distributions reported in section 4
in Fig. 9. From there, we can observe that the property distribution may vary a lot in terms of different
datasets. Notably, the distributions of some properties, e.g., QED, are very similar in ZINC and ChEMBL
datasets, while some are quite different, e.g., MolWt.

H Latent Space Evaluation

To evaluate the quality of the learned latent space, we utilize three disentanglement evaluation metrics, disen-
tanglement, completeness and informativeness (Eastwood & Williams, 2018). To be specific, disentanglement
measures the degree to which each latent dimension controls at most one molecular property, completeness
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Figure 9: Property distributions of 7 randomly selected molecular properties on QM9, ZINC and ChEMBL
datasets.

QED MolWt LogP BalabanJ BertzCT CHGHI CHGLO

QM9

ZINC

ChEMBL

measures the degree to which each molecular property is governed by at most one latent dimension, and
informativeness measures the prediction accuracy of molecular properties given the latent representation.
From Table 11, we find MoFlow learns a better and more disentangled latent space than HierVAE. One
possible reason is that MoFlow (369) has a larger latent space than HierVAE (32) since Flow restricts the
latent size to be equal to the input size.

Table 11: Quantitative Evaluation of Disentanglement on Latent Space.
Datasets Models Disentanglement Completeness Informativeness

QM9 MoFlow 0.24 0.57 0.83
HierVAE 0.13 0.27 0.75

ZINC MoFlow 0.40 0.62 0.87
ChEMBL HierVAE 0.14 0.41 0.81
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