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ABSTRACT

Diffusion and flow-based models benefit from simple regression losses, but infer-
ence (i.e, producing samples) incurs significant computational overhead because it
requires integration. Consistency models address this overhead by directly learning
the flow maps along the ODE trajectory, revealing a design space for the learning
problem between one-step and many-step approaches. However, existing consis-
tency training methods feature computational challenges such as requiring model
inverses or backpropagation through iterated model calls, and do not always prove
that the desired ODE flow map is a solution to the loss. We introduce CurlFlow,
an approach for learning flow maps that bypasses explicit invertibility constraints
and expensive differentiation through model iteration. CurlFlow trains a model to
compute both the ODE solutions and the implied velocity from scratch by follow-
ing non-conservative dynamics (i.e., those with curl) with stationary point at the
desired flow map. On the CIFAR image benchmark, CurlFlow attains a favorable
relationship of FID to step count, relative to flow matching, MeanFlow, and several
other flow map learning methods.

1 INTRODUCTION

Diffusion and flow models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020; Kingma
et al., 2021; Albergo and Vanden-Eijnden, 2022; Singhal et al., 2023; Pandey and Mandt, 2023;
Bartosh et al., 2024; Singhal et al., 2024; Albergo et al., 2023; Lipman et al., 2022; Liu et al., 2022)
have improved generation in domains such as proteins (Abramson et al., 2024) and images (Peebles
and Xie, 2023; Esser et al., 2024). Sampling from these models typically requires numerically
integrating an ordinary or stochastic differential equation. Numerical integration requires multiple
forward passes of a neural network, leading to increased sampling latency and cost.

To ameliorate this generation cost by changing the training, recent approaches for consistency
modeling and map matching (Song et al., 2023; Song and Dhariwal, 2023; Kim et al., 2023; Lu and
Song, 2024; Boffi et al., 2024; 2025) aim to learn direct mappings from noise to intermediate or final
data points along trajectories defined by probability flow ODEs, thereby avoiding costly integration.
However, the methods have their respective complexities. For example, flow map matching requires
model invertibility, while consistency models need either to map in one step or introduce extra steps
that leave the target ODE trajectory.

We introduce CurlFlow, an approach that builds on flows and map matching methods and

• Has true flow map as optimum

• Does not require integration for generation

• Does not restrict the class of neural networks used (e.g., to invertible functions)

• Does not require auxiliary losses involving invertibility or adversarial optimization

• Does not require optimizing through nested calls to the model or through products of model
outputs (which lead to large autodifferentiation graphs)

• Allows for generation along the ODE trajectory with any number of steps

Existing methods for learning flow maps fall into a few categories in terms of their challenges; all
challenges relate to the idea that a flow map is characterized by certain derivative properties and
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Methods Multistep Follows ODE Sim. Free Regression Loss Inverse Required Prove Optimum Model Nesting/Product
Consistency Distillation (Song et al., 2023) ✗ ✓ ✗ ✓ ✗ ✓ ✗

Consistency Training (Song et al., 2023) ✗ ✓ ✓ ✓ ✗ ✓ ✗

Consistency Trajectory Models (Kim et al., 2023) ✓ ✓ ✗ ✗ ✗ ✓ ✗

L-FMM (Boffi et al., 2024) ✓ ✓ ✓ ✓ ✓ ✓ ✗

LSD (Boffi et al., 2025) ✓ ✓ ✓ ✓ ✗ ✓ ✓

ESD (Boffi et al., 2025) ✓ ✓ ✓ ✓ ✗ ✓ ✓

PSD (Boffi et al., 2025) ✓ ✓ ✓ ✓ ✗ ✓ ✓

MeanFlow (Geng et al., 2025) ✓ ✓ ✓ ✓ ✗ ✗ ✗

CurlFlow (this work) ✓ ✓ ✓ ✓ ✗ ✓ ✗

Table 1: Comparison to prior works. We categorize consistency modeling (flow map learning)
techniques and our proposed CurlFlow method according to: (1) ability to adjust sampling steps
post-training, (2) whether they follow the PF-ODE (Song et al., 2020), (3) whether they allow
simulation-free training, (4) whether their objectives use regression, (5) whether model inversion is
required during training, (6) whether the true flow map is shown to be optimal or stationary, and (7)
whether differentiation passes through nested model calls or products of evaluations. See Section 5
for details.

that losses minimize squared error to make these properties hold. Flow map matching and related
methods rely on a fundamental relationship between invertible mappings and ordinary differential
equations (ODEs). This relationship typically requires explicitly computing both the forward map
(the model being trained) and its inverse during training, complicating training, and requires explicitly
materializing a large derivative matrix in the forward pass. Other methods, such as MeanFlow (Geng
et al., 2025), do not explicitly enforce the model inverse identities, but also do not prove that their
loss is minimized at the true flow map. Moreover, the only model derivative terms that MeanFlow
uses to enforce the properties of a flow map, are subject to the stopgrad operator, meaning that it is
unclear whether optimization can lead to a function satisfying the flow map derivative properties.

CurlFlow avoids the complexity of tracking a model and its inverse, as well as materializing deriva-
tives, by exploiting an alternate identity involving only Jacobian-vector products (JVPs) without
inverse functions. This identity allows us to formulate the objective purely in terms of the forward
map, without needing explicit access to its inverse. Since solutions to ODEs naturally produce
invertible mappings, the CurlFlow objective implicitly encourages invertibility without explicitly
enforcing it. Thus, at optimality, CurlFlow yields a continuously differentiable function that precisely
integrates the velocity field, directly generating the desired data distribution. We summarize the
trade-offs among recent methods in Table 1 and in Section 5.

Experimentally, we keep things simple. We do not explore any generalizations of classifier-free
guidance (Ho and Salimans, 2022) for conditional sampling in flow maps. We ask, for a basic
training setup using the same common architecture, how do flow matching, MeanFlow, CurlFlow,
Lagrangian Map Matching, Eulerian Map Matching, and Progressive Map Matching compare in
moderate dimensions (CIFAR-10) on unconditional metrics (FID) when decreasing the number of
sampling steps? We additionally compare GPU memory usage for these methods. Finally, we provide
reasoning and numerical evidence that MeanFlow does not preserve the true flow map as an optimum.

2 BACKGROUND

Stochastic interpolants (Lipman et al., 2022; Albergo et al., 2023), and more generally most diffusion
and flow methods, hereafter just flows pose generative modeling as transport of a simple base density
to a target density. Interpolants tackle the problem as follows. For t ∈ [0, 1]:

1. Choose (αt, σt) where α0 = σ1 = 1 and α1 = σ0 = 0. Commonly, αt = 1− t and σt = t.

2. Define Xt = αtX0 + σtX1 for base density X0 ∼ q0 and data X1 ∼ q1 (or vice versa).

3. Learn to produce new samples along the trajectory of densities.

For a function f , let ḟt := d
dtft. Thus Ẋt := α̇tX0 + σ̇tX1. It follows that Xt has density qt

satisfying:

∂tqt(x) = −∇x · (qt(x)v(t, x)), v(t, x) := E[Ẋt | Xt = x], (1)
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where v is called the velocity. The PDE in Equation (1) is derived in the above works and we
provide a self-contained derivation in Section A.1. To accomplish step 3, one starts by making the
observation that a density satisfies Equation (1) if and only if it is the density of the solution to
the probability flow ODE dx = vdt integrated forward from X0 ∼ q0 or in reverse from X1 ∼ q1
(Albergo and Vanden-Eijnden, 2024). One then proceeds by first approximating v using the following
(simulation-free) loss:

Lv(vθ) = E
[
∥vθ(t,Xt)− (α̇tX0 + σ̇tX1)∥2

]
Xt=αtX0+σtX1

, (2)

which has minimizer vθ = v and then solving dx = vθdt.

Background on Consistency Methods. Sampling from flows requires integration where each
integration step evaluates a neural network vθ modeling a score, velocity, or similar. Therefore,
knowing integrals of v or similar quantities directly could, in principle, speed up sampling. The goal
of consistency and map matching methods is to learn to map along the trajectory implied by the
optimal v. We review an example here, with others described in Section 5. Song et al. (2023); Song
and Dhariwal (2023) seek to learn a mapping ĝ that maps interpolant samples Xt ∼ qt to X̂0, the
t = 0 solution to dx = vdt when starting at Xt (note that X̂0 usually differs from the independent
endpoint sample X0 used to draw Xt under the interpolant). The loss measures the distance between
modeled outputs when evaluated at two different nearby points. Let sg[ĝ] indicate stopgrad (i.e.,
bookkeeping a term as a constant when computing loss gradients). Then the loss is:

Consistency(ĝ) := Eq(Xt)[dist(ĝ(t,Xt), sg[ĝ](t−∆t, X̂t−∆t))]. (3)

The sample X̂t−∆t used in the target should optimally come from integrating the true velocity or an
approximation vθ a small step ∆t from Xt, where vθ either comes from a pretrained diffusion model,
or (vθ, ĝ) are derived from one another. In practice, further approximations are used to compute
xt−∆t. Approximations are introduced because X̂t−∆t is not simply defined by drawing a second
interpolant sample at a smaller noise level, but instead corresponds to integrating the velocity one
step from Xt; the velocity is unknown and thus may come from a pre-trained model, which increases
training cost and may not be a good approximation in the first place.

It is challenging to directly learn solutions in just one step. While this allows multistep sampling, the
re-noising step necessarily takes the trajectory off the probability-flow ODE and the resulting updates
no longer correspond to integrating the PF-ODE solution. Highlighting the issue with methods
featuring 1 time argument, Kim et al. (2023) note that this CM multistep sampling approach “exhibits
degrading sample quality with increasing NFE, lacking a clear trade-off between computational
budget (NFE) and sample fidelity". In practice, a number of training-time or inference-time changes
are made to this setup to try to break apart the problem into somewhere between 1 step and the
hundreds of steps used by diffusions (Song et al., 2023; Lu and Song, 2024; Kim et al., 2023; Boffi
et al., 2024; 2025; Sabour et al., 2025; Geng et al., 2025; Zhou et al., 2025). We discuss the various
solutions and their trade-offs in Section 5.

3 METHOD

We present CurlFlow, a method for learning to solve the probability flow ODE without adversarial
training, without model inverse during training, without representing explicit derivative matrices,
without costly simulations from pretrained models, and without adversarial training. CurlFlow trains
a model to compute both the ODE solutions and the implied velocity from scratch by following
non-conservative dynamics .

Consider a two-time map f that for t ≤ u brings Xt up to xu by solving the probability flow ODE
dx = vdt. Such an f that integrates v can be defined as follows:

f(t, u, x) = x+

∫ u

t

v(s,Xs)ds = x+

∫ u

t

v(s, f(t, s, x))ds (4)

Differentiating the recursive form on the RHS w.r.t. t using the total derivative (see ??) yields:

∂tf + (∂xf)v(t, x) = 0, f(u, u, x) = x (5)

3
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This is uniquely solved at the true flow map f . We can square the LHS for a parameterized fθ and
take an expectation over Xt

L = EXt [∥∂tfθ + (∂xfθ)E[Ẋt|Xt]∥2] (6)

The true map f is the unique minimizer of this loss. Using v(t, x) = E[Ẋt|Xt], we can expand,

L = EXt

[
∥∂tfθ + (∂xfθ)Ẋt∥2 − ∥(∂xfθ)

(
Ẋt − E[Ẋt|Xt]

)
∥2
]

(7)

We can then use the parameterization fθ = x+ (u− t)f̃θ(t, u, x) for an underlying model f̃θ. The
parameterization yields two useful properties:

• time derivative: ∂tfθ(t, t, x) = −f̃θ(t, t, x)

• Jacobian: ∂xfθ(t, t, x) = I

Using these properties and evaluating at t = u, we see that the minimization of eq. (7) reduces flow
matching where f̃θ(t, t, x) is trained to match the velocity:

L
∣∣∣
t=u

= EXt
[∥f̃θ(t, t, x)− Ẋt∥2], (8)

which reveals that for the true f , we have that

−∂tf(t, t, ·) = f̃(t, t, ·) = v(t, x) = E[Ẋt|Xt = x] (9)

This motivates replacing the unknown v in eq. (7) with stopgrad[f̃θ(t, t, ·)]. The stopgrad is used
under the principle that because the original v did not provide gradient updates for f , so neither
should a term that approximates it. The CurlFlow method follows the negative gradient with respect
to θ of:

Lsg := E
[
∥(∂tfθ)(t,u,Xt) + (∂xfθ)(t,u,Xt)Ẋt∥2 − ∥(∂xfθ)(t,u,Xt)(Ẋt − sg[f̃θ](t,t,Xt))∥

2
]
, (10)

where sg() means stopgrad() and fθ(t, u, x) := x + (u − t)f̃θ(t, u, x). The expectation is taken
over Xt sampled by drawing data X1, noise X0, and computing Xt = αtX0 + σtX1 and Ẋt =
α̇tX0 + σ̇tX1.

In practice, the PDE must hold for all pairs t ≤ u, Let q(t, u) be a joint distribution with support over
t ≤ u and with positive probability on t = u. Take expectations over time and define L = Eq(t,u)[L]
and Lsg = Eq(t,u)[Lsg]. We now connect L and Lsg formally. Theorem 1 shows that optimization of
L and Lsg stop at the same solutions.

Theorem 1. Let q(t, u) be a joint distribution with support over t ≤ u and with positive probability
on t = u. Let the family F̃ include functions f̃ that are continuously differentiable in all arguments.
Let Xt = αtX0 + σtX1 and Ẋt = αtX0 + σtX1. Evaluate f at f(t, u, x) + (u − t)f̃(t, u, x).
Take expectations over q(X0)q(X1). Let sg stand for stop-gradient. Define L = Eq(t,u)[L] and
Lsg = Eq(t,u)[Lsg]. Then f̃∗ is a stationary point of Lsg w.r.t. F̃ if and only if f̃∗ is a stationary point
of L w.r.t. F̃ .

This is shown in Section B.5.

Intuition. The main point of the theorem is to establish that Lsg has the same set of solutions as
L despite not having access to v. The intuition is that, despite the stopgrad, when t = u, Lsg tries
to match the velocity. We show that Lsg is not at a stationary point when this velocity estimate is
inaccurate, so the optimization continues moving and does not become stuck at functions that distill
an incorrect velocity. As this match improves so does the match between the parameter updates from
Lsg and L at t ̸= u. The main reason this works is that f̃(t, t, ·) appears in other terms outside of the
stopgrad, and those terms tell it where to go. This is crucial and not all stopgrad optimizations benefit
from this property.
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Figure 1: Minimizers of MeanFlow. We compute the loss surface of the corrected loss (what
MeanFlow starts with before replacing v) and show that MeanFlow (using Ẋt instead of v) does not
have its optimum at the true data-generating parameters for a 2D Gaussian example.

Computation. Both terms in Lsg can be computed as expected squared norms of Jacobian-vector
products (JVPs), which use forward-mode autodifferentiation to avoid explicitly materializing Jaco-
bians, saving memory. Using PyTorch notation,

JVP[f, (t, u, x), (a, b, c)] := (∂tf) · a+ (∂uf) · b+ (∂xf) · c

for (∂tf, ∂uf, ∂xf) evaluated at (t, u, x). For the first loss term, a = 1, b = 0 and c = Ẋt and for
the second loss term, a = 0, b = 0, and c = Ẋt + sg[∂tf(t, t,Xt)] = Ẋt − sg[f̃(t, t,Xt)]. Though
we have two distinct JVPs, we can split the batch and randomly assign either pair of (a, c) values to
each batch element.

Nongradient Flow Following the update rules of Lsg does not correspond to following the gradients
of any one scalar objective J (section C.1). This is because the optimization dynamics are in general
non-conservative. The stopgrad structure breaks the symmetry required for the updates to be the
gradient of a single scalar function. In this sense, CurlFlow is formally a (two-player) game rather
than standard gradient descent on one potential function, albeit a trivial one where the main player
controls all parameters except those in the stopgrad, and the stopgrad player keeps a virtual copy
of the parameters that simply equal the first players parameters. Put another way, the optimization
dynamics if taken in the limit of small step size correspond to non-conservative / non-gradient vector
flow.

4 EXPERIMENTS

4.1 MULTIVARIATE GAUSSIAN AND WRONG MEANFLOW OPTIMUM

To motivate CurlFlow, we first study a simple 2D Gaussian experiment that shows what can go wrong
in flow map learning methods. The losses that are derivable from PDEs such as ∂tf + (∂xf) · v = 0,
depend on the velocity v(t, x). Because v is unknown apriori, some methods work with pretrained
velocity models (Sabour et al., 2025; Boffi et al., 2025). For from-scratch methods, the velocity
must be replaced, somehow. MeanFlow (Geng et al., 2025) is trained with JVPs like CurlFlow, but
replaces v with Ẋt. Crucially, this swap implicitly drops a Trace Covariance Jacobian term (which is
tracked in the above CurlFlow derivation), no longer preserving the true flow map as the minimizer

5
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of the loss. That is, the MeanFlow loss using v does not differ from the loss using Ẋt only by a
model-independent constant.

The data X1 ∼ N (µ1,Σ1) are generated with parameters θ ∈ R and λ ∈ [0, 1] via

µ1 = θ · [1, 1], Σ1 = λΣa + (1− λ)Σb (11)

where

Σa :=

(
1.0 −0.3
−0.3 1.5

)
, Σb :=

(
1.0 0.0
0.0 1.0

)
, Σ1 = λΣa + (1− λ)Σb (12)

Over a grid of (θ, λ) values that includes the true parameters (θ = 5.0, λ = 0.5), we compute two loss
functions: the MeanFlow loss, and a corrected loss that instead uses the exact velocity (available in
closed form for Gaussians, though generally unknown in practice). The corrected loss is thus equal to
L in Theorem 1. In Figure 1, we visualize the corrected loss surface together with the true parameter
point and the minimizers of both objectives. The results show that while MeanFlow correctly recovers
the mean parameter θ, it fails to identify the correct covariance parameter λ. Specifically, MeanFlow
sets λ = 0 which chooses Σ1(λ) = Σb where Σb is diagonal while Σa features correlation.

CurlFlow deals differently with the unknown velocity, instead substituting it with the flow map
model’s implied velocity, while also making sure that another loss term trains this implied velocity
with a flow matching loss (see Theorem 1). When the velocity is trained enough, the CurlFlow loss
becomes equal to this corrected loss.

4.2 IMAGE MODELING ON CIFAR-10
Architecture. We modify the existing diffusion U-Net from Dhariwal and Nichol (2021) by
embedding both t and u with the usual Fourier embeddings and then concatenate on input to small
MLP that maps the two times to a hidden representation for use in the network. We use 128 channels
and channel multipliers set to (1,2,2,2) with attention set to (False, False, True, False).

Training Settings. We use dropout 0.1. We do not condition on the class label We use αt = 1− t
and σt = t, with noise at X0 and data at X1. We train for 200,000 steps at learning rate 2e-4.

Losses. We train with Flow Matching (Lipman et al., 2022), MeanFlow (Geng et al., 2025), and
the proposed CurlFlow method (Equation (10)). Beyond the swap of v with Ẋt, MeanFlow also
StopGrad’s all model derivatives in the loss to avoid backpropogation through differentiation. We
also train with three losses proposed in (Boffi et al., 2025): the Lagrangian loss, Eulerian loss, and
Progressive loss. These latter three losses are derived under similar principles as CurlFlow and are
discussed in Section 5.

Method 10 steps 50 steps 100 steps theory

Flow Matching 24.87 3.53 3.05 yes
Lagrange 248.76 230.43 221.22 yes
Euler 77.19 66.99 38.95 yes
Progressive 337.36 235.20 206.18 yes
Meanflow 37.32 4.54 4.23 no
CurlFlow 12.26 2.88 2.81 yes

Table 2: FID scores versus sampling steps on CIFAR-10 computed from 50,000 EMA samples after
200,000 training steps. The “theory" column means whether the stationary points of the optimization
have been proven to exist if and only if the function is the flow map that integrates the ODE.

Results. We report the Frechet Inception Distance (FID) (Heusel et al., 2017) in Table 2. We
find that CurlFlow produces better FID than MeanFlow at each choice of sampling steps for the
given (rather common for CIFAR) training configuration. The Lagrangian, Euler, and Progressive
losses seem not to train well with the standard hyperparameters; Boffi et al. (2025) make remarks
after presenting the losses that StopGrad may be used for some of the featured nested-model or
product-of-model terms to stabilize training for certain datasets, and seem to benefit from additional
adaptive loss reweighting, which are not explored in this work.
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4.3 MEMORY USAGE

In the last column of Table 1, we note whether a method requires differentiation through an iterated
model call or a product of model evaluations. As discussed in Section 5, for a flow map model fθ =
x+ (u− t)f̃θ, the Lagrangian loss involves a nested evaluation f̃θ(u, u, fθ(t, u, x)), with a similar
nesting for the Progressive loss. The Eulerian loss requires computing ∇xfθ(t, u, x) f̃θ(t, t,Xt),
which entails a product-rule expansion. Here we empirically compare the peak GPU memory usage
during the backward pass for different losses, holding the architecture and data size fixed (the U-Net
with a batch of CIFAR images).

Flow Matching MeanFlow CurlFlow Lagrange Euler Progressive
16.8 Gb 14.2 Gb 43.2 Gb 69.8 Gb 69.8b G 54.3 Gb

Table 3: Peak GPU memory usage during backward pass (in Gb). Values reflect the maximum
allocated memory measured across the training step’s backward pass (i.e., during gradient computa-
tion). CurlFlow strikes a balance in GPU memory usage, preserves the true flow map as an optimum,
and optimizes through all model derivatives without detaching.

Results. We demonstrate the peak GPU memory usage during backward pass in Table 3. As
expected, the Lagrange, Euler, and Progressive losses are the most memory-intensive, reflecting
the need to backpropagate through nested model evaluations or product-rule terms. On the other
end, MeanFlow, which computes Jacobian–vector products but detaches the full JVP, has the lowest
memory usage, but this detachment may limit its ability to fully optimize toward satisfying the
derivative conditions. As discussed, MeanFlow also does not preserve the true flow map as an
optimum in theory (though it may empirically demonstrate good performance for certain datasets).
CurlFlow falls between thesee extremes, striking a balance between memory usage, preserving the
optimum, and benefiting from optimizing through the model derivatives in the loss.

5 RELATED WORK

Sampling from continuous-time generative models such as diffusion and flow models requires
numerical integration. Each integration step requires a forward pass of a neural network, leading
to computational costs and slow sampling. Current approaches to address this cost can be broadly
categorized into two types (1) distilling a pretrained diffusion or flow model into a few-step solver
(Salimans and Ho, 2022; Kim et al., 2023; Liu et al., 2023), and (2) learning a few-step solver (Zhou
et al., 2025). Some approaches in this area allow for distillation as well as training from scratch (Song
et al., 2023; Boffi et al., 2024; Boffi and Vanden-Eijnden, 2023).

Consistency Models (CMs) (Song et al., 2023; Song and Dhariwal, 2023; Lu and Song, 2024) learn a
one-step map from noise to data, either by distilling a pretrained model or by learning from scratch.
Distillation requires sampling trajectories from the teacher model. To allow for more steps after either
training approach, CMs iteratively re-noise the one-step solution back to successively smaller time
under the interpolant and then denoise, but this can take the solver off the probability flow.

Consistency trajectory models (CTMs) (Kim et al., 2023) extend CMs to learn two-time maps
using a combination of consistency and adversarial objectives, which requires training an additional
discriminator model (Goodfellow et al., 2014). CTM and Gameflow both target the same mathematical
object, the probability–flow ODE flow map (i.e., the integral of the ODE), but they learn this map
through different means. CTM learns the map by distilling a teacher solver, and the losses for teacher
and student involve several nested model evaluations (with data at x0, for 0 ≤ s ≤ u ≤ t ≤ 1, the
teacher integrates from t to u, then jumps from u to s, then from s to 0; and the student jumps from
t to s and then to 0). The objective depends on a chosen feature-space distance and, in practice,
includes DSM and GAN terms that further influence the optimum. Consequently, the CTM loss is
sensitive to the quality of the ODE discretization used by the teacher (in practice CTM finds the need
to use a 2nd order solver during training) and necessitates the presence of the GAN. GANs can, in
principle, be used to augment any generative model or even solve the problem itself. In an idealized
limit with perfect teacher solves of the velocity field, unlimited model capacity, perfect min–max
optimization, no auxiliary GAN loss, annd no optimization issues due to stopgrad, the true flow
map is a solution of the CTM objective because the student matches the teacher everywhere, which

7
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matches the ODE. CTM, however, does not show that this solution is unique or that its stationary
points during optimization coincide with those of the underlying PDE. CurlFlow learns a two-time
map from scratch directly from the flow map PDE, uses neither discriminators nor pretrained models
and proves that the stop-gradient optimization has stationary points if and only if the model equals
the true flow map.

Inductive Moment Matching (IMM) (Zhou et al., 2025) learns a few-step model via an implicit
generative model trained with MMD (Smola et al., 2006; Gretton et al., 2012), with the MMD
which is estimated biasedly within subsets of data. In practice, the authors must use time-weighting
schedules and specific curriculum/inductive procedure to stabilize optimization. While IMM produces
high quality image samples, solves the problem of marginally sampling the data distribution rather
than sampling along a probability flow, where the latter is the task studied in this work.

MeanFlow (Geng et al., 2025) derives a JVP-based objective for flow maps. They train f̃ to bring xu

down to Xt via the parameterization fθ = x+ (u− t)f̃θ, and train f̃ via the following loss:

Lmeanflow
t,u := E[∥f̃θ(t, u,Xt)− ẋu + (u− t)(sg[∂xf̃θ](t,u,Xt) · ẋu + sg[∂uf̃θ](t,u,Xt))∥

2]. (13)
Applying the stopgrad sg to all model derivatives improves efficiency, but there are no differentiated
loss terms that encourage the model derivatives ∂tf̂ and ∂xf̂ to move toward the true flow map
derivatives. This contrasts CurlFlow where sg[f̃θ(t, t, x)] is used in place of E[Ẋt|Xt], but where
another term in the loss trains these two quantities to match. Finally, and importantly, between
equations (10, 11) in Geng et al. (2025), v is replaced with Ẋt where it appears quadratically, thereby
pulling an expectation through a square and missing a resulting trace covariance term. This does not
preserve the true flow map as an optimum (this is mentioned as well in Boffi et al. (2025)).

Flow Map Matching (Boffi et al., 2024) learns a two-time flow map. This allows for mapping
along the probability flow in either direction, without adversarial training. Their Lagrangian Flow
Map Matching loss requires only time derivatives, but an additional invertibility loss encouraging
invertibility via time-swapping so that f̂(t, u, f̂(u, t, x)) ≈ x. While straightforward to compute,
gradient steps require evaluating the model and its inverse at each step of training.

Boffi et al. (2025) build on Boffi et al. (2024) and optimize velocity matching along with one of the
three following losses. For the parameterization fθ := x+ (u− t)f̃θ, the first one is:

LSD : Llagrange
t,u := E[∥∂ufθ(t, u,Xt)− f̃θ(u, u, fθ(t, u,Xt))∥2]

LSD comes from condition that ∂tf(t, u, x) = v(u, xu) = v(u, f(t, u,Xt)) uses ∂tf(t, t, ·) =

−v(t, ·) =⇒ f̃(t, t, ·) = v(t, ·). It is a variant of the Lagrangian loss from Boffi et al. (2024). The
next is:

ESD : Leuler
t,u := E[∥∂tfθ(t, u,Xt) +∇xfθ(t, u,Xt)f̃θ(t, t,Xt)∥2].

ESD comes from condition ∂tf(t, u, x) +∇xf(t, t, x)v(t, x) = 0 where in the loss, v is replaced
with f̃(t, t, x). The last one, for an intermediate time m, is:

PSD : Lprogress
t,u := E[∥fθ(t, u,Xt)− fθ(m,u, fθ(t,m,Xt))|∥2]

PSD comes from the composition property: f(t, u, x) = f(m,u, f(t,m, x)) for m ∈ (t, u).
CurlFlow, LSD, ESD, and PSD all aim to enforce a similar set of flow map properties. Llagrange and
Lprogress must optimize through nested model evaluations, doubling the computational graph for back-
prop. Leuler optimizes through ∇xfθ · f̃θ, which causes reverse-mode autodifferentiation to invoke
the full product rule term, ∇θ[∇xfθ · f̃θ] = [∇θ∇xfθ] · f̃θ + [∇xfθ] · ∇θf̃θ; In contrast, CurlFlow’s
stopgrad operation means that the second product rule term is not featured in the computational graph,
saving memory and compute. But, unlike MeanFlow, the term that is subject to stopgrad receives
supervision from elsewhere in the loss.

Distillation methods. A complementary line of work approaches flow map learning by distilling the
outputs of pretrained flow matching velocity models into few-step solvers. Specifically the unknown
v() in the flow map identities is taken to be a pretrained network. By contrast, we emphasize training
from scratch, avoiding dependence on a teacher model and ensuring that all components of the flow
map are learned end-to-end. That said, distillation can be attractive in practice when a pretrained
model is already trusted (when vθ corresponds to the endpoint distributions and the chosen αt and
σt, or when the objective is weaker—for example, to marginally sample from the approximated data
distribution without explicitly solving the probability flow ODE).
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6 DISCUSSION AND LIMITATIONS

Identifying functions through PDEs Given a PDE solved by a sought-after mapping f ,
featuring a combination terms such as ∂tf, ∂xf, v that should be set to 0, which terms should
be parameterized by the model and which should be approximated as part of a ground-truth loss
target? If the equations can be rewritten in several ways, which yield easier or more challenging
objectives? Answering this is applicable to improving training objectives for generative models as
well as more generally solving PDEs with machine learning.

Invertibility The loss targets an invertible function at optimum. To simplify training, we explicitly
give up knowing the inverse, meaning that we only learn maps in one direction. Luckily, this is the
usual scenario for generative modeling. For likelihoods, one can still substitute −∂tf̂ for vθ in the
probability flow ODE (Song et al., 2021; Boffi and Vanden-Eijnden, 2023). Thus this method can be
seen from the perspective of training a normalizing flow (Tabak and Vanden-Eijnden, 2010; Tabak
and Turner, 2013; Rezende and Mohamed, 2015; Papamakarios et al., 2021) without requiring the
invertible architecture or inverse-dependent loss.

Architectures. CurlFlow, Flow Map Matching, Simplified Consistency Models, and MeanFlow all
specify models whose time-derivative equal the target of diffusion model training, but directly adapt
architectures meant for diffusion models themselves. Example architectures used in these works are
the UNet from Dhariwal and Nichol (2021), the diffusion transformer from Peebles and Xie (2023);
Ma et al. (2024), and the EDM architecture from Karras et al. (2022; 2024). These architectures may
thus be suboptimal for the problem at hand, precisely because the target of interest is defined as a
function often computed in many diffusion model forward passes (an integral). In this work, compute
limitations did not allow for the thorough exploration of architectures, but the authors believe that
rethinking architectures is a convincing direction to improve the quality and training-efficiency of
learned flow maps.

Reproducability Statement. We will be glad to open source the complete code during or after
review of the manuscript. For the proofs in the appendix, we have made a genuine attempt to be
thorough and pedagogical.
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A BACKGROUND

A.1 CONTINUITY EQUATION AND DERIVATION OF EXPRESSION FOR VELOCITY

Theorem 2 (Continuity Equation for Interpolants). Let x0 ∼ q0 and x1 ∼ q1. Let xt = αtx0 + σtx1

for α0 = σ1 = 1 and α1 = σ0 = 0. Let α̇t and σ̇t denote d
dtαt and d

dtσt, respectively. Then xt ∼ qt
where qt satisfies

∂tqt(x) = −∇x · (qt(x)v(t, x)), v(t, x) := E[α̇tx0 + σ̇tx1 | xt = x] (14)

Proof. In this derivation, we use * for scalar-vector multiplication and · for dot product. In the
following, x ∈ Rd and we write some functions evaluated at an arbitrary frequency k ∈ Rd. We
derive “Fourier transform of time derivative of density equals Fourier transform of something" and
then invert the Fourier on both sides.

Let F [f ](k) :=
∫
exp(ik · x)f(x)dx. Then, for any density p(x) we have

F [p](k) = E[exp(ik · x)] (15)

Let us reveal xt as a function xt(x0, x1) so that v(x, t) = E[ẋt(x0, x1)|xt = x]. Then,

∂tF [qt(xt)](k) = ∂t E
[
eik·xt

]
(16)

= ∂t

∫
x0

∫
x1

eik·xt(x0,x1)dq(x0, x1) (17)

=

∫
x0

∫
x1

∂te
ik·xt(x0,x1)dq(x0, x1) (18)[

∂te
ik·xt(x0,x1) = ik ·

(
eik·xt(x0,x1)ẋt

)]
(19)

= ik ·
∫
x0

∫
x1

(
eik·xt(x0,x1)ẋt(x0, x1)

)
dq(x0, x1) (20)

= ik ·
∫
x0

∫
x1

(
eik·xt(x0,x1)ẋt(x0, x1)

)
dq(x0, x1) (21)

= ik · E
q(xt)

E
q(x1,x0|xt)

[
eik·xt ẋt(x0, x1)

]
(22)

= ik · E
q(xt)

[
eik·xt E[ẋt(x0, x1)|xt]

]
(23)

= ik · E
q(xt)

[
eik·xtv(xt, t)

]
(24)

= ik ·
∫ [

eik·xv(x, t)
]
qt(x)dx (25)[

integration by parts, boundary
∫

qtdS = 0 for normalized densities

]
(26)

=

∫ (
v(x, t)qt(x)

)
·
(
∇xe

ik·x
)
dx (27)

= −
∫

eik·x ∗ ∇ · (v ∗ qt)dx (28)

= −F [∇ · (v ∗ qt)](k) (29)

We thus have

∂tF [qt](k) = −F [∇ · (vqt)](k) (30)

But, for the same LHS we can suppress xt’s dependence on (t, x0, x1) and instead use its marginal
distribution:

∂tF [qt](k) = ∂t

(∫
eik·xqt(x)dx

)
=

∫
eik·x

(
∂tqt(x)

)
dx = F [∂tpt](k) (31)
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Putting the two right hand sides next to each other:

F [∂tqt](k) = −F [∇ · (vqt)](k) (32)

Taking an inverse Fourier transform,

∂tqt = −∇ · (vqt) (33)

This establishes the expression for ∂tqt and the expression for v.
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A.2 REPLACING VELOCITY WITH INTERPOLANT TIME DERIVATIVE IN SQUARED ERROR
LOSSES

In diffusions, flow matching, and in this setting, we deal with objectives of the form

min
θ

Eq(xt)

[
∥mθ(t, xt)− v(t, xt)∥2,

]
(34)

where xt ∼ qt is drawn by the interpolant xt = αtx0 + σtx1, v is the velocity v(t, x) = E[α̇tx0 +
σ̇tx1], and mθ is some model (or its derivative, etc) evaluated at (t, xt). Here we show the common
set of steps to replace the intractable v in the loss but preserve the right minimizer for mθ, which we
use in our loss derivations.

Eq(xt)

[
∥mθ(t, xt)− E[α̇tx0 + σ̇tx1|xt = x]∥2

]
(35)

= Eq(xt)

[
∥mθ(t, xt)∥2 + ∥E[α̇tx0 + σ̇tx1|xt = x]∥2 − 2mθ(t, xt)

⊤E[α̇tx0 + σ̇tx1|xt = x]

]
(36)

= Eq(xt)

[
∥mθ(t, xt)∥2 + E[∥α̇tx0 + σ̇tx1∥2 | xt = x] (37)

−
∑
j

Var([α̇tx0 + σ̇tx1]j | xt = x])︸ ︷︷ ︸
=:constant C

−2mθ(t, xt)
⊤E[α̇tx0 + σ̇tx1|xt = x]

]
(38)

= Eq(xt)q(x0,x1|xt)

[
∥mθ(t, xt)∥2 + ∥α̇tx0 + σ̇tx1∥2 − 2mθ(t, xt)

⊤
(
α̇tx0 + σ̇tx1

)]
+ C (39)

= Eq(xt)q(x0,x1|xt)

[
∥mθ(t, xt)− (α̇tx0 + σ̇tx1)∥2

]
+ C (40)

= Eq(x0,x1,xt)

[
∥mθ(t, xt)− (α̇tx0 + σ̇tx1)∥2

]
+ C (41)

= Eq(x0)q(x1)

[
∥mθ(t, xt)− (α̇tx0 + σ̇tx1)∥2

]
xt=αtx0+σtx1

+ C (42)

Dropping the constant preserves the minimizer:

min
θ

Eq(x0)q(x1)

[
∥mθ(t, xt)− (α̇tx0 + σ̇tx1)∥2

]
xt=αtx0+σtx1

(43)
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B PROOFS FOR STATIONARY POINTS

B.1 FIRST VARIATION DEFINITIONS

We consider scalar-valued loss functions L : F → R that map a function f ∈ F to a real value.

Define the tangent space Tf (F) at f . This space contains functions h ∈ Tf (F) such that there exists a
curve indexed by scalar ϵ such that for each ϵ, fϵ ∈ F , and we have that f0 = f and ( d

dϵfϵ)|ϵ=0 = h.

The first variation δL of such a functional L evaluated at f ∈ F in direction h ∈ Tf (F) is defined as:

δL[f ;h] :=
( d

dϵ
L[f + ϵh]

)
ϵ=0

(44)

We then have that f∗ is a stationary point w.r.t. F if δ[f ;h] = 0 for all h ∈ Tf (F).

B.2 STOPGRAD FOR FUNCTIONALS

We define the stopgrad symbol sg for a functional as follows. Let O be a functional that maps two
functions f, g to a real value. Let L[f ] be a functional that is written in terms of O with symbol sg as
L[f ] := O[f, sg[f ]], then we evaluate the following two quantities as follows

L[f ] = O[f, f ] (45)
δL[f ;h] = δO[f, f ;h, 0] (46)

That is, the functional evaluates as usual but in a first variation, we do not perturb terms in sg. This
corresponds to the stopgrad or detach() operation used in machine learning code with autodifferentia-
tion.
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B.3 FIRST VARIATION OF ORIGINAL LOSS FUNCTIONAL

Our functional L[f̃ ] acts on functions f̃ . According to the definitions in Section B.1, we need to
compute δL[f̃ ;h] = ( d

dϵL[f̃ + ϵh])ϵ=0. The functional is:

T1[f̃ ] : = ∥∥(∂tf)(t,u,xt) + (∂xf)(t,u,xt)ẋt∥2f=x+(u−t)f̃

T2[f̃ ] : = ∥(∂xf)(t,u,xt)(ẋt − E[ẋt|xt])∥2f=x+(u−t)f̃

A[f̃ ] = T1[f̃ ]− T2[f̃ ]

L[f̃ ] = Eq(t,u),q(x0),q(x1)

[
A[f̃ ]

]
Lets define the path fϵ by replacing f̃ with f̃ϵ := f̃ + ϵh. Then:

fϵ := x+ (u− t)f̃ϵ = x+ (u− t)(f̃ + ϵh) = x+ (u− t)f̃ + ϵ(u− t)h (47)

Then
d

dϵ
L[f̃ + ϵh] = E

[ d

dϵ
A[f̃ϵ]

]
= E

[ d

dϵ
T1[f̃ + ϵh]− d

dϵ
T2[f̃ + ϵh]

]
(48)

We first compute this derivative and then evaluate it at ϵ = 0.

So

∂tfϵ = ∂t

[
x+ (u− t)f̃ + ϵ(u− t)h

]
(49)

= ∂tx+ ∂t

[
(u− t)f̃

]
+ ϵ∂t

[
(u− t)h

]
(50)

= (u− t)∂tf̃ − f̃ + ϵ
(
(u− t)∂th− h

)
(51)

= (u− t)(∂tf̃ + ϵ∂th)− (f̃ + ϵh) (52)

and

∂xfϵ = ∂x

[
x+ (u− t)f̃ + ϵ(u− t)h

]
= I + (u− t)∂x(f̃ + ϵh) (53)

and
d

dϵ
∂tfϵ =

d

dϵ

[
(u− t)(∂tf̃ + ϵ∂th)− (f̃ + ϵh)

]
(54)

=
d

dϵ

[
(u− t)∂tf̃ + ϵ(u− t)∂th− f̃ − ϵh

]
(55)

=
d

dϵ

[
ϵ(u− t)∂th− ϵh

]
(56)

= (u− t)∂th− h (57)

and
d

dϵ
∂xfϵ =

d

dϵ

[
I + (u− t)∂x(f̃ + ϵh)

]
(58)

=
d

dϵ
I +

d

dϵ
(u− t)∂xf̃ +

d

dϵ
(u− t)∂xϵh (59)

= (u− t)∂xh (60)

For the first term,

T1[f̃ + ϵh] = ∥∂tfϵ + (∂xfϵ)ẋt∥2

Differentiating

d

dϵ
T1[f̃ + ϵh] = 2

(
∂tfϵ + (∂xfϵ)ẋt

)⊤ d

dϵ

(
∂tfϵ + (∂xfϵ)ẋt

)
(61)

= 2
(
∂tfϵ + (∂xfϵ)ẋt

)⊤(
(u− t)∂th− h︸ ︷︷ ︸+(u− t)∂xh︸ ︷︷ ︸ ẋt

)
(62)
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= 2
(
(u− t)(∂tf̃ + ϵ∂th)− (f̃ + ϵh)︸ ︷︷ ︸+(I + (u− t)∂x(f̃ + ϵh)︸ ︷︷ ︸)ẋt

)⊤
(63)(

(u− t)∂th− h︸ ︷︷ ︸+(u− t)∂xh︸ ︷︷ ︸ ẋt

)
(64)

So

d

dϵ
T1[f̃ + ϵh]

∣∣∣
ϵ=0

= 2
(
(u− t)(∂tf̃ + ∂xf̃ ẋt)− f̃ + ẋt

)⊤(
(u− t)(∂th+ ∂xhẋt)− h

)
(65)

For the second term,

T2[f̃ + ϵh] = ∥∂xfϵ(ẋt − v)∥2 (66)

and

d

dϵ
T2[f̃ + ϵh] = 2

[
∂xfϵ(ẋt − v)

]⊤ d

dϵ

[
∂xfϵ(ẋt − v)

]
(67)

= 2
[
∂xfϵ(ẋt − v)

]⊤ d

dϵ
(∂xfϵ)(ẋt − v) (68)

= 2
[(

I + (u− t)∂x(f̃ + ϵh)
)
(ẋt − v)

]⊤
(u− t)∂xh(ẋt − v) (69)

So

d

dϵ
T2[f̃ + ϵh]

∣∣∣
ϵ=0

= 2
[(

I + (u− t)∂xf̃
)
(ẋt − v)

]⊤
(u− t)∂xh(ẋt − v) (70)

So combining

d

dϵ
A
∣∣∣
ϵ=0

= 2
(
(u− t)(∂tf̃ + ∂xf̃ ẋt)− f̃ + ẋt

)⊤(
(u− t)(∂th+ ∂xhẋt)− h

)
(71)

− 2
[(

I + (u− t)∂xf̃
)
(ẋt − v)

]⊤
(u− t)∂xh(ẋt − v) (72)

At t = u, this simplifies

1[t = u]
d

dϵ
A[f̃ϵ]

∣∣∣
ϵ=0

= 2(ẋt − f̃)⊤(−h) (73)

which is the first variation for regression that makes f̃ equal to E[ẋt|xt]. Summarizing,

δL[f̃ ;h] = E
[
2
(
(u− t)(∂tf̃ + ∂xf̃ ẋt)− f̃ + ẋt

)⊤(
(u− t)(∂th+ ∂xhẋt)− h

)
(74)

− 2
[(
I + (u− t)∂xf̃

)
(ẋt − v)

]⊤
(u− t)∂xh(ẋt − v)

]
(75)
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B.4 LEMMA: VELOCITY MATCHES AT A STATIONARY POINT OF ORIGINAL FUNCTIONAL

Lemma 1. Let f̃∗ be a stationary point of L. Assume that f̃∗ is bounded. Assume that f̃∗, v ∈
C1 in arguments (t, u, x) and that all expectations of terms featured in the integrand of L (i.e.,
v, f̃ , ∂tf̃ , ∂uf̃ , ∂xf̃ , . . .) are finite. Then we have that f̃∗(t, t, ·) = v(t, ·) where the velocity v(t, x) =
E[ẋt|xt].

Proof. We proceed by contradiction. By the premise, we are at a stationary point f̃∗. Let f∗ :=
x+ (u− t)f̃∗. By the definition of stationary point in section B.1, we have that δL[f̃∗;h] = 0 for all
admissible h. Suppose for the sake of contradiction that at this stationary point, the velocity does not
match, meaning

−∂tf
∗(t, t, ·) = f̃∗(t, t, ·) ̸=︸︷︷︸

suppose for contradiction

v(t, ·) (76)

The proof proceeds by picking a direction for which the first variation is nonzero, providing a
contradiction to being at a stationary point. The contradiction (the direction for which the first
variation is nonzero) is constructed to arise from assuming that the velocity does not match, meaning
that by contradiction the velocity does not match. Specific care is taken to ensure that this direction is
admissible, in this case meaning it is a continuous function.

We name a sequence of functions gη such there exists η∗ such that gη∗ is continuous but yields the
nonzero variation when chosen as a direction. To establish this is existence under continuity, the
dominated convergence theorem is used.

Let us define g(t, u, x) = 1[t = u]
(
f̃∗(t, u, x)− v(t, x)

)
and evaluate it at t = u so that g(t, t, x) =

f̃∗(t, t, x) − v(t, x). We then define the soft indicator Iη(t, u) that goes to 1[t = u] as η → 0 and
define it as:

Iη(t, u) = 1[η > 0]2
(
1− 1

1 + exp(− 1
η2 (t− u)2)

)
+ 1[η = 0]1[t = u] (77)

Using the soft indicator, we define a sequence of functions gη so that as η → 0 we will have pointwise
convergence of gη(t, t, x) → g(t, t, x) which also means that gη(t, u, x) for t ̸= u goes to 0. We pick

gη(t, u, x) = Iη(t, u)
(
f̃∗(t, t, x)− v(t, x)

)
(78)

Pointwise convergence of g in eta. We first establish pointwise convergence of gη to g for all
arguments (t, u, x) as η → 0 from the right.

∀η̂ ≥ 0, lim
η→(η̂)+

gη(t, u, x) = gη̂(t, u, x) (79)

To show this, for any η̂ > 0, use continuity of gη̂(t, u, x) in η̂ (product of function without η times
the soft indicator which is continuous). Then to establish for η̂ = 0 , we consider two cases t = u
and t ̸= u. For equality:

lim
η→0+

gη(t, t, x) (80)

= lim
η→0+

Iη(t, t)
(
f̃∗(t, t, x)− v(t, x)

)
(81)

= lim
η→0+

[
1[η > 0]2

(
1− 1

1 + exp(0)

)
+ 1[η = 0]

](
f̃∗(t, t, x)− v(t, x)

)
(82)

= lim
η→0+

[
1[η > 0]1 + 1[η = 0]

](
f̃∗(t, t, x)− v(t, x)

)
(83)

= lim
η→0+

1[η ≥ 0]
(
f̃∗(t, t, x)− v(t, x)

)
(84)

= f̃∗ − v (85)
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which equals gη=0(t, t, x), establishing continuity. Now for t ̸= u. ∀δ > 0 we must name an η(δ)

such that gη(δ) such that |gη(δ) − g0| < δ i.e. |gη(δ) − 0| < δ . Assume |f̃∗ − v| < k uniformly in all
input values t,x.

lim
η→0+

gη(t, u, x)

= lim
η→0+

[
1[η > 0]2

(
1− 1

1 + exp(− 1
η2 (t− u)2)

)
+ 1[η = 0]1[t = u]

](
f̃∗(t, t, x)− v(t, x)

)
= lim

η→0+

[
1[η > 0]2

(
1− 1

1 + exp(− 1
η2 (t− u)2)

)](
f̃∗(t, t, x)− v(t, x)

)
Since we are finding a δ and η(δ) so that |gη(δ) − 0| < δ which means |gη(δ)| < δ, this just means
we can set δ to an upper bound on the term we are limiting: let the indicator take on 1 as when it is 0
we are done.

δ =
∣∣∣2(1− 1

1 + exp(...)
)
∣∣∣k (86)

⇐⇒ δ

k
= 2(1− 1

1 + exp(− 1
η2 (t− u)2)

) (87)

⇐⇒ δ

2k
= 1− 1

1 + exp(− 1
η2 (t− u)2)

(88)

⇐⇒ 1− δ

2k
=

1

1 + exp(− 1
η2 (t− u)2)

(89)

⇐⇒ 2k

2k
− δ

2k
=

1

1 + exp(− 1
η2 (t− u)2)

(90)

⇐⇒ 2k − δ

2k
=

1

1 + exp(− 1
η2 (t− u)2)

(91)

⇐⇒ 2k

2k − δ
= 1 + exp(− 1

η2
(t− u)2) (92)

⇐⇒ 2k

2k − δ
− 1 = exp(− 1

η2
(t− u)2) (93)

⇐⇒ 2k

2k − δ
− 2k − δ

2k − δ
= exp(− 1

η2
(t− u)2) (94)

⇐⇒ δ

2k − δ
= exp(− 1

η2
(t− u)2) (95)

⇐⇒ log
δ

2k − δ
= − 1

η2
(t− u)2 (96)

⇐⇒ − log
δ

2k − δ
=

1

η2
(t− u)2 (97)

⇐⇒ −
log δ

2k−δ

(t− u)2
=

1

η2
(98)

⇐⇒ − (t− u)2

log δ
2k−δ

= η2 (99)

(100)

Now note that the soft indicator is strictly < 1 and that gη for fixed (t, u, x) is between −k and 0 or 0
and k depending on the sign of f̃∗ − v, but never both. So its magnitude is at most k. So

|gη(δ) − g0| = |gη(δ) − 0| < δ < k (101)

This can help us ascertain that the above square root to solve for η will be well defined:

δ < k =⇒ 2k − δ > k (102)
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=⇒ 1

2k − δ
<

1

k
(103)

=⇒ δ

2k − δ
<

δ

k
(104)

=⇒ δ

2k − δ
< 1 (105)

=⇒ log
δ

2k − δ
< log 1 (106)

=⇒ log
δ

2k − δ
< 0 (107)

meaning

η(δ) =

√
(t− u)2

| log δ
2k−δ |

(108)

thus establishing convergence of gη → g as η → 0+ for each (t, u, x) i.e. pointwise convergence.

Now recall the fist variation of L (section B.3) and consider it as a function of η:

s(η) := δL[f̃∗; gη] = E

[
2
(
(u− t)(∂tf̃

∗)− f̃∗ + (I + (u− t)(∂xf̃
∗))ẋt

)⊤
(109)(

(u− t)∂tgη − gη + (u− t)(∂xgη)ẋt

)
(110)

− 2
[(

I + (u− t)∂xf̃
∗
)
(ẋt − v)

]⊤
(u− t)∂xgη(ẋt − v)

]
(111)

Pointwise convergence of integrand in eta. Collect the variables ω = (t, u, x0, x1) and recall
that xt and ẋt are functions of (x0, x1). Define ϕη(ω) as shorthand for the expectand so that
s(η) = E[ϕη(ω)]. Under the boundedness assumptions and noting that ϕη only polynomially
combines gη with (∂tf̃

∗, ∂uf̃
∗, ∂xf̃

∗, v, ∂xv, . . .), similar reasoning used to show gη → g can also
be used to establish that ϕη → ϕ pointwise.

Establish upper envelope. In addition to pointwise convergence of ϕη → η as η → 0 from the
right, we need an upper envelope G(ω). Beyond the assumptions, the only thing needed to show
that an upper envelope exists is to control the term |(u − t)∂tIη(t, u)|. The derivative of the soft
indicator appears since ∂tgη = ∂t(Iηg) = (∂tIη)g + Iη∂tg. At η = 0 we have Iη(t, u) = 1[t = u],
so (u − t) ∂tIη(t, u) vanishes identically: it is 0 for t ̸= u because I0 is constant, and for t = u
because of the (u− t) prefactor. For η > 0, define:

z :=
(t− u)2

η2
, σ(z) :=

1

1 + exp(−z)
, σ′(z) :=

exp(−z)

[1 + exp(−z)]2
(112)

Note that for η > 0,

∂tIη(t, u) = 2
2(t− u)

η2
σ′(

(t− u)2

η2
) (113)

and so

|(u− t)∂tIη(t, u)| = 2(u− t)
2(u− t)

η2
σ′(

(t− u)2

η2
) = 4zσ′(z) ≤ sup

z≥0
4zσ′(z) ≤ C0 < ∞

(114)

Because r(z) := 4zσ′(z) is continuous and satisfies r(0) = 0 and r(z) → 0 as z → ∞, it attains
a finite maximum. This bound is independent of η. Thus every term containing (u − t)∂tgη is
uniformly bounded in η by a product of a constant (from the bound and Iη ∈ [0, 1)). The other
quantities in ϕ are bounded by assumption. Thus such a bounding envelope G(ω) exists.

Using dominated convergence. First,

lim
η→0+

s(η) = lim
η→0+

E[ϕη] = lim
η→0+

p(t = u)E[ϕη | t = u] + p(t < u)E[ϕη | t < u] (115)
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By the pointwise convergence of ϕη → ϕ as η → 0+ and by the envelope, we can compute the limit
of the first and second terms separately. Expanding the first term (with p = u):

lim
η→0+

p(t = u)E[ϕη | t = u] = lim
η→0+

p(t = u)E

[
2
(
(u− t)(∂tf̃

∗)− f̃∗ + (I + (u− t)(∂xf̃
∗))ẋt

)⊤

(
(u− t)∂tgη − gη + (u− t)(∂xgη)ẋt

)
− 2

[(
I + (u− t)∂xf̃

∗
)
(ẋt − v)

]⊤
(u− t)∂xgη(ẋt − v) | t = u

]

= lim
η→0+

p(t = u)E

[
2
(
− f̃∗ + ẋt

)⊤(
− gη

)
| t = u

]

= lim
η→0+

p(t = u)E

[
2
(
− f̃∗ + E[ẋt |xt]

)⊤(
− gη

)
| t = u

]

= lim
η→0+

p(t = u)E

[
2
(
− f̃∗ + v

)⊤(
− gη

)
| t = u

]

= p(t = u)E

[
lim

η→0+
2
(
− f̃∗ + v

)⊤(
− gη

)
| t = u

]

= p(t = u)E

[
lim

η→0+
2|| − f̃∗ + v||22 | t = u

]
This term is greater than zero by assumption that the velocity does not match at the stationary point
and assumption on the positive probabiity on p(t = u) > 0.

Expanding the second term (with p(t < u)):

lim
η→0+

p(t < u)E[ϕη | t < u] = lim
η→0+

p(t < u)E

[
2
(
(u− t)(∂tf̃

∗)− f̃∗ + (I + (u− t)(∂xf̃
∗))ẋt

)⊤

(
(u− t)∂tgη − gη + (u− t)(∂xgη)ẋt

)
− 2

[(
I + (u− t)∂xf̃

∗
)
(ẋt − v)

]⊤
(u− t)∂xgη(ẋt − v) | t < u

]

= p(t < u)E

[
lim

η→0+
2
(
(u− t)(∂tf̃

∗)− f̃∗ + (I + (u− t)(∂xf̃
∗))ẋt

)⊤

(
(u− t)∂tgη − gη + (u− t)(∂xgη)ẋt

)
− 2

[(
I + (u− t)∂xf̃

∗
)
(ẋt − v)

]⊤
(u− t)∂xgη(ẋt − v) | t < u

]
There’s no η in the first term in each of the two dot products that make up the expectand, so we can
focus on the second term in the dot products, where t < u For the second term in the first dot product:

lim
η→0+

(
(u− t)∂tgη − gη + (u− t)(∂xgη)ẋt

)
= lim

η→0+

(
(u− t)∂tgη − Iη(t, u)

(
f̃∗(t, t, x)− v(t, x)

)
+ (u− t)(Iη(t, u)∂x[

(
f̃∗(t, t, x)− v(t, x)

)
])ẋt

)
= lim

η→0+
(u− t)∂tgη

= lim
η→0+

(u− t)∂t[Iη(t, u)
(
f̃∗(t, t, x)− v(t, x)

)
]

= lim
η→0+

(u− t)(∂tIη)g + Iη∂tg
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= lim
η→0+

(u− t)(∂tIη)Iη(t, u)
(
f̃∗(t, t, x)− v(t, x)

)
=

(
f̃∗(t, t, x)− v(t, x)

)
(u− t) lim

η→0+
(∂tIη)Iη(t, u) = 0

The last equality holds because the function and its time derivative both go to zero.

This means the first product in the expecation goes to zero. By a similar argument the second term
goes to zero as well.

Putting it all together

L := lim
η→0+

s(η) = lim
η→0+

E[ϕη] = lim
η→0+

p(t = u)E[ϕη | t = u] + p(t < u)E[ϕη | t < u] > 0

Resultingly,

∃η0 > 0 s.t. ∀η∗ s.t. 0 < η∗ < η0 =⇒ |s(η∗)− L| < ϵ (116)

If we pick ϵ = 0.5L then

|s(η∗)− L| < .5L =⇒ s(η∗) > L− .5L = .5L > 0 (117)

so s(η∗) > 0. But this contradicts being at a stationary point. It cannot be that f̃∗(t, t, ·) ̸= v(t, ·)
Therefore the velocity must match.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.5 THEOREM 1
We present a proof about the functional stationary points of the GameFlow functional. We use the
definitions of first variation and stationary point from section B.1 and the definition of functional
stopgrad from section B.2.

Theorem. Let q(t, u) be a joint distribution with support over t ≤ u and with positive probability
on t = u. Let the family F̃ include functions f̃ that are continuously differentiable in all arguments.
Let xt = αtx0 + σtx1 and ẋt = αtx0 + σtx1. Evaluate f at f(t, u, x) + (u − t)f̃(t, u, x). Take
expectations over q(t, u) and q(x0)q(x1). Let sg stand for stop-gradient. Define:

L[f̃ ] := E

[
∥(∂tf)|(t,u,xt) + (∂xf)|(t,u,xt)ẋt∥2 − ∥(∂xf)(t,u,xt)(ẋt − E[ẋt|xt])∥2

]

Lsg[f̃ ] := E

[
∥(∂tf)(t,u,xt) + (∂xf)(t,u,xt)ẋt∥2 − ∥(∂xf)(t,u,xt)(ẋt + sg[(∂tf)](t,t,xt))∥

2

]
Then f̃∗ is a stationary point of Lsg w.r.t. F̃ if and only if f̃∗ is a stationary point of L w.r.t. F̃ .

Proof. Case 1: If f̃∗ is a stationary point of L, then f̃∗ is a stationary point of Lsg.

• Since f̃∗ is a stationary point, δL[f̃∗; ·] = 0

• by section B.4, we have that ∂tf∗(t, t, x) = −f̃∗(t, t, x) = −E[ẋt|xt] where f∗ = x +

(u− t)f̃∗

• Lsg = L

• Since Lsg = L, then δLsg[f̃∗; ·] = δL[f̃∗; ·] = 0

Case 2: If f∗ is not a stationary point of L, then f∗ is not a stationary point of Lsg.

Since f∗ is not a stationary point of L, then ∃h that is admissible (continuous) such that δL[f∗;h] ̸= 0.
Then,

δL[f∗;h]︸ ︷︷ ︸
LHS

= E
[
1[t = u] . . .

]
︸ ︷︷ ︸

RHS-L

+E
[
1[t ̸= u] . . .

]
︸ ︷︷ ︸

RHS-R

(118)

If the LHS is nonzero, then one of RHS-L or RHS-R is nonzero. Consider both cases.

case 2a:The RHS-R is nonzero and RHS-L is zero. RHS-L being zero means that the velocity
matches, which means that RHS-R has the same first variation between L and Lsg. So they must
coincide regarding stationary points.

case 2b: RHS-L is nonzero and RHS-R is either zero or nonzero.

case2b-i δLsg[f∗;h] ̸= 0 directly holds. This is all we are trying to ensure anyway, so we are done
in this case.

case2b-ii Define the soft indicator, Iη:

Iη(t, u) = 1[η > 0]2
(
1− 1

1 + exp(− 1
η2 (t− u)2)

)
+ 1[η = 0]1[t = u]. (119)

Define the direction, ĥη:

ĥη(t, u, x) = Iη(t, u)h(t, u, x). (120)

ĥη is continuously differentiable for any η > 0. This is true cause it’s a product of two functions that
are each continuously differentiable (h is assumed continuously differentiable). Recall the mapping
s(η) from Section B.4, that maps η to δL[f ; ĥη]. Under the conditions of dominated convergence
established in Section B.4, we know that ∃η∗ > 0 such that ĥη∗ is a continuously differentiable
function for which δL[f∗; ĥη∗ ] ̸= 0. This must mean that the velocity is not matched. But we know
that if the velocity does not match, we are not at a stationary point of Lsg either, since Lsg and L
coincide on penalizing velocity matching on t = u.
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C OTHER USEFUL DERIVATIONS AND RESULTS

C.1 GRADIENT UPDATES ARE NOT OPTIMIZATION OF ONE SCALAR OBJECTIVE VIA
GRADIENTS

We show here that there exists a data distribution and a model such that the Gameflow updates are
not the gradient of any single scalar objective. We illustrate this by considering an simple 1D setting.
The key point is that, even in this restricted case, the update field induced by the stopgrad operator
has non-zero curl and therefore cannot be written as the gradient of any scalar objective J(θ). The
form to be differentiated is:

Lsg(θ) = EXt

[∥∥∂tfθ(t, u,Xt) + (∂xfθ(t, u,Xt)) Ẋt

∥∥2]
− EXt

[∥∥(∂xfθ(t, u,Xt))
(
Ẋt − stopgrad[f̃θ(t, t,Xt)]

)∥∥2] . (121)

for fθ(t, u, x) = x+ (u− t)f̃θ(t, u, x). Let us work in 1D and fix values of Xt = x and Ẋt = d, a
constant. To accomplish this, we can choose X1 freely and set X0 = X1−d, so that the interpolation
satisfies both Xt = x and Ẋt = d. In this case the expectations in (121) collapse to evaluation at
this point (equivalently, think of us approximating with 1 Monte Carlo sample). Now, consider the
parameters θ = (θ1, θ2)

⊤ and a single time pair (t, u) such that at the position Xt = x,

∂tfθ(t, u, x) = 0, ∂xfθ(t, u, x) = θ1, f̃θ(t, t, x) = θ2. (122)

(For a sufficiently expressive model, such local values can be realized; we only need existence of
such a configuration.). Plugging these into (121) and dropping the expectation (single point), the
Gameflow functional is:

Lsg = (θ1d)
2 −

(
θ1
(
d− stopgrad[θ2]

))2
. (123)

Let ∇̃ denote differentiation with the stopgrad applied to θ2 in the second term. Differentiating (123)
with respect to θ1 yields

∇̃θ1Lsg = 2θ1d
2 − 2θ1

(
d− θ2

)2
(124)

= 2θ1

(
d2 − (d− θ2)

2
)

(125)

= 2θ1

(
d2 − (d2 − 2dθ2 + θ22)

)
(126)

= 2θ1
(
2dθ2 − θ22

)
(127)

= 2θ1θ2(2d− θ2). (128)

Here the stopgrad on θ2 only affects the second term and does not change the first term. For θ2, all
occurrences appear inside a stopgrad and the first term does not depend on θ2, hence

∇̃θ2Lsg = 0. (129)

Thus the update field induced by CurlFlow in this simple example is

g(θ1, θ2) :=
(
g1(θ1, θ2), g2(θ1, θ2)

)
=

(
2θ1θ2(2d− θ2), 0

)
. (130)

If this update were the gradient of some scalar objective J(θ1, θ2), then the mixed partial derivatives
would commute:

g1 = ∂θ1J, g2 = ∂θ2J ⇒ ∂θ2g1 = ∂θ1g2. (131)
However,

∂g1
∂θ2

=
∂

∂θ2

(
2θ1θ2(2d− θ2)

)
= 2θ1

(
2d− θ2 − θ2

)
= 4θ1(d− θ2), (132)

∂g2
∂θ1

= 0, (133)

and hence the curl of the update field is

∂g1
∂θ2

− ∂g2
∂θ1

= 4θ1(d− θ2), (134)
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which is non-zero for generic θ (for example, whenever θ1 ̸= 0 and θ2 ̸= d). Therefore g is a smooth
vector field with non-zero curl and cannot be written as the gradient of any scalar objective J(θ1, θ2)
in general. Put differently, a constraint on the relationship between the parameters of the model and
the value of the chosen datapoint is necessary to ensure zero curl.

This 1D example is a specific instantiation of Gameflow (121) with a simple model and a single
training point. It shows that, once we introduce the stopgrad on f̃θ(t, t, x), the resulting optimization
dynamics are in general non-conservative. The stopgrad structure breaks the symmetry required
for the updates to be the gradient of a single scalar function. In this sense, CurlFlow is formally a
(two-player) game rather than standard gradient descent on one potential function. Or one prefers, a
nongradient vector flow.

C.2 DIFFERENTIATING W.R.T. T VERSUS U

Picking one of t or u just switches the sign of some terms in the loss, which ultimately only
affects whether the learned map goes upward in time or downwards. The PDE can be obtained by
differentiating the flow map f(t, u, x) with respect to either endpoint. If Xs solves Ẋs = v(s,Xs),
then keeping u fixed and differentiating in t gives a condition that evaluates v at t and x:

∂tf(t, u, x) + (∂xf(t, u, x)) v(t, x) = 0, (135)

while keeping t fixed and differentiating in u gives a condition that evaluates v at u and xu =
f(t, u, x):

∂uf(t, u, x) + (∂xf(t, u, x)) v
(
u, f(t, u, x)

)
= 0. (136)

Along the ODE trajectory dX = v ds one has the identity

∂tf(t, u, x) = − ∂uf(t, u, x),

so choosing to differentiate in t versus u only changes the sign convention and which endpoint is
held fixed.
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