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Abstract

Out-of-distribution (OOD) detection is crucial for ensuring reliable deployment
of machine learning models. Recent advancements focus on utilizing easily ac-
cessible auxiliary outliers (e.g., data from the web or other datasets) in training.
However, we experimentally reveal that these methods still struggle to generalize
their detection capabilities to unknown OOD data, due to the limited diversity
of the auxiliary outliers collected. Therefore, we thoroughly examine this prob-
lem from the generalization perspective and demonstrate that a more diverse set
of auxiliary outliers is essential for enhancing the detection capabilities. How-
ever, in practice, it is difficult and costly to collect sufficiently diverse auxiliary
outlier data. Therefore, we propose a simple yet practical approach with a theoreti-
cal guarantee, termed Diversity-induced Mixup for OOD detection (diverseMix),
which enhances the diversity of auxiliary outlier set for training in an efficient
way. Extensive experiments show that diverseMix achieves superior performance
on commonly used and recent challenging large-scale benchmarks, which further
confirm the importance of the diversity of auxiliary outliers. Our code is available
at https://github.com/HaiyunYao/diverseMix.

1 Introduction

The OOD problem occurs when machine learning models encounter data that differs from the dis-
tribution of training data. In such scenarios, models may make incorrect predictions, leading to
safety-critical issues in real-world applications, e.g., autonomous driving [14] and medical diagno-
sis [28]. To ensure the reliability of the outputs of model, it is essential not only to achieve good
performance on in-distribution (ID) samples, but also to detect potential OOD samples, thus avoiding
making erroneous decisions in test. Therefore, OOD detection has become a critical challenge for the
secure deployment of machine learning models [1, 12, 25, 30].

Several significant studies [19, 24, 26] focus on detecting OOD examples using only ID data in
training. However, due to a lack of supervision information from unknown OOD data, it is difficult
for these methods to achieve satisfactory performance in detecting OOD samples. Recent methods
[20, 46, 6, 35] involve training model with easily available auxiliary outliers (e.g., data from the web
or other datasets), with the hope that the detection ability can generalize to unknown OOD. However,
as shown in Fig. 1(a)-(b), we experimentally find that while the use of outlier datasets can enhance
performance in OOD detection, the generalization capabilities of these methods remain significantly
limited. Specifically, there is a considerable risk of the model overfitting to the auxiliary outliers,
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Figure 1: OOD score for different training strategies. The ID data Xin ⊂ R2 is sampled from three
distinct Gaussian distributions, each representing a different class. The auxiliary outliers are sampled
from a Gaussian mixture model away from the ID data, where the number of mixture components
indicates the number of classes contained in auxiliary outliers. (a) The model trained without auxiliary
outliers fails to detect OOD. (b) Incorporating a less diverse set of auxiliary outliers (10 classes)
during training enables partial OOD detection, but overfits auxiliary outliers. (c) OOD detection is
improved with a more diverse set of auxiliary outliers (1000 classes). (d) diverseMix enriches the
diversity of outliers (10 classes) through creating significantly distinct mixed outliers.

consequently failing to identify OOD samples that deviate markedly. The above limitation motivates
the following important yet under-explored question: What are the theoretical principles underlying
these methods that enable better utilization of outliers?

In this work, we theoretically investigate this crucial question from the perspective of generalization
ability [3]. Specifically, we first conduct a theoretical analysis to demonstrate how the distribution
shift between auxiliary outlier training set and test OOD data affects the generalization capability of
OOD detector. Accordingly, a generalization bound is induced on the test-time OOD detection error
of classifier, considering both empirical error and the error caused by the distribution shift between
test OOD data and auxiliary outliers. Based on the theory, we deduce an intuitive conclusion that a
more diverse set of auxiliary outliers can reduce the distribution shift error and effectively lower the
upper bound of the OOD detection error. As shown in Figure 1(b)-(c), the model trained with a more
diverse set of auxiliary outliers achieves better OOD detection. However, in practice, it is difficult
and costly to collect sufficiently diverse outlier data. Therefore, a natural question arises - how to
guarantee the effective utilization of a fixed set of auxiliary outliers?

Inspired from the theoretical principles, we propose a simple yet effective method called Diversity-
induced Mixup (diverseMix) for OOD detection, which introduces and improves the mixup strategy
to enhance the outlier diversity. Specifically, diverseMix employs semantic-level interpolation to
generate mixed samples, creating new outliers that significantly deviate from their original coun-
terparts. Given the risk that a random interpolation strategy (merely sampling from a predefined
prior distribution) might produce mixed outliers that are unhelpful for the model (as the model can
already detect them effectively), diverseMix dynamically adjusts its interpolation strategy based on
original samples. This adjustment ensures that the generated outliers are novel and distinct from those
previously encountered by the model, thereby enhancing diversity throughout the training process.
As shown in Figure 1(b)-(d), diverseMix effectively boosts the diversity of auxiliary outliers, leading
to improved OOD detection performance. The contributions of this paper are summarized as follows:

• We provide a theoretical analysis of the generalization error linked to methods trained
with auxiliary outliers. By establishing an upper bound for expected error, we reveal the
connection between auxiliary outlier diversity and the upper bound of OOD detection error.
Our theoretical insights emphasize the importance of leveraging diverse auxiliary outliers to
enhance the generalization capacity of the OOD detector.

• Constrained by the prohibitive cost of collecting outliers with sufficient diversity, we propose
the Diversity-induced Mixup (diverseMix) for OOD detection, a simple yet effective strategy
which is theoretically guaranteed to improve OOD detection performance.

• The proposed diverseMix achieves state-of-the-art OOD detection performance, outperform-
ing existing methods on both standard and recent large-scale benchmarks. Remarkably,
our method exhibits significant improvements over advanced methods, showing relative
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performance improvements of 24.4% and 43.8% (in terms of FPR95) on the CIFAR-10 and
CIFAR-100 datasets, respectively.

2 Related Works

We provide a brief review of prior research relevant to our work followed by a comparison.

Auxiliary-Outlier-Free OOD Detection. One early work by [19] pioneered the field of OOD
detection, introducing a baseline method based on maximum softmax probability. However, it has
since been established, as noted by [37], that this approach is not quite suitable for OOD detection.
To address this, various methods have been developed that operate in the logit space to enhance
OOD detection. These include ODIN [26], energy score [46, 29, 45], ReAct [41], logit normalization
[48], Mahalanobis distance [24], and KNN-based scoring [42]. However, post-hoc OOD detection
methods that do not involve pre-training on a substantial dataset generally exhibit poorer performance
compared to methods that leverage auxiliary datasets for model regularization [13].

OOD Detection with Auxiliary Outliers. Recent advancements in OOD detection have focused
on incorporating easily available auxiliary outliers into the model regularization process. Outlier
exposure [20] encourage models to predict uniform distributions for outliers, and Energy-based
learning [46] widens the energy gap between ID and OOD distribution. However, performance
heavily depends on outlier quality. ATOM [6], POEM [35], and DOS [23] enhance performance by
improving the sampling strategy for auxiliary outliers. DivOE [59] and DAL [47] improve outlier
quality in a learnable manner, either in the sample space or feature space, respectively. Additionally,
DOE implicitly enhances outlier informativeness through model perturbation. Incorporating outliers
during training often achiveves superior performance, as shown in many other works [46, 40, 2, 48].

Comparison with Existing Methods. Several existing methods have explored the utilization of
mixup in OOD detection. MixOE [56] and OpenMix [58] perform mixup between ID data and
outliers, linearly representing the transition from ID to OOD and thus enhancing the model capturing
the uncertainty from outliers. Meanwhile, MixOOD [51] employ mixup on ID data to generate
outliers for training. Different from existing research which primarily focuses on refining mixup
strategy or designing outlier regularization method, we place emphasis on the theoretical significance
of auxiliary outlier diversity. Our approach advances this concept by enhancing outlier diversity via
mixup based strategy, guaranteed by a robust theoretical framework. This focus on enhancing the
diversity of auxiliary outliers distinguishes our research from prevailing studies in this area.

3 Theory: Diverse Auxiliary Outliers Boost OOD Detection

In this section, we lay the foundation for our analysis of OOD detection. We begin by introducing
the key notations for OOD detection in Sec. 3.1. In Sec. 3.2, we establish a generalization bound
which highlights the critical role for auxiliary outliers in influencing the generalization capacity of
OOD detection methods. Finally, in Sec. 3.3, we demonstrate how a diverse set of auxiliary outliers
effectively mitigate the distribution shift errors, consequently lowering the upper bound of error. For
detailed proofs, please refer to Appendix A.

3.1 Preliminaries

We consider the multi-class classification task and each sample in the training set Did = {(xi, yi)}Ni=1
is drawn i.i.d. from the joint distribution PXid×Yid

, where Xid denotes the input space of ID data,
and Yid = {1, 2, . . . ,K} represents the label space. OOD detection can be formulated as a binary
classification problem to learn a hypothesis h from hypothesis space H ⊂ {h : X → {0, 1}}
such that h outputs 1 for any x ∈ Xid and 0 for any x ∈ Xood, where Xood = X \ Xid represent
the input space of OOD data and X represents the entire input space in the open-world setting.
To address the challenge posed by the unknown and arbitrariness of OOD distribution PXood

, we
leverage an auxiliary dataset Daux drawn from the distribution PXaux to serve as partial OOD
data, where Xaux ⊂ Xood. Due to the diversity of real-world OOD data, auxiliary outliers cannot
fully represent all OOD data, so PXaux ̸= PXood

. We aim to train a model on data sampled from
PX̃ = ktrainPXid

+(1−ktrain)PXaux
to obtain a reliable hypothesis h that can effectively generalize

to the unknown test-time distribution PX = ktestPXid
+ (1− ktest)PXood

, where ktrain and ktest
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determine the proportion of ID and OOD data used for training and testing, respectively. Note that
ktest is unknown due to unpredictable test data distribution.

3.2 Generalization Error Bound in OOD Detection

Basic Setting. We define an OOD label function which provides ground truth labels (OOD or ID)
for inputs as f : X → [0, 1]. The expectation that a hypothesis h disagrees with f with respect to a
distribution P is defined as:

ϵP(h, f) = Ex∼P [|h(x)− f(x)|]. (1)

The set of ideal hypotheses on the training data distribution PX̃ and test-time data distribution PX is
defined as:

H∗
aux : h = argmin

h∈H
ϵPX̃

(h, f), H∗
ood : h = argmin

h∈H
ϵPX (h, f), (2)

and we define h∗
ood and h∗

aux as the element in H∗
ood and H∗

aux, respectively, which can be denoted
as h∗

ood ∈ H∗
ood, h∗

aux ∈ H∗
aux. Considering that Xaux ⊂ Xood, it follows that H∗

ood ⊆ H∗
aux

2,
reflecting the reality that hypotheses perform well on real-world OOD data also perform well on
auxiliary outliers, conditioning on that auxiliary outliers are a subset of real-world OOD data. The
generalization error of an OOD detector h is defined as:

GError(h) = ϵx∼PX (h, f). (3)

Now, we present our first main result regarding OOD detection (training with auxiliary outliers).

Theorem 1 (Generalization Bound of OOD Detector). We let Dtrain = Did ∪ Daux, consisting
of M samples. For any hypothesis h ∈ H and 0 < δ < 1, with a probability of at least 1 − δ, the
following inequality holds:

GError(h) ≤ ϵ̂x∼PX̃
(h, f)︸ ︷︷ ︸

empirical error

+ ϵ(h, h∗
aux)︸ ︷︷ ︸

reducible error

+ sup
h∈H∗

aux

ϵx∼PX (h, h
∗
ood)︸ ︷︷ ︸

distribution shift error

+Rm(H)︸ ︷︷ ︸
complexity

+

√
ln( 1δ )

2M
+ β, (4)

where ϵ̂x∼PX̃
(h, f) is the empirical error. We define ϵ(h, h∗

aux) =
∫
|ϕX (x) − ϕX̃ (x)||h(x) −

h∗
aux(x)|dx as the reducible error, where ϕX and ϕX̃ is the density function of PX and PX̃ respec-

tively. sup
h∈H∗

aux

ϵx∼PX (h, h
∗
ood) is the distribution shift error, Rm(H) represents the Rademacher

complexity, and β is some constant condition on the error related to ideal hypotheses.

Minimizing empirical risk optimizes the model h to h ∈ H∗
aux, leading to a reduction in the reducible

error, which tends to zero. However, the inherent distribution shift error between auxiliary outliers and
real-world OOD data remains constant and non-negligible. This limitation fundamentally restricts the
generalization of OOD detection methods trained with auxiliary outliers. To address this limitation,
we investigate the effect of outlier diversity on mitigating the distribution shift error.

3.3 Generalization with Auxiliary OOD Diversification

In this paper, the diversity refers to semantic diversity, where a formal definition is given as follows.

Definition 1 (Diversity of Outliers). We assume Xaux can be divided into distinct semantic groups:
Xaux = X y1∪X y2∪. . .∪X ym , where each group X yi contains data points with label yi. Considering
a dataset Ddiv sampled from the distribution PXdiv

, where Xdiv ⊂ Xood encompasses Xaux and
an additional group Xnew = X ym+1 . . . ∪ X yn with different semantic compared to Xaux, i.e.,
Xdiv = Xaux ∪ Xnew, we define Ddiv is more diverse than Daux in terms of the range of semantic
classes covered.

2We consider the hypothesis set H to consist of fully-connected ReLU network with width dm ≤ n + 4,
where n is the input dimension.
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Suppose we could use this diverse auxiliary outliers dataset for training, the ideal hypotheses achieved
by training with Ddiv are denoted as:

H∗
div : h = argmin

h∈H
ϵx∼PX̃div

(h, f), (5)

with PX̃div
= ktrainPXid

+ (1 − ktrain)PXdiv
. Because Xaux ⊂ Xdiv holds, the hypotheses

performing well on PXdiv
also perform well on PXaux

, giving rise to H∗
div ⊂ H∗

aux. Consequently,
we have:

sup
h∈H∗

div

ϵx∼PX (h, h
∗
ood) ≤ sup

h∈H∗
aux

ϵx∼PX (h, h
∗
ood), (6)

which indicates that training with a more diverse set of auxiliary outliers can reduce the distribution
shift error. Furthermore, effective training leads to sufficient small empirical error and reducible
error, and the intrinsic complexity of the model remains constant. Consequently, a more diverse set
of auxiliary outliers results in a lower generalization error bound. This theorem is formalized as:

Theorem 2 (Diverse Outliers Enhance Generalization). Let O(GError(h)) and O(GError(hdiv))
represent the upper bounds of the generalization error of detector training with vanilla auxiliary
outliers Daux and diverse auxiliary outliers Ddiv , respectively. For any hypothesis h and hdiv in H,
and 0 < δ < 1, with a probability of at least 1− δ, the following inequality holds

O(GError(hdiv)) ≤ O(GError(h)). (7)

Remark. Theorem 2 highlights that the diversity of the outlier set is a critical factor in reducing
the upper bound of generalization error. However, despite the fundamental improvement in model
generalization achieved by increasing the diversity of auxiliary outliers, collecting a more diverse
set of auxiliary outliers is expensive, and the auxiliary outliers we can use are limited in practical
scenarios, which hinders the application of outlier exposure based methods for OOD detection. This
raises an intuitive question: can we enhance the diversity of a fixed outlier set for better utilization?

4 Method: Diversity-induced Mixup (diverseMix)

In this section, we show how diverseMix addresses the challenge of effective training when the outlier
diversity is limited. We begin with a theoretical analysis demonstrating the effectiveness of mixup in
enhancing outlier diversity to improve OOD detection performance, providing a reliable guarantee
for our mixup-based method. Then, we introduce a simple yet effective framework implementing our
method diverseMix to enhance OOD detection performance.

4.1 Theoretical Insights: Semantic Interpolation Guarantees Enhanced Diversity of Outliers

Mixup [55] is a widely used machine learning technique to augment training data by creating synthetic
samples, which has been extensively utilized in various studies[17, 7, 52]. It involves generating
virtual training samples (referred to as mixed samples) through linear interpolations between data
points and corresponding labels, given by:

x̂ = λxi + (1− λ)xj , ŷ = λyi + (1− λ)yj , (8)

where (xi, yi) and (xj , yj) are two samples drawn randomly from the empirical training distribution,
and λ ∈ [0, 1] is usually sampled from a Beta distribution with parameter α denoted as Beta(α, α).
This technique assumes a linear relationship between semantics (labels) and features (in data),
allowing us to create new mixed samples that deviate significantly from the semantics of the original
ones by combining features from samples with distinct semantics. These new mixed samples are
situated outside of the original data manifold [16]. We summarize this assumption as follows:

Assumption 1 (Semantic Change under Mixup). Let xi and xj be any two data points from input
spaces X yi and X yj , respectively, where yi and yj are corresponding semantic labels and yi ̸= yj . If
ζ < λ < 1−ζ , then there exists a positive value ζ such that the mixed data point x̂ = λxi+(1−λ)xj

does not belong to either X yi or X yj .

This assumption suggests that we can enhance the diversity of outliers by generating new outliers
with distinct semantics using mixup. Specifically, applying mixup to outliers in Xaux results in some
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generated mixed outliers having different semantics, suggesting that they belong to novel (unknown
or unnamed) semantic classes outside of Xaux. Consequently, these mixed outliers can be considered
as samples from a broader region within the input space. As per Definition 1, the mixed outliers
exhibit greater diversity than the original outliers. This lemma is formally presented as follows:

Lemma 1 (Diversity Enhancement with Mixup). For a group of mixup transforms3 G acting on
the input space Xaux to generate an augmented input space GXaux, defined as GXaux = {x̂|x̂ =
λx1 + (1− λ)x2;x1, x2 ∈ Xaux, λ ∈ [0, 1]}, the following relation holds:

Xaux ⊂ GXaux. (9)

Lemma 1 establishes that mixed outliers Dmix exhibits greater diversity compared to Daux, where
Dmix is drawn from distribution PGXaux

. Consequently, according to Theorem 2, mixup outliers
contribute to a reduction in generalization error. We can formalize this relationship as follows, and
the detailed proofs can be found in Appendix A.

Theorem 3 (Mixed Outlier Enhances Generalization). Let O(GError(h)) and O(GError(hmix))
represent the upper bounds of the generalization error of detector training with vanilla auxiliary
outliers Daux and mixed auxiliary outliers Dmix, respectively. For any hypothesis h and hmix in H,
and 0 < δ < 1, with a probability of at least 1− δ, we have

O(GError(hmix)) ≤ O(GError(h)). (10)

Theorem 3 demonstrates that mixup enhances auxiliary outlier diversity, reducing the upper bound of
generalization error in OOD detection, which provides a reliable guarantee of mixup’s effectiveness
in improving OOD detection. However, the vanilla mixup lacks flexibility, which may generate
outliers that are not necessarily beneficial to the model. Next, we will provide an implementation of
our method which dynamically adjusts the interpolation strategy in a data-adaptive manner.

4.2 Implementation

Considering a classifier network θ and F (x, θ) denotes the logit outputs for input x, our goal is to
use the scoring function S(x, θ) to develop an OOD detector:

G(x) = ID · 1{S(x, θ) ≥ γ}+ OOD · 1{S(x, θ) < γ}, (11)

where 1{·} is the indicator function, γ is the threshold, typically chosen to ensure that a significant
proportion (e.g., 95%) of ID data is accurately identified. The training objective is given by:

argmin
θ

E(x,y)∼Did
[LCE(F (x, θ), y)] + ω · Laux, (12)

where LCE(·) is the cross entropy loss, Laux serves as a regularization term enabling model to learn
from auxiliary outliers with low-confidence predictions, and ω controls the strength of regularization.

Our previous analysis showed that semantic interpolation can increase the diversity of outliers, thereby
enhancing the model’s OOD detection performance. However, the interpolation weights in vanilla
mixup is randomly sampled from a preset prior distribution (e.g. beta distribution), which may result
in generating mixed outliers that are not necessarily beneficial to the model. To efficiently increase
the diversity of auxiliary outliers, we dynamically adjust the mixup strategy based on the original
outliers, thereby generating novel mixed outliers which are more likely to be unfamiliar to the model.

During each training epoch, outliers are regularized, prompting the model θ to assign lower scores to
previously encountered outliers. Consequently, outliers that achieve higher scores S(x, θ) are more
likely to be novel or previously unseen outliers. We expect the generated outliers to be located in the
vicinal space of the novel outliers that have not yet been encountered by the model. To achieve this,
we adjust the prior distribution based on scores. Specifically, for outlier samples xi and xj randomly
drawn from the empirical auxiliary outlier distribution, the mixed outliers are formulated as follows:

x̂ = λxi + (1− λ)xj , λ ∼ Beta(ŝiα, ŝjα), (13)

where ŝi,ŝj adjusts the original Beta distribution according to xi and xj , which is defined as follows:

ŝi =
exp(S(xi, θ)/T )∑

k∈{i,j} exp(S(xk, θ)/T )
, (14)

3The set of all possible combinations of data points and all possible values of λ for mixup.
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Algorithm 1 diverseMix for OOD Detection
Input: ID dataset Did, outlier dataset Daux, batch size N , distribution parameter α, temperature T .
Output: model parameters θ.
for each iteration do

for each mini-batch do
Sample N ID data from Did as Bid and N outliers from Daux as Baux, respectively.
Evaluate the auxiliary outliers Baux using the current model θ to obtain the scores S.
Randomly shuffle Baux and the corresponding scores S to generate B′

aux and S ′.
Generate prior adjustment strategies based on scores S and S ′ according to Eq. 14.
Sample the interpolation weight from the adjusted prior distribution and generate mixed
outliers Dmix according to Eq. 13.
Train the model θ using the objective function defined in Eq. 12.

end for
end for

with T representing the temperature parameter. This adaptive strategy assigns higher weights to the
outliers that contain more information unknown to the current model, ensuring the generation of
novel outliers, thereby increasing diversity throughout the training process. After constructing the
mixed auxiliary outliers, they are used for the training objective (12). The whole pseudo code of the
proposed method is shown in Alg. 1.

Compatibility with different OOD regularization method. DiverseMix is a general method that is
suitable for a series of OOD regularization methods. One representative method is the energy-based
method [46], which employs the following OOD regularization loss:

Laux = E(x,y)∼Did
[(max(0,min − S(x; θ))2] + Ex∼Daux [(max(0, S(x; θ)−mout))

2], (15)

where min and mout are margin hyperparameters, and S(x; θ) = log
∑K

i=1 exp(Fi(x, θ)) is the
corresponding scoring function. More details for regularization methods are provided in Appendix B.3.

5 Experiments

In this section, we outline our experimental setup and conduct experiments on common OOD
detection benchmarks to answer the following questions: Q1. Effectiveness (I): Does our method
outperform its counterparts in OOD detection? Q2. Effectiveness (II): Does our method retain its
superior performance across various settings including large-scale benchmark? Q3. Practicability
(I): Does our method demonstrate effectiveness across different OOD regularization methods?
Q4. Practicability (II): Does our method demonstrate effectiveness in low-quality of auxiliary outliers
dataset? Q5. Ablation study: (I) Does diverseMix truly offer a distinct advantage over other data
augmentation methods? (II) What is the key factor contributing to performance improvement in our
method? Q6. Reliability: Do the experimental results provide strong support for established theory?

5.1 Experimental Setup

We briefly present the experimental setup here, including the experimental datasets and evaluation
metrics. Further experimental details can be found in Appendix B. It is worth noting that we are
committed to open-sourcing the code related to our research after publication.

Datasets. ◦ ID datasets. Following the commonly used benchmark in OOD detection literature,
we use CIFAR-10, CIFAR-100 and ImageNet-200 as ID datasets. ◦ Auxiliary outlier datasets.
For CIFAR experiments, the downsampled version of ImageNet (ImageNet-RC) is employed as
auxiliary outliers. For ImageNet-200 experiments, the remaining 800 categories from ImageNet-1k
(ImageNet-800) serve as auxiliary outliers. ◦ OOD test sets. For CIFAR benchmark, we use diverse
datasets including SVHN [38], Textures [8], Places365 [57], LSUN-crop, LSUN-resize [53], and iSUN
[49]. For ImageNet benchmark, We use datasets such as SSB-hard [43], NINCO [5], iNaturalist [21],
Textures [8] and OpenImage-O [44].

Evaluation metrics. Following common practice, we report: (1) OOD false positive rate at 95% true
positive rate for ID samples (FPR95) [27], (2) the area under the receiver operating characteristic
curve (AUROC) [10], (3) the area under the precision-recall curve (AUPR) [32]. We also provide ID
classification accuracy (ID-ACC).
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Table 1: Main results. Comparison with competitive OOD detection methods trained with the same
DenseNet backbone. The performance metrics are averaged (%) over six OOD test datasets from
Section 5.1. The best results are in bold. diverseMix not only demonstrates state-of-the-art OOD
detection performance on the CIFAR benchmark but also maintains high accuracy in ID classification.
More details are provided in the Appendix B.

Method CIFAR-10 CIFAR-100 w./w.o. DauxFPR95 (↓) AUROC (↑) AUPR (↑) ID-ACC FPR95 (↓) AUROC (↑) AUPR (↑) ID-ACC

MSP 58.98 90.63 93.18 94.39 80.30 73.13 76.97 74.05 ×
ODIN 26.55 94.25 95.34 94.39 56.31 84.89 85.88 74.05 ×

Mahalanobis 29.47 89.96 89.70 94.39 47.89 85.71 87.15 74.05 ×
Energy 28.53 94.39 95.56 94.39 65.87 81.50 84.07 74.05 ×
SSD+ 7.22 98.48 98.59 NA 38.32 88.91 89.77 NA ×

OE 9.66 98.34 98.55 94.12 19.54 94.93 95.26 74.25 ✓
SOFL 5.41 98.98 99.10 93.68 19.32 96.32 96.99 73.93 ✓
CCU 8.78 98.41 98.69 93.97 19.27 95.02 95.41 74.49 ✓

Energy (w. Daux) 4.62 98.93 99.12 92.92 19.25 96.68 97.44 72.39 ✓
NTOM 4.00 99.09 98.61 94.26 18.77 96.69 96.49 74.52 ✓
POEM 2.54 99.40 99.50 93.49 15.14 97.79 98.31 73.41 ✓
MixOE 14.54 97.16 97.41 94.48 27.71 92.93 93.81 75.15 ✓
DivOE 11.41 97.76 98.18 93.74 18.91 95.00 95.26 74.08 ✓

DiverseMix (ours) 1.92 99.42 99.51 94.16 8.51 98.24 98.46 74.60 ✓

Table 2: Main results on large-scale ImageNet benchmark. Comparison with competitive OOD
detection methods trained with the same ResNet backbone. For better presentation, the best and
second-best results are in bold and underline respectively. Consistent with CIFAR experiment results,
diverseMix demonstrates strong OOD detection capabilities for both near-OOD and far-OOD test
sets, achieving state-of-the-art OOD detection performance. Details are provided in the Appendix B.

Method Near-OOD Far-OOD Average ID-ACCFPR (↓) AUROC (↑) AUPR (↑) FPR (↓) AUROC (↑) AUPR (↑) FPR (↓) AUROC (↑) AUPR (↑)

MSP 70.35 82.75 88.58 54.51 88.81 91.86 60.85 86.39 90.54 85.81
Energy 70.35 81.88 88.56 53.87 89.30 91.59 60.46 86.33 90.38 85.81

Max Logits 69.45 82.25 88.69 52.49 89.60 92.13 59.28 86.66 90.75 85.81
ODIN 69.06 82.20 88.75 50.90 89.90 92.50 58.16 86.82 91.00 85.81

OE 59.12 86.86 92.69 54.95 90.51 91.20 56.61 89.05 91.79 85.52
Energy (w. Daux) 60.67 85.95 91.75 58.07 89.73 89.67 59.11 88.22 90.50 84.94

DPN 63.39 84.94 91.46 61.31 89.85 90.16 62.14 87.89 90.68 85.27
MixOE 68.43 83.42 88.74 50.51 90.62 92.31 57.68 87.38 90.89 86.35

DiverseMix (ours) 59.81 86.36 91.76 48.58 91.35 92.38 53.07 89.36 92.13 85.95

5.2 Experimental Results and Discussion

DiverseMix achieves superior performance on the common benchmark (Q1). Our method
outperforms existing competitive methods, establishing state-of-the-art performance both on CIFAR-
10 and CIFAR-100 datasets. Table 1 provides a comprehensive comparison with methods grouped into:
(1) ID-only training: MSP [19], ODIN [26], Mahalanobis [24], Energy [46]; (2) Utilizing auxiliary
outliers: OE [20], SOFL [36], CCU [33], Energy with outliers [46], NTOM [6], POEM [35], MixOE
[56], DivOE [59]. Methods that utilizing auxiliary outliers generally achieve significantly better
empirical performance on OOD detection. This implies that leveraging auxiliary outliers is essential
for enhancing OOD detection performance. Our method diverseMix significantly outperforms the top
baseline, reducing the FPR95 by 0.62% and 6.63% on CIFAR-10 and CIFAR-100, respectively. These
reductions correspond to relative error reductions of 24.4% and 43.8%. These notable improvements
can be attributed to the enhanced diversity in auxiliary outliers offered by diverseMix, which lowers
the generalization error bound and significantly improves the OOD detection performance.

DiverseMix is effective on the large-scale benchmark (Q2). Recent studies [50] have suggested
that methods leveraging outlier data tend to underperform in more demanding, large-scale OOD
detection tasks. To evaluate the effectiveness of our method, we conduct experiments on the ImageNet
benchmark. Following[50], We categorize the OOD test set into two distinct groups: near-OOD
and far-OOD. For each group, we report the average performance metrics. Furthermore, we also
present the overall average performance on the OOD test sets. Table 2 illustrates that methods
requiring outliers during training tend to excel in near OOD detection but fall short in far-OOD
detection, sometimes even performing worse than methods that do not require outliers during training.
Although MixOE improves far-OOD detection performance to some extent, it fails to fully leverage
auxiliary outliers to enhance near-OOD detection. In contrast, our method not only maintains
strong performance in near-OOD detection but also significantly improves performance in far-OOD
scenarios. We speculate that the virtual auxiliary outlier data generated by diverseMix may be more
representative of far-OOD data. While most OOD detection methods face difficulties in achieving
satisfactory performance across both near-OOD and far-OOD, our method excels in detecting both
types of OOD, significantly surpassing other methods in the average OOD detection performance.
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Figure 2: Comparison of OOD detection performance on CIFAR-100 with decreased quality of
auxiliary outlier datasets (a) With constant diversity of auxiliary outliers (1000 categories), the dataset
size is decreased. The x-axis represents the percentage of the original outlier dataset’s size used for
training. (b) With fixed dataset size (10% of auxiliary outliers), the diversity of outliers is decreased,
with the x-axis displaying the number of categories. See Appendix B.5 for more details.

Table 3: Ablation study. Performance are averaged (%) over six OOD test datasets from Section 5.1.
The best results are in bold. More details about the comparison methods are provided in Appendix B

(a) different data augmentation method.
CIFAR-10 CIFAR-100

FPR (↓) AUROC (↑) FPR (↓) AUROC (↑)

Gaussian noise 6.69 98.64 19.94 95.69
Cutout 7.20 98.57 19.12 96.64

Color jitter 8.83 98.45 24.36 95.01
DiverseMix (ours) 1.92 99.42 8.51 98.24

(b) different semantic interpolation strategy.
CIFAR-10 CIFAR-100

FPR (↓) AUROC (↑) FPR (↓) AUROC (↑)

Vanilla 5.43 98.80 16.30 96.87
Mixup 4.00 99.02 12.56 97.42
Cutmix 5.76 98.79 15.95 97.06

DiverseMix (ours) 1.92 99.42 8.51 98.24

DiverseMix is a general method that achieves good performance across different OOD reg-
ularization methods (Q3). To investigate the generality of diverseMix across different OOD
regularization methods, we replace the original energy loss with the K+1 loss and the OE loss. The
experimental results presented in Figure 2 reveal that diverseMix achieves consistent effectiveness re-
gardless of the OOD regularization method employed. These findings not only suggest the versatility
of our method but also provide substantial empirical evidence supporting our theoretical framework.

DiverseMix remains effective even when the auxiliary outlier data is of low quality (Q4). In
Figure 2, the quality of auxiliary outliers used for training is decreased by gradually decreasing their
quantity or their diversity. Our method diverseMix consistently outperforms previous methods by
enhancing the diversity of auxiliary outliers across different dataset sizes and diversity levels. This
suggests that diverseMix remains effective even when the auxiliary outliers are of low quality.

Sample adaptive semantic interpolation contributing to unique advantages of diverseMix (Q5).
We compared diverseMix with other data augmentation methods. As shown in Table 3(a), diverseMix
demonstrates superior performance for OOD detection over other data augmentation methods that
preserve the semantics of outliers. Additionally, the ablation study in Table 3(b) compares diverseMix
with different mixup strategies. DiverseMix outperforms both vanilla mixup and cutmix by adaptively
adjusting its interpolation strategy based on the given outliers, thereby efficiently generating novel
mixed outlier samples to enhance diversity. The advantages of diverseMix lie in 1) enhancing the
diversity of outliers at the semantic level, and 2) efficiently boosting diversity by adaptively adjusting
its strategy for the given outlier samples. For detailed comparisons, please see Appendix B.6.

Our theory effectively demonstrates that the diversity of auxiliary outliers is a key factor to
ensure OOD detection performance (Q6). In Figure 2, when maintaining the diversity relatively
constant and changing the quantity of data, the performance of different methods remains relatively
stable. However, when the number of outliers is fixed and the diversity of the outliers dataset is
reduced, there is a significant decrease in performance across all methods. This suggests that diversity
is a key quality factor for the auxiliary outliers, providing substantial empirical support for our theory.

DiverseMix has the potential for application across a wide range of task domains. Our theory
is not rely on any assumptions specific to the task domain. Given the successful implementation of
mixup across different fields [15, 54], diverseMix also has the potential for application in multiple
task domains beyond just computer vision tasks. We have investigated the application of diverseMix
in the NLP domain through experiments. For additional details, please see Appendix C.2.
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6 Conclusions and Future Work

In this study, we demonstrate that the performance of OOD detection methods is hindered by the
distribution shift between unknown test OOD data and auxiliary outliers. Through rigorous theoretical
analysis, we demonstrate that enhancing the diversity of auxiliary outliers can effectively mitigate
this problem. Constrained by limited access to auxiliary outliers and the high cost of data collection,
we introduce diverseMix, an effective method that enhances the diversity of auxiliary outliers and
significantly improves model performance. The effectiveness of diverseMix is supported by both
theoretical analysis and empirical evidence. Furthermore, our theory enables future research to design
new OOD detection method. We hope that our research can bring more attention to the diversity in
OOD detection.
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A Theoretical Analysis

In this section, we provide detailed proofs of our theories and the proposed method, including the proof
of H∗

ood ⊆ H∗
aux, the establishment of the generalization error bound for OOD detection (Theorem 1),

a more diverse set of auxiliary outliers leads to a reduced generalization error (Theorem 2), and the
proof of diversity enhancement with mixup (Lemma 1).

A.1 Proof of H∗
ood ⊆ H∗

aux

In this section, we demonstrate that if H consist of fully-connected ReLU network with width
dm ≤ n + 4, where n is the input dimension, and given that that Xaux ⊂ Xood, it follows that
H∗

ood ⊆ H∗
aux, This reflects the reality that hypotheses perform well on real-world OOD data also

perform well on auxiliary outliers, conditioning on that auxiliary outliers are a subset of real-world
OOD data.

Proof. We first express the expected error of hypotheses h on the training data distribution PX̃ and
the unknown test-time data distribution PX as follows:

ϵPX̃
(h, f) =

∫
X̃ |h(x)− f(x)|dx =

∫
Xaux

|h(x)− f(x)|dx+
∫
Xid

|h(x)− f(x)|dx = ϵ1,∫
Xood\Xaux

|h(x)− f(x)|dx = ϵ2,

ϵPX (h, f) =
∫
X |h(x)− f(x)|dx =

∫
Xid

|h(x)− f(x)|dx+
∫
Xood

|h(x)− f(x)|dx
=
∫
Xid

|h(x)− f(x)|dx+
∫
Xaux

|h(x)− f(x)|dx+
∫
Xood\Xaux

|h(x)− f(x)|dx = ϵ1 + ϵ2.

14



From the above expressions, we obtain:
H∗

aux = {h : argmin
h

ϵ1},
H∗

other = {h : argmin
h

ϵ2},
H∗

ood = {h : argmin
h

(ϵ1 + ϵ2)}.

Let f ′ be a function that minimizes both ϵ1 and ϵ2, considering that
∫
X |f ′(x)|dx < ∞, which

implies that f ′ is Lebesgue-integrable on X . The H represent the fully-connected ReLU networks
with width dm ≤ n+ 4, where n is the input dimension. According to the Universal Approximation
Theorem for Width-Bounded ReLU Networks [31], for any ϵ > 0, there exists a h ∈ H such that:∫
X |h(x) − f ′(x)|dx < ϵ. Consequently, there exists a hypothesis h ∈ H that simultaneously

minimizes both ϵ1 and ϵ2. leading to the condition H∗
aux ∩ H∗

other ̸= ∅. In this case, we have
min
h

(ϵ1 + ϵ2) = min
h

ϵ1 + min
h

ϵ2. We denote H∗
ood = H∗

aux ∩ H∗
other, thus establishing that

H∗
ood ⊂ H∗

aux.

A.2 Proof of Theorem 1

In this section, we analyze the generalization error of the OOD detector training with auxiliary
outliers. First, we recall the setting from Sec. 3.1, our goal is to train a detector with auxiliary outliers
that can perform well on real-world OOD data. In other words, we aim to train a model on data
sampled from PX̃ = ktrainPXid

+ (1 − ktrain)PXaux
to obtain a reliable hypothesis h that can

effectively generalize to the unknown test-time distribution PX = ktestPXid
+ (1− ktest)PXood

.

Next, we develop bounds on the OOD detection performance of a detector training with auxiliary
outliers, which can be formulated as follow:

(Generalization Bound of OOD Detector). Let Dtrain = Did ∪Daux, consisting of M samples. For
any hypothesis h ∈ H and 0 < δ < 1, with a probability of at least 1− δ, the following inequality
holds:

GError(h) ≤ ϵ̂x∼PX̃
(h, f)︸ ︷︷ ︸

empirical error

+ ϵ(h, h∗
aux)︸ ︷︷ ︸

reducible error

+ sup
h∈H∗

aux

ϵx∼PX (h, h
∗
ood)︸ ︷︷ ︸

distribution shift error

+Rm(H)︸ ︷︷ ︸
complexity

+

√
ln( 1δ )

2M
+ β, (16)

where ϵ̂x∼PX̃
(h, f) is the empirical error. We define ϵ(h, h∗

aux) =
∫
|ϕX (x) − ϕX̃ (x)||h(x) −

h∗
aux(x)|dx is the reducible error, ϕX and ϕX̃ is the density function of PX and PX̃ respectively.
sup

h∈H∗
aux

ϵx∼PX (h, h
∗
ood) is the distribution shift color, Rm(H) represents the Rademacher complexity,

β is the error related to ideal hypotheses. The roadmap of our analysis is as follows:

Roadmap. We first show how to bound the OOD detection error in terms of the generalization
error on PX̃ and the maximum distribution shift error as well as the reducible error which can be
reduced to a small value as the model is optimized. Then, we study the generalization bound from
the perspective of Rademacher complexity. We use complexity-based learning theory to quantify the
generalization error on PX̃ . In the end, we bound the OOD detection generalization error in terms of
the empirical error on the training data, the reducible error, the maximum distribution shift error, and
the complexity. We also provide detailed proof steps as follows:

Proof. This proof relies on the triangle inequality for classification error [4, 9], which implies that for
any labeling functions f1, f2, and f3, we have ϵ(f1, f2) ≤ ϵ(f1, f3) + ϵ(f2, f3).

GError(h) = ϵx∼PX (h, f)

≤ ϵx∼PX (h, h
∗
ood) + ϵx∼PX (h

∗
ood, f)

= ϵx∼PX (h, h
∗
ood) + ϵx∼PX (h

∗
ood, f) + ϵx∼PX̃

(h, h∗
ood)− ϵx∼PX̃

(h, h∗
ood)

= ϵx∼PX̃
(h, h∗

ood) + ϵx∼PX (h
∗
ood, f) + ϵx∼PX (h, h

∗
ood)− ϵx∼PX̃

(h, h∗
ood)

≤ ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f) + ϵx∼PX (h, h

∗
ood)− ϵx∼PX̃

(h, h∗
ood)

Let ϕX and ϕX̃ be the density functions of PX and PX̃ , respectively.
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GError(h) ≤ ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f)

+

∫
ϕX (x)|h(x)− h∗

ood(x)| dx−
∫

ϕX̃ (x)|h(x)− h∗
ood(x)| dx

≤ ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f) +

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

ood(x)| dx

≤ ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f) +

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

aux(x)| dx

+

∫
|ϕX (x)− ϕX̃ (x)| |h∗

aux(x)− h∗
ood(x)| dx

≤ ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f) +

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

aux(x)| dx

+

∫
ϕX (x) |h∗

aux(x)− h∗
ood(x)| dx+

∫
ϕX̃ (x) |h∗

aux(x)− h∗
ood(x)| dx

= ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f) +

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

aux(x)| dx

+ϵx∼PX (h
∗
aux, h

∗
ood) + ϵx∼PX̃

(h∗
aux, h

∗
ood)

≤ ϵx∼PX̃
(h, f) + ϵx∼PX̃

(h∗
ood, f) + ϵx∼PX (h

∗
ood, f) +

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

aux(x)| dx

+ϵx∼PX (h
∗
aux, h

∗
ood) + ϵx∼PX̃

(h∗
aux, f) + ϵx∼PX̃

(h∗
ood, f),

Given that min
h∈H

ϵx∼PX (h, f) and min
h∈H

ϵx∼PX̃
(h, f) represent the error of h∗

ood and h∗
aux on distribu-

tions PX and PX̃ , respectively, we have ϵx∼PX (h
∗
ood, f) = min

h∈H
ϵx∼PX (h, f) and ϵx∼PX̃

(h∗
aux, f) =

min
h∈H

ϵx∼PX̃
(h, f). Considering that H∗

ood ⊂ H∗
aux, it follows that for any h ∈ H∗

ood, h ∈ H∗
aux is

holds. As a result, we have ϵx∼PX̃
(h∗

ood, f) = min
h∈H

ϵx∼PX̃
(h, f). Thus, we obtain the following:

GError(h) ≤ ϵx∼PX̃
(h, f) + min

h∈H
ϵx∼PX̃

(h, f) + min
h∈H

ϵx∼PX (h, f)

+

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

aux(x)| dx+ ϵx∼PX (h
∗
aux, h

∗
ood)

+min
h∈H

ϵx∼PX̃
(h, f) + min

h∈H
ϵx∼PX̃

(h, f),

We can demonstrate that min
h∈H

ϵx∼PX (h, f) ≥ min
h∈H

ϵx∼PX̃
(h, f) as follows:

min
h∈H

ϵx∼PX (h, f) = min
h∈H

∫
X
|h(x)− f(x)|dx

= min
h∈H

(∫
X̃
|h(x)− f(x)|dx+

∫
X\X̃

|h(x)− f(x)|dx

)

≥ min
h∈H

∫
X̃
|h(x)− f(x)|dx+min

h∈H

∫
X\X̃

|h(x)− f(x)|dx

≥ min
h∈H

∫
X̃
|h(x)− f(x)|dx

= min
h∈H

ϵx∼PX̃
(h, f).

Thus, We obtain:

GError(h) ≤ ϵx∼PX̃
(h, f) +

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

aux(x)| dx+ ϵx∼PX (h
∗
aux, h

∗
ood)

+4 min
h∈H

ϵx∼PX (h, f),
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We denote β = 4 min
h∈H

ϵx∼PX (h, f), so

GError(h) ≤ ϵx∼PX̃
(h, f) +

∫
|ϕX (x)− ϕX̃ (x)||h(x)− h∗

aux(x)| dx+ ϵx∼PX (h
∗
aux, h

∗
ood) + β,

Consider an upper bound on the distribution shift error ϵx∼PX (h
∗
aux, h

∗
ood)

GError(h) ≤ ϵx∼PX̃
(h, f) +

∫
|ϕX (x)− ϕX̃ (x)||h(x)− h∗

aux(x)| dx

+ sup
h∈H∗

aux

ϵx∼PX (h, h
∗
ood) + β,

Next, we recap the Rademacher complexity measure for model complexity. We use complexity-based
learning theory [3] (Theorem 8) to quantify the generalization error. Let Dtrain = Did ∪ Daux

consisting of M samples, ϵ̂x∼PX̃
(h, f) is the empirical error of h. Then for any hypothesis h in H

(i.e.,H : X → {0, 1}, h ∈ H) and 1 > δ > 0, with probability at least 1− δ, we have

ϵx∼PX̃
(h, f) ≤ ϵ̂x∼PX̃

(h, f) +Rm(H) +

√
ln( 1δ )

2M

where Rm(H) is the Rademacher complexities. Finally, it holds with a probability of at least 1− δ
that

ϵx∼PX (h, f) ≤ ϵ̂x∼PX̃
(h, f)︸ ︷︷ ︸

empirical error

+ ϵ(h, h∗
aux)︸ ︷︷ ︸

reducible error

+ sup
h∈H∗

aux

ϵx∼PX (h, h
∗
ood)︸ ︷︷ ︸

distribution shift error

+Rm(H)︸ ︷︷ ︸
complexity

+

√
ln( 1δ )

2M
+ β

where ϵ(h, h∗
aux) =

∫
|ϕX (x)− ϕX̃ (x)| |h(x)− h∗

aux(x)| dx represents the reducible error and β is
the error related to ideal hypotheses. Notably, when β is large, there exists no detector that performs
well on PX , making it unfeasible to find a good hypothesis through training with auxiliary outliers.

A.3 Proof of Theorem 2

In this section, we proof that diverse outliers enhance generalization, which can be formulated as
follows:

Let O(GError(h)) and O(GError(hdiv)) represent the upper bounds of the generalization error of
detector training with vanilla auxiliary outliers Daux and diverse auxiliary outliers Ddiv , respectively.
For any hypothesis h and hdiv in H, and 0 < δ < 1, with a probability of at least 1− δ, the following
inequality holds

O(GError(hdiv)) ≤ O(GError(h)). (17)
The detailed proof proceeds as follows:

Proof. At first, we prove that diverse outliers correspond to a smaller distribution shift error than
vanilla outliers. Because Xaux ⊂ Xdiv holds, the hypotheses performing well on PXdiv

also perform
well on PXaux , giving rise to H∗

div ⊂ H∗
aux.

sup
h∈H∗

div

ϵx∼PX (h, h
∗
ood) ≤ max{ sup

h∈H∗
div

ϵx∼PX (h, h
∗
ood), sup

h∈H∗
aux−H∗

div

ϵx∼PX (h, h
∗
ood)},

note that
max{ sup

h∈H∗
div

ϵx∼PX (h, h
∗
ood), sup

h∈H∗
aux−H∗

div

ϵx∼PX (h, h
∗
ood)} = sup

h∈H∗
aux

ϵx∼PX (h, h
∗
ood),

Consequently, we have
sup

h∈H∗
div

ϵx∼PX (h, h
∗
ood) ≤ sup

h∈H∗
aux

ϵx∼PX (h, h
∗
ood). (18)

Furthermore, model effective training leads to small empirical error and small reducible error, if we
continue to use the same model architecture, the intrinsic complexity of the model Rm(H) remains
invariant, consider that β is a small constant value, therefore, it holds that

O(GError(hdiv)) ≤ O(GError(h)), (19)
with a probability of at least 1− δ.
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A.4 Proof of Lemma 1

In this section, we give the proof of the Lemma 1, which can be formalized as follow:

(Diversity Enhancement with Mixup). For a group of mixup transforms4 G acting on the input
space Xaux to generate an augmented input space GXaux, defined as GXaux = {x̂|x̂ = λx1 + (1−
λ)x2;x1, x2 ∈ Xaux, λ ∈ [0, 1]}, the following relation holds:

Xaux ⊂ GXaux. (20)

Proof. Xaux = X y1
aux ∪ . . . ∪ X yi

aux ∪ . . . ∪ X yj
aux ∪ . . . ∪ X yn

aux. Consider performing mixup to
obtain a mixed outlier x̂ = λxi + (1− λ)xj , where xi ∈ X yi

aux, xj ∈ X yj
aux and yi ̸= yj . According

to assumption 1, there exists λ such that x̂ exhibits different semantics from the original, i.e.,
x̂ /∈ X yi

aux and x̂ /∈ X yj
aux. Clearly, the semantic of x̂ is also inconsistent with other outliers in Xaux.

Therefore, x̂ /∈ Xaux. We define Xmix = {x̂ | x̂ /∈ Xaux, x̂ = λxi + (1− λ)xj , xi, xj ∈ Xaux} to
represents the input space of mixed outliers with distinct semantic to the original. Consequently,
GXaux = Xaux ∪ Xmix, leading to GXaux ⊃ Xaux.

B Experimental Details

B.1 Details of Dataset

Auxiliary OOD datasets. ◦ For CIFAR experiments, we employ the downsampled ImageNet
dataset (ImageNet 64 × 64) as a variant of the original ImageNet dataset, comprising 1,281,167
images with dimensions of 64×64 pixels and organized into 1000 distinct classes. Notably, there
is overlap between some of these classes and those present in CIFAR-10 and CIFAR-100 datasets.
It is important to emphasize that we abstain from utilizing any label information from this dataset,
thereby regarding it as an unlabeled auxiliary OOD dataset. To augment the dataset, we apply a
random cropping procedure to the 64×64 images, resulting in 32×32 pixel images with a 4-pixel
padding. This operation performed with a high probability ensures that the resulting images are
unlikely to contain objects corresponding to the ID classes, even if the original images featured such
objects. Consequently, we retain a substantial quantity of OOD data for training purposes, yielding a
low proportion of ID data within the auxiliary outliers. For conciseness and clarity, we refer to this
dataset as ImageNet-RC.◦ For ImageNet experiments, we selected a subset from ImageNet-1K, which
includes 200 classes, to serve as the ID data. Images from the other 800 classes are used as auxiliary
datasets, following the setting of [50]. The resolution for both ID and auxiliary images are 224× 224.

Test OOD datasets. For CIFAR experiments, we follow the setting in [6, 35]. Specifically, we
employ six different natural image datasets as our OOD test datasets, while CIFAR-10 and CIFAR-100
serve as our ID test datasets. These six datasets are SVHN [38], Textures [8], Places365 [57], LSUN
(crop), LSUN (resize) [53], and iSUN [49]. Below, we provide detailed information about these
OOD test datasets, all of which consist of 32× 32 pixel images. ◦ SVHN. The SVHN dataset [38]
comprises color images of house numbers, encompassing ten different digit classes from 0 to 9.
For our evaluation, we randomly select 1,000 test images from each digit class, creating a new test
dataset with 10,000 images. ◦ Textures. The Describable Textures Dataset [8] consists of textural
images in the wild. We include the entire collection of 5,640 images for evaluation. ◦ Places365. The
Places365 dataset [57] comprises a large-scale photographs depicting scenes classified into 365 scene
categories. In the test set, there are 900 images per category. We randomly sample 10,000 images
from the test set for our evaluation. ◦ LSUN (crop) and LSUN (resize). The Large-scale Scene
Understanding dataset (LSUN) [53] offers a testing set containing 10,000 images from 10 different
scenes. We create two variants of this dataset, namely LSUN (crop) and LSUN (resize). LSUN (crop)
is generated by randomly cropping image patches to the size of 32× 32 pixels, while LSUN (resize)
involves downsampling each image to the same size. ◦ iSUN. The iSUN dataset [49] is a subset of
SUN images. We incorporate the entire collection of 8,925 images from iSUN for our evaluation.

In ImageNet experiments, we follow the settings of [50], where OpenImage-O [44], SSB-hard [43],
Textures [8], iNaturalist [21] and NINCO [5] are selected as OOD test datasets. We include SSB-hard
and NINCO in the near-OOD group, while the far-OOD group considers iNaturalist, Textures, and
OpenImage-O. ◦ OpenImage-O contains 17632 manually filtered images and is 7.8 × larger than

4The set of all possible combinations of data points and all possible values of λ for mixup.
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Table 4: Main results with standard deviation. Comparison with competitive OOD detection
methods trained with the same DenseNet backbone. The performance metrics are averaged (%) over
six OOD test datasets from Section 5.1. Some baseline results are sourced from [35]. The best results
are in bold. diverseMix not only demonstrates state-of-the-art OOD detection performance on the
CIFAR benchmark but also maintains high accuracy in ID classification.

Method CIFAR-10 CIFAR-100 w./w.o. DauxFPR95 (↓) AUROC (↑) AUPR (↑) ID-ACC FPR95 (↓) AUROC (↑) AUPR (↑) ID-ACC

MSP 58.98 90.63 93.18 94.39 80.30 73.13 76.97 74.05 ×
ODIN 26.55 94.25 95.34 94.39 56.31 84.89 85.88 74.05 ×

Mahalanobis 29.47 89.96 89.70 94.39 47.89 85.71 87.15 74.05 ×
Energy 28.53 94.39 95.56 94.39 65.87 81.50 84.07 74.05 ×
SSD+ 7.22 98.48 98.59 NA 38.32 88.91 89.77 NA ×

OE 9.66 98.34 98.55 94.12 19.54 94.93 95.26 74.25 ✓
SOFL 5.41 98.98 99.10 93.68 19.32 96.32 96.99 73.93 ✓
CCU 8.78 98.41 98.69 93.97 19.27 95.02 95.41 74.49 ✓

Energy (w. Daux) 4.62 98.93 99.12 92.92 19.25 96.68 97.44 72.39 ✓
NTOM 4.00± 0.22 99.09± 0.05 98.61± 0.32 94.26± 0.11 18.77± 0.75 96.69± 0.12 96.49± 0.33 74.52± 0.31 ✓
POEM 2.54± 0.56 99.40± 0.05 99.50 ± 0.07 93.49± 0.27 15.14± 1.16 97.79± 0.17 98.31± 0.12 73.41± 0.21 ✓
MixOE 14.54 ± 0.87 97.16 ± 0.17 97.41 ± 0.16 94.48 ± 0.09 27.71 ± 2.22 92.93 ± 0.85 93.81 ± 0.69 75.15 ± 0.14 ✓
DivOE 11.41 ± 0.88 97.76 ± 0.16 98.18 ± 0.12 94.07 ± 0.24 18.91 ± 2.59 95.00 ± 0.72 95.26 ± 0.50 74.08 ± 0.44 ✓

DiverseMix (ours) 1.92 ± 0.14 99.42 ± 0.01 99.51 ± 0.03 94.16 ± 0.12 8.51 ± 0.68 98.24 ± 0.10 98.46 ± 0.10 74.60± 0.32 ✓

the ImageNet-O dataset. ◦ SSB-hard is selected from ImageNet-21K. It consists of 49K images and
covers 980 categories. ◦ iNaturalist consists of 859000 images from over 5000 different species
of plants and animals. ◦ NINCO consists with a total of 5879 samples of 64 classes which are
non-overlapped with ImageNet-1K.

B.2 Training Details.

◦ CIFAR experiments. We use DenseNet-101 [22] as the backbone for all methods, employing
stochastic gradient descent with Nesterov momentum (momentum = 0.9) over 100 epochs. The initial
learning rate of 0.1 decreases by a factor of 0.1 at 50, 75, and 90 epochs. Batch sizes are 128 for both
ID data and OOD data. For DiverseMix, we set α = 4, T = 10. Experiments are run over five times
to report the means and standard deviations. ◦ ImageNet experiments. We use ResNet18 [18] as
the backbone network. We use SGD optimizer to train all the models. The momentum is set to 0.9.
Model is obtained by training ResNet18 for 100 epochs with an initial learning rate of 0.1, utilizing a
cosine annealing strategy to adjust the learning rate. The weight decay is set to 0.0005. Batch size is
set to 256 both ID data and OOD data. For DiverseMix, we set α = 8, T = 0.1. We use OE loss as
regularization loss. Experiments are run over five times to report the means and standard deviations.

B.3 Details of OOD Regularization Method.

In addition to the Energy loss mentioned in Section 4.2, our method can be extended to different
OOD regularization methods, such as OE [20] and K+1 [6]. The details are as follows:

Outlier Exposure (OE). OE introduces a promising approach towards OOD detection by utilizing
outliers to force apart the distributions of ID and OOD. Its scoring function and corresponding regular
function can be expressed as:

S(x, θ) = max softmax(F (x, θ)), Laux = Ex∼Daux
[LCE(F (x, θ),U)], (21)

where U is the uniform distribution over K classes.

(K+1)-way regularization method. Considering a (K+1)-way classifier network F , where the
(K+1)-th label indicates OOD class. Its scoring function and regular function can be expressed as:

S(x, θ) = −softmaxK+1(F (x, θ)), Laux = Ex∼Daux
[LCE(F (x, θ),K + 1)], (22)

where softmaxK+1(·) represents the softmax output in the K+1 dimension.

B.4 Details of Main Experiment.

Full Results with Standard Deviation. In Tab. 4 and Tab. 5, we present the experimental results
for all evaluation metrics along with the corresponding standard deviations. From the experimental
results we can draw similar conclusions as those in Sec. 5.

Results on Individual OOD Dataset. We also provide the performance of our method on individual
OOD dataset in tabel 6.
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Table 5: Main results on large-scale datasets. Comparison with competitive OOD detection
methods trained with the same ResNet backbone. We divide the OOD test set into two distinct groups:
near-OOD and far-OOD. For each group, we report the average performance metrics with standard
deviation. The best and second-best results are in bold and underline respectively. Echoing the
findings from our CIFAR experiments, diverseMix demonstrates strong OOD detection capabilities
for both near-OOD and far-OOD test sets, achieving state-of-the-art OOD detection performance.

Method Near-OOD Far-OOD Average ID-ACCFPR (↓) AUROC (↑) AUPR (↑) FPR (↓) AUROC (↑) AUPR (↑) FPR (↓) AUROC (↑) AUPR (↑)

MSP 70.35±0.67 82.75±0.19 88.58±0.08 54.51±3.30 88.81±0.67 91.86±0.59 60.85±2.23 86.39±0.48 90.54±0.38 85.81±0.14
Energy 70.35±0.54 81.88±0.12 88.56±0.04 53.87±4.71 89.30±0.95 91.59±0.74 60.46±2.89 86.33±0.62 90.38±0.45 85.81±0.14

Max Logits 69.45±0.68 82.25±0.16 88.69±0.04 52.49±4.48 89.60±0.88 92.13±0.67 59.28±2.91 86.66±0.60 90.75±0.42 85.81±0.14
ODIN 69.06±0.62 82.20±0.17 88.75±0.04 50.90±4.33 89.90±0.89 92.50±0.66 58.16±2.78 86.82±0.60 91.00±0.41 85.81±0.14

OE 59.12±0.57 86.86±0.32 92.69±0.27 54.95±1.47 90.51±0.21 91.20±0.43 56.61±0.94 89.05±0.24 91.79±0.18 85.52±0.18
Energy (w. Daux) 60.67±1.83 85.95±0.63 91.75±1.03 58.07±3.89 89.73±0.27 89.67±0.56 59.11±1.76 88.22±0.09 90.50±0.08 84.94±0.66

DPN 63.39±1.15 84.94±0.07 91.46±0.05 61.31±2.04 89.85±0.31 90.16±0.26 62.14±1.60 87.89±0.21 90.68±0.18 85.27±0.02
MixOE 68.43±0.12 83.42±0.18 88.74±0.24 50.51±0.31 90.62±0.19 92.31±0.14 57.68±0.23 87.38±0.18 90.89±0.18 86.35±0.12

DiverseMix (ours) 59.81±0.28 86.36±0.02 91.76±0.23 48.58±1.51 91.35±0.26 92.38±0.29 53.07±0.80 89.36±0.14 92.13±0.08 85.95±0.13

Table 6: main results on individual OOD dataset. We provide the results of diverseMix on each
individual OOD dataset from Section 5.1. The reported performance of our method is based on five
independent training runs using different random seeds.

OOD dataset CIFAR-10 CIFAR-100
FPR (↓) AUROC (↑) AUPR (↑) ID-ACC FPR (↓) AUROC (↑) AUPR (↑) ID-ACC

LSUN-C 3.39± 0.80 99.21± 0.14 99.29± 0.13 99.41± 0.02 8.16± 2.17 98.55± 0.35 98.65± 0.32 98.19± 0.10
LSUN-R 0.00± 0.00 100.00± 0.00 100.00± 0.00 99.41± 0.02 0.01± 0.01 99.93± 0.13 99.95± 0.08 99.83± 0.34

ISUN 0.00± 0.00 100.00± 0.00 100.00± 0.00 99.41± 0.02 0.04± 0.01 99.91± 0.13 99.95± 0.07 100.00± 0.00
DTD 1.13± 0.14 99.58± 0.06 99.72± 0.06 99.98± 0.01 5.77± 0.61 98.47± 0.15 98.98± 0.11 99.96± 0.01

Places365 5.30± 0.64 98.53± 0.17 98.60± 0.25 98.41± 0.10 26.55± 2.45 94.95± 0.41 95.32± 0.46 93.92± 0.42
SVHN 1.66± 0.45 99.21± 0.18 99.39± 0.13 98.89± 0.22 10.53± 1.36 97.60± 0.26 97.93± 0.23 96.89± 0.39

Average 1.92± 0.14 99.42± 0.01 99.50± 0.03 99.41± 0.02 8.51± 0.68 98.24± 0.10 98.46± 0.10 98.19± 0.10

B.5 Details of Figure 2.

In this experiment, we aim to explore the effect of outlier quality on OOD detection performance.
We analyzed this from two perspectives: the sample size of outliers and the diversity of outliers.
Specifically, we constructed a series of subsets from the Imagenet-RC dataset to generate low-quality
auxiliary outliers datasets with different sample size and diversity. Afterwards, we used these
constructed low-quality subsets as the auxiliary outliers dataset to train the model. All experimental
results are run over three times and averaged. The experimental details are as follows:

Decreasing the sample size of auxiliary outliers. To explore the impact of sample size on
our experimental results, we keep the number of classes constant and decrease the size of
the auxiliary outliers dataset. This is achieved by applying downsampling techniques, result-
ing in subsets with the same classes as the original Imagenet-RC dataset but with sizes of
{100%, 85%, 70%, 55%, 40%, 25%, 10%} compared to the original auxiliary outliers dataset.

Decreasing the diversity of auxiliary outliers. To investigate the effect of outlier diversity on OOD
detection performance, we further reduce the number of classes included in the subset. Specifically,
we keep the sample size of the subset at 10% of the original outliers dataset, but gradually decrease
the number of classes included (as the number of classes decreases, the number of samples per
class increases, ensuring a consistent overall sample size). We constructed a series of subsets with
{1000, 850, 700, 550, 400, 250, 100} classes to serve as auxiliary outliers for experimental evaluation.

B.6 Details of Q5 Ablation Study.

In this section, we conduct an ablation study from two perspectives. Firstly, we compare our method
with traditional data augmentation techniques (semantic-preserving) to demonstrate that our method
effectively enhances the diversity of outliers by altering their semantics. Secondly, considering that
our method is an improved variant of mixup, we investigate different mixup strategies to explore
what factors contribute to the performance gains. Detailed experimental results are shown in Table 7.

Ablation study (I): Ablation study with different data augmentation method. To investigate if
diverseMix offers unique advantages over other data augmentation techniques in enhancing the diver-
sity of outliers, we select different data augmentation methods to process the auxiliary outliers and
validate their impact on performance. Specifically, we choose semantic-invariant data augmentation
methods: Gaussian noise [39], cutout [11], and color jitter for comparison with our method.
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Table 7: Ablation study on different data augmentation methods. Performance are averaged
(%) over six OOD test datasets from Section 5.1. The best results are in bold. The reported OOD
detection performance is based on five independent training runs using different random seeds.

Method CIFAR-10 CIFAR-100
FPR (↓) AUROC (↑) AUPR (↑) ID-ACC FPR (↓) AUROC (↑) AUPR (↑) ID-ACC

Vanilla 5.43± 0.18 98.80± 0.06 98.92± 0.04 94.37± 0.10 16.30± 1.74 96.87± 0.44 97.38± 0.36 74.49± 0.29
Gaussian noise 6.69± 0.19 98.64± 0.05 98.75± 0.08 94.27± 0.02 19.94± 2.19 95.69± 0.55 96.07± 0.55 74.78± 0.18

Cutout 7.20± 0.87 98.57± 0.14 98.72± 0.15 94.17± 0.07 19.12± 0.82 96.64± 0.20 97.18± 0.06 74.88± 0.26
Color jittering 4.34± 0.72 99.04± 0.13 99.09 ± 0.16 94.22± 0.06 14.47± 1.75 97.02± 0.39 97.33 ± 0.36 74.46± 0.20

Mixup 4.00± 0.12 99.02± 0.06 99.07± 0.09 94.16± 0.08 12.56± 0.30 97.42± 0.09 97.63± 0.05 74.76± 0.19
Cutmix 6.38± 0.75 98.65± 0.19 98.80± 0.18 94.10± 0.16 17.07± 0.97 96.87± 0.17 97.30± 0.17 74.80± 0.19

DiverseMix (ours) 1.92 ± 0.14 99.42 ± 0.01 99.50 ± 0.03 94.16 ± 0.12 8.51 ± 0.68 98.24 ± 0.10 98.46 ± 0.10 74.60± 0.32

Gaussian noise. Here, we introduce an appropriate level of noise to the training data to augment its
diversity and quantity. We incorporate Gaussian noise with a mean of 0 and a variance of 0.1. To
effectively mitigate the risk of model overfitting to Gaussian noise, wherein the model incorrectly
classifies any image with Gaussian noise as an OOD input and any noise-free image as an ID sample,
this type of noise is applied to only half of the outlier samples during the model training phase.

Cutout. Cutout is a data augmentation technique that introduces random masking of small regions
in input images, preventing the model from relying on specific features. In our study, we apply the
cutout augmentation to half of the auxiliary outlier samples. This involves randomly masking out
small regions within these outlier images by setting all pixel values in the masked regions to zero.

Color jittering. Color jittering is a widely adopted data augmentation technique in image processing.
It introduces random variations to the brightness, contrast, saturation, and hue of an image, simulating
the diverse conditions encountered in real-world scenarios, such as different lighting environments
or camera settings. Specifically, for each auxiliary outlier image, we randomly adjust its brightness
within a range of ±0.4, its contrast within a range of ±0.4 and its saturation within a range of ±0.4,
while rotating the hue by ±0.1 radians. This data augmentation strategy preserves the semantic
content of the original outlier image while introducing controlled variations in color properties.

Ablation study (II): Ablation study with different semantic interpolation method. To explore
how diverseMix differs from other mixup-based methods, we compared the performance to vanilla
mixup and cutmix. We set the hyperparameter α = 4, consistent with our method diverseMix.

Vanilla mixup. Vanilla mixup involves generating virtual training examples (referred to as mixed
samples) through linear interpolations between data points and corresponding labels, given by:

x̂ = λxi + (1− λ)xj , ŷ = λyi + (1− λ)yj , (23)

where (xi, yi) and (xj , yj) are two samples drawn randomly from the empirical training distribution,
and λ ∈ [0, 1] is usually sampled from a Beta distribution with parameter α denoted as Beta(α, α).

Cutmix. Cutmix is a data augmentation method that constructs virtual training examples by perform-
ing cutting and replacing the cutted region with the corresponding region from the other image:

x̂ = M(λ)⊙ xi + (1−M(λ))⊙ xj , ŷ = λyi + (1− λ)yj , (24)

where M(λ) is a binary mask randomly chosen covering λ proportion of the input, and ⊙ represents
the element-wise product. Here, λ is usually sampled from a preset beta distribution Beta(α, α).

C Additional Results

C.1 Hyperparameter Analysis.

In this section, we analyze the main hyperparameters involved in our method. The experimental results
are shown in the table 8. From the experimental results, we find that diverseMix is more effective
with larger values of α. A larger α means that the model will adopt a more aggressive interpolation
strategy, generating mixed outliers that deviates further from the original samples. This aligns with
our expectations. The temperature T controls diverseMix’s sensitivity to the samples, an appropriate
T allows diverseMix to accurately perceive the model’s familiarity with the samples. ω controls
the strength of regularization, an excessively large ω may impair the classification performance. In
addition, we provide our strategy for hyperparameter adjustment in practice as follows:

hyper-parameter tuning. We can first determine the largest possible value of ω for the original
baseline model while maintaining the ID classification accuracy. Then, we can select more suitable
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Table 8: Hyperparameter analysis. Performance averaged (%) over six OOD test datasets from
Section 5.1. The performance reported are averaged over different random seeds.

α T ω
CIFAR-10 CIFAR-100

FPR (↓) AUROC (↑) AUPR (↑) ID-ACC FPR (↓) AUROC (↑) AUPR (↑) ID-ACC

0.5 10 0.01 3.67±0.41 99.15±0.06 99.24±0.06 94.19±0.08 9.39±1.47 98.03±0.21 98.23±0.19 74.67±0.20
1 10 0.01 3.16±0.18 99.23±0.03 99.33±0.04 94.13±0.08 9.55±0.99 98.10±0.16 98.36±0.19 74.66±0.10
2 10 0.01 2.55±0.68 99.32±0.10 99.41±0.11 94.20±0.05 8.44±0.51 98.17±0.05 98.41±0.04 74.70±0.22
4 5 0.01 3.87±0.31 99.08±0.05 99.19±0.01 94.42±0.09 10.27±0.97 98.04±0.16 98.29±0.11 74.67±0.33
4 1 0.01 5.43±0.59 98.78±0.16 98.93±0.16 94.01±0.22 15.62±1.71 97.18±0.29 97.63±0.20 74.90±0.12
4 20 0.01 2.75±0.38 99.26±0.11 99.33±0.12 94.15±0.06 9.49±0.98 98.04±0.03 98.29±0.04 74.43±0.39
4 10 0.05 1.76±0.02 99.47±0.02 99.56±0.02 93.89±0.15 8.12±1.03 98.36±0.17 98.58±0.14 73.94±0.28
4 10 0.1 2.60±0.62 99.33±0.09 99.45±0.07 92.51±0.44 9.04±1.00 98.19±0.08 98.45±0.05 71.96±0.69
4 10 0.01 1.92 ± 0.14 99.42 ± 0.01 99.50 ± 0.03 94.16 ± 0.12 8.51 ± 0.68 98.24 ± 0.10 98.46 ± 0.10 74.60±0.32

Table 9: Experimental Results on NLP OOD detection task. The best results are in bold. The
same network architecture is used for all three detectors. All results are represented in percentages.
Our method diverseMix also achieves good performance in the field of natural language proceeding.

OOD testset FPR95 (↓) AUROC (↑) AUPR (↑)
MSP OE diverseMix MSP OE diverseMix MSP OE diverseMix

SNLI 52.61 27.05±2.23 21.58±4.51 76.19 87.63±1.03 90.12±0.66 33.83 50.80±3.21 58.45±1.27
Multi30k 76.00 35.69±2.90 19.38±3.83 60.69 87.09±1.48 92.43±1.05 22.08 56.93±4.24 68.37±5.53
WMT16 68.66 14.28±1.70 11.90±3.01 67.30 94.59±0.44 95.59±0.67 26.36 75.65±2.04 79.80±5.03

Yelp Reviews 82.98 5.36±0.71 4.23±2.96 56.38 96.98±0.70 97.92±0.50 20.45 78.09±6.34 85.09±5.87
Average 70.06 20.60±1.58 14.27±2.56 65.14 91.57±0.72 94.02±0.45 25.68 65.37±3.60 72.93±4.82

Table 10: Time and memory cost of different methods. We compare the computational overhead
of DiverseMix and other methods on CIFAR-100 under the same setting. Best results are in bold.

Method Computational Cost OOD Detection Performance w./w.o. DauxTimes (hours) GPU Memory (MB) FPR95 (↓) AUROC (↑) AUPR (↑) ID-ACC

Energy 1.99 13017 19.25 96.68 97.44 72.39 ✓
NTOM 2.51 15549 18.77 96.69 96.49 74.52 ✓
POEM 8.47 19851 15.14 97.79 98.31 73.41 ✓
DivOE 4.88 13163 18.91 95.00 95.26 74.08 ✓

DiverseMix 2.20 13213 8.51 98.24 98.46 74.60 ✓

parameters for α and T , with adjustments made using an OOD validation set distinct from the testing
OOD dataset. For example, a subset from the auxiliary outliers could serve as an OOD validation set.

C.2 DiverseMix for OOD Detection in Natural Language Processing.

To further validate the applicability of our method in non-image domains, we explore the use of
diverseMix in the task of Natural Language Processing, following the setting of OE [20].

Experimental Setting. We use the SST dataset as the ID data, while utilizing the WikiText-2 dataset
as auxiliary outlier data. We employ the SNLI, Multi30K, WMT16, and Yelp Reviews datasets as
OOD test set. We use QRNN [34] language models as baseline OOD detectors. Initially, we train
vanilla models for 50 epochs and subsequently fine-tune them on the WikiText-2 dataset using OE
or DiverseMix for an additional 5 epochs. Outlier Exposure is implemented by adding the cross
entropy to the uniform distribution on tokens from sequences in Daux as an additional loss term. For
DiverseMix, we apply mixup strategy at embedding level, and the loss function is consistent with OE.

Experimental Results. The results presented in table 9 highlight that: 1) The incorporation of auxil-
iary outliers enhances OOD detection performance in non-image domains. 2) Our method increases
the diversity of auxiliary outliers, further enhancing the model’s OOD detection performance.

C.3 Experiments on Computational Cost.

To better understand the computational budget, we summarize the time and memory cost results in
Table 10, which shows that diverseMix can achieve better performance with relatively low time and
memory overhead compared with other OOD detection methods that train with auxiliary outliers.

C.4 Impact Statements

Our work focuses on enhancing AI safety and trustworthiness by improving the robust performance of
machine learning models on OOD data, which is crucial for high-stakes tasks in real-world scenarios.
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However, biases in benchmark OOD detection data, such as ImageNet, necessitate careful auxiliary
outlier selection for safety-critical applications to ensure the proposed method’s reliability and safety.

D Hardware and Software

We run all the experiments on NVIDIA GeForce RTX 3090 GPU. Our implementations are based on
Ubuntu Linux 18.04 with Python 3.8.
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made in the paper.
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper has discussed the limitations of the work performed by the authors.
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should reflect on how these assumptions might be violated in practice and what the
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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experimental results of the paper to the extent that it affects the main claims and conclusions
of the paper.
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• The answer NA means that the paper does not include experiments.
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to make their results reproducible or verifiable.
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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