

000 001 002 003 004 005 FLOW MAP LEARNING VIA NONGRADIENT VECTOR 006 FLOW 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 Diffusion and flow-based models benefit from simple regression losses, but inference
026 (i.e., producing samples) incurs significant computational overhead because it
027 requires integration. Consistency models address this overhead by directly learning
028 the flow maps along the ODE trajectory, revealing a design space *for the learning*
029 *problem* between one-step and many-step approaches. However, existing consistency
030 training methods feature computational challenges such as requiring model
031 inverses or backpropagation through iterated model calls, and do not always prove
032 that the desired ODE flow map is a solution to the loss. We introduce CurlFlow,
033 an approach for learning flow maps that bypasses explicit invertibility constraints
034 and expensive differentiation through model iteration. CurlFlow trains a model to
035 compute both the ODE solutions and the implied velocity from scratch by following
036 non-conservative dynamics (i.e., those with *curl*) with stationary point at the
037 desired flow map. On the CIFAR image benchmark, CurlFlow attains a favorable
038 relationship of FID to step count, relative to flow matching, MeanFlow, and several
039 other flow map learning methods.
040

041 1 INTRODUCTION

042 Diffusion and flow models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020; Kingma
043 et al., 2021; Albergo and Vanden-Eijnden, 2022; Singhal et al., 2023; Pandey and Mandt, 2023;
044 Bartosh et al., 2024; Singhal et al., 2024; Albergo et al., 2023; Lipman et al., 2022; Liu et al., 2022)
045 have improved generation in domains such as proteins (Abramson et al., 2024) and images (Peebles
046 and Xie, 2023; Esser et al., 2024). Sampling from these models typically requires numerically
047 integrating an ordinary or stochastic differential equation. Numerical integration requires multiple
048 forward passes of a neural network, leading to increased sampling latency and cost.
049

050 To ameliorate this generation cost by changing the training, recent approaches for consistency
051 modeling and map matching (Song et al., 2023; Song and Dhariwal, 2023; Kim et al., 2023; Lu and
052 Song, 2024; Boffi et al., 2024; 2025) aim to learn direct mappings from noise to intermediate or final
053 data points along trajectories defined by probability flow ODEs, thereby avoiding costly integration.
054 However, the methods have their respective complexities. For example, flow map matching requires
055 model invertibility, while consistency models need either to map in one step or introduce extra steps
056 that leave the target ODE trajectory.
057

058 We introduce CurlFlow, an approach that builds on flows and map matching methods and
059

- 060 • Has true flow map as optimum
061
- 062 • Does not require integration for generation
063
- 064 • Does not restrict the class of neural networks used (e.g., to invertible functions)
065
- 066 • Does not require auxiliary losses involving invertibility or adversarial optimization
067
- 068 • Does not require optimizing through nested calls to the model or through products of model
069 outputs (which lead to large autodifferentiation graphs)
070
- 071 • Allows for generation along the ODE trajectory with any number of steps
072

073 Existing methods for learning flow maps fall into a few categories in terms of their challenges; all
074 challenges relate to the idea that a flow map is characterized by certain derivative properties and
075

Methods	Multistep	Follows ODE	Sim. Free	Regression Loss	Inverse Required	Prove Optimum	Model Nesting/Product
Consistency Distillation (Song et al., 2023)	✗	✓	✗	✓	✗	✓	✗
Consistency Training (Song et al., 2023)	✗	✓	✓	✓	✗	✓	✗
Consistency Trajectory Models (Kim et al., 2023)	✓	✓	✗	✗	✗	✓	✗
L-FMM (Boffi et al., 2024)	✓	✓	✓	✓	✓	✓	✗
LSD (Boffi et al., 2025)	✓	✓	✓	✓	✗	✓	✓
ESD (Boffi et al., 2025)	✓	✓	✓	✓	✗	✓	✓
PSD (Boffi et al., 2025)	✓	✓	✓	✓	✗	✓	✓
MeanFlow (Geng et al., 2025)	✓	✓	✓	✓	✗	✗	✗
CurlFlow (this work)	✓	✓	✓	✓	✗	✓	✗

Table 1: **Comparison to prior works.** We categorize consistency modeling (flow map learning) techniques and our proposed CurlFlow method according to: (1) ability to adjust sampling steps post-training, (2) whether they follow the PF-ODE (Song et al., 2020), (3) whether they allow simulation-free training, (4) whether their objectives use regression, (5) whether model inversion is required during training, (6) whether the true flow map is shown to be optimal or stationary, and (7) whether differentiation passes through nested model calls or products of evaluations. See Section 5 for details.

that losses minimize squared error to make these properties hold. Flow map matching and related methods rely on a fundamental relationship between invertible mappings and ordinary differential equations (ODEs). This relationship typically requires explicitly computing both the forward map (the model being trained) and its inverse during training, complicating training, and requires explicitly materializing a large derivative matrix in the forward pass. Other methods, such as MeanFlow (Geng et al., 2025), do not explicitly enforce the model inverse identities, but also do not prove that their loss is minimized at the true flow map. Moreover, the only model derivative terms that MeanFlow uses to enforce the properties of a flow map, are subject to the stopgrad operator, meaning that it is unclear whether optimization can lead to a function satisfying the flow map derivative properties.

CurlFlow avoids the complexity of tracking a model and its inverse, as well as materializing derivatives, by exploiting an alternate identity involving only Jacobian-vector products (JVPs) without inverse functions. This identity allows us to formulate the objective purely in terms of the forward map, without needing explicit access to its inverse. Since solutions to ODEs naturally produce invertible mappings, the CurlFlow objective implicitly encourages invertibility without explicitly enforcing it. Thus, at optimality, CurlFlow yields a continuously differentiable function that precisely integrates the velocity field, directly generating the desired data distribution. We summarize the trade-offs among recent methods in Table 1 and in Section 5.

Experimentally, we keep things simple. We do not explore any generalizations of classifier-free guidance (Ho and Salimans, 2022) for conditional sampling in flow maps. We ask, for a basic training setup using the same common architecture, how do flow matching, MeanFlow, CurlFlow, Lagrangian Map Matching, Eulerian Map Matching, and Progressive Map Matching compare in moderate dimensions (CIFAR-10) on unconditional metrics (FID) when decreasing the number of sampling steps? We additionally compare GPU memory usage for these methods. Finally, we provide reasoning and numerical evidence that MeanFlow does not preserve the true flow map as an optimum.

2 BACKGROUND

Stochastic interpolants (Lipman et al., 2022; Albergo et al., 2023), and more generally most diffusion and flow methods, hereafter just *flows* pose generative modeling as transport of a simple base density to a target density. Interpolants tackle the problem as follows. For $t \in [0, 1]$:

1. Choose (α_t, σ_t) where $\alpha_0 = \sigma_1 = 1$ and $\alpha_1 = \sigma_0 = 0$. Commonly, $\alpha_t = 1 - t$ and $\sigma_t = t$.
2. Define $X_t = \alpha_t X_0 + \sigma_t X_1$ for base density $X_0 \sim q_0$ and data $X_1 \sim q_1$ (or vice versa).
3. Learn to produce new samples along the trajectory of densities.

For a function f , let $\dot{f}_t := \frac{d}{dt} f_t$. Thus $\dot{X}_t := \dot{\alpha}_t X_0 + \dot{\sigma}_t X_1$. It follows that X_t has density q_t satisfying:

$$\partial_t q_t(x) = -\nabla_x \cdot (q_t(x)v(t, x)), \quad v(t, x) := \mathbb{E}[\dot{X}_t \mid X_t = x], \quad (1)$$

108 where v is called the velocity. The PDE in Equation (1) is derived in the above works and we
 109 provide a self-contained derivation in Section A.1. To accomplish step 3, one starts by making the
 110 observation that a density satisfies Equation (1) if and only if it is the density of the solution to
 111 the *probability flow ODE* $dx = vdt$ integrated forward from $X_0 \sim q_0$ or in reverse from $X_1 \sim q_1$
 112 (Albergo and Vanden-Eijnden, 2024). One then proceeds by first approximating v using the following
 113 (simulation-free) loss:

$$\mathcal{L}_v(v_\theta) = \mathbb{E} \left[\|v_\theta(t, X_t) - (\dot{\alpha}_t X_0 + \dot{\sigma}_t X_1)\|^2 \right]_{X_t=\alpha_t X_0 + \sigma_t X_1}, \quad (2)$$

114 which has minimizer $v_\theta = v$ and then solving $dx = v_\theta dt$.
 115

116 **Background on Consistency Methods.** Sampling from flows requires integration where each
 117 integration step evaluates a neural network v_θ modeling a score, velocity, or similar. Therefore,
 118 knowing integrals of v or similar quantities directly could, in principle, speed up sampling. The goal
 119 of consistency and map matching methods is to learn to map along the trajectory implied by the
 120 optimal v . We review an example here, with others described in Section 5. Song et al. (2023); Song
 121 and Dhariwal (2023) seek to learn a mapping \hat{g} that maps interpolant samples $X_t \sim q_t$ to \hat{X}_0 , the
 122 $t = 0$ solution to $dx = vdt$ when starting at X_t (note that \hat{X}_0 usually differs from the independent
 123 endpoint sample X_0 used to draw X_t under the interpolant). The loss measures the distance between
 124 modeled outputs when evaluated at two different nearby points. Let $\text{sg}[\hat{g}]$ indicate stopgrad (i.e.,
 125 bookkeeping a term as a constant when computing loss gradients). Then the loss is:
 126

$$\text{Consistency}(\hat{g}) := \mathbb{E}_{q(X_t)} [\text{dist}(\hat{g}(t, X_t), \text{sg}[\hat{g}](t - \Delta t, \hat{X}_{t-\Delta t}))]. \quad (3)$$

127 The sample $\hat{X}_{t-\Delta t}$ used in the target should optimally come from integrating the true velocity or an
 128 approximation v_θ a small step Δt from X_t , where v_θ either comes from a pretrained diffusion model,
 129 or (v_θ, \hat{g}) are derived from one another. In practice, further approximations are used to compute
 130 $x_{t-\Delta t}$. Approximations are introduced because $\hat{X}_{t-\Delta t}$ is not simply defined by drawing a second
 131 interpolant sample at a smaller noise level, but instead corresponds to integrating the velocity one
 132 step from X_t ; the velocity is unknown and thus may come from a pre-trained model, which increases
 133 training cost and may not be a good approximation in the first place.
 134

135 It is challenging to directly learn solutions in just one step. While this allows multistep sampling, the
 136 re-noising step necessarily takes the trajectory off the probability-flow ODE and the resulting updates
 137 no longer correspond to integrating the PF-ODE solution. Highlighting the issue with methods
 138 featuring 1 time argument, Kim et al. (2023) note that this CM multistep sampling approach “exhibits
 139 degrading sample quality with increasing NFE, lacking a clear trade-off between computational
 140 budget (NFE) and sample fidelity”. In practice, a number of training-time or inference-time changes
 141 are made to this setup to try to break apart the problem into somewhere between 1 step and the
 142 hundreds of steps used by diffusions (Song et al., 2023; Lu and Song, 2024; Kim et al., 2023; Boffi
 143 et al., 2024; 2025; Sabour et al., 2025; Geng et al., 2025; Zhou et al., 2025). We discuss the various
 144 solutions and their trade-offs in Section 5.
 145

3 METHOD

146 We present CurlFlow, a method for learning to solve the probability flow ODE without adversarial
 147 training, without model inverse during training, without representing explicit derivative matrices,
 148 without costly simulations from pretrained models, and without adversarial training. CurlFlow trains
 149 a model to compute both the ODE solutions and the implied velocity from scratch by following
 150 non-conservative dynamics .
 151

152 Consider a two-time map f that for $t \leq u$ brings X_t up to x_u by solving the probability flow ODE
 153 $dx = vdt$. Such an f that integrates v can be defined as follows:
 154

$$f(t, u, x) = x + \int_t^u v(s, X_s) ds = x + \int_t^u v(s, f(t, s, x)) ds \quad (4)$$

155 Differentiating the recursive form on the RHS w.r.t. t using the total derivative (see ??) yields:
 156

$$\partial_t f + (\partial_x f)v(t, x) = 0, \quad f(u, u, x) = x \quad (5)$$

162 This is uniquely solved at the true flow map f . We can square the LHS for a parameterized f_θ and
 163 take an expectation over X_t

$$165 \quad L = \mathbb{E}_{X_t} [\|\partial_t f_\theta + (\partial_x f_\theta) \mathbb{E}[\dot{X}_t | X_t]\|^2] \quad (6)$$

166 The true map f is the unique minimizer of this loss. Using $v(t, x) = \mathbb{E}[\dot{X}_t | X_t]$, we can expand,

$$169 \quad L = \mathbb{E}_{X_t} \left[\|\partial_t f_\theta + (\partial_x f_\theta) \dot{X}_t\|^2 - \|(\partial_x f_\theta)(\dot{X}_t - \mathbb{E}[\dot{X}_t | X_t])\|^2 \right] \quad (7)$$

171 We can then use the parameterization $f_\theta = x + (u - t)\tilde{f}_\theta(t, u, x)$ for an underlying model \tilde{f}_θ . The
 172 parameterization yields two useful properties:

- 174 • time derivative: $\partial_t f_\theta(t, t, x) = -\tilde{f}_\theta(t, t, x)$
- 175 • Jacobian: $\partial_x f_\theta(t, t, x) = I$

177 Using these properties and evaluating at $t = u$, we see that the minimization of eq. (7) reduces flow
 178 matching where $\tilde{f}_\theta(t, t, x)$ is trained to match the velocity:

$$180 \quad L \Big|_{t=u} = \mathbb{E}_{X_t} [\|\tilde{f}_\theta(t, t, x) - \dot{X}_t\|^2], \quad (8)$$

182 which reveals that for the true f , we have that

$$184 \quad -\partial_t f(t, t, \cdot) = \tilde{f}(t, t, \cdot) = v(t, x) = \mathbb{E}[\dot{X}_t | X_t = x] \quad (9)$$

185 This motivates replacing the unknown v in eq. (7) with $\text{stopgrad}[\tilde{f}_\theta(t, t, \cdot)]$. The stopgrad is used
 186 under the principle that because the original v did not provide gradient updates for f , so neither
 187 should a term that approximates it. The **CurlFlow** method follows the negative gradient with respect
 188 to θ of:

$$190 \quad L_{\text{sg}} := \mathbb{E} \left[\|(\partial_t f_\theta)_{(t, u, X_t)} + (\partial_x f_\theta)_{(t, u, X_t)} \dot{X}_t\|^2 - \|(\partial_x f_\theta)_{(t, u, X_t)} (\dot{X}_t - \text{sg}[\tilde{f}_\theta]_{(t, t, X_t)})\|^2 \right], \quad (10)$$

192 where $\text{sg}()$ means $\text{stopgrad}()$ and $f_\theta(t, u, x) := x + (u - t)\tilde{f}_\theta(t, u, x)$. The expectation is taken
 193 over X_t sampled by drawing data X_1 , noise X_0 , and computing $X_t = \alpha_t X_0 + \sigma_t X_1$ and $\dot{X}_t =$
 194 $\dot{\alpha}_t X_0 + \dot{\sigma}_t X_1$.

195 In practice, the PDE must hold for all pairs $t \leq u$. Let $q(t, u)$ be a joint distribution with support over
 196 $t \leq u$ and with positive probability on $t = u$. Take expectations over time and define $\mathcal{L} = \mathbb{E}_{q(t, u)}[L]$
 197 and $\mathcal{L}_{\text{sg}} = \mathbb{E}_{q(t, u)}[L_{\text{sg}}]$. We now connect \mathcal{L} and \mathcal{L}_{sg} formally. Theorem 1 shows that optimization of
 198 \mathcal{L} and \mathcal{L}_{sg} stop at the same solutions.

200 **Theorem 1.** *Let $q(t, u)$ be a joint distribution with support over $t \leq u$ and with positive probability
 201 on $t = u$. Let the family $\tilde{\mathcal{F}}$ include functions \tilde{f} that are continuously differentiable in all arguments.
 202 Let $X_t = \alpha_t X_0 + \sigma_t X_1$ and $\dot{X}_t = \dot{\alpha}_t X_0 + \dot{\sigma}_t X_1$. Evaluate f at $f(t, u, x) + (u - t)\tilde{f}(t, u, x)$.
 203 Take expectations over $q(X_0)q(X_1)$. Let sg stand for stop-gradient. Define $\mathcal{L} = \mathbb{E}_{q(t, u)}[L]$ and
 204 $\mathcal{L}_{\text{sg}} = \mathbb{E}_{q(t, u)}[L_{\text{sg}}]$. Then \tilde{f}^* is a stationary point of \mathcal{L}_{sg} w.r.t. $\tilde{\mathcal{F}}$ if and only if \tilde{f}^* is a stationary point
 205 of \mathcal{L} w.r.t. $\tilde{\mathcal{F}}$.*

207 This is shown in Section B.5.

209 **Intuition.** The main point of the theorem is to establish that \mathcal{L}_{sg} has the same set of solutions as
 210 L despite not having access to v . The intuition is that, despite the stopgrad, when $t = u$, \mathcal{L}_{sg} tries
 211 to match the velocity. We show that \mathcal{L}_{sg} is not at a stationary point when this velocity estimate is
 212 inaccurate, so the optimization continues moving and does not become stuck at functions that distill
 213 an incorrect velocity. As this match improves so does the match between the parameter updates from
 214 \mathcal{L}_{sg} and L at $t \neq u$. The main reason this works is that $\tilde{f}(t, t, \cdot)$ appears in other terms outside of the
 215 stopgrad, and those terms tell it where to go. This is crucial and not all stopgrad optimizations benefit
 from this property.

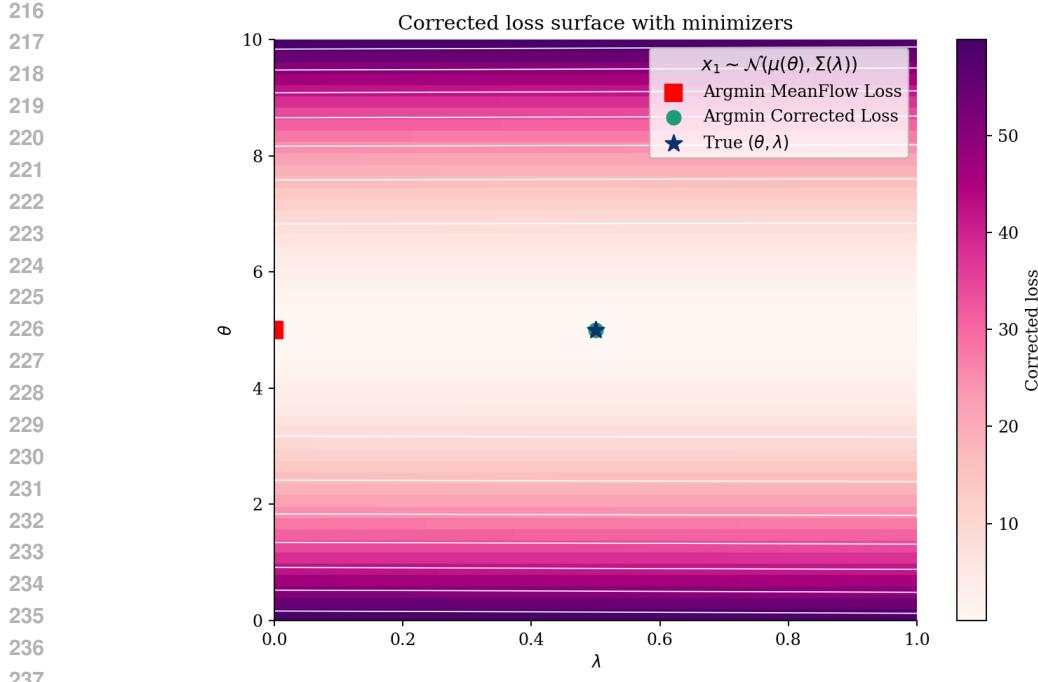


Figure 1: **Minimizers of MeanFlow.** We compute the loss surface of the corrected loss (what MeanFlow starts with before replacing v) and show that MeanFlow (using \dot{X}_t instead of v) does not have its optimum at the true data-generating parameters for a 2D Gaussian example.

Computation. Both terms in \mathcal{L}_{sg} can be computed as expected squared norms of Jacobian-vector products (JVPs), which use forward-mode autodifferentiation to avoid explicitly materializing Jacobians, saving memory. Using PyTorch notation,

$$\text{JVP}[f, (t, u, x), (a, b, c)] := (\partial_t f) \cdot a + (\partial_u f) \cdot b + (\partial_x f) \cdot c$$

for $(\partial_t f, \partial_u f, \partial_x f)$ evaluated at (t, u, x) . For the first loss term, $a = 1, b = 0$ and $c = \dot{X}_t$ and for the second loss term, $a = 0, b = 0$, and $c = \dot{X}_t + \text{sg}[\partial_t f(t, t, X_t)] = \dot{X}_t - \text{sg}[\tilde{f}(t, t, X_t)]$. Though we have two distinct JVPs, we can split the batch and randomly assign either pair of (a, c) values to each batch element.

Nongradient Flow Following the update rules of \mathcal{L}_{sg} does not correspond to following the gradients of any one scalar objective J (section C.1). This is because the optimization dynamics are in general *non-conservative*. The stopgrad structure breaks the symmetry required for the updates to be the gradient of a single scalar function. In this sense, CurlFlow is formally a (two-player) *game* rather than standard gradient descent on one potential function, albeit a trivial one where the main player controls all parameters except those in the stopgrad, and the stopgrad player keeps a virtual copy of the parameters that simply equal the first players parameters. Put another way, the optimization dynamics if taken in the limit of small step size correspond to non-conservative / non-gradient vector flow.

4 EXPERIMENTS

4.1 MULTIVARIATE GAUSSIAN AND WRONG MEANFLOW OPTIMUM

To motivate CurlFlow, we first study a simple 2D Gaussian experiment that shows what can go wrong in flow map learning methods. The losses that are derivable from PDEs such as $\partial_t f + (\partial_x f) \cdot v = 0$, depend on the velocity $v(t, x)$. Because v is unknown apriori, some methods work with pretrained velocity models (Sabour et al., 2025; Boffi et al., 2025). For from-scratch methods, the velocity must be replaced, somehow. MeanFlow (Geng et al., 2025) is trained with JVPs like CurlFlow, but replaces v with \dot{X}_t . Crucially, this swap implicitly drops a Trace Covariance Jacobian term (which is tracked in the above CurlFlow derivation), no longer preserving the true flow map as the minimizer

270 of the loss. That is, the MeanFlow loss using v does not differ from the loss using \dot{X}_t only by a
 271 model-independent constant.

272 The data $X_1 \sim \mathcal{N}(\mu_1, \Sigma_1)$ are generated with parameters $\theta \in \mathbb{R}$ and $\lambda \in [0, 1]$ via
 273

$$274 \quad \mu_1 = \theta \cdot [1, 1], \quad \Sigma_1 = \lambda \Sigma_a + (1 - \lambda) \Sigma_b \quad (11)$$

275 where

$$276 \quad \Sigma_a := \begin{pmatrix} 1.0 & -0.3 \\ -0.3 & 1.5 \end{pmatrix}, \quad \Sigma_b := \begin{pmatrix} 1.0 & 0.0 \\ 0.0 & 1.0 \end{pmatrix}, \quad \Sigma_1 = \lambda \Sigma_a + (1 - \lambda) \Sigma_b \quad (12)$$

277 Over a grid of (θ, λ) values that includes the true parameters ($\theta = 5.0, \lambda = 0.5$), we compute two loss
 278 functions: the *MeanFlow loss*, and a *corrected loss* that instead uses the exact velocity (available in
 279 closed form for Gaussians, though generally unknown in practice). The corrected loss is thus equal to
 280 \mathcal{L} in Theorem 1. In Figure 1, we visualize the corrected loss surface together with the true parameter
 281 point and the minimizers of both objectives. The results show that while MeanFlow correctly recovers
 282 the mean parameter θ , it fails to identify the correct covariance parameter λ . Specifically, MeanFlow
 283 sets $\lambda = 0$ which chooses $\Sigma_1(\lambda) = \Sigma_b$ where Σ_b is diagonal while Σ_a features correlation.
 284

285 CurlFlow deals differently with the unknown velocity, instead substituting it with the flow map
 286 model’s implied velocity, while also making sure that another loss term trains this implied velocity
 287 with a flow matching loss (see Theorem 1). When the velocity is trained enough, the CurlFlow loss
 288 becomes equal to this corrected loss.
 289

291 4.2 IMAGE MODELING ON CIFAR-10

292 **Architecture.** We modify the existing diffusion U-Net from [Dhariwal and Nichol \(2021\)](#) by
 293 embedding both t and u with the usual Fourier embeddings and then concatenate on input to small
 294 MLP that maps the two times to a hidden representation for use in the network. We use 128 channels
 295 and channel multipliers set to (1,2,2,2) with attention set to (False, False, True, False).

296 **Training Settings.** We use dropout 0.1. We do not condition on the class label. We use $\alpha_t = 1 - t$
 297 and $\sigma_t = t$, with noise at X_0 and data at X_1 . We train for 200,000 steps at learning rate 2e-4.
 298

299 **Losses.** We train with Flow Matching ([Lipman et al., 2022](#)), MeanFlow ([Geng et al., 2025](#)), and
 300 the proposed CurlFlow method (Equation (10)). Beyond the swap of v with \dot{X}_t , MeanFlow also
 301 StopGrad’s all model derivatives in the loss to avoid backpropagation through differentiation. We
 302 also train with three losses proposed in ([Boffi et al., 2025](#)): the Lagrangian loss, Eulerian loss, and
 303 Progressive loss. These latter three losses are derived under similar principles as CurlFlow and are
 304 discussed in Section 5.

Method	10 steps	50 steps	100 steps	theory
Flow Matching	24.87	3.53	3.05	yes
Lagrange	248.76	230.43	221.22	yes
Euler	77.19	66.99	38.95	yes
Progressive	337.36	235.20	206.18	yes
Meanflow	37.32	4.54	4.23	no
CurlFlow	12.26	2.88	2.81	yes

313 Table 2: FID scores versus sampling steps on CIFAR-10 computed from 50,000 EMA samples after
 314 200,000 training steps. The “theory” column means whether the stationary points of the optimization
 315 have been proven to exist if and only if the function is the flow map that integrates the ODE.
 316

317 **Results.** We report the Frechet Inception Distance (FID) ([Heusel et al., 2017](#)) in Table 2. We
 318 find that CurlFlow produces better FID than MeanFlow at each choice of sampling steps for the
 319 given (rather common for CIFAR) training configuration. The Lagrangian, Euler, and Progressive
 320 losses seem not to train well with the standard hyperparameters; [Boffi et al. \(2025\)](#) make remarks
 321 after presenting the losses that StopGrad may be used for some of the featured nested-model or
 322 product-of-model terms to stabilize training for certain datasets, and seem to benefit from additional
 323 adaptive loss reweighting, which are not explored in this work.

324 4.3 MEMORY USAGE
325

326 In the last column of Table 1, we note whether a method requires differentiation through an iterated
327 model call or a product of model evaluations. As discussed in Section 5, for a flow map model $f_\theta =$
328 $x + (u - t)\tilde{f}_\theta$, the Lagrangian loss involves a nested evaluation $\tilde{f}_\theta(u, u, f_\theta(t, u, x))$, with a similar
329 nesting for the Progressive loss. The Eulerian loss requires computing $\nabla_x f_\theta(t, u, x) \tilde{f}_\theta(t, t, X_t)$,
330 which entails a product-rule expansion. Here we empirically compare the *peak GPU memory usage*
331 *during the backward pass* for different losses, holding the architecture and data size fixed (the U-Net
332 with a batch of CIFAR images).

333 Flow Matching	334 MeanFlow	335 CurlFlow	336 Lagrange	337 Euler	338 Progressive
16.8 Gb	14.2 Gb	43.2 Gb	69.8 Gb	69.8b G	54.3 Gb

339 **Table 3: Peak GPU memory usage during backward pass (in Gb).** Values reflect the maximum
340 allocated memory measured across the training step’s backward pass (i.e., during gradient computa-
341 tion). CurlFlow strikes a balance in GPU memory usage, preserves the true flow map as an optimum,
342 and optimizes through all model derivatives without detaching.

343 **Results.** We demonstrate the peak GPU memory usage during backward pass in Table 3. As
344 expected, the Lagrange, Euler, and Progressive losses are the most memory-intensive, reflecting
345 the need to backpropagate through nested model evaluations or product-rule terms. On the other
346 end, MeanFlow, which computes Jacobian–vector products but detaches the full JVP, has the lowest
347 memory usage, but this detachment may limit its ability to fully optimize toward satisfying the
348 derivative conditions. As discussed, MeanFlow also does not preserve the true flow map as an
349 optimum in theory (though it may empirically demonstrate good performance for certain datasets).
350 CurlFlow falls between thesee extremes, striking a balance between memory usage, preserving the
351 optimum, and benefiting from optimizing through the model derivatives in the loss.

352 5 RELATED WORK

353 Sampling from continuous-time generative models such as diffusion and flow models requires
354 numerical integration. Each integration step requires a forward pass of a neural network, leading
355 to computational costs and slow sampling. Current approaches to address this cost can be broadly
356 categorized into two types (1) distilling a pretrained diffusion or flow model into a few-step solver
357 (Salimans and Ho, 2022; Kim et al., 2023; Liu et al., 2023), and (2) learning a few-step solver (Zhou
358 et al., 2025). Some approaches in this area allow for distillation as well as training from scratch (Song
359 et al., 2023; Boffi et al., 2024; Boffi and Vanden-Eijnden, 2023).

360 Consistency Models (CMs) (Song et al., 2023; Song and Dhariwal, 2023; Lu and Song, 2024) learn a
361 one-step map from noise to data, either by distilling a pretrained model or by learning from scratch.
362 Distillation requires sampling trajectories from the teacher model. To allow for more steps after either
363 training approach, CMs iteratively re-noise the one-step solution back to successively smaller time
364 under the interpolant and then denoise, but this can take the solver off the probability flow.

365 Consistency trajectory models (CTMs) (Kim et al., 2023) extend CMs to learn two-time maps
366 using a combination of consistency and adversarial objectives, which requires training an additional
367 discriminator model (Goodfellow et al., 2014). CTM and Gameflow both target the same mathematical
368 object, the probability–flow ODE flow map (i.e., the integral of the ODE), but they learn this map
369 through different means. CTM learns the map by distilling a teacher solver, and the losses for teacher
370 and student involve several nested model evaluations (with data at x_0 , for $0 \leq s \leq u \leq t \leq 1$, the
371 teacher integrates from t to u , then jumps from u to s , then from s to 0; and the student jumps from
372 t to s and then to 0). The objective depends on a chosen feature-space distance and, in practice,
373 includes DSM and GAN terms that further influence the optimum. Consequently, the CTM loss is
374 sensitive to the quality of the ODE discretization used by the teacher (in practice CTM finds the need
375 to use a 2nd order solver during training) and necessitates the presence of the GAN. GANs can, in
376 principle, be used to augment any generative model or even solve the problem itself. In an idealized
377 limit with perfect teacher solves of the velocity field, unlimited model capacity, perfect min–max
378 optimization, no auxiliary GAN loss, annd no optimization issues due to stopgrad, the true flow
379 map is a solution of the CTM objective because the student matches the teacher everywhere, which

378 matches the ODE. CTM, however, does not show that this solution is unique or that its stationary
 379 points during optimization coincide with those of the underlying PDE. CurlFlow learns a two-time
 380 map from scratch directly from the flow map PDE, uses neither discriminators nor pretrained models
 381 and proves that the stop-gradient optimization has stationary points if and only if the model equals
 382 the true flow map.

383 Inductive Moment Matching (IMM) (Zhou et al., 2025) learns a few-step model via an implicit
 384 generative model trained with MMD (Smola et al., 2006; Gretton et al., 2012), with the MMD
 385 which is estimated biasedly within subsets of data. In practice, the authors must use time-weighting
 386 schedules and specific curriculum/inductive procedure to stabilize optimization. While IMM produces
 387 high quality image samples, solves the problem of marginally sampling the data distribution rather
 388 than sampling along a probability flow, where the latter is the task studied in this work.

389 MeanFlow (Geng et al., 2025) derives a JVP-based objective for flow maps. They train \tilde{f} to bring x_u
 390 down to X_t via the parameterization $f_\theta = x + (u - t)\tilde{f}_\theta$, and train \tilde{f} via the following loss:
 391

$$\mathcal{L}_{t,u}^{\text{meanflow}} := \mathbb{E}[\|\tilde{f}_\theta(t, u, X_t) - \dot{x}_u + (u - t)(\text{sg}[\partial_x \tilde{f}_\theta]_{(t,u,X_t)} \cdot \dot{x}_u + \text{sg}[\partial_u \tilde{f}_\theta]_{(t,u,X_t)})\|^2]. \quad (13)$$

392 Applying the stopgrad sg to all model derivatives improves efficiency, but there are no differentiated
 393 loss terms that encourage the model derivatives $\partial_t \hat{f}$ and $\partial_x \hat{f}$ to move toward the true flow map
 394 derivatives. This contrasts CurlFlow where $\text{sg}[\tilde{f}_\theta(t, t, x)]$ is used in place of $\mathbb{E}[\dot{X}_t | X_t]$, but where
 395 another term in the loss trains these two quantities to match. Finally, and importantly, between
 396 equations (10, 11) in Geng et al. (2025), v is replaced with \dot{X}_t where it appears quadratically, thereby
 397 pulling an expectation through a square and missing a resulting trace covariance term. This does not
 398 preserve the true flow map as an optimum (this is mentioned as well in Boffi et al. (2025)).
 399

400 Flow Map Matching (Boffi et al., 2024) learns a two-time flow map. This allows for mapping
 401 along the probability flow in either direction, without adversarial training. Their Lagrangian Flow
 402 Map Matching loss requires only time derivatives, but an additional invertibility loss encouraging
 403 invertibility via time-swapping so that $\hat{f}(t, u, \hat{f}(u, t, x)) \approx x$. While straightforward to compute,
 404 gradient steps require evaluating the model and its inverse at each step of training.
 405

406 Boffi et al. (2025) build on Boffi et al. (2024) and optimize velocity matching along with one of the
 407 three following losses. For the parameterization $f_\theta := x + (u - t)\tilde{f}_\theta$, the first one is:
 408

$$\text{LSD} : \mathcal{L}_{t,u}^{\text{lagrange}} := \mathbb{E}[\|\partial_u f_\theta(t, u, X_t) - \tilde{f}_\theta(u, u, f_\theta(t, u, X_t))\|^2]$$

409 LSD comes from condition that $\partial_t f(t, u, x) = v(u, x_u) = v(u, f(t, u, X_t))$ uses $\partial_t f(t, t, \cdot) =$
 410 $-v(t, \cdot) \implies \hat{f}(t, t, \cdot) = v(t, \cdot)$. It is a variant of the Lagrangian loss from Boffi et al. (2024). The
 411 next is:
 412

$$\text{ESD} : \mathcal{L}_{t,u}^{\text{euler}} := \mathbb{E}[\|\partial_t f_\theta(t, u, X_t) + \nabla_x f_\theta(t, u, X_t) \tilde{f}_\theta(t, t, X_t)\|^2].$$

413 ESD comes from condition $\partial_t f(t, u, x) + \nabla_x f(t, t, x)v(t, x) = 0$ where in the loss, v is replaced
 414 with $\tilde{f}(t, t, x)$. The last one, for an intermediate time m , is:
 415

$$\text{PSD} : \mathcal{L}_{t,u}^{\text{progress}} := \mathbb{E}[\|f_\theta(t, u, X_t) - f_\theta(m, u, f_\theta(t, m, X_t))\|^2]$$

416 PSD comes from the composition property: $f(t, u, x) = f(m, u, f(t, m, x))$ for $m \in (t, u)$.
 417 CurlFlow, LSD, ESD, and PSD all aim to enforce a similar set of flow map properties. $\mathcal{L}^{\text{lagrange}}$ and
 418 $\mathcal{L}^{\text{progress}}$ must optimize through nested model evaluations, doubling the computational graph for back-
 419 prop. $\mathcal{L}^{\text{euler}}$ optimizes through $\nabla_x f_\theta \cdot \tilde{f}_\theta$, which causes reverse-mode autodifferentiation to invoke
 420 the full product rule term, $\nabla_\theta[\nabla_x f_\theta \cdot \tilde{f}_\theta] = [\nabla_\theta \nabla_x f_\theta] \cdot \tilde{f}_\theta + [\nabla_x f_\theta] \cdot \nabla_\theta \tilde{f}_\theta$; In contrast, CurlFlow's
 421 stopgrad operation means that the second product rule term is not featured in the computational graph,
 422 saving memory and compute. But, unlike MeanFlow, the term that is subject to stopgrad receives
 423 supervision from elsewhere in the loss.
 424

425 *Distillation methods.* A complementary line of work approaches flow map learning by *distilling* the
 426 outputs of pretrained flow matching velocity models into few-step solvers. Specifically the unknown
 427 $v()$ in the flow map identities is taken to be a pretrained network. By contrast, we emphasize training
 428 from scratch, avoiding dependence on a teacher model and ensuring that all components of the flow
 429 map are learned end-to-end. That said, distillation can be attractive in practice when a pretrained
 430 model is already trusted (when v_θ corresponds to the endpoint distributions and the chosen α_t and
 431 σ_t , or when the objective is weaker—for example, to marginally sample from the approximated data
 432 distribution without explicitly solving the probability flow ODE).

432 6 DISCUSSION AND LIMITATIONS

433
434 Identifying functions through PDEs *Given a PDE solved by a sought-after mapping f ,*
 435 *featuring a combination terms such as $\partial_t f, \partial_x f, v$ that should be set to 0, which terms should*
 436 *be parameterized by the model and which should be approximated as part of a ground-truth loss*
 437 *target?* If the equations can be rewritten in several ways, which yield easier or more challenging
 438 *objectives? Answering this is applicable to improving training objectives for generative models as*
 439 *well as more generally solving PDEs with machine learning.*

440 **Invertibility** The loss targets an invertible function at optimum. To simplify training, we explicitly
 441 give up knowing the inverse, meaning that we only learn maps in one direction. Luckily, this is the
 442 usual scenario for generative modeling. For likelihoods, one can still substitute $-\partial_t \hat{f}$ for v_θ in the
 443 probability flow ODE (Song et al., 2021; Boffi and Vanden-Eijnden, 2023). Thus this method can be
 444 seen from the perspective of training a normalizing flow (Tabak and Vanden-Eijnden, 2010; Tabak
 445 and Turner, 2013; Rezende and Mohamed, 2015; Papamakarios et al., 2021) without requiring the
 446 invertible architecture or inverse-dependent loss.

447 **Architectures.** CurlFlow, Flow Map Matching, Simplified Consistency Models, and MeanFlow all
 448 specify models whose *time-derivative* equal the target of diffusion model training, but directly adapt
 449 architectures meant for diffusion models themselves. Example architectures used in these works are
 450 the UNet from Dhariwal and Nichol (2021), the diffusion transformer from Peebles and Xie (2023);
 451 Ma et al. (2024), and the EDM architecture from Karras et al. (2022; 2024). These architectures may
 452 thus be suboptimal for the problem at hand, precisely because the target of interest is defined as a
 453 function often computed in many diffusion model forward passes (an integral). In this work, compute
 454 limitations did not allow for the thorough exploration of architectures, but the authors believe that
 455 rethinking architectures is a convincing direction to improve the quality and training-efficiency of
 456 learned flow maps.

457 **Reproducability Statement.** We will be glad to open source the complete code during or after
 458 review of the manuscript. For the proofs in the appendix, we have made a genuine attempt to be
 459 thorough and pedagogical.

460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485

486 REFERENCES
487

488 Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore,
489 L., Ballard, A. J., Bambrick, J., et al. (2024). Accurate structure prediction of biomolecular
490 interactions with alphafold 3. *Nature*, 630(8016):493–500.

491 Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E. (2023). Stochastic interpolants: A unifying
492 framework for flows and diffusions. *arXiv preprint arXiv:2303.08797*.

493 Albergo, M. S. and Vanden-Eijnden, E. (2022). Building normalizing flows with stochastic inter-
494 polants. *arXiv preprint arXiv:2209.15571*.

495 Albergo, M. S. and Vanden-Eijnden, E. (2024). Learning to sample better. *Journal of Statistical
496 Mechanics: Theory and Experiment*, 2024(10):104014.

497 Bartosh, G., Vetrov, D. P., and Andersson Naesseth, C. (2024). Neural flow diffusion models:
498 Learnable forward process for improved diffusion modelling. *Advances in Neural Information
499 Processing Systems*, 37:73952–73985.

500 Boffi, N. M., Albergo, M. S., and Vanden-Eijnden, E. (2024). Flow map matching. *arXiv preprint
501 arXiv:2406.07507*.

502 Boffi, N. M., Albergo, M. S., and Vanden-Eijnden, E. (2025). How to build a consistency model:
503 Learning flow maps via self-distillation. *arXiv preprint arXiv:2505.18825*.

504 Boffi, N. M. and Vanden-Eijnden, E. (2023). Probability flow solution of the fokker–planck equation.
505 *Machine Learning: Science and Technology*, 4(3):035012.

506 Dhariwal, P. and Nichol, A. (2021). Diffusion models beat gans on image synthesis. *Advances in
507 neural information processing systems*, 34:8780–8794.

508 Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller, J., Saini, H., Levi, Y., Lorenz, D., Sauer, A.,
509 Boesel, F., et al. (2024). Scaling rectified flow transformers for high-resolution image synthesis,
510 2024. URL <https://arxiv.org/abs/2403.03206>, 2.

511 Geng, Z., Deng, M., Bai, X., Kolter, J. Z., and He, K. (2025). Mean flows for one-step generative
512 modeling. *arXiv preprint arXiv:2505.13447*.

513 Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
514 and Bengio, Y. (2014). Generative adversarial nets. *Advances in neural information processing
systems*, 27.

515 Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A kernel
516 two-sample test. *The Journal of Machine Learning Research*, 13(1):723–773.

517 Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). Gans trained by a
518 two time-scale update rule converge to a local nash equilibrium. *Advances in neural information
519 processing systems*, 30.

520 Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. *Advances in neural
521 information processing systems*, 33:6840–6851.

522 Ho, J. and Salimans, T. (2022). Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*.

523 Karras, T., Aittala, M., Aila, T., and Laine, S. (2022). Elucidating the design space of diffusion-based
524 generative models. *Advances in neural information processing systems*, 35:26565–26577.

525 Karras, T., Aittala, M., Lehtinen, J., Hellsten, J., Aila, T., and Laine, S. (2024). Analyzing and
526 improving the training dynamics of diffusion models. In *Proceedings of the IEEE/CVF Conference
527 on Computer Vision and Pattern Recognition*, pages 24174–24184.

528 Kim, D., Lai, C.-H., Liao, W.-H., Murata, N., Takida, Y., Uesaka, T., He, Y., Mitsufuji, Y., and Ermon,
529 S. (2023). Consistency trajectory models: Learning probability flow ode trajectory of diffusion.
530 *arXiv preprint arXiv:2310.02279*.

531 Kingma, D. P., Salimans, T., Poole, B., and Ho, J. (2021). Variational diffusion models. *arXiv
532 preprint arXiv:2107.00630*.

540 Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and Le, M. (2022). Flow matching for generative
 541 modeling. *arXiv preprint arXiv:2210.02747*.

542 Liu, X., Gong, C., and Liu, Q. (2022). Flow straight and fast: Learning to generate and transfer data
 543 with rectified flow. *arXiv preprint arXiv:2209.03003*.

544 Liu, X., Zhang, X., Ma, J., Peng, J., et al. (2023). Instaflow: One step is enough for high-quality
 545 diffusion-based text-to-image generation. In *The Twelfth International Conference on Learning
 546 Representations*.

547 Lu, C. and Song, Y. (2024). Simplifying, stabilizing and scaling continuous-time consistency models.
 548 *arXiv preprint arXiv:2410.11081*.

549 Ma, N., Goldstein, M., Albergo, M. S., Boffi, N. M., Vanden-Eijnden, E., and Xie, S. (2024). Sit:
 550 Exploring flow and diffusion-based generative models with scalable interpolant transformers. In
 551 *European Conference on Computer Vision*, pages 23–40. Springer.

552 Pandey, K. and Mandt, S. (2023). A complete recipe for diffusion generative models. In *Proceedings
 553 of the IEEE/CVF International Conference on Computer Vision*, pages 4261–4272.

554 Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. (2021).
 555 Normalizing flows for probabilistic modeling and inference. *Journal of Machine Learning Research*,
 556 22(57):1–64.

557 Peebles, W. and Xie, S. (2023). Scalable diffusion models with transformers. In *Proceedings of the
 558 IEEE/CVF international conference on computer vision*, pages 4195–4205.

559 Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows. In *International
 560 conference on machine learning*, pages 1530–1538. PMLR.

561 Sabour, A., Fidler, S., and Kreis, K. (2025). Align your flow: Scaling continuous-time flow map
 562 distillation. *arXiv preprint arXiv:2506.14603*.

563 Salimans, T. and Ho, J. (2022). Progressive distillation for fast sampling of diffusion models. *arXiv
 564 preprint arXiv:2202.00512*.

565 Singhal, R., Goldstein, M., and Ranganath, R. (2023). Where to diffuse, how to diffuse, and how to
 566 get back: Automated learning for multivariate diffusions. *arXiv preprint arXiv:2302.07261*.

567 Singhal, R., Goldstein, M., and Ranganath, R. (2024). What’s the score? automated denoising
 568 score matching for nonlinear diffusions. In *International Conference on Machine Learning*, pages
 569 45734–45758. PMLR.

570 Smola, A. J., Gretton, A., and Borgwardt, K. (2006). Maximum mean discrepancy. In *13th
 571 international conference, ICONIP*, volume 6.

572 Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsupervised
 573 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
 574 pages 2256–2265. pmlr.

575 Song, Y. and Dhariwal, P. (2023). Improved techniques for training consistency models. *arXiv
 576 preprint arXiv:2310.14189*.

577 Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. (2023). Consistency models. *arXiv preprint
 578 arXiv:2303.01469*.

579 Song, Y., Durkan, C., Murray, I., and Ermon, S. (2021). Maximum likelihood training of score-based
 580 diffusion models. *Advances in neural information processing systems*, 34:1415–1428.

581 Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2020). Score-based
 582 generative modeling through stochastic differential equations. *arXiv preprint arXiv:2011.13456*.

583 Tabak, E. G. and Turner, C. V. (2013). A family of nonparametric density estimation algorithms.
 584 *Communications on Pure and Applied Mathematics*, 66(2):145–164.

585 Tabak, E. G. and Vanden-Eijnden, E. (2010). Density estimation by dual ascent of the log-likelihood.
 586 *Commun. Math. Sci.* 8 (1) 217 - 233, March 2010.

594 Zhou, L., Ermon, S., and Song, J. (2025). Inductive moment matching. *arXiv preprint*
595 *arXiv:2503.07565*.
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 **A BACKGROUND**
 649

650 **A.1 CONTINUITY EQUATION AND DERIVATION OF EXPRESSION FOR VELOCITY**

651 **Theorem 2** (Continuity Equation for Interpolants). *Let $x_0 \sim q_0$ and $x_1 \sim q_1$. Let $x_t = \alpha_t x_0 + \sigma_t x_1$*
 652 *for $\alpha_0 = \sigma_1 = 1$ and $\alpha_1 = \sigma_0 = 0$. Let $\dot{\alpha}_t$ and $\dot{\sigma}_t$ denote $\frac{d}{dt}\alpha_t$ and $\frac{d}{dt}\sigma_t$, respectively. Then $x_t \sim q_t$*
 653 *where q_t satisfies*

654
$$\partial_t q_t(x) = -\nabla_x \cdot (q_t(x)v(t, x)), \quad v(t, x) := \mathbb{E}[\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1 | x_t = x] \quad (14)$$

 655

656 *Proof.* In this derivation, we use $*$ for scalar-vector multiplication and \cdot for dot product. In the
 657 following, $x \in \mathbb{R}^d$ and we write some functions evaluated at an arbitrary frequency $k \in \mathbb{R}^d$. We
 658 derive “Fourier transform of time derivative of density equals Fourier transform of something” and
 659 then invert the Fourier on both sides.

660 Let $\mathcal{F}[f](k) := \int \exp(ik \cdot x) f(x) dx$. Then, for any density $p(x)$ we have
 661

662
$$\mathcal{F}[p](k) = \mathbb{E}[\exp(ik \cdot x)] \quad (15)$$

663 Let us reveal x_t as a function $x_t(x_0, x_1)$ so that $v(x, t) = \mathbb{E}[\dot{x}_t(x_0, x_1) | x_t = x]$. Then,
 664

665
$$\partial_t \mathcal{F}[q_t(x_t)](k) = \partial_t \mathbb{E} \left[e^{ik \cdot x_t} \right] \quad (16)$$

 666

667
$$= \partial_t \int_{x_0} \int_{x_1} e^{ik \cdot x_t(x_0, x_1)} dq(x_0, x_1) \quad (17)$$

 668

669
$$= \int_{x_0} \int_{x_1} \partial_t e^{ik \cdot x_t(x_0, x_1)} dq(x_0, x_1) \quad (18)$$

 670

671
$$\left[\partial_t e^{ik \cdot x_t(x_0, x_1)} = ik \cdot \left(e^{ik \cdot x_t(x_0, x_1)} \dot{x}_t \right) \right] \quad (19)$$

 672

673
$$= ik \cdot \int_{x_0} \int_{x_1} \left(e^{ik \cdot x_t(x_0, x_1)} \dot{x}_t(x_0, x_1) \right) dq(x_0, x_1) \quad (20)$$

 674

675
$$= ik \cdot \int_{x_0} \int_{x_1} \left(e^{ik \cdot x_t(x_0, x_1)} \dot{x}_t(x_0, x_1) \right) dq(x_0, x_1) \quad (21)$$

 676

677
$$= ik \cdot \mathbb{E}_{q(x_t)} \mathbb{E}_{q(x_1, x_0 | x_t)} \left[e^{ik \cdot x_t} \dot{x}_t(x_0, x_1) \right] \quad (22)$$

 678

679
$$= ik \cdot \mathbb{E}_{q(x_t)} \left[e^{ik \cdot x_t} \mathbb{E}[\dot{x}_t(x_0, x_1) | x_t] \right] \quad (23)$$

 680

681
$$= ik \cdot \mathbb{E}_{q(x_t)} \left[e^{ik \cdot x_t} v(x_t, t) \right] \quad (24)$$

 682

683
$$= ik \cdot \int \left[e^{ik \cdot x} v(x, t) \right] q_t(x) dx \quad (25)$$

 684

685
$$\left[\text{integration by parts, boundary } \int q_t dS = 0 \text{ for normalized densities} \right] \quad (26)$$

 686

687
$$= \int \left(v(x, t) q_t(x) \right) \cdot \left(\nabla_x e^{ik \cdot x} \right) dx \quad (27)$$

 688

689
$$= - \int e^{ik \cdot x} * \nabla \cdot (v * q_t) dx \quad (28)$$

 690

691
$$= -\mathcal{F}[\nabla \cdot (v * q_t)](k) \quad (29)$$

 692

693 We thus have
 694

695
$$\partial_t \mathcal{F}[q_t](k) = -\mathcal{F}[\nabla \cdot (v * q_t)](k) \quad (30)$$

696 But, for the same LHS we can suppress x_t ’s dependence on (t, x_0, x_1) and instead use its marginal
 697 distribution:

698
$$\partial_t \mathcal{F}[q_t](k) = \partial_t \left(\int e^{ik \cdot x} q_t(x) dx \right) = \int e^{ik \cdot x} \left(\partial_t q_t(x) \right) dx = \mathcal{F}[\partial_t p_t](k) \quad (31)$$

 699

702 Putting the two right hand sides next to each other:
 703

$$\mathcal{F}[\partial_t q_t](k) = -\mathcal{F}[\nabla \cdot (v q_t)](k) \quad (32)$$

705 Taking an inverse Fourier transform,
 706

$$\partial_t q_t = -\nabla \cdot (v q_t) \quad (33)$$

708 This establishes the expression for $\partial_t q_t$ and the expression for v . \square
 709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A.2 REPLACING VELOCITY WITH INTERPOLANT TIME DERIVATIVE IN SQUARED ERROR
 757 LOSSES

758 In diffusions, flow matching, and in this setting, we deal with objectives of the form
 759

$$760 \quad \min_{\theta} \mathbb{E}_{q(x_t)} \left[\|m_{\theta}(t, x_t) - v(t, x_t)\|^2, \right] \quad (34)$$

761

763 where $x_t \sim q_t$ is drawn by the interpolant $x_t = \alpha_t x_0 + \sigma_t x_1$, v is the velocity $v(t, x) = \mathbb{E}[\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1]$, and m_{θ} is some model (or its derivative, etc) evaluated at (t, x_t) . Here we show the common
 764 set of steps to replace the intractable v in the loss but preserve the right minimizer for m_{θ} , which we
 765 use in our loss derivations.
 766

$$767 \quad \mathbb{E}_{q(x_t)} \left[\|m_{\theta}(t, x_t) - \mathbb{E}[\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1 | x_t = x]\|^2 \right] \quad (35)$$

768

$$769 \quad = \mathbb{E}_{q(x_t)} \left[\|m_{\theta}(t, x_t)\|^2 + \|\mathbb{E}[\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1 | x_t = x]\|^2 - 2m_{\theta}(t, x_t)^{\top} \mathbb{E}[\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1 | x_t = x] \right] \quad (36)$$

770

$$771 \quad = \mathbb{E}_{q(x_t)} \left[\|m_{\theta}(t, x_t)\|^2 + \mathbb{E}[\|\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1\|^2 | x_t = x] \right. \quad (37)$$

772

$$773 \quad \left. - \underbrace{\sum_j \text{Var}([\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1]_j | x_t = x)}_{=: \text{constant } C} - 2m_{\theta}(t, x_t)^{\top} \mathbb{E}[\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1 | x_t = x] \right] \quad (38)$$

774

$$775 \quad = \mathbb{E}_{q(x_t)q(x_0, x_1 | x_t)} \left[\|m_{\theta}(t, x_t)\|^2 + \|\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1\|^2 - 2m_{\theta}(t, x_t)^{\top} (\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1) \right] + C \quad (39)$$

776

$$777 \quad = \mathbb{E}_{q(x_t)q(x_0, x_1 | x_t)} \left[\|m_{\theta}(t, x_t) - (\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1)\|^2 \right] + C \quad (40)$$

778

$$779 \quad = \mathbb{E}_{q(x_0, x_1, x_t)} \left[\|m_{\theta}(t, x_t) - (\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1)\|^2 \right] + C \quad (41)$$

780

$$781 \quad = \mathbb{E}_{q(x_0)q(x_1)} \left[\|m_{\theta}(t, x_t) - (\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1)\|^2 \right] \Big|_{x_t = \alpha_t x_0 + \sigma_t x_1} + C \quad (42)$$

782

783 Dropping the constant preserves the minimizer:
 784

$$785 \quad \min_{\theta} \mathbb{E}_{q(x_0)q(x_1)} \left[\|m_{\theta}(t, x_t) - (\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1)\|^2 \right] \Big|_{x_t = \alpha_t x_0 + \sigma_t x_1} \quad (43)$$

786

787
 788
 789
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 **B PROOFS FOR STATIONARY POINTS**811 **B.1 FIRST VARIATION DEFINITIONS**813 We consider scalar-valued loss functions $\mathcal{L} : \mathcal{F} \rightarrow \mathbb{R}$ that map a function $f \in \mathcal{F}$ to a real value.814 Define the tangent space $\mathcal{T}_f(\mathcal{F})$ at f . This space contains functions $h \in \mathcal{T}_f(\mathcal{F})$ such that there exists a
815 curve indexed by scalar ϵ such that for each ϵ , $f_\epsilon \in \mathcal{F}$, and we have that $f_0 = f$ and $(\frac{d}{d\epsilon} f_\epsilon)|_{\epsilon=0} = h$.816 The first variation $\delta\mathcal{L}$ of such a functional \mathcal{L} evaluated at $f \in \mathcal{F}$ in direction $h \in \mathcal{T}_f(\mathcal{F})$ is defined as:

818
$$\delta\mathcal{L}[f; h] := \left(\frac{d}{d\epsilon} \mathcal{L}[f + \epsilon h] \right)_{\epsilon=0} \quad (44)$$

821 We then have that f^* is a stationary point w.r.t. \mathcal{F} if $\delta[f; h] = 0$ for all $h \in \mathcal{T}_f(\mathcal{F})$.822 **B.2 STOPGRAD FOR FUNCTIONALS**824 We define the stopgrad symbol `sg` for a functional as follows. Let \mathcal{O} be a functional that maps two
825 functions f, g to a real value. Let $\mathcal{L}[f]$ be a functional that is written in terms of \mathcal{O} with symbol `sg` as
826 $\mathcal{L}[f] := \mathcal{O}[f, \text{sg}[f]]$, then we evaluate the following two quantities as follows

827
$$\mathcal{L}[f] = \mathcal{O}[f, f] \quad (45)$$

828
$$\delta\mathcal{L}[f; h] = \delta\mathcal{O}[f, f; h, 0] \quad (46)$$

829 That is, the functional evaluates as usual but in a first variation, we do not perturb terms in `sg`. This
830 corresponds to the stopgrad or `detach()` operation used in machine learning code with autodifferentiation.833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 B.3 FIRST VARIATION OF ORIGINAL LOSS FUNCTIONAL
865

866 Our functional $\mathcal{L}[\tilde{f}]$ acts on functions \tilde{f} . According to the definitions in Section B.1, we need to
867 compute $\delta\mathcal{L}[\tilde{f}; h] = (\frac{d}{d\epsilon}\mathcal{L}[\tilde{f} + \epsilon h])_{\epsilon=0}$. The functional is:

$$\begin{aligned} T_1[\tilde{f}] &:= \|(\partial_t f)_{(t,u,x_t)} + (\partial_x f)_{(t,u,x_t)} \dot{x}_t\|_{f=x+(u-t)\tilde{f}}^2 \\ T_2[\tilde{f}] &:= \|(\partial_x f)_{(t,u,x_t)} (\dot{x}_t - \mathbb{E}[\dot{x}_t | x_t])\|_{f=x+(u-t)\tilde{f}}^2 \\ A[\tilde{f}] &= T_1[\tilde{f}] - T_2[\tilde{f}] \\ \mathcal{L}[\tilde{f}] &= \mathbb{E}_{q(t,u), q(x_0), q(x_1)} [A[\tilde{f}]] \end{aligned}$$

875 Lets define the path f_ϵ by replacing \tilde{f} with $\tilde{f}_\epsilon := \tilde{f} + \epsilon h$. Then:

$$f_\epsilon := x + (u-t)\tilde{f}_\epsilon = x + (u-t)(\tilde{f} + \epsilon h) = x + (u-t)\tilde{f} + \epsilon(u-t)h \quad (47)$$

878 Then

$$\frac{d}{d\epsilon}\mathcal{L}[\tilde{f} + \epsilon h] = \mathbb{E}\left[\frac{d}{d\epsilon}A[\tilde{f}_\epsilon]\right] = \mathbb{E}\left[\frac{d}{d\epsilon}T_1[\tilde{f} + \epsilon h] - \frac{d}{d\epsilon}T_2[\tilde{f} + \epsilon h]\right] \quad (48)$$

882 We first compute this derivative and then evaluate it at $\epsilon = 0$.

883 So

$$\partial_t f_\epsilon = \partial_t [x + (u-t)\tilde{f} + \epsilon(u-t)h] \quad (49)$$

$$= \partial_t x + \partial_t [(u-t)\tilde{f}] + \epsilon \partial_t [(u-t)h] \quad (50)$$

$$= (u-t)\partial_t \tilde{f} - \tilde{f} + \epsilon((u-t)\partial_t h - h) \quad (51)$$

$$= (u-t)(\partial_t \tilde{f} + \epsilon \partial_t h) - (\tilde{f} + \epsilon h) \quad (52)$$

891 and

$$\partial_x f_\epsilon = \partial_x [x + (u-t)\tilde{f} + \epsilon(u-t)h] = I + (u-t)\partial_x(\tilde{f} + \epsilon h) \quad (53)$$

894 and

$$\frac{d}{d\epsilon}\partial_t f_\epsilon = \frac{d}{d\epsilon}[(u-t)(\partial_t \tilde{f} + \epsilon \partial_t h) - (\tilde{f} + \epsilon h)] \quad (54)$$

$$= \frac{d}{d\epsilon}[(u-t)\partial_t \tilde{f} + \epsilon(u-t)\partial_t h - \tilde{f} - \epsilon h] \quad (55)$$

$$= \frac{d}{d\epsilon}[\epsilon(u-t)\partial_t h - \epsilon h] \quad (56)$$

$$= (u-t)\partial_t h - h \quad (57)$$

903 and

$$\frac{d}{d\epsilon}\partial_x f_\epsilon = \frac{d}{d\epsilon}[I + (u-t)\partial_x(\tilde{f} + \epsilon h)] \quad (58)$$

$$= \frac{d}{d\epsilon}I + \frac{d}{d\epsilon}(u-t)\partial_x \tilde{f} + \frac{d}{d\epsilon}(u-t)\partial_x \epsilon h \quad (59)$$

$$= (u-t)\partial_x h \quad (60)$$

910 For the first term,

$$T_1[\tilde{f} + \epsilon h] = \|\partial_t f_\epsilon + (\partial_x f_\epsilon) \dot{x}_t\|^2$$

913 Differentiating

$$\frac{d}{d\epsilon}T_1[\tilde{f} + \epsilon h] = 2\left(\partial_t f_\epsilon + (\partial_x f_\epsilon) \dot{x}_t\right)^\top \frac{d}{d\epsilon}\left(\partial_t f_\epsilon + (\partial_x f_\epsilon) \dot{x}_t\right) \quad (61)$$

$$= 2\left(\partial_t f_\epsilon + (\partial_x f_\epsilon) \dot{x}_t\right)^\top \left(\underbrace{(u-t)\partial_t h - h}_{\text{underbrace}} + \underbrace{(u-t)\partial_x h \dot{x}_t}_{\text{underbrace}}\right) \quad (62)$$

$$= 2 \left(\underbrace{(u-t)(\partial_t \tilde{f} + \epsilon \partial_t h) - (\tilde{f} + \epsilon h)}_{(u-t)\partial_t h - h} + \underbrace{(I + (u-t)\partial_x(\tilde{f} + \epsilon h))\dot{x}_t}_{(u-t)\partial_x h \dot{x}_t} \right)^\top \quad (63)$$

$$\left(\underbrace{(u-t)\partial_t h - h}_{(u-t)\partial_t h - h} + \underbrace{(u-t)\partial_x h \dot{x}_t}_{(u-t)\partial_x h \dot{x}_t} \right) \quad (64)$$

So

$$\frac{d}{d\epsilon} T_1[\tilde{f} + \epsilon h] \Big|_{\epsilon=0} = 2 \left((u-t)(\partial_t \tilde{f} + \partial_x \tilde{f} \dot{x}_t) - \tilde{f} + \dot{x}_t \right)^\top \left((u-t)(\partial_t h + \partial_x h \dot{x}_t) - h \right) \quad (65)$$

For the second term,

$$T_2[\tilde{f} + \epsilon h] = \|\partial_x f_\epsilon(\dot{x}_t - v)\|^2 \quad (66)$$

and

$$\frac{d}{d\epsilon} T_2[\tilde{f} + \epsilon h] = 2 \left[\partial_x f_\epsilon(\dot{x}_t - v) \right]^\top \frac{d}{d\epsilon} \left[\partial_x f_\epsilon(\dot{x}_t - v) \right] \quad (67)$$

$$= 2 \left[\partial_x f_\epsilon(\dot{x}_t - v) \right]^\top \frac{d}{d\epsilon} (\partial_x f_\epsilon)(\dot{x}_t - v) \quad (68)$$

$$= 2 \left[(I + (u-t)\partial_x(\tilde{f} + \epsilon h))(\dot{x}_t - v) \right]^\top (u-t)\partial_x h(\dot{x}_t - v) \quad (69)$$

So

$$\frac{d}{d\epsilon} T_2[\tilde{f} + \epsilon h] \Big|_{\epsilon=0} = 2 \left[(I + (u-t)\partial_x \tilde{f})(\dot{x}_t - v) \right]^\top (u-t)\partial_x h(\dot{x}_t - v) \quad (70)$$

So combining

$$\frac{d}{d\epsilon} A \Big|_{\epsilon=0} = 2 \left((u-t)(\partial_t \tilde{f} + \partial_x \tilde{f} \dot{x}_t) - \tilde{f} + \dot{x}_t \right)^\top \left((u-t)(\partial_t h + \partial_x h \dot{x}_t) - h \right) \quad (71)$$

$$- 2 \left[(I + (u-t)\partial_x \tilde{f})(\dot{x}_t - v) \right]^\top (u-t)\partial_x h(\dot{x}_t - v) \quad (72)$$

At $t = u$, this simplifies

$$1[t = u] \frac{d}{d\epsilon} A[\tilde{f}_\epsilon] \Big|_{\epsilon=0} = 2(\dot{x}_t - \tilde{f})^\top (-h) \quad (73)$$

which is the first variation for regression that makes \tilde{f} equal to $E[\dot{x}_t | x_t]$. Summarizing,

$$\delta \mathcal{L}[\tilde{f}; h] = \mathbb{E} \left[2 \left((u-t)(\partial_t \tilde{f} + \partial_x \tilde{f} \dot{x}_t) - \tilde{f} + \dot{x}_t \right)^\top \left((u-t)(\partial_t h + \partial_x h \dot{x}_t) - h \right) \right] \quad (74)$$

$$- 2 \left[(I + (u-t)\partial_x \tilde{f})(\dot{x}_t - v) \right]^\top (u-t)\partial_x h(\dot{x}_t - v) \quad (75)$$

972 B.4 LEMMA: VELOCITY MATCHES AT A STATIONARY POINT OF ORIGINAL FUNCTIONAL
973

974 **Lemma 1.** Let \tilde{f}^* be a stationary point of \mathcal{L} . Assume that \tilde{f}^* is bounded. Assume that $\tilde{f}^*, v \in$
975 C^1 in arguments (t, u, x) and that all expectations of terms featured in the integrand of \mathcal{L} (i.e.,
976 $v, \tilde{f}, \partial_t \tilde{f}, \partial_u \tilde{f}, \partial_x \tilde{f}, \dots$) are finite. Then we have that $\tilde{f}^*(t, t, \cdot) = v(t, \cdot)$ where the velocity $v(t, x) =$
977 $\mathbb{E}[\dot{x}_t | x_t]$.

978
979 *Proof.* We proceed by contradiction. By the premise, we are at a stationary point \tilde{f}^* . Let $f^* :=$
980 $x + (u - t)\tilde{f}^*$. By the definition of stationary point in section B.1, we have that $\delta\mathcal{L}[\tilde{f}^*; h] = 0$ for all
981 admissible h . Suppose for the sake of contradiction that at this stationary point, the velocity does not
982 match, meaning
983

$$- \partial_t f^*(t, t, \cdot) = \tilde{f}^*(t, t, \cdot) \neq v(t, \cdot) \quad (76)$$

suppose for contradiction

987 The proof proceeds by picking a direction for which the first variation is nonzero, providing a
988 contradiction to being at a stationary point. The contradiction (the direction for which the first
989 variation is nonzero) is constructed to arise from assuming that the velocity does not match, meaning
990 that by contradiction the velocity does not match. Specific care is taken to ensure that this direction is
991 admissible, in this case meaning it is a continuous function.

992 We name a sequence of functions g_η such there exists η^* such that g_{η^*} is continuous but yields the
993 nonzero variation when chosen as a direction. To establish this is existence under continuity, the
994 dominated convergence theorem is used.

995 Let us define $g(t, u, x) = 1[t = u] \left(\tilde{f}^*(t, u, x) - v(t, x) \right)$ and evaluate it at $t = u$ so that $g(t, t, x) =$
996 $\tilde{f}^*(t, t, x) - v(t, x)$. We then define the soft indicator $I_\eta(t, u)$ that goes to $1[t = u]$ as $\eta \rightarrow 0$ and
997 define it as:
998

$$I_\eta(t, u) = 1[\eta > 0] 2 \left(1 - \frac{1}{1 + \exp(-\frac{1}{\eta^2}(t - u)^2)} \right) + 1[\eta = 0] 1[t = u] \quad (77)$$

1002 Using the soft indicator, we define a sequence of functions g_η so that as $\eta \rightarrow 0$ we will have pointwise
1003 convergence of $g_\eta(t, t, x) \rightarrow g(t, t, x)$ which also means that $g_\eta(t, u, x)$ for $t \neq u$ goes to 0. We pick
1004

$$g_\eta(t, u, x) = I_\eta(t, u) \left(\tilde{f}^*(t, t, x) - v(t, x) \right) \quad (78)$$

1007 **Pointwise convergence of g in eta.** We first establish pointwise convergence of g_η to g for all
1008 arguments (t, u, x) as $\eta \rightarrow 0$ from the right.

$$\forall \hat{\eta} \geq 0, \quad \lim_{\eta \rightarrow (\hat{\eta})^+} g_\eta(t, u, x) = g_{\hat{\eta}}(t, u, x) \quad (79)$$

1012 To show this, for any $\hat{\eta} > 0$, use continuity of $g_{\hat{\eta}}(t, u, x)$ in $\hat{\eta}$ (product of function without η times
1013 the soft indicator which is continuous). Then to establish for $\hat{\eta} = 0$, we consider two cases $t = u$
1014 and $t \neq u$. For equality:

$$\lim_{\eta \rightarrow 0^+} g_\eta(t, t, x) \quad (80)$$

$$= \lim_{\eta \rightarrow 0^+} I_\eta(t, t) \left(\tilde{f}^*(t, t, x) - v(t, x) \right) \quad (81)$$

$$= \lim_{\eta \rightarrow 0^+} \left[1[\eta > 0] 2 \left(1 - \frac{1}{1 + \exp(0)} \right) + 1[\eta = 0] \right] \left(\tilde{f}^*(t, t, x) - v(t, x) \right) \quad (82)$$

$$= \lim_{\eta \rightarrow 0^+} \left[1[\eta > 0] 1 + 1[\eta = 0] \right] \left(\tilde{f}^*(t, t, x) - v(t, x) \right) \quad (83)$$

$$= \lim_{\eta \rightarrow 0^+} 1[\eta \geq 0] \left(\tilde{f}^*(t, t, x) - v(t, x) \right) \quad (84)$$

$$= \tilde{f}^* - v \quad (85)$$

1026 which equals $g_{\eta=0}(t, t, x)$, establishing continuity. Now for $t \neq u$. $\forall \delta > 0$ we must name an $\eta(\delta)$
 1027 such that $g_{\eta(\delta)}$ such that $|g_{\eta(\delta)} - g_0| < \delta$ i.e. $|g_{\eta(\delta)} - 0| < \delta$. Assume $|\tilde{f}^* - v| < k$ uniformly in all
 1028 input values t, x .
 1029

$$\begin{aligned} 1030 \quad & \lim_{\eta \rightarrow 0^+} g_\eta(t, u, x) \\ 1031 \quad &= \lim_{\eta \rightarrow 0^+} \left[1[\eta > 0] 2 \left(1 - \frac{1}{1 + \exp(-\frac{1}{\eta^2}(t-u)^2)} \right) + 1[\eta = 0] 1[t = u] \right] (\tilde{f}^*(t, t, x) - v(t, x)) \\ 1032 \quad &= \lim_{\eta \rightarrow 0^+} \left[1[\eta > 0] 2 \left(1 - \frac{1}{1 + \exp(-\frac{1}{\eta^2}(t-u)^2)} \right) \right] (\tilde{f}^*(t, t, x) - v(t, x)) \end{aligned}$$

1033 Since we are finding a δ and $\eta(\delta)$ so that $|g_{\eta(\delta)} - 0| < \delta$ which means $|g_{\eta(\delta)}| < \delta$, this just means
 1034 we can set δ to an upper bound on the term we are limiting: let the indicator take on 1 as when it is 0
 1035 we are done.
 1036

$$\delta = \left| 2 \left(1 - \frac{1}{1 + \exp(\dots)} \right) \right| k \quad (86)$$

$$\iff \frac{\delta}{k} = 2 \left(1 - \frac{1}{1 + \exp(-\frac{1}{\eta^2}(t-u)^2)} \right) \quad (87)$$

$$\iff \frac{\delta}{2k} = 1 - \frac{1}{1 + \exp(-\frac{1}{\eta^2}(t-u)^2)} \quad (88)$$

$$\iff 1 - \frac{\delta}{2k} = \frac{1}{1 + \exp(-\frac{1}{\eta^2}(t-u)^2)} \quad (89)$$

$$\iff \frac{2k - \delta}{2k} = \frac{1}{1 + \exp(-\frac{1}{\eta^2}(t-u)^2)} \quad (90)$$

$$\iff \frac{2k - \delta}{2k} = \frac{1}{1 + \exp(-\frac{1}{\eta^2}(t-u)^2)} \quad (91)$$

$$\iff \frac{2k}{2k - \delta} = 1 + \exp(-\frac{1}{\eta^2}(t-u)^2) \quad (92)$$

$$\iff \frac{2k}{2k - \delta} - 1 = \exp(-\frac{1}{\eta^2}(t-u)^2) \quad (93)$$

$$\iff \frac{2k}{2k - \delta} - \frac{2k - \delta}{2k - \delta} = \exp(-\frac{1}{\eta^2}(t-u)^2) \quad (94)$$

$$\iff \frac{\delta}{2k - \delta} = \exp(-\frac{1}{\eta^2}(t-u)^2) \quad (95)$$

$$\iff \log \frac{\delta}{2k - \delta} = -\frac{1}{\eta^2}(t-u)^2 \quad (96)$$

$$\iff -\log \frac{\delta}{2k - \delta} = \frac{1}{\eta^2}(t-u)^2 \quad (97)$$

$$\iff -\frac{\log \frac{\delta}{2k - \delta}}{(t-u)^2} = \frac{1}{\eta^2} \quad (98)$$

$$\iff -\frac{(t-u)^2}{\log \frac{\delta}{2k - \delta}} = \eta^2 \quad (99)$$

$$\quad \quad \quad (100)$$

1074 Now note that the soft indicator is strictly < 1 and that g_η for fixed (t, u, x) is between $-k$ and 0 or 0
 1075 and k depending on the sign of $\tilde{f}^* - v$, but never both. So its magnitude is at most k . So
 1076

$$|g_{\eta(\delta)} - g_0| = |g_{\eta(\delta)} - 0| < \delta < k \quad (101)$$

1077 This can help us ascertain that the above square root to solve for η will be well defined:
 1078

$$\delta < k \implies 2k - \delta > k \quad (102)$$

$$\begin{aligned}
1080 \quad & \implies \frac{1}{2k-\delta} < \frac{1}{k} & (103) \\
1081 \quad & \implies \frac{\delta}{2k-\delta} < \frac{\delta}{k} & (104) \\
1082 \quad & \implies \frac{\delta}{2k-\delta} < 1 & (105) \\
1083 \quad & \implies \log \frac{\delta}{2k-\delta} < \log 1 & (106) \\
1084 \quad & \implies \log \frac{\delta}{2k-\delta} < 0 & (107)
\end{aligned}$$

1091 meaning

$$1092 \quad \eta(\delta) = \sqrt{\frac{(t-u)^2}{|\log \frac{\delta}{2k-\delta}|}} \quad (108)$$

1093 thus establishing convergence of $g_\eta \rightarrow g$ as $\eta \rightarrow 0^+$ for each (t, u, x) i.e. pointwise convergence.

1094 Now recall the first variation of \mathcal{L} (section B.3) and consider it as a function of η :

$$1095 \quad s(\eta) := \delta \mathcal{L}[\tilde{f}^*; g_\eta] = \mathbb{E} \left[2 \left((u-t)(\partial_t \tilde{f}^*) - \tilde{f}^* + (I + (u-t)(\partial_x \tilde{f}^*)) \dot{x}_t \right)^\top \right. \quad (109)$$

$$1096 \quad \left. \left((u-t)\partial_t g_\eta - g_\eta + (u-t)(\partial_x g_\eta) \dot{x}_t \right) \right] \quad (110)$$

$$1097 \quad - 2 \left[\left(I + (u-t)\partial_x \tilde{f}^* \right) (\dot{x}_t - v) \right]^\top (u-t)\partial_x g_\eta (\dot{x}_t - v) \quad (111)$$

1098 **Pointwise convergence of integrand in eta.** Collect the variables $\omega = (t, u, x_0, x_1)$ and recall
1099 that x_t and \dot{x}_t are functions of (x_0, x_1) . Define $\phi_\eta(\omega)$ as shorthand for the expectand so that
1100 $s(\eta) = \mathbb{E}[\phi_\eta(\omega)]$. Under the boundedness assumptions and noting that ϕ_η only polynomially
1101 combines g_η with $(\partial_t \tilde{f}^*, \partial_u \tilde{f}^*, \partial_x \tilde{f}^*, v, \partial_x v, \dots)$, similar reasoning used to show $g_\eta \rightarrow g$ can also
1102 be used to establish that $\phi_\eta \rightarrow \phi$ pointwise.

1103 **Establish upper envelope.** In addition to pointwise convergence of $\phi_\eta \rightarrow \phi$ as $\eta \rightarrow 0$ from the
1104 right, we need an upper envelope $G(\omega)$. Beyond the assumptions, the only thing needed to show
1105 that an upper envelope exists is to control the term $|(u-t)\partial_t I_\eta(t, u)|$. The derivative of the soft
1106 indicator appears since $\partial_t g_\eta = \partial_t(I_\eta g) = (\partial_t I_\eta)g + I_\eta \partial_t g$. At $\eta = 0$ we have $I_\eta(t, u) = 1[t = u]$,
1107 so $(u-t)\partial_t I_\eta(t, u)$ vanishes identically: it is 0 for $t \neq u$ because I_0 is constant, and for $t = u$
1108 because of the $(u-t)$ prefactor. For $\eta > 0$, define:

$$1109 \quad z := \frac{(t-u)^2}{\eta^2}, \quad \sigma(z) := \frac{1}{1 + \exp(-z)}, \quad \sigma'(z) := \frac{\exp(-z)}{[1 + \exp(-z)]^2} \quad (112)$$

1110 Note that for $\eta > 0$,

$$1111 \quad \partial_t I_\eta(t, u) = 2 \frac{2(t-u)}{\eta^2} \sigma' \left(\frac{(t-u)^2}{\eta^2} \right) \quad (113)$$

1112 and so

$$1113 \quad |(u-t)\partial_t I_\eta(t, u)| = 2(u-t) \frac{2(u-t)}{\eta^2} \sigma' \left(\frac{(t-u)^2}{\eta^2} \right) = 4z\sigma'(z) \leq \sup_{z \geq 0} 4z\sigma'(z) \leq C_0 < \infty \quad (114)$$

1114 Because $r(z) := 4z\sigma'(z)$ is continuous and satisfies $r(0) = 0$ and $r(z) \rightarrow 0$ as $z \rightarrow \infty$, it attains
1115 a finite maximum. **This bound is independent of η .** Thus every term containing $(u-t)\partial_t g_\eta$ is
1116 uniformly bounded in η by a product of a constant (from the bound and $I_\eta \in [0, 1]$). The other
1117 quantities in ϕ are bounded by assumption. Thus such a bounding envelope $G(\omega)$ exists.

1118 **Using dominated convergence.** First,

$$1119 \quad \lim_{\eta \rightarrow 0^+} s(\eta) = \lim_{\eta \rightarrow 0^+} \mathbb{E}[\phi_\eta] = \lim_{\eta \rightarrow 0^+} p(t = u) \mathbb{E}[\phi_\eta | t = u] + p(t < u) \mathbb{E}[\phi_\eta | t < u] \quad (115)$$

1134 By the pointwise convergence of $\phi_\eta \rightarrow \phi$ as $\eta \rightarrow 0^+$ and by the envelope, we can compute the limit
 1135 of the first and second terms separately. Expanding the first term (with $p = u$):
 1136

$$\begin{aligned}
 1137 \lim_{\eta \rightarrow 0^+} p(t = u) \mathbb{E}[\phi_\eta | t = u] &= \lim_{\eta \rightarrow 0^+} p(t = u) \mathbb{E} \left[2 \left((u - t)(\partial_t \tilde{f}^*) - \tilde{f}^* + (I + (u - t)(\partial_x \tilde{f}^*)) \dot{x}_t \right)^\top \right. \\
 1138 &\quad \left. \left((u - t) \partial_t g_\eta - g_\eta + (u - t)(\partial_x g_\eta) \dot{x}_t \right) \right. \\
 1139 &\quad \left. - 2 \left[(I + (u - t) \partial_x \tilde{f}^*) (\dot{x}_t - v) \right]^\top (u - t) \partial_x g_\eta (\dot{x}_t - v) | t = u \right] \\
 1140 &= \lim_{\eta \rightarrow 0^+} p(t = u) \mathbb{E} \left[2 \left(- \tilde{f}^* + \dot{x}_t \right)^\top \left(- g_\eta \right) | t = u \right] \\
 1141 &= \lim_{\eta \rightarrow 0^+} p(t = u) \mathbb{E} \left[2 \left(- \tilde{f}^* + \mathbb{E}[\dot{x}_t | x_t] \right)^\top \left(- g_\eta \right) | t = u \right] \\
 1142 &= \lim_{\eta \rightarrow 0^+} p(t = u) \mathbb{E} \left[2 \left(- \tilde{f}^* + v \right)^\top \left(- g_\eta \right) | t = u \right] \\
 1143 &= p(t = u) \mathbb{E} \left[\lim_{\eta \rightarrow 0^+} 2 \left(- \tilde{f}^* + v \right)^\top \left(- g_\eta \right) | t = u \right] \\
 1144 &= p(t = u) \mathbb{E} \left[\lim_{\eta \rightarrow 0^+} 2 \left\| - \tilde{f}^* + v \right\|_2^2 | t = u \right]
 \end{aligned}$$

1145 This term is greater than zero by assumption that the velocity does not match at the stationary point
 1146 and assumption on the positive probability on $p(t = u) > 0$.
 1147

1148 Expanding the second term (with $p(t < u)$):
 1149

$$\begin{aligned}
 1150 \lim_{\eta \rightarrow 0^+} p(t < u) \mathbb{E}[\phi_\eta | t < u] &= \lim_{\eta \rightarrow 0^+} p(t < u) \mathbb{E} \left[2 \left((u - t)(\partial_t \tilde{f}^*) - \tilde{f}^* + (I + (u - t)(\partial_x \tilde{f}^*)) \dot{x}_t \right)^\top \right. \\
 1151 &\quad \left. \left((u - t) \partial_t g_\eta - g_\eta + (u - t)(\partial_x g_\eta) \dot{x}_t \right) \right. \\
 1152 &\quad \left. - 2 \left[(I + (u - t) \partial_x \tilde{f}^*) (\dot{x}_t - v) \right]^\top (u - t) \partial_x g_\eta (\dot{x}_t - v) | t < u \right] \\
 1153 &= p(t < u) \mathbb{E} \left[\lim_{\eta \rightarrow 0^+} 2 \left((u - t)(\partial_t \tilde{f}^*) - \tilde{f}^* + (I + (u - t)(\partial_x \tilde{f}^*)) \dot{x}_t \right)^\top \right. \\
 1154 &\quad \left. \left((u - t) \partial_t g_\eta - g_\eta + (u - t)(\partial_x g_\eta) \dot{x}_t \right) \right. \\
 1155 &\quad \left. - 2 \left[(I + (u - t) \partial_x \tilde{f}^*) (\dot{x}_t - v) \right]^\top (u - t) \partial_x g_\eta (\dot{x}_t - v) | t < u \right]
 \end{aligned}$$

1156 There's no η in the first term in each of the two dot products that make up the expectand, so we can
 1157 focus on the second term in the dot products, where $t < u$. For the second term in the first dot product:
 1158

$$\begin{aligned}
 1159 \lim_{\eta \rightarrow 0^+} &\left((u - t) \partial_t g_\eta - g_\eta + (u - t)(\partial_x g_\eta) \dot{x}_t \right) \\
 1160 &= \lim_{\eta \rightarrow 0^+} \left((u - t) \partial_t g_\eta - I_\eta(t, u) \left(\tilde{f}^*(t, t, x) - v(t, x) \right) + (u - t)(I_\eta(t, u) \partial_x [\tilde{f}^*(t, t, x) - v(t, x)]) \dot{x}_t \right) \\
 1161 &= \lim_{\eta \rightarrow 0^+} (u - t) \partial_t g_\eta \\
 1162 &= \lim_{\eta \rightarrow 0^+} (u - t) \partial_t [I_\eta(t, u) \left(\tilde{f}^*(t, t, x) - v(t, x) \right)] \\
 1163 &= \lim_{\eta \rightarrow 0^+} (u - t) (\partial_t I_\eta) g + I_\eta \partial_t g
 \end{aligned}$$

$$\begin{aligned}
&= \lim_{\eta \rightarrow 0^+} (u - t)(\partial_t I_\eta) I_\eta(t, u) \left(\tilde{f}^*(t, t, x) - v(t, x) \right) \\
&= \left(\tilde{f}^*(t, t, x) - v(t, x) \right) (u - t) \lim_{\eta \rightarrow 0^+} (\partial_t I_\eta) I_\eta(t, u) = 0
\end{aligned}$$

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
The last equality holds because the function and its time derivative both go to zero.
This means the first product in the expectation goes to zero. By a similar argument the second term goes to zero as well.
Putting it all together
 $L := \lim_{\eta \rightarrow 0^+} s(\eta) = \lim_{\eta \rightarrow 0^+} \mathbb{E}[\phi_\eta] = \lim_{\eta \rightarrow 0^+} p(t = u) \mathbb{E}[\phi_\eta | t = u] + p(t < u) \mathbb{E}[\phi_\eta | t < u] > 0$
Resultingly,
$$\exists \eta_0 > 0 \text{ s.t. } \forall \eta^* \text{ s.t. } 0 < \eta^* < \eta_0 \implies |s(\eta^*) - L| < \epsilon \quad (116)$$

If we pick $\epsilon = 0.5L$ then
$$|s(\eta^*) - L| < .5L \implies s(\eta^*) > L - .5L = .5L > 0 \quad (117)$$

so $s(\eta^*) > 0$. But this contradicts being at a stationary point. It cannot be that $\tilde{f}^*(t, t, \cdot) \neq v(t, \cdot)$
Therefore the velocity must match. \square

1242 B.5 THEOREM 1
1243

1244 We present a proof about the functional stationary points of the GameFlow functional. We use the
1245 definitions of first variation and stationary point from section B.1 and the definition of functional
1246 stopgrad from section B.2.

1247 **Theorem.** Let $q(t, u)$ be a joint distribution with support over $t \leq u$ and with positive probability
1248 on $t = u$. Let the family $\tilde{\mathcal{F}}$ include functions \tilde{f} that are continuously differentiable in all arguments.
1249 Let $x_t = \alpha_t x_0 + \sigma_t x_1$ and $\dot{x}_t = \alpha_t \dot{x}_0 + \sigma_t \dot{x}_1$. Evaluate f at $f(t, u, x) + (u - t)\tilde{f}(t, u, x)$. Take
1250 expectations over $q(t, u)$ and $q(x_0)q(x_1)$. Let sg stand for stop-gradient. Define:

$$1251 \mathcal{L}[\tilde{f}] := \mathbb{E} \left[\|(\partial_t f)|_{(t, u, x_t)} + (\partial_x f)|_{(t, u, x_t)} \dot{x}_t\|^2 - \|(\partial_x f)_{(t, u, x_t)} (\dot{x}_t - \mathbb{E}[\dot{x}_t | x_t])\|^2 \right] \\ 1254 \mathcal{L}^{sg}[\tilde{f}] := \mathbb{E} \left[\|(\partial_t f)_{(t, u, x_t)} + (\partial_x f)_{(t, u, x_t)} \dot{x}_t\|^2 - \|(\partial_x f)_{(t, u, x_t)} (\dot{x}_t + sg[(\partial_t f)]_{(t, u, x_t)})\|^2 \right]$$

1256 Then \tilde{f}^* is a stationary point of \mathcal{L}^{sg} w.r.t. $\tilde{\mathcal{F}}$ if and only if \tilde{f}^* is a stationary point of \mathcal{L} w.r.t. $\tilde{\mathcal{F}}$.

1258 *Proof.* **Case 1: If \tilde{f}^* is a stationary point of \mathcal{L} , then \tilde{f}^* is a stationary point of \mathcal{L}^{sg} .**

- 1260 • Since \tilde{f}^* is a stationary point, $\delta\mathcal{L}[\tilde{f}^*; \cdot] = 0$
- 1262 • by section B.4, we have that $\partial_t f^*(t, t, x) = -\tilde{f}^*(t, t, x) = -\mathbb{E}[\dot{x}_t | x_t]$ where $f^* = x +$
1263 $(u - t)\tilde{f}^*$
- 1264 • $\mathcal{L}^{sg} = \mathcal{L}$
- 1266 • Since $\mathcal{L}^{sg} = \mathcal{L}$, then $\delta\mathcal{L}^{sg}[\tilde{f}^*; \cdot] = \delta\mathcal{L}[\tilde{f}^*; \cdot] = 0$

1268 **Case 2: If f^* is not a stationary point of \mathcal{L} , then f^* is not a stationary point of \mathcal{L}^{sg} .**

1269 Since f^* is not a stationary point of \mathcal{L} , then $\exists h$ that is admissible (continuous) such that $\delta\mathcal{L}[f^*; h] \neq 0$.
1270 Then,

$$1272 \underbrace{\delta\mathcal{L}[f^*; h]}_{\text{LHS}} = \underbrace{\mathbb{E} \left[1[t = u] \dots \right]}_{\text{RHS-L}} + \underbrace{\mathbb{E} \left[1[t \neq u] \dots \right]}_{\text{RHS-R}} \quad (118)$$

1275 If the LHS is nonzero, then one of RHS-L or RHS-R is nonzero. Consider both cases.

1276 **case 2a: The RHS-R is nonzero and RHS-L is zero.** RHS-L being zero means that the velocity
1277 matches, which means that RHS-R has the same first variation between \mathcal{L} and \mathcal{L}^{sg} . So they must
1278 coincide regarding stationary points.

1279 **case 2b: RHS-L is nonzero and RHS-R is either zero or nonzero.**

1280 **case2b-i** $\delta\mathcal{L}^{sg}[f^*; h] \neq 0$ directly holds. This is all we are trying to ensure anyway, so we are done
1281 in this case.

1283 **case2b-ii** Define the soft indicator, I_η :

$$1285 I_\eta(t, u) = 1[\eta > 0]2\left(1 - \frac{1}{1 + \exp(-\frac{1}{\eta^2}(t - u)^2)}\right) + 1[\eta = 0]1[t = u]. \quad (119)$$

1287 Define the direction, \hat{h}_η :

$$1288 \hat{h}_\eta(t, u, x) = I_\eta(t, u)h(t, u, x). \quad (120)$$

1289 \hat{h}_η is continuously differentiable for any $\eta > 0$. This is true cause it's a product of two functions that
1290 are each continuously differentiable (h is assumed continuously differentiable). Recall the mapping
1291 $s(\eta)$ from Section B.4, that maps η to $\delta\mathcal{L}[f; \hat{h}_\eta]$. Under the conditions of dominated convergence
1292 established in Section B.4, we know that $\exists \eta^* > 0$ such that \hat{h}_{η^*} is a continuously differentiable
1293 function for which $\delta\mathcal{L}[f^*; \hat{h}_{\eta^*}] \neq 0$. This must mean that the velocity is not matched. But we know
1294 that if the velocity does not match, we are not at a stationary point of \mathcal{L}^{sg} either, since \mathcal{L}^{sg} and \mathcal{L}
1295 coincide on penalizing velocity matching on $t = u$.

1296 **C OTHER USEFUL DERIVATIONS AND RESULTS**
 1297

1298 **C.1 GRADIENT UPDATES ARE NOT OPTIMIZATION OF ONE SCALAR OBJECTIVE VIA**
 1299 **GRADIENTS**

1300 We show here that there exists a data distribution and a model such that the Gameflow updates are
 1301 not the gradient of any single scalar objective. We illustrate this by considering an simple 1D setting.
 1302 The key point is that, even in this restricted case, the update field induced by the stopgrad operator
 1303 has non-zero curl and therefore cannot be written as the gradient of any scalar objective $J(\theta)$. The
 1304 form to be differentiated is:

$$1305 L_{\text{sg}}(\theta) = \mathbb{E}_{X_t} \left[\left\| \partial_t f_\theta(t, u, X_t) + (\partial_x f_\theta(t, u, X_t)) \dot{X}_t \right\|^2 \right] \\ 1306 - \mathbb{E}_{X_t} \left[\left\| (\partial_x f_\theta(t, u, X_t)) (\dot{X}_t - \text{stopgrad}[\tilde{f}_\theta(t, u, X_t)]) \right\|^2 \right]. \quad (121)$$

1309 for $f_\theta(t, u, x) = x + (u - t)\tilde{f}_\theta(t, u, x)$. Let us work in 1D and fix values of $X_t = x$ and $\dot{X}_t = d$, a
 1310 constant. To accomplish this, we can choose X_1 freely and set $X_0 = X_1 - d$, so that the interpolation
 1311 satisfies both $X_t = x$ and $\dot{X}_t = d$. In this case the expectations in (121) collapse to evaluation at
 1312 this point (equivalently, think of us approximating with 1 Monte Carlo sample). Now, consider the
 1313 parameters $\theta = (\theta_1, \theta_2)^\top$ and a single time pair (t, u) such that at the position $X_t = x$,

$$1314 \partial_t f_\theta(t, u, x) = 0, \quad \partial_x f_\theta(t, u, x) = \theta_1, \quad \tilde{f}_\theta(t, u, x) = \theta_2. \quad (122)$$

1315 (For a sufficiently expressive model, such local values can be realized; we only need existence of
 1316 such a configuration.). Plugging these into (121) and dropping the expectation (single point), the
 1317 Gameflow functional is:

$$1318 1319 L_{\text{sg}} = (\theta_1 d)^2 - (\theta_1 (d - \text{stopgrad}[\theta_2]))^2. \quad (123)$$

1320 Let $\tilde{\nabla}$ denote differentiation with the stopgrad applied to θ_2 in the second term. Differentiating (123)
 1321 with respect to θ_1 yields

$$1323 \tilde{\nabla}_{\theta_1} L_{\text{sg}} = 2\theta_1 d^2 - 2\theta_1 (d - \theta_2)^2 \quad (124)$$

$$1324 = 2\theta_1 (d^2 - (d - \theta_2)^2) \quad (125)$$

$$1326 = 2\theta_1 (d^2 - (d^2 - 2d\theta_2 + \theta_2^2)) \quad (126)$$

$$1328 = 2\theta_1 (2d\theta_2 - \theta_2^2) \quad (127)$$

$$1329 = 2\theta_1 \theta_2 (2d - \theta_2). \quad (128)$$

1331 Here the stopgrad on θ_2 only affects the second term and does not change the first term. For θ_2 , all
 1332 occurrences appear inside a stopgrad and the first term does not depend on θ_2 , hence

$$1333 \tilde{\nabla}_{\theta_2} L_{\text{sg}} = 0. \quad (129)$$

1335 Thus the update field induced by CurlFlow in this simple example is

$$1336 1337 g(\theta_1, \theta_2) := (g_1(\theta_1, \theta_2), g_2(\theta_1, \theta_2)) = (2\theta_1 \theta_2 (2d - \theta_2), 0). \quad (130)$$

1338 If this update were the gradient of some scalar objective $J(\theta_1, \theta_2)$, then the mixed partial derivatives
 1339 would commute:

$$1341 g_1 = \partial_{\theta_1} J, \quad g_2 = \partial_{\theta_2} J \quad \Rightarrow \quad \partial_{\theta_2} g_1 = \partial_{\theta_1} g_2. \quad (131)$$

1342 However,

$$1343 \frac{\partial g_1}{\partial \theta_2} = \frac{\partial}{\partial \theta_2} (2\theta_1 \theta_2 (2d - \theta_2)) = 2\theta_1 (2d - \theta_2 - \theta_2) = 4\theta_1 (d - \theta_2), \quad (132)$$

$$1345 \frac{\partial g_2}{\partial \theta_1} = 0, \quad (133)$$

1347 and hence the curl of the update field is

$$1349 \frac{\partial g_1}{\partial \theta_2} - \frac{\partial g_2}{\partial \theta_1} = 4\theta_1 (d - \theta_2), \quad (134)$$

1350 which is non-zero for generic θ (for example, whenever $\theta_1 \neq 0$ and $\theta_2 \neq d$). Therefore g is a smooth
 1351 vector field with non-zero curl and *cannot* be written as the gradient of any scalar objective $J(\theta_1, \theta_2)$
 1352 in general. Put differently, a constraint on the relationship between the parameters of the model and
 1353 the value of the chosen datapoint is necessary to ensure zero curl.

1354 This 1D example is a specific instantiation of Gameflow (121) with a simple model and a single
 1355 training point. It shows that, once we introduce the stopgrad on $\tilde{f}_\theta(t, t, x)$, the resulting optimization
 1356 dynamics are in general *non-conservative*. The stopgrad structure breaks the symmetry required
 1357 for the updates to be the gradient of a single scalar function. In this sense, CurlFlow is formally a
 1358 (two-player) *game* rather than standard gradient descent on one potential function. Or one prefers, a
 1359 nongradient vector flow.

1360 □

1361

1362

C.2 DIFFERENTIATING W.R.T. T VERSUS U

1363 Picking one of t or u just switches the sign of some terms in the loss, which ultimately only
 1364 affects whether the learned map goes upward in time or downwards. The PDE can be obtained by
 1365 differentiating the flow map $f(t, u, x)$ with respect to either endpoint. If X_s solves $\dot{X}_s = v(s, X_s)$,
 1366 then keeping u fixed and differentiating in t gives a condition that evaluates v at t and x :

$$1367 \quad \partial_t f(t, u, x) + (\partial_x f(t, u, x)) v(t, x) = 0, \quad (135)$$

1370 while keeping t fixed and differentiating in u gives a condition that evaluates v at u and $x_u =$
 1371 $f(t, u, x)$:

$$1372 \quad \partial_u f(t, u, x) + (\partial_x f(t, u, x)) v(u, f(t, u, x)) = 0. \quad (136)$$

1373 Along the ODE trajectory $dX = v ds$ one has the identity

$$1374 \quad \partial_t f(t, u, x) = -\partial_u f(t, u, x),$$

1376 so choosing to differentiate in t versus u only changes the sign convention and which endpoint is
 1377 held fixed.

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403