
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FLOW MAP LEARNING VIA NONGRADIENT VECTOR
FLOW

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion and flow-based models benefit from simple regression losses, but infer-
ence (i.e, producing samples) incurs significant computational overhead because it
requires integration. Consistency models address this overhead by directly learning
the flow maps along the ODE trajectory, revealing a design space for the learning
problem between one-step and many-step approaches. However, existing consis-
tency training methods feature computational challenges such as requiring model
inverses or backpropagation through iterated model calls, and do not always prove
that the desired ODE flow map is a solution to the loss. We introduce CurlFlow,
an approach for learning flow maps that bypasses explicit invertibility constraints
and expensive differentiation through model iteration. CurlFlow trains a model to
compute both the ODE solutions and the implied velocity from scratch by follow-
ing non-conservative dynamics (i.e., those with curl) with stationary point at the
desired flow map. On the CIFAR image benchmark, CurlFlow attains a favorable
relationship of FID to step count, relative to flow matching, MeanFlow, and several
other flow map learning methods.

1 INTRODUCTION

Diffusion and flow models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020; Kingma
et al., 2021; Albergo and Vanden-Eijnden, 2022; Singhal et al., 2023; Pandey and Mandt, 2023;
Bartosh et al., 2024; Singhal et al., 2024; Albergo et al., 2023; Lipman et al., 2022; Liu et al., 2022)
have improved generation in domains such as proteins (Abramson et al., 2024) and images (Peebles
and Xie, 2023; Esser et al., 2024). Sampling from these models typically requires numerically
integrating an ordinary or stochastic differential equation. Numerical integration requires multiple
forward passes of a neural network, leading to increased sampling latency and cost.

To ameliorate this generation cost by changing the training, recent approaches for consistency
modeling and map matching (Song et al., 2023; Song and Dhariwal, 2023; Kim et al., 2023; Lu and
Song, 2024; Boffi et al., 2024; 2025) aim to learn direct mappings from noise to intermediate or final
data points along trajectories defined by probability flow ODEs, thereby avoiding costly integration.
However, the methods have their respective complexities. For example, flow map matching requires
model invertibility, while consistency models need either to map in one step or introduce extra steps
that leave the target ODE trajectory.

We introduce CurlFlow, an approach that builds on flows and map matching methods and

• Has true flow map as optimum

• Does not require integration for generation

• Does not restrict the class of neural networks used (e.g., to invertible functions)

• Does not require auxiliary losses involving invertibility or adversarial optimization

• Does not require optimizing through nested calls to the model or through products of model
outputs (which lead to large autodifferentiation graphs)

• Allows for generation along the ODE trajectory with any number of steps

Existing methods for learning flow maps fall into a few categories in terms of their challenges; all
challenges relate to the idea that a flow map is characterized by certain derivative properties and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Methods Multistep Follows ODE Sim. Free Regression Loss Inverse Required Prove Optimum Model Nesting/Product
Consistency Distillation (Song et al., 2023) ✗ ✓ ✗ ✓ ✗ ✓ ✗

Consistency Training (Song et al., 2023) ✗ ✓ ✓ ✓ ✗ ✓ ✗

Consistency Trajectory Models (Kim et al., 2023) ✓ ✓ ✗ ✗ ✗ ✓ ✗

L-FMM (Boffi et al., 2024) ✓ ✓ ✓ ✓ ✓ ✓ ✗

LSD (Boffi et al., 2025) ✓ ✓ ✓ ✓ ✗ ✓ ✓

ESD (Boffi et al., 2025) ✓ ✓ ✓ ✓ ✗ ✓ ✓

PSD (Boffi et al., 2025) ✓ ✓ ✓ ✓ ✗ ✓ ✓

MeanFlow (Geng et al., 2025) ✓ ✓ ✓ ✓ ✗ ✗ ✗

CurlFlow (this work) ✓ ✓ ✓ ✓ ✗ ✓ ✗

Table 1: Comparison to prior works. We categorize consistency modeling (flow map learning)
techniques and our proposed CurlFlow method according to: (1) ability to adjust sampling steps
post-training, (2) whether they follow the PF-ODE (Song et al., 2020), (3) whether they allow
simulation-free training, (4) whether their objectives use regression, (5) whether model inversion is
required during training, (6) whether the true flow map is shown to be optimal or stationary, and (7)
whether differentiation passes through nested model calls or products of evaluations. See Section 5
for details.

that losses minimize squared error to make these properties hold. Flow map matching and related
methods rely on a fundamental relationship between invertible mappings and ordinary differential
equations (ODEs). This relationship typically requires explicitly computing both the forward map
(the model being trained) and its inverse during training, complicating training, and requires explicitly
materializing a large derivative matrix in the forward pass. Other methods, such as MeanFlow (Geng
et al., 2025), do not explicitly enforce the model inverse identities, but also do not prove that their
loss is minimized at the true flow map. Moreover, the only model derivative terms that MeanFlow
uses to enforce the properties of a flow map, are subject to the stopgrad operator, meaning that it is
unclear whether optimization can lead to a function satisfying the flow map derivative properties.

CurlFlow avoids the complexity of tracking a model and its inverse, as well as materializing deriva-
tives, by exploiting an alternate identity involving only Jacobian-vector products (JVPs) without
inverse functions. This identity allows us to formulate the objective purely in terms of the forward
map, without needing explicit access to its inverse. Since solutions to ODEs naturally produce
invertible mappings, the CurlFlow objective implicitly encourages invertibility without explicitly
enforcing it. Thus, at optimality, CurlFlow yields a continuously differentiable function that precisely
integrates the velocity field, directly generating the desired data distribution. We summarize the
trade-offs among recent methods in Table 1 and in Section 5.

Experimentally, we keep things simple. We do not explore any generalizations of classifier-free
guidance (Ho and Salimans, 2022) for conditional sampling in flow maps. We ask, for a basic
training setup using the same common architecture, how do flow matching, MeanFlow, CurlFlow,
Lagrangian Map Matching, Eulerian Map Matching, and Progressive Map Matching compare in
moderate dimensions (CIFAR-10) on unconditional metrics (FID) when decreasing the number of
sampling steps? We additionally compare GPU memory usage for these methods. Finally, we provide
reasoning and numerical evidence that MeanFlow does not preserve the true flow map as an optimum.

2 BACKGROUND

Stochastic interpolants (Lipman et al., 2022; Albergo et al., 2023), and more generally most diffusion
and flow methods, hereafter just flows pose generative modeling as transport of a simple base density
to a target density. Interpolants tackle the problem as follows. For t ∈ [0, 1]:

1. Choose (αt, σt) where α0 = σ1 = 1 and α1 = σ0 = 0. Commonly, αt = 1− t and σt = t.

2. Define Xt = αtX0 + σtX1 for base density X0 ∼ q0 and data X1 ∼ q1 (or vice versa).

3. Learn to produce new samples along the trajectory of densities.

For a function f , let ḟt := d
dtft. Thus Ẋt := α̇tX0 + σ̇tX1. It follows that Xt has density qt

satisfying:

∂tqt(x) = −∇x · (qt(x)v(t, x)), v(t, x) := E[Ẋt | Xt = x], (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where v is called the velocity. The PDE in Equation (1) is derived in the above works and we
provide a self-contained derivation in Section A.1. To accomplish step 3, one starts by making the
observation that a density satisfies Equation (1) if and only if it is the density of the solution to
the probability flow ODE dx = vdt integrated forward from X0 ∼ q0 or in reverse from X1 ∼ q1
(Albergo and Vanden-Eijnden, 2024). One then proceeds by first approximating v using the following
(simulation-free) loss:

Lv(vθ) = E
[
∥vθ(t,Xt)− (α̇tX0 + σ̇tX1)∥2

]
Xt=αtX0+σtX1

, (2)

which has minimizer vθ = v and then solving dx = vθdt.

Background on Consistency Methods. Sampling from flows requires integration where each
integration step evaluates a neural network vθ modeling a score, velocity, or similar. Therefore,
knowing integrals of v or similar quantities directly could, in principle, speed up sampling. The goal
of consistency and map matching methods is to learn to map along the trajectory implied by the
optimal v. We review an example here, with others described in Section 5. Song et al. (2023); Song
and Dhariwal (2023) seek to learn a mapping ĝ that maps interpolant samples Xt ∼ qt to X̂0, the
t = 0 solution to dx = vdt when starting at Xt (note that X̂0 usually differs from the independent
endpoint sample X0 used to draw Xt under the interpolant). The loss measures the distance between
modeled outputs when evaluated at two different nearby points. Let sg[ĝ] indicate stopgrad (i.e.,
bookkeeping a term as a constant when computing loss gradients). Then the loss is:

Consistency(ĝ) := Eq(Xt)[dist(ĝ(t,Xt), sg[ĝ](t−∆t, X̂t−∆t))]. (3)

The sample X̂t−∆t used in the target should optimally come from integrating the true velocity or an
approximation vθ a small step ∆t from Xt, where vθ either comes from a pretrained diffusion model,
or (vθ, ĝ) are derived from one another. In practice, further approximations are used to compute
xt−∆t. Approximations are introduced because X̂t−∆t is not simply defined by drawing a second
interpolant sample at a smaller noise level, but instead corresponds to integrating the velocity one
step from Xt; the velocity is unknown and thus may come from a pre-trained model, which increases
training cost and may not be a good approximation in the first place.

It is challenging to directly learn solutions in just one step. While this allows multistep sampling, the
re-noising step necessarily takes the trajectory off the probability-flow ODE and the resulting updates
no longer correspond to integrating the PF-ODE solution. Highlighting the issue with methods
featuring 1 time argument, Kim et al. (2023) note that this CM multistep sampling approach “exhibits
degrading sample quality with increasing NFE, lacking a clear trade-off between computational
budget (NFE) and sample fidelity". In practice, a number of training-time or inference-time changes
are made to this setup to try to break apart the problem into somewhere between 1 step and the
hundreds of steps used by diffusions (Song et al., 2023; Lu and Song, 2024; Kim et al., 2023; Boffi
et al., 2024; 2025; Sabour et al., 2025; Geng et al., 2025; Zhou et al., 2025). We discuss the various
solutions and their trade-offs in Section 5.

3 METHOD

We present CurlFlow, a method for learning to solve the probability flow ODE without adversarial
training, without model inverse during training, without representing explicit derivative matrices,
without costly simulations from pretrained models, and without adversarial training. CurlFlow trains
a model to compute both the ODE solutions and the implied velocity from scratch by following
non-conservative dynamics .

Consider a two-time map f that for t ≤ u brings Xt up to xu by solving the probability flow ODE
dx = vdt. Such an f that integrates v can be defined as follows:

f(t, u, x) = x+

∫ u

t

v(s,Xs)ds = x+

∫ u

t

v(s, f(t, s, x))ds (4)

Differentiating the recursive form on the RHS w.r.t. t using the total derivative (see ??) yields:

∂tf + (∂xf)v(t, x) = 0, f(u, u, x) = x (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This is uniquely solved at the true flow map f . We can square the LHS for a parameterized fθ and
take an expectation over Xt

L = EXt [∥∂tfθ + (∂xfθ)E[Ẋt|Xt]∥2] (6)

The true map f is the unique minimizer of this loss. Using v(t, x) = E[Ẋt|Xt], we can expand,

L = EXt

[
∥∂tfθ + (∂xfθ)Ẋt∥2 − ∥(∂xfθ)

(
Ẋt − E[Ẋt|Xt]

)
∥2
]

(7)

We can then use the parameterization fθ = x+ (u− t)f̃θ(t, u, x) for an underlying model f̃θ. The
parameterization yields two useful properties:

• time derivative: ∂tfθ(t, t, x) = −f̃θ(t, t, x)

• Jacobian: ∂xfθ(t, t, x) = I

Using these properties and evaluating at t = u, we see that the minimization of eq. (7) reduces flow
matching where f̃θ(t, t, x) is trained to match the velocity:

L
∣∣∣
t=u

= EXt
[∥f̃θ(t, t, x)− Ẋt∥2], (8)

which reveals that for the true f , we have that

−∂tf(t, t, ·) = f̃(t, t, ·) = v(t, x) = E[Ẋt|Xt = x] (9)

This motivates replacing the unknown v in eq. (7) with stopgrad[f̃θ(t, t, ·)]. The stopgrad is used
under the principle that because the original v did not provide gradient updates for f , so neither
should a term that approximates it. The CurlFlow method follows the negative gradient with respect
to θ of:

Lsg := E
[
∥(∂tfθ)(t,u,Xt) + (∂xfθ)(t,u,Xt)Ẋt∥2 − ∥(∂xfθ)(t,u,Xt)(Ẋt − sg[f̃θ](t,t,Xt))∥

2
]
, (10)

where sg() means stopgrad() and fθ(t, u, x) := x + (u − t)f̃θ(t, u, x). The expectation is taken
over Xt sampled by drawing data X1, noise X0, and computing Xt = αtX0 + σtX1 and Ẋt =
α̇tX0 + σ̇tX1.

In practice, the PDE must hold for all pairs t ≤ u, Let q(t, u) be a joint distribution with support over
t ≤ u and with positive probability on t = u. Take expectations over time and define L = Eq(t,u)[L]
and Lsg = Eq(t,u)[Lsg]. We now connect L and Lsg formally. Theorem 1 shows that optimization of
L and Lsg stop at the same solutions.

Theorem 1. Let q(t, u) be a joint distribution with support over t ≤ u and with positive probability
on t = u. Let the family F̃ include functions f̃ that are continuously differentiable in all arguments.
Let Xt = αtX0 + σtX1 and Ẋt = αtX0 + σtX1. Evaluate f at f(t, u, x) + (u − t)f̃(t, u, x).
Take expectations over q(X0)q(X1). Let sg stand for stop-gradient. Define L = Eq(t,u)[L] and
Lsg = Eq(t,u)[Lsg]. Then f̃∗ is a stationary point of Lsg w.r.t. F̃ if and only if f̃∗ is a stationary point
of L w.r.t. F̃ .

This is shown in Section B.5.

Intuition. The main point of the theorem is to establish that Lsg has the same set of solutions as
L despite not having access to v. The intuition is that, despite the stopgrad, when t = u, Lsg tries
to match the velocity. We show that Lsg is not at a stationary point when this velocity estimate is
inaccurate, so the optimization continues moving and does not become stuck at functions that distill
an incorrect velocity. As this match improves so does the match between the parameter updates from
Lsg and L at t ̸= u. The main reason this works is that f̃(t, t, ·) appears in other terms outside of the
stopgrad, and those terms tell it where to go. This is crucial and not all stopgrad optimizations benefit
from this property.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: Minimizers of MeanFlow. We compute the loss surface of the corrected loss (what
MeanFlow starts with before replacing v) and show that MeanFlow (using Ẋt instead of v) does not
have its optimum at the true data-generating parameters for a 2D Gaussian example.

Computation. Both terms in Lsg can be computed as expected squared norms of Jacobian-vector
products (JVPs), which use forward-mode autodifferentiation to avoid explicitly materializing Jaco-
bians, saving memory. Using PyTorch notation,

JVP[f, (t, u, x), (a, b, c)] := (∂tf) · a+ (∂uf) · b+ (∂xf) · c

for (∂tf, ∂uf, ∂xf) evaluated at (t, u, x). For the first loss term, a = 1, b = 0 and c = Ẋt and for
the second loss term, a = 0, b = 0, and c = Ẋt + sg[∂tf(t, t,Xt)] = Ẋt − sg[f̃(t, t,Xt)]. Though
we have two distinct JVPs, we can split the batch and randomly assign either pair of (a, c) values to
each batch element.

Nongradient Flow Following the update rules of Lsg does not correspond to following the gradients
of any one scalar objective J (section C.1). This is because the optimization dynamics are in general
non-conservative. The stopgrad structure breaks the symmetry required for the updates to be the
gradient of a single scalar function. In this sense, CurlFlow is formally a (two-player) game rather
than standard gradient descent on one potential function, albeit a trivial one where the main player
controls all parameters except those in the stopgrad, and the stopgrad player keeps a virtual copy
of the parameters that simply equal the first players parameters. Put another way, the optimization
dynamics if taken in the limit of small step size correspond to non-conservative / non-gradient vector
flow.

4 EXPERIMENTS

4.1 MULTIVARIATE GAUSSIAN AND WRONG MEANFLOW OPTIMUM

To motivate CurlFlow, we first study a simple 2D Gaussian experiment that shows what can go wrong
in flow map learning methods. The losses that are derivable from PDEs such as ∂tf + (∂xf) · v = 0,
depend on the velocity v(t, x). Because v is unknown apriori, some methods work with pretrained
velocity models (Sabour et al., 2025; Boffi et al., 2025). For from-scratch methods, the velocity
must be replaced, somehow. MeanFlow (Geng et al., 2025) is trained with JVPs like CurlFlow, but
replaces v with Ẋt. Crucially, this swap implicitly drops a Trace Covariance Jacobian term (which is
tracked in the above CurlFlow derivation), no longer preserving the true flow map as the minimizer

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

of the loss. That is, the MeanFlow loss using v does not differ from the loss using Ẋt only by a
model-independent constant.

The data X1 ∼ N (µ1,Σ1) are generated with parameters θ ∈ R and λ ∈ [0, 1] via

µ1 = θ · [1, 1], Σ1 = λΣa + (1− λ)Σb (11)

where

Σa :=

(
1.0 −0.3
−0.3 1.5

)
, Σb :=

(
1.0 0.0
0.0 1.0

)
, Σ1 = λΣa + (1− λ)Σb (12)

Over a grid of (θ, λ) values that includes the true parameters (θ = 5.0, λ = 0.5), we compute two loss
functions: the MeanFlow loss, and a corrected loss that instead uses the exact velocity (available in
closed form for Gaussians, though generally unknown in practice). The corrected loss is thus equal to
L in Theorem 1. In Figure 1, we visualize the corrected loss surface together with the true parameter
point and the minimizers of both objectives. The results show that while MeanFlow correctly recovers
the mean parameter θ, it fails to identify the correct covariance parameter λ. Specifically, MeanFlow
sets λ = 0 which chooses Σ1(λ) = Σb where Σb is diagonal while Σa features correlation.

CurlFlow deals differently with the unknown velocity, instead substituting it with the flow map
model’s implied velocity, while also making sure that another loss term trains this implied velocity
with a flow matching loss (see Theorem 1). When the velocity is trained enough, the CurlFlow loss
becomes equal to this corrected loss.

4.2 IMAGE MODELING ON CIFAR-10
Architecture. We modify the existing diffusion U-Net from Dhariwal and Nichol (2021) by
embedding both t and u with the usual Fourier embeddings and then concatenate on input to small
MLP that maps the two times to a hidden representation for use in the network. We use 128 channels
and channel multipliers set to (1,2,2,2) with attention set to (False, False, True, False).

Training Settings. We use dropout 0.1. We do not condition on the class label We use αt = 1− t
and σt = t, with noise at X0 and data at X1. We train for 200,000 steps at learning rate 2e-4.

Losses. We train with Flow Matching (Lipman et al., 2022), MeanFlow (Geng et al., 2025), and
the proposed CurlFlow method (Equation (10)). Beyond the swap of v with Ẋt, MeanFlow also
StopGrad’s all model derivatives in the loss to avoid backpropogation through differentiation. We
also train with three losses proposed in (Boffi et al., 2025): the Lagrangian loss, Eulerian loss, and
Progressive loss. These latter three losses are derived under similar principles as CurlFlow and are
discussed in Section 5.

Method 10 steps 50 steps 100 steps theory

Flow Matching 24.87 3.53 3.05 yes
Lagrange 248.76 230.43 221.22 yes
Euler 77.19 66.99 38.95 yes
Progressive 337.36 235.20 206.18 yes
Meanflow 37.32 4.54 4.23 no
CurlFlow 12.26 2.88 2.81 yes

Table 2: FID scores versus sampling steps on CIFAR-10 computed from 50,000 EMA samples after
200,000 training steps. The “theory" column means whether the stationary points of the optimization
have been proven to exist if and only if the function is the flow map that integrates the ODE.

Results. We report the Frechet Inception Distance (FID) (Heusel et al., 2017) in Table 2. We
find that CurlFlow produces better FID than MeanFlow at each choice of sampling steps for the
given (rather common for CIFAR) training configuration. The Lagrangian, Euler, and Progressive
losses seem not to train well with the standard hyperparameters; Boffi et al. (2025) make remarks
after presenting the losses that StopGrad may be used for some of the featured nested-model or
product-of-model terms to stabilize training for certain datasets, and seem to benefit from additional
adaptive loss reweighting, which are not explored in this work.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.3 MEMORY USAGE

In the last column of Table 1, we note whether a method requires differentiation through an iterated
model call or a product of model evaluations. As discussed in Section 5, for a flow map model fθ =
x+ (u− t)f̃θ, the Lagrangian loss involves a nested evaluation f̃θ(u, u, fθ(t, u, x)), with a similar
nesting for the Progressive loss. The Eulerian loss requires computing ∇xfθ(t, u, x) f̃θ(t, t,Xt),
which entails a product-rule expansion. Here we empirically compare the peak GPU memory usage
during the backward pass for different losses, holding the architecture and data size fixed (the U-Net
with a batch of CIFAR images).

Flow Matching MeanFlow CurlFlow Lagrange Euler Progressive
16.8 Gb 14.2 Gb 43.2 Gb 69.8 Gb 69.8b G 54.3 Gb

Table 3: Peak GPU memory usage during backward pass (in Gb). Values reflect the maximum
allocated memory measured across the training step’s backward pass (i.e., during gradient computa-
tion). CurlFlow strikes a balance in GPU memory usage, preserves the true flow map as an optimum,
and optimizes through all model derivatives without detaching.

Results. We demonstrate the peak GPU memory usage during backward pass in Table 3. As
expected, the Lagrange, Euler, and Progressive losses are the most memory-intensive, reflecting
the need to backpropagate through nested model evaluations or product-rule terms. On the other
end, MeanFlow, which computes Jacobian–vector products but detaches the full JVP, has the lowest
memory usage, but this detachment may limit its ability to fully optimize toward satisfying the
derivative conditions. As discussed, MeanFlow also does not preserve the true flow map as an
optimum in theory (though it may empirically demonstrate good performance for certain datasets).
CurlFlow falls between thesee extremes, striking a balance between memory usage, preserving the
optimum, and benefiting from optimizing through the model derivatives in the loss.

5 RELATED WORK

Sampling from continuous-time generative models such as diffusion and flow models requires
numerical integration. Each integration step requires a forward pass of a neural network, leading
to computational costs and slow sampling. Current approaches to address this cost can be broadly
categorized into two types (1) distilling a pretrained diffusion or flow model into a few-step solver
(Salimans and Ho, 2022; Kim et al., 2023; Liu et al., 2023), and (2) learning a few-step solver (Zhou
et al., 2025). Some approaches in this area allow for distillation as well as training from scratch (Song
et al., 2023; Boffi et al., 2024; Boffi and Vanden-Eijnden, 2023).

Consistency Models (CMs) (Song et al., 2023; Song and Dhariwal, 2023; Lu and Song, 2024) learn a
one-step map from noise to data, either by distilling a pretrained model or by learning from scratch.
Distillation requires sampling trajectories from the teacher model. To allow for more steps after either
training approach, CMs iteratively re-noise the one-step solution back to successively smaller time
under the interpolant and then denoise, but this can take the solver off the probability flow.

Consistency trajectory models (CTMs) (Kim et al., 2023) extend CMs to learn two-time maps
using a combination of consistency and adversarial objectives, which requires training an additional
discriminator model (Goodfellow et al., 2014). CTM and Gameflow both target the same mathematical
object, the probability–flow ODE flow map (i.e., the integral of the ODE), but they learn this map
through different means. CTM learns the map by distilling a teacher solver, and the losses for teacher
and student involve several nested model evaluations (with data at x0, for 0 ≤ s ≤ u ≤ t ≤ 1, the
teacher integrates from t to u, then jumps from u to s, then from s to 0; and the student jumps from
t to s and then to 0). The objective depends on a chosen feature-space distance and, in practice,
includes DSM and GAN terms that further influence the optimum. Consequently, the CTM loss is
sensitive to the quality of the ODE discretization used by the teacher (in practice CTM finds the need
to use a 2nd order solver during training) and necessitates the presence of the GAN. GANs can, in
principle, be used to augment any generative model or even solve the problem itself. In an idealized
limit with perfect teacher solves of the velocity field, unlimited model capacity, perfect min–max
optimization, no auxiliary GAN loss, annd no optimization issues due to stopgrad, the true flow
map is a solution of the CTM objective because the student matches the teacher everywhere, which

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

matches the ODE. CTM, however, does not show that this solution is unique or that its stationary
points during optimization coincide with those of the underlying PDE. CurlFlow learns a two-time
map from scratch directly from the flow map PDE, uses neither discriminators nor pretrained models
and proves that the stop-gradient optimization has stationary points if and only if the model equals
the true flow map.

Inductive Moment Matching (IMM) (Zhou et al., 2025) learns a few-step model via an implicit
generative model trained with MMD (Smola et al., 2006; Gretton et al., 2012), with the MMD
which is estimated biasedly within subsets of data. In practice, the authors must use time-weighting
schedules and specific curriculum/inductive procedure to stabilize optimization. While IMM produces
high quality image samples, solves the problem of marginally sampling the data distribution rather
than sampling along a probability flow, where the latter is the task studied in this work.

MeanFlow (Geng et al., 2025) derives a JVP-based objective for flow maps. They train f̃ to bring xu

down to Xt via the parameterization fθ = x+ (u− t)f̃θ, and train f̃ via the following loss:

Lmeanflow
t,u := E[∥f̃θ(t, u,Xt)− ẋu + (u− t)(sg[∂xf̃θ](t,u,Xt) · ẋu + sg[∂uf̃θ](t,u,Xt))∥

2]. (13)
Applying the stopgrad sg to all model derivatives improves efficiency, but there are no differentiated
loss terms that encourage the model derivatives ∂tf̂ and ∂xf̂ to move toward the true flow map
derivatives. This contrasts CurlFlow where sg[f̃θ(t, t, x)] is used in place of E[Ẋt|Xt], but where
another term in the loss trains these two quantities to match. Finally, and importantly, between
equations (10, 11) in Geng et al. (2025), v is replaced with Ẋt where it appears quadratically, thereby
pulling an expectation through a square and missing a resulting trace covariance term. This does not
preserve the true flow map as an optimum (this is mentioned as well in Boffi et al. (2025)).

Flow Map Matching (Boffi et al., 2024) learns a two-time flow map. This allows for mapping
along the probability flow in either direction, without adversarial training. Their Lagrangian Flow
Map Matching loss requires only time derivatives, but an additional invertibility loss encouraging
invertibility via time-swapping so that f̂(t, u, f̂(u, t, x)) ≈ x. While straightforward to compute,
gradient steps require evaluating the model and its inverse at each step of training.

Boffi et al. (2025) build on Boffi et al. (2024) and optimize velocity matching along with one of the
three following losses. For the parameterization fθ := x+ (u− t)f̃θ, the first one is:

LSD : Llagrange
t,u := E[∥∂ufθ(t, u,Xt)− f̃θ(u, u, fθ(t, u,Xt))∥2]

LSD comes from condition that ∂tf(t, u, x) = v(u, xu) = v(u, f(t, u,Xt)) uses ∂tf(t, t, ·) =

−v(t, ·) =⇒ f̃(t, t, ·) = v(t, ·). It is a variant of the Lagrangian loss from Boffi et al. (2024). The
next is:

ESD : Leuler
t,u := E[∥∂tfθ(t, u,Xt) +∇xfθ(t, u,Xt)f̃θ(t, t,Xt)∥2].

ESD comes from condition ∂tf(t, u, x) +∇xf(t, t, x)v(t, x) = 0 where in the loss, v is replaced
with f̃(t, t, x). The last one, for an intermediate time m, is:

PSD : Lprogress
t,u := E[∥fθ(t, u,Xt)− fθ(m,u, fθ(t,m,Xt))|∥2]

PSD comes from the composition property: f(t, u, x) = f(m,u, f(t,m, x)) for m ∈ (t, u).
CurlFlow, LSD, ESD, and PSD all aim to enforce a similar set of flow map properties. Llagrange and
Lprogress must optimize through nested model evaluations, doubling the computational graph for back-
prop. Leuler optimizes through ∇xfθ · f̃θ, which causes reverse-mode autodifferentiation to invoke
the full product rule term, ∇θ[∇xfθ · f̃θ] = [∇θ∇xfθ] · f̃θ + [∇xfθ] · ∇θf̃θ; In contrast, CurlFlow’s
stopgrad operation means that the second product rule term is not featured in the computational graph,
saving memory and compute. But, unlike MeanFlow, the term that is subject to stopgrad receives
supervision from elsewhere in the loss.

Distillation methods. A complementary line of work approaches flow map learning by distilling the
outputs of pretrained flow matching velocity models into few-step solvers. Specifically the unknown
v() in the flow map identities is taken to be a pretrained network. By contrast, we emphasize training
from scratch, avoiding dependence on a teacher model and ensuring that all components of the flow
map are learned end-to-end. That said, distillation can be attractive in practice when a pretrained
model is already trusted (when vθ corresponds to the endpoint distributions and the chosen αt and
σt, or when the objective is weaker—for example, to marginally sample from the approximated data
distribution without explicitly solving the probability flow ODE).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 DISCUSSION AND LIMITATIONS

Identifying functions through PDEs Given a PDE solved by a sought-after mapping f ,
featuring a combination terms such as ∂tf, ∂xf, v that should be set to 0, which terms should
be parameterized by the model and which should be approximated as part of a ground-truth loss
target? If the equations can be rewritten in several ways, which yield easier or more challenging
objectives? Answering this is applicable to improving training objectives for generative models as
well as more generally solving PDEs with machine learning.

Invertibility The loss targets an invertible function at optimum. To simplify training, we explicitly
give up knowing the inverse, meaning that we only learn maps in one direction. Luckily, this is the
usual scenario for generative modeling. For likelihoods, one can still substitute −∂tf̂ for vθ in the
probability flow ODE (Song et al., 2021; Boffi and Vanden-Eijnden, 2023). Thus this method can be
seen from the perspective of training a normalizing flow (Tabak and Vanden-Eijnden, 2010; Tabak
and Turner, 2013; Rezende and Mohamed, 2015; Papamakarios et al., 2021) without requiring the
invertible architecture or inverse-dependent loss.

Architectures. CurlFlow, Flow Map Matching, Simplified Consistency Models, and MeanFlow all
specify models whose time-derivative equal the target of diffusion model training, but directly adapt
architectures meant for diffusion models themselves. Example architectures used in these works are
the UNet from Dhariwal and Nichol (2021), the diffusion transformer from Peebles and Xie (2023);
Ma et al. (2024), and the EDM architecture from Karras et al. (2022; 2024). These architectures may
thus be suboptimal for the problem at hand, precisely because the target of interest is defined as a
function often computed in many diffusion model forward passes (an integral). In this work, compute
limitations did not allow for the thorough exploration of architectures, but the authors believe that
rethinking architectures is a convincing direction to improve the quality and training-efficiency of
learned flow maps.

Reproducability Statement. We will be glad to open source the complete code during or after
review of the manuscript. For the proofs in the appendix, we have made a genuine attempt to be
thorough and pedagogical.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore,
L., Ballard, A. J., Bambrick, J., et al. (2024). Accurate structure prediction of biomolecular
interactions with alphafold 3. Nature, 630(8016):493–500.

Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E. (2023). Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797.

Albergo, M. S. and Vanden-Eijnden, E. (2022). Building normalizing flows with stochastic inter-
polants. arXiv preprint arXiv:2209.15571.

Albergo, M. S. and Vanden-Eijnden, E. (2024). Learning to sample better. Journal of Statistical
Mechanics: Theory and Experiment, 2024(10):104014.

Bartosh, G., Vetrov, D. P., and Andersson Naesseth, C. (2024). Neural flow diffusion models:
Learnable forward process for improved diffusion modelling. Advances in Neural Information
Processing Systems, 37:73952–73985.

Boffi, N. M., Albergo, M. S., and Vanden-Eijnden, E. (2024). Flow map matching. arXiv preprint
arXiv:2406.07507.

Boffi, N. M., Albergo, M. S., and Vanden-Eijnden, E. (2025). How to build a consistency model:
Learning flow maps via self-distillation. arXiv preprint arXiv:2505.18825.

Boffi, N. M. and Vanden-Eijnden, E. (2023). Probability flow solution of the fokker–planck equation.
Machine Learning: Science and Technology, 4(3):035012.

Dhariwal, P. and Nichol, A. (2021). Diffusion models beat gans on image synthesis. Advances in
neural information processing systems, 34:8780–8794.

Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller, J., Saini, H., Levi, Y., Lorenz, D., Sauer, A.,
Boesel, F., et al. (2024). Scaling rectified flow transformers for high-resolution image synthesis,
2024. URL https://arxiv.org/abs/2403.03206, 2.

Geng, Z., Deng, M., Bai, X., Kolter, J. Z., and He, K. (2025). Mean flows for one-step generative
modeling. arXiv preprint arXiv:2505.13447.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
and Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing
systems, 27.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A kernel
two-sample test. The Journal of Machine Learning Research, 13(1):723–773.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2017). Gans trained by a
two time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851.

Ho, J. and Salimans, T. (2022). Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598.

Karras, T., Aittala, M., Aila, T., and Laine, S. (2022). Elucidating the design space of diffusion-based
generative models. Advances in neural information processing systems, 35:26565–26577.

Karras, T., Aittala, M., Lehtinen, J., Hellsten, J., Aila, T., and Laine, S. (2024). Analyzing and
improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 24174–24184.

Kim, D., Lai, C.-H., Liao, W.-H., Murata, N., Takida, Y., Uesaka, T., He, Y., Mitsufuji, Y., and Ermon,
S. (2023). Consistency trajectory models: Learning probability flow ode trajectory of diffusion.
arXiv preprint arXiv:2310.02279.

Kingma, D. P., Salimans, T., Poole, B., and Ho, J. (2021). Variational diffusion models. arXiv
preprint arXiv:2107.00630.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and Le, M. (2022). Flow matching for generative
modeling. arXiv preprint arXiv:2210.02747.

Liu, X., Gong, C., and Liu, Q. (2022). Flow straight and fast: Learning to generate and transfer data
with rectified flow. arXiv preprint arXiv:2209.03003.

Liu, X., Zhang, X., Ma, J., Peng, J., et al. (2023). Instaflow: One step is enough for high-quality
diffusion-based text-to-image generation. In The Twelfth International Conference on Learning
Representations.

Lu, C. and Song, Y. (2024). Simplifying, stabilizing and scaling continuous-time consistency models.
arXiv preprint arXiv:2410.11081.

Ma, N., Goldstein, M., Albergo, M. S., Boffi, N. M., Vanden-Eijnden, E., and Xie, S. (2024). Sit:
Exploring flow and diffusion-based generative models with scalable interpolant transformers. In
European Conference on Computer Vision, pages 23–40. Springer.

Pandey, K. and Mandt, S. (2023). A complete recipe for diffusion generative models. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4261–4272.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan, B. (2021).
Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning Research,
22(57):1–64.

Peebles, W. and Xie, S. (2023). Scalable diffusion models with transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 4195–4205.

Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows. In International
conference on machine learning, pages 1530–1538. PMLR.

Sabour, A., Fidler, S., and Kreis, K. (2025). Align your flow: Scaling continuous-time flow map
distillation. arXiv preprint arXiv:2506.14603.

Salimans, T. and Ho, J. (2022). Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512.

Singhal, R., Goldstein, M., and Ranganath, R. (2023). Where to diffuse, how to diffuse, and how to
get back: Automated learning for multivariate diffusions. arXiv preprint arXiv:2302.07261.

Singhal, R., Goldstein, M., and Ranganath, R. (2024). What’s the score? automated denoising
score matching for nonlinear diffusions. In International Conference on Machine Learning, pages
45734–45758. PMLR.

Smola, A. J., Gretton, A., and Borgwardt, K. (2006). Maximum mean discrepancy. In 13th
international conference, ICONIP, volume 6.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. (2015). Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pages 2256–2265. pmlr.

Song, Y. and Dhariwal, P. (2023). Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189.

Song, Y., Dhariwal, P., Chen, M., and Sutskever, I. (2023). Consistency models. arXiv preprint
arXiv:2303.01469.

Song, Y., Durkan, C., Murray, I., and Ermon, S. (2021). Maximum likelihood training of score-based
diffusion models. Advances in neural information processing systems, 34:1415–1428.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2020). Score-based
generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

Tabak, E. G. and Turner, C. V. (2013). A family of nonparametric density estimation algorithms.
Communications on Pure and Applied Mathematics, 66(2):145–164.

Tabak, E. G. and Vanden-Eijnden, E. (2010). Density estimation by dual ascent of the log-likelihood.
Commun. Math. Sci. 8 (1) 217 - 233, March 2010.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhou, L., Ermon, S., and Song, J. (2025). Inductive moment matching. arXiv preprint
arXiv:2503.07565.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A BACKGROUND

A.1 CONTINUITY EQUATION AND DERIVATION OF EXPRESSION FOR VELOCITY

Theorem 2 (Continuity Equation for Interpolants). Let x0 ∼ q0 and x1 ∼ q1. Let xt = αtx0 + σtx1

for α0 = σ1 = 1 and α1 = σ0 = 0. Let α̇t and σ̇t denote d
dtαt and d

dtσt, respectively. Then xt ∼ qt
where qt satisfies

∂tqt(x) = −∇x · (qt(x)v(t, x)), v(t, x) := E[α̇tx0 + σ̇tx1 | xt = x] (14)

Proof. In this derivation, we use * for scalar-vector multiplication and · for dot product. In the
following, x ∈ Rd and we write some functions evaluated at an arbitrary frequency k ∈ Rd. We
derive “Fourier transform of time derivative of density equals Fourier transform of something" and
then invert the Fourier on both sides.

Let F [f](k) :=
∫
exp(ik · x)f(x)dx. Then, for any density p(x) we have

F [p](k) = E[exp(ik · x)] (15)

Let us reveal xt as a function xt(x0, x1) so that v(x, t) = E[ẋt(x0, x1)|xt = x]. Then,

∂tF [qt(xt)](k) = ∂t E
[
eik·xt

]
(16)

= ∂t

∫
x0

∫
x1

eik·xt(x0,x1)dq(x0, x1) (17)

=

∫
x0

∫
x1

∂te
ik·xt(x0,x1)dq(x0, x1) (18)[

∂te
ik·xt(x0,x1) = ik ·

(
eik·xt(x0,x1)ẋt

)]
(19)

= ik ·
∫
x0

∫
x1

(
eik·xt(x0,x1)ẋt(x0, x1)

)
dq(x0, x1) (20)

= ik ·
∫
x0

∫
x1

(
eik·xt(x0,x1)ẋt(x0, x1)

)
dq(x0, x1) (21)

= ik · E
q(xt)

E
q(x1,x0|xt)

[
eik·xt ẋt(x0, x1)

]
(22)

= ik · E
q(xt)

[
eik·xt E[ẋt(x0, x1)|xt]

]
(23)

= ik · E
q(xt)

[
eik·xtv(xt, t)

]
(24)

= ik ·
∫ [

eik·xv(x, t)
]
qt(x)dx (25)[

integration by parts, boundary
∫

qtdS = 0 for normalized densities

]
(26)

=

∫ (
v(x, t)qt(x)

)
·
(
∇xe

ik·x
)
dx (27)

= −
∫

eik·x ∗ ∇ · (v ∗ qt)dx (28)

= −F [∇ · (v ∗ qt)](k) (29)

We thus have

∂tF [qt](k) = −F [∇ · (vqt)](k) (30)

But, for the same LHS we can suppress xt’s dependence on (t, x0, x1) and instead use its marginal
distribution:

∂tF [qt](k) = ∂t

(∫
eik·xqt(x)dx

)
=

∫
eik·x

(
∂tqt(x)

)
dx = F [∂tpt](k) (31)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Putting the two right hand sides next to each other:

F [∂tqt](k) = −F [∇ · (vqt)](k) (32)

Taking an inverse Fourier transform,

∂tqt = −∇ · (vqt) (33)

This establishes the expression for ∂tqt and the expression for v.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 REPLACING VELOCITY WITH INTERPOLANT TIME DERIVATIVE IN SQUARED ERROR
LOSSES

In diffusions, flow matching, and in this setting, we deal with objectives of the form

min
θ

Eq(xt)

[
∥mθ(t, xt)− v(t, xt)∥2,

]
(34)

where xt ∼ qt is drawn by the interpolant xt = αtx0 + σtx1, v is the velocity v(t, x) = E[α̇tx0 +
σ̇tx1], and mθ is some model (or its derivative, etc) evaluated at (t, xt). Here we show the common
set of steps to replace the intractable v in the loss but preserve the right minimizer for mθ, which we
use in our loss derivations.

Eq(xt)

[
∥mθ(t, xt)− E[α̇tx0 + σ̇tx1|xt = x]∥2

]
(35)

= Eq(xt)

[
∥mθ(t, xt)∥2 + ∥E[α̇tx0 + σ̇tx1|xt = x]∥2 − 2mθ(t, xt)

⊤E[α̇tx0 + σ̇tx1|xt = x]

]
(36)

= Eq(xt)

[
∥mθ(t, xt)∥2 + E[∥α̇tx0 + σ̇tx1∥2 | xt = x] (37)

−
∑
j

Var([α̇tx0 + σ̇tx1]j | xt = x])︸ ︷︷ ︸
=:constant C

−2mθ(t, xt)
⊤E[α̇tx0 + σ̇tx1|xt = x]

]
(38)

= Eq(xt)q(x0,x1|xt)

[
∥mθ(t, xt)∥2 + ∥α̇tx0 + σ̇tx1∥2 − 2mθ(t, xt)

⊤
(
α̇tx0 + σ̇tx1

)]
+ C (39)

= Eq(xt)q(x0,x1|xt)

[
∥mθ(t, xt)− (α̇tx0 + σ̇tx1)∥2

]
+ C (40)

= Eq(x0,x1,xt)

[
∥mθ(t, xt)− (α̇tx0 + σ̇tx1)∥2

]
+ C (41)

= Eq(x0)q(x1)

[
∥mθ(t, xt)− (α̇tx0 + σ̇tx1)∥2

]
xt=αtx0+σtx1

+ C (42)

Dropping the constant preserves the minimizer:

min
θ

Eq(x0)q(x1)

[
∥mθ(t, xt)− (α̇tx0 + σ̇tx1)∥2

]
xt=αtx0+σtx1

(43)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B PROOFS FOR STATIONARY POINTS

B.1 FIRST VARIATION DEFINITIONS

We consider scalar-valued loss functions L : F → R that map a function f ∈ F to a real value.

Define the tangent space Tf (F) at f . This space contains functions h ∈ Tf (F) such that there exists a
curve indexed by scalar ϵ such that for each ϵ, fϵ ∈ F , and we have that f0 = f and (d

dϵfϵ)|ϵ=0 = h.

The first variation δL of such a functional L evaluated at f ∈ F in direction h ∈ Tf (F) is defined as:

δL[f ;h] :=
(d

dϵ
L[f + ϵh]

)
ϵ=0

(44)

We then have that f∗ is a stationary point w.r.t. F if δ[f ;h] = 0 for all h ∈ Tf (F).

B.2 STOPGRAD FOR FUNCTIONALS

We define the stopgrad symbol sg for a functional as follows. Let O be a functional that maps two
functions f, g to a real value. Let L[f] be a functional that is written in terms of O with symbol sg as
L[f] := O[f, sg[f]], then we evaluate the following two quantities as follows

L[f] = O[f, f] (45)
δL[f ;h] = δO[f, f ;h, 0] (46)

That is, the functional evaluates as usual but in a first variation, we do not perturb terms in sg. This
corresponds to the stopgrad or detach() operation used in machine learning code with autodifferentia-
tion.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 FIRST VARIATION OF ORIGINAL LOSS FUNCTIONAL

Our functional L[f̃] acts on functions f̃ . According to the definitions in Section B.1, we need to
compute δL[f̃ ;h] = (d

dϵL[f̃ + ϵh])ϵ=0. The functional is:

T1[f̃] : = ∥∥(∂tf)(t,u,xt) + (∂xf)(t,u,xt)ẋt∥2f=x+(u−t)f̃

T2[f̃] : = ∥(∂xf)(t,u,xt)(ẋt − E[ẋt|xt])∥2f=x+(u−t)f̃

A[f̃] = T1[f̃]− T2[f̃]

L[f̃] = Eq(t,u),q(x0),q(x1)

[
A[f̃]

]
Lets define the path fϵ by replacing f̃ with f̃ϵ := f̃ + ϵh. Then:

fϵ := x+ (u− t)f̃ϵ = x+ (u− t)(f̃ + ϵh) = x+ (u− t)f̃ + ϵ(u− t)h (47)

Then
d

dϵ
L[f̃ + ϵh] = E

[d

dϵ
A[f̃ϵ]

]
= E

[d

dϵ
T1[f̃ + ϵh]− d

dϵ
T2[f̃ + ϵh]

]
(48)

We first compute this derivative and then evaluate it at ϵ = 0.

So

∂tfϵ = ∂t

[
x+ (u− t)f̃ + ϵ(u− t)h

]
(49)

= ∂tx+ ∂t

[
(u− t)f̃

]
+ ϵ∂t

[
(u− t)h

]
(50)

= (u− t)∂tf̃ − f̃ + ϵ
(
(u− t)∂th− h

)
(51)

= (u− t)(∂tf̃ + ϵ∂th)− (f̃ + ϵh) (52)

and

∂xfϵ = ∂x

[
x+ (u− t)f̃ + ϵ(u− t)h

]
= I + (u− t)∂x(f̃ + ϵh) (53)

and
d

dϵ
∂tfϵ =

d

dϵ

[
(u− t)(∂tf̃ + ϵ∂th)− (f̃ + ϵh)

]
(54)

=
d

dϵ

[
(u− t)∂tf̃ + ϵ(u− t)∂th− f̃ − ϵh

]
(55)

=
d

dϵ

[
ϵ(u− t)∂th− ϵh

]
(56)

= (u− t)∂th− h (57)

and
d

dϵ
∂xfϵ =

d

dϵ

[
I + (u− t)∂x(f̃ + ϵh)

]
(58)

=
d

dϵ
I +

d

dϵ
(u− t)∂xf̃ +

d

dϵ
(u− t)∂xϵh (59)

= (u− t)∂xh (60)

For the first term,

T1[f̃ + ϵh] = ∥∂tfϵ + (∂xfϵ)ẋt∥2

Differentiating

d

dϵ
T1[f̃ + ϵh] = 2

(
∂tfϵ + (∂xfϵ)ẋt

)⊤ d

dϵ

(
∂tfϵ + (∂xfϵ)ẋt

)
(61)

= 2
(
∂tfϵ + (∂xfϵ)ẋt

)⊤(
(u− t)∂th− h︸ ︷︷ ︸+(u− t)∂xh︸ ︷︷ ︸ ẋt

)
(62)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

= 2
(
(u− t)(∂tf̃ + ϵ∂th)− (f̃ + ϵh)︸ ︷︷ ︸+(I + (u− t)∂x(f̃ + ϵh)︸ ︷︷ ︸)ẋt

)⊤
(63)(

(u− t)∂th− h︸ ︷︷ ︸+(u− t)∂xh︸ ︷︷ ︸ ẋt

)
(64)

So

d

dϵ
T1[f̃ + ϵh]

∣∣∣
ϵ=0

= 2
(
(u− t)(∂tf̃ + ∂xf̃ ẋt)− f̃ + ẋt

)⊤(
(u− t)(∂th+ ∂xhẋt)− h

)
(65)

For the second term,

T2[f̃ + ϵh] = ∥∂xfϵ(ẋt − v)∥2 (66)

and

d

dϵ
T2[f̃ + ϵh] = 2

[
∂xfϵ(ẋt − v)

]⊤ d

dϵ

[
∂xfϵ(ẋt − v)

]
(67)

= 2
[
∂xfϵ(ẋt − v)

]⊤ d

dϵ
(∂xfϵ)(ẋt − v) (68)

= 2
[(

I + (u− t)∂x(f̃ + ϵh)
)
(ẋt − v)

]⊤
(u− t)∂xh(ẋt − v) (69)

So

d

dϵ
T2[f̃ + ϵh]

∣∣∣
ϵ=0

= 2
[(

I + (u− t)∂xf̃
)
(ẋt − v)

]⊤
(u− t)∂xh(ẋt − v) (70)

So combining

d

dϵ
A
∣∣∣
ϵ=0

= 2
(
(u− t)(∂tf̃ + ∂xf̃ ẋt)− f̃ + ẋt

)⊤(
(u− t)(∂th+ ∂xhẋt)− h

)
(71)

− 2
[(

I + (u− t)∂xf̃
)
(ẋt − v)

]⊤
(u− t)∂xh(ẋt − v) (72)

At t = u, this simplifies

1[t = u]
d

dϵ
A[f̃ϵ]

∣∣∣
ϵ=0

= 2(ẋt − f̃)⊤(−h) (73)

which is the first variation for regression that makes f̃ equal to E[ẋt|xt]. Summarizing,

δL[f̃ ;h] = E
[
2
(
(u− t)(∂tf̃ + ∂xf̃ ẋt)− f̃ + ẋt

)⊤(
(u− t)(∂th+ ∂xhẋt)− h

)
(74)

− 2
[(
I + (u− t)∂xf̃

)
(ẋt − v)

]⊤
(u− t)∂xh(ẋt − v)

]
(75)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.4 LEMMA: VELOCITY MATCHES AT A STATIONARY POINT OF ORIGINAL FUNCTIONAL

Lemma 1. Let f̃∗ be a stationary point of L. Assume that f̃∗ is bounded. Assume that f̃∗, v ∈
C1 in arguments (t, u, x) and that all expectations of terms featured in the integrand of L (i.e.,
v, f̃ , ∂tf̃ , ∂uf̃ , ∂xf̃ , . . .) are finite. Then we have that f̃∗(t, t, ·) = v(t, ·) where the velocity v(t, x) =
E[ẋt|xt].

Proof. We proceed by contradiction. By the premise, we are at a stationary point f̃∗. Let f∗ :=
x+ (u− t)f̃∗. By the definition of stationary point in section B.1, we have that δL[f̃∗;h] = 0 for all
admissible h. Suppose for the sake of contradiction that at this stationary point, the velocity does not
match, meaning

−∂tf
∗(t, t, ·) = f̃∗(t, t, ·) ̸=︸︷︷︸

suppose for contradiction

v(t, ·) (76)

The proof proceeds by picking a direction for which the first variation is nonzero, providing a
contradiction to being at a stationary point. The contradiction (the direction for which the first
variation is nonzero) is constructed to arise from assuming that the velocity does not match, meaning
that by contradiction the velocity does not match. Specific care is taken to ensure that this direction is
admissible, in this case meaning it is a continuous function.

We name a sequence of functions gη such there exists η∗ such that gη∗ is continuous but yields the
nonzero variation when chosen as a direction. To establish this is existence under continuity, the
dominated convergence theorem is used.

Let us define g(t, u, x) = 1[t = u]
(
f̃∗(t, u, x)− v(t, x)

)
and evaluate it at t = u so that g(t, t, x) =

f̃∗(t, t, x) − v(t, x). We then define the soft indicator Iη(t, u) that goes to 1[t = u] as η → 0 and
define it as:

Iη(t, u) = 1[η > 0]2
(
1− 1

1 + exp(− 1
η2 (t− u)2)

)
+ 1[η = 0]1[t = u] (77)

Using the soft indicator, we define a sequence of functions gη so that as η → 0 we will have pointwise
convergence of gη(t, t, x) → g(t, t, x) which also means that gη(t, u, x) for t ̸= u goes to 0. We pick

gη(t, u, x) = Iη(t, u)
(
f̃∗(t, t, x)− v(t, x)

)
(78)

Pointwise convergence of g in eta. We first establish pointwise convergence of gη to g for all
arguments (t, u, x) as η → 0 from the right.

∀η̂ ≥ 0, lim
η→(η̂)+

gη(t, u, x) = gη̂(t, u, x) (79)

To show this, for any η̂ > 0, use continuity of gη̂(t, u, x) in η̂ (product of function without η times
the soft indicator which is continuous). Then to establish for η̂ = 0 , we consider two cases t = u
and t ̸= u. For equality:

lim
η→0+

gη(t, t, x) (80)

= lim
η→0+

Iη(t, t)
(
f̃∗(t, t, x)− v(t, x)

)
(81)

= lim
η→0+

[
1[η > 0]2

(
1− 1

1 + exp(0)

)
+ 1[η = 0]

](
f̃∗(t, t, x)− v(t, x)

)
(82)

= lim
η→0+

[
1[η > 0]1 + 1[η = 0]

](
f̃∗(t, t, x)− v(t, x)

)
(83)

= lim
η→0+

1[η ≥ 0]
(
f̃∗(t, t, x)− v(t, x)

)
(84)

= f̃∗ − v (85)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

which equals gη=0(t, t, x), establishing continuity. Now for t ̸= u. ∀δ > 0 we must name an η(δ)

such that gη(δ) such that |gη(δ) − g0| < δ i.e. |gη(δ) − 0| < δ . Assume |f̃∗ − v| < k uniformly in all
input values t,x.

lim
η→0+

gη(t, u, x)

= lim
η→0+

[
1[η > 0]2

(
1− 1

1 + exp(− 1
η2 (t− u)2)

)
+ 1[η = 0]1[t = u]

](
f̃∗(t, t, x)− v(t, x)

)
= lim

η→0+

[
1[η > 0]2

(
1− 1

1 + exp(− 1
η2 (t− u)2)

)](
f̃∗(t, t, x)− v(t, x)

)
Since we are finding a δ and η(δ) so that |gη(δ) − 0| < δ which means |gη(δ)| < δ, this just means
we can set δ to an upper bound on the term we are limiting: let the indicator take on 1 as when it is 0
we are done.

δ =
∣∣∣2(1− 1

1 + exp(...)
)
∣∣∣k (86)

⇐⇒ δ

k
= 2(1− 1

1 + exp(− 1
η2 (t− u)2)

) (87)

⇐⇒ δ

2k
= 1− 1

1 + exp(− 1
η2 (t− u)2)

(88)

⇐⇒ 1− δ

2k
=

1

1 + exp(− 1
η2 (t− u)2)

(89)

⇐⇒ 2k

2k
− δ

2k
=

1

1 + exp(− 1
η2 (t− u)2)

(90)

⇐⇒ 2k − δ

2k
=

1

1 + exp(− 1
η2 (t− u)2)

(91)

⇐⇒ 2k

2k − δ
= 1 + exp(− 1

η2
(t− u)2) (92)

⇐⇒ 2k

2k − δ
− 1 = exp(− 1

η2
(t− u)2) (93)

⇐⇒ 2k

2k − δ
− 2k − δ

2k − δ
= exp(− 1

η2
(t− u)2) (94)

⇐⇒ δ

2k − δ
= exp(− 1

η2
(t− u)2) (95)

⇐⇒ log
δ

2k − δ
= − 1

η2
(t− u)2 (96)

⇐⇒ − log
δ

2k − δ
=

1

η2
(t− u)2 (97)

⇐⇒ −
log δ

2k−δ

(t− u)2
=

1

η2
(98)

⇐⇒ − (t− u)2

log δ
2k−δ

= η2 (99)

(100)

Now note that the soft indicator is strictly < 1 and that gη for fixed (t, u, x) is between −k and 0 or 0
and k depending on the sign of f̃∗ − v, but never both. So its magnitude is at most k. So

|gη(δ) − g0| = |gη(δ) − 0| < δ < k (101)

This can help us ascertain that the above square root to solve for η will be well defined:

δ < k =⇒ 2k − δ > k (102)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

=⇒ 1

2k − δ
<

1

k
(103)

=⇒ δ

2k − δ
<

δ

k
(104)

=⇒ δ

2k − δ
< 1 (105)

=⇒ log
δ

2k − δ
< log 1 (106)

=⇒ log
δ

2k − δ
< 0 (107)

meaning

η(δ) =

√
(t− u)2

| log δ
2k−δ |

(108)

thus establishing convergence of gη → g as η → 0+ for each (t, u, x) i.e. pointwise convergence.

Now recall the fist variation of L (section B.3) and consider it as a function of η:

s(η) := δL[f̃∗; gη] = E

[
2
(
(u− t)(∂tf̃

∗)− f̃∗ + (I + (u− t)(∂xf̃
∗))ẋt

)⊤
(109)(

(u− t)∂tgη − gη + (u− t)(∂xgη)ẋt

)
(110)

− 2
[(

I + (u− t)∂xf̃
∗
)
(ẋt − v)

]⊤
(u− t)∂xgη(ẋt − v)

]
(111)

Pointwise convergence of integrand in eta. Collect the variables ω = (t, u, x0, x1) and recall
that xt and ẋt are functions of (x0, x1). Define ϕη(ω) as shorthand for the expectand so that
s(η) = E[ϕη(ω)]. Under the boundedness assumptions and noting that ϕη only polynomially
combines gη with (∂tf̃

∗, ∂uf̃
∗, ∂xf̃

∗, v, ∂xv, . . .), similar reasoning used to show gη → g can also
be used to establish that ϕη → ϕ pointwise.

Establish upper envelope. In addition to pointwise convergence of ϕη → η as η → 0 from the
right, we need an upper envelope G(ω). Beyond the assumptions, the only thing needed to show
that an upper envelope exists is to control the term |(u − t)∂tIη(t, u)|. The derivative of the soft
indicator appears since ∂tgη = ∂t(Iηg) = (∂tIη)g + Iη∂tg. At η = 0 we have Iη(t, u) = 1[t = u],
so (u − t) ∂tIη(t, u) vanishes identically: it is 0 for t ̸= u because I0 is constant, and for t = u
because of the (u− t) prefactor. For η > 0, define:

z :=
(t− u)2

η2
, σ(z) :=

1

1 + exp(−z)
, σ′(z) :=

exp(−z)

[1 + exp(−z)]2
(112)

Note that for η > 0,

∂tIη(t, u) = 2
2(t− u)

η2
σ′(

(t− u)2

η2
) (113)

and so

|(u− t)∂tIη(t, u)| = 2(u− t)
2(u− t)

η2
σ′(

(t− u)2

η2
) = 4zσ′(z) ≤ sup

z≥0
4zσ′(z) ≤ C0 < ∞

(114)

Because r(z) := 4zσ′(z) is continuous and satisfies r(0) = 0 and r(z) → 0 as z → ∞, it attains
a finite maximum. This bound is independent of η. Thus every term containing (u − t)∂tgη is
uniformly bounded in η by a product of a constant (from the bound and Iη ∈ [0, 1)). The other
quantities in ϕ are bounded by assumption. Thus such a bounding envelope G(ω) exists.

Using dominated convergence. First,

lim
η→0+

s(η) = lim
η→0+

E[ϕη] = lim
η→0+

p(t = u)E[ϕη | t = u] + p(t < u)E[ϕη | t < u] (115)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

By the pointwise convergence of ϕη → ϕ as η → 0+ and by the envelope, we can compute the limit
of the first and second terms separately. Expanding the first term (with p = u):

lim
η→0+

p(t = u)E[ϕη | t = u] = lim
η→0+

p(t = u)E

[
2
(
(u− t)(∂tf̃

∗)− f̃∗ + (I + (u− t)(∂xf̃
∗))ẋt

)⊤

(
(u− t)∂tgη − gη + (u− t)(∂xgη)ẋt

)
− 2

[(
I + (u− t)∂xf̃

∗
)
(ẋt − v)

]⊤
(u− t)∂xgη(ẋt − v) | t = u

]

= lim
η→0+

p(t = u)E

[
2
(
− f̃∗ + ẋt

)⊤(
− gη

)
| t = u

]

= lim
η→0+

p(t = u)E

[
2
(
− f̃∗ + E[ẋt |xt]

)⊤(
− gη

)
| t = u

]

= lim
η→0+

p(t = u)E

[
2
(
− f̃∗ + v

)⊤(
− gη

)
| t = u

]

= p(t = u)E

[
lim

η→0+
2
(
− f̃∗ + v

)⊤(
− gη

)
| t = u

]

= p(t = u)E

[
lim

η→0+
2|| − f̃∗ + v||22 | t = u

]
This term is greater than zero by assumption that the velocity does not match at the stationary point
and assumption on the positive probabiity on p(t = u) > 0.

Expanding the second term (with p(t < u)):

lim
η→0+

p(t < u)E[ϕη | t < u] = lim
η→0+

p(t < u)E

[
2
(
(u− t)(∂tf̃

∗)− f̃∗ + (I + (u− t)(∂xf̃
∗))ẋt

)⊤

(
(u− t)∂tgη − gη + (u− t)(∂xgη)ẋt

)
− 2

[(
I + (u− t)∂xf̃

∗
)
(ẋt − v)

]⊤
(u− t)∂xgη(ẋt − v) | t < u

]

= p(t < u)E

[
lim

η→0+
2
(
(u− t)(∂tf̃

∗)− f̃∗ + (I + (u− t)(∂xf̃
∗))ẋt

)⊤

(
(u− t)∂tgη − gη + (u− t)(∂xgη)ẋt

)
− 2

[(
I + (u− t)∂xf̃

∗
)
(ẋt − v)

]⊤
(u− t)∂xgη(ẋt − v) | t < u

]
There’s no η in the first term in each of the two dot products that make up the expectand, so we can
focus on the second term in the dot products, where t < u For the second term in the first dot product:

lim
η→0+

(
(u− t)∂tgη − gη + (u− t)(∂xgη)ẋt

)
= lim

η→0+

(
(u− t)∂tgη − Iη(t, u)

(
f̃∗(t, t, x)− v(t, x)

)
+ (u− t)(Iη(t, u)∂x[

(
f̃∗(t, t, x)− v(t, x)

)
])ẋt

)
= lim

η→0+
(u− t)∂tgη

= lim
η→0+

(u− t)∂t[Iη(t, u)
(
f̃∗(t, t, x)− v(t, x)

)
]

= lim
η→0+

(u− t)(∂tIη)g + Iη∂tg

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

= lim
η→0+

(u− t)(∂tIη)Iη(t, u)
(
f̃∗(t, t, x)− v(t, x)

)
=

(
f̃∗(t, t, x)− v(t, x)

)
(u− t) lim

η→0+
(∂tIη)Iη(t, u) = 0

The last equality holds because the function and its time derivative both go to zero.

This means the first product in the expecation goes to zero. By a similar argument the second term
goes to zero as well.

Putting it all together

L := lim
η→0+

s(η) = lim
η→0+

E[ϕη] = lim
η→0+

p(t = u)E[ϕη | t = u] + p(t < u)E[ϕη | t < u] > 0

Resultingly,

∃η0 > 0 s.t. ∀η∗ s.t. 0 < η∗ < η0 =⇒ |s(η∗)− L| < ϵ (116)

If we pick ϵ = 0.5L then

|s(η∗)− L| < .5L =⇒ s(η∗) > L− .5L = .5L > 0 (117)

so s(η∗) > 0. But this contradicts being at a stationary point. It cannot be that f̃∗(t, t, ·) ̸= v(t, ·)
Therefore the velocity must match.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.5 THEOREM 1
We present a proof about the functional stationary points of the GameFlow functional. We use the
definitions of first variation and stationary point from section B.1 and the definition of functional
stopgrad from section B.2.

Theorem. Let q(t, u) be a joint distribution with support over t ≤ u and with positive probability
on t = u. Let the family F̃ include functions f̃ that are continuously differentiable in all arguments.
Let xt = αtx0 + σtx1 and ẋt = αtx0 + σtx1. Evaluate f at f(t, u, x) + (u − t)f̃(t, u, x). Take
expectations over q(t, u) and q(x0)q(x1). Let sg stand for stop-gradient. Define:

L[f̃] := E

[
∥(∂tf)|(t,u,xt) + (∂xf)|(t,u,xt)ẋt∥2 − ∥(∂xf)(t,u,xt)(ẋt − E[ẋt|xt])∥2

]

Lsg[f̃] := E

[
∥(∂tf)(t,u,xt) + (∂xf)(t,u,xt)ẋt∥2 − ∥(∂xf)(t,u,xt)(ẋt + sg[(∂tf)](t,t,xt))∥

2

]
Then f̃∗ is a stationary point of Lsg w.r.t. F̃ if and only if f̃∗ is a stationary point of L w.r.t. F̃ .

Proof. Case 1: If f̃∗ is a stationary point of L, then f̃∗ is a stationary point of Lsg.

• Since f̃∗ is a stationary point, δL[f̃∗; ·] = 0

• by section B.4, we have that ∂tf∗(t, t, x) = −f̃∗(t, t, x) = −E[ẋt|xt] where f∗ = x +

(u− t)f̃∗

• Lsg = L

• Since Lsg = L, then δLsg[f̃∗; ·] = δL[f̃∗; ·] = 0

Case 2: If f∗ is not a stationary point of L, then f∗ is not a stationary point of Lsg.

Since f∗ is not a stationary point of L, then ∃h that is admissible (continuous) such that δL[f∗;h] ̸= 0.
Then,

δL[f∗;h]︸ ︷︷ ︸
LHS

= E
[
1[t = u] . . .

]
︸ ︷︷ ︸

RHS-L

+E
[
1[t ̸= u] . . .

]
︸ ︷︷ ︸

RHS-R

(118)

If the LHS is nonzero, then one of RHS-L or RHS-R is nonzero. Consider both cases.

case 2a:The RHS-R is nonzero and RHS-L is zero. RHS-L being zero means that the velocity
matches, which means that RHS-R has the same first variation between L and Lsg. So they must
coincide regarding stationary points.

case 2b: RHS-L is nonzero and RHS-R is either zero or nonzero.

case2b-i δLsg[f∗;h] ̸= 0 directly holds. This is all we are trying to ensure anyway, so we are done
in this case.

case2b-ii Define the soft indicator, Iη:

Iη(t, u) = 1[η > 0]2
(
1− 1

1 + exp(− 1
η2 (t− u)2)

)
+ 1[η = 0]1[t = u]. (119)

Define the direction, ĥη:

ĥη(t, u, x) = Iη(t, u)h(t, u, x). (120)

ĥη is continuously differentiable for any η > 0. This is true cause it’s a product of two functions that
are each continuously differentiable (h is assumed continuously differentiable). Recall the mapping
s(η) from Section B.4, that maps η to δL[f ; ĥη]. Under the conditions of dominated convergence
established in Section B.4, we know that ∃η∗ > 0 such that ĥη∗ is a continuously differentiable
function for which δL[f∗; ĥη∗] ̸= 0. This must mean that the velocity is not matched. But we know
that if the velocity does not match, we are not at a stationary point of Lsg either, since Lsg and L
coincide on penalizing velocity matching on t = u.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C OTHER USEFUL DERIVATIONS AND RESULTS

C.1 GRADIENT UPDATES ARE NOT OPTIMIZATION OF ONE SCALAR OBJECTIVE VIA
GRADIENTS

We show here that there exists a data distribution and a model such that the Gameflow updates are
not the gradient of any single scalar objective. We illustrate this by considering an simple 1D setting.
The key point is that, even in this restricted case, the update field induced by the stopgrad operator
has non-zero curl and therefore cannot be written as the gradient of any scalar objective J(θ). The
form to be differentiated is:

Lsg(θ) = EXt

[∥∥∂tfθ(t, u,Xt) + (∂xfθ(t, u,Xt)) Ẋt

∥∥2]
− EXt

[∥∥(∂xfθ(t, u,Xt))
(
Ẋt − stopgrad[f̃θ(t, t,Xt)]

)∥∥2] . (121)

for fθ(t, u, x) = x+ (u− t)f̃θ(t, u, x). Let us work in 1D and fix values of Xt = x and Ẋt = d, a
constant. To accomplish this, we can choose X1 freely and set X0 = X1−d, so that the interpolation
satisfies both Xt = x and Ẋt = d. In this case the expectations in (121) collapse to evaluation at
this point (equivalently, think of us approximating with 1 Monte Carlo sample). Now, consider the
parameters θ = (θ1, θ2)

⊤ and a single time pair (t, u) such that at the position Xt = x,

∂tfθ(t, u, x) = 0, ∂xfθ(t, u, x) = θ1, f̃θ(t, t, x) = θ2. (122)

(For a sufficiently expressive model, such local values can be realized; we only need existence of
such a configuration.). Plugging these into (121) and dropping the expectation (single point), the
Gameflow functional is:

Lsg = (θ1d)
2 −

(
θ1
(
d− stopgrad[θ2]

))2
. (123)

Let ∇̃ denote differentiation with the stopgrad applied to θ2 in the second term. Differentiating (123)
with respect to θ1 yields

∇̃θ1Lsg = 2θ1d
2 − 2θ1

(
d− θ2

)2
(124)

= 2θ1

(
d2 − (d− θ2)

2
)

(125)

= 2θ1

(
d2 − (d2 − 2dθ2 + θ22)

)
(126)

= 2θ1
(
2dθ2 − θ22

)
(127)

= 2θ1θ2(2d− θ2). (128)

Here the stopgrad on θ2 only affects the second term and does not change the first term. For θ2, all
occurrences appear inside a stopgrad and the first term does not depend on θ2, hence

∇̃θ2Lsg = 0. (129)

Thus the update field induced by CurlFlow in this simple example is

g(θ1, θ2) :=
(
g1(θ1, θ2), g2(θ1, θ2)

)
=

(
2θ1θ2(2d− θ2), 0

)
. (130)

If this update were the gradient of some scalar objective J(θ1, θ2), then the mixed partial derivatives
would commute:

g1 = ∂θ1J, g2 = ∂θ2J ⇒ ∂θ2g1 = ∂θ1g2. (131)
However,

∂g1
∂θ2

=
∂

∂θ2

(
2θ1θ2(2d− θ2)

)
= 2θ1

(
2d− θ2 − θ2

)
= 4θ1(d− θ2), (132)

∂g2
∂θ1

= 0, (133)

and hence the curl of the update field is

∂g1
∂θ2

− ∂g2
∂θ1

= 4θ1(d− θ2), (134)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

which is non-zero for generic θ (for example, whenever θ1 ̸= 0 and θ2 ̸= d). Therefore g is a smooth
vector field with non-zero curl and cannot be written as the gradient of any scalar objective J(θ1, θ2)
in general. Put differently, a constraint on the relationship between the parameters of the model and
the value of the chosen datapoint is necessary to ensure zero curl.

This 1D example is a specific instantiation of Gameflow (121) with a simple model and a single
training point. It shows that, once we introduce the stopgrad on f̃θ(t, t, x), the resulting optimization
dynamics are in general non-conservative. The stopgrad structure breaks the symmetry required
for the updates to be the gradient of a single scalar function. In this sense, CurlFlow is formally a
(two-player) game rather than standard gradient descent on one potential function. Or one prefers, a
nongradient vector flow.

C.2 DIFFERENTIATING W.R.T. T VERSUS U

Picking one of t or u just switches the sign of some terms in the loss, which ultimately only
affects whether the learned map goes upward in time or downwards. The PDE can be obtained by
differentiating the flow map f(t, u, x) with respect to either endpoint. If Xs solves Ẋs = v(s,Xs),
then keeping u fixed and differentiating in t gives a condition that evaluates v at t and x:

∂tf(t, u, x) + (∂xf(t, u, x)) v(t, x) = 0, (135)

while keeping t fixed and differentiating in u gives a condition that evaluates v at u and xu =
f(t, u, x):

∂uf(t, u, x) + (∂xf(t, u, x)) v
(
u, f(t, u, x)

)
= 0. (136)

Along the ODE trajectory dX = v ds one has the identity

∂tf(t, u, x) = − ∂uf(t, u, x),

so choosing to differentiate in t versus u only changes the sign convention and which endpoint is
held fixed.

26

