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Abstract
We study the generic identifiability of causal
effects in linear non-Gaussian acyclic models
(LiNGAM) with latent variables. We consider the
problem in two main settings: When the causal
graph is known a priori, and when it is unknown.
In both settings, we provide a complete graphical
characterization of the identifiable direct or total
causal effects among observed variables. More-
over, we propose efficient algorithms to certify the
graphical conditions. Finally, we propose an adap-
tation of the reconstruction independent compo-
nent analysis (RICA) algorithm that estimates the
causal effects from the observational data given
the causal graph. Experimental results show the
effectiveness of the proposed method in estimat-
ing the causal effects.

1. Introduction
Predicting the impact of an unseen intervention in a sys-
tem is a crucial challenge in many fields, such as medicine
(Sanchez et al., 2022; Michoel & Zhang, 2023), policy evalu-
ation (Athey & Imbens, 2017), fair decision-making (Kilber-
tus et al., 2017), and finance (de Prado, 2023). Randomized
experiments form the gold standard for addressing this chal-
lenge, but are often infeasible due to ethical concerns or
prohibitively high costs. To tackle situations in which only
observational data are available, one needs to make addi-
tional assumptions on the underlying causal system. The
field of causal inference strives to formalize such assump-
tions. One notable approach in causal inference is model-
ing causal relationships through structural equation models
(SEM) (Pearl, 2009). In this framework, a random vector
is associated with a directed acyclic graph (DAG). Each
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vector component is associated with a node in the graph and
is a function of the random variables corresponding to its
parents in the graph and its corresponding exogenous noise.

In this paper, we mainly focus on the identifiability of causal
effects in the important subclass of linear SEM and charac-
terize graphically which causal effects can be uniquely de-
termined from the observational data. When the exogenous
noises in a linear SEM are Gaussian, the entire information
about the model is contained in the covariance matrix among
the variables, with all the higher-order moments of the dis-
tribution being uninformative. This entails that the causal
structure as well as other causal quantities are often not iden-
tifiable from mere observational data. The most prominent
instance in the context of causal structure learning is that the
causal graph is identifiable only up to an equivalence class
(e.g., Drton, 2018, §10). This motivated the widespread use
of the linear non-Gaussian additive noise model (LiNGAM),
where the exogenous noises are non-Gaussian.

The seminal work of Shimizu et al. (2006) showed that in
the setting of LiNGAM, the true underlying causal graph
is uniquely identifiable when all the variables are observed.
Since then, a rich literature on this topic has emerged, fo-
cusing mainly on the identification and the estimation of
the causal graph; see, e.g., Adams et al. (2021); Shimizu
(2022); Yang et al. (2022); Wang et al. (2023); Wang &
Drton (2023) for recent results that allow for the presence
of hidden variables. Indeed, linear models remain the back-
bone of problem abstraction in many scientific disciplines,
because they offer simple qualitative interpretations and can
be learned with moderate sample sizes (Pe’er & Hacohen,
2011, Principle 1). In particular, the LiNGAM model finds
application in diverse scientific fields, such as Neuroscience
(Chiyohara et al., 2023), Economics (Ciarli et al., 2023), or
Epidemiology (Barrera & Miljkovic, 2022).

Within the LiNGAM literature, causal effect identification
has received less attention; only few recent work (Kivva
et al., 2023; Shuai et al., 2023) have exploited the non-
Gaussianity to provide identification formulas that work for
specific causal graphs. The only graphical criteria for identi-
fication are given in Salehkaleybar et al. (2020); Yang et al.
(2022). The main drawback of the aforementioned papers
is that they target simultaneous recovery of all the causal
effects. However, in many applications, we are interested
in causal effects of only some subset of variables on others.
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Indeed, it may be the case that some causal effects are iden-
tifiable while others are not; see Figure 2 for an example
in the context of proxy variable graphs. In this paper, we
provide necessary and sufficient graphical conditions for the
generic identifiability (see Section 2.3 for the exact defini-
tion) of direct and total causal effects between a given pair
of observed variables in a LiNGAM.

1.1. Contribution

Our main contributions are as follows:

• We provide necessary and sufficient graphical criteria for
the generic identifiability of the causal effect, both when the
causal graph is known a priori (Section 3.1) and when it is
unknown (Section 3.2).

• We propose sound and complete algorithms that check
our criteria in polynomial time in the size of the graph, in
both considered settings (Section 3.4).

• For practical estimation of the effect of interest, we pro-
pose an adaptation of the RICA algorithm for Independent
Component Analysis (Le et al., 2011). Experimental results
show that the proposed method can provide better estimates
of causal effects when compared with previous work (Sec-
tion 3.5).

2. Problem Definition
2.1. Notation

A directed graph is a pair G = (V, E) where V :=
{1, . . . , p} is the set of nodes and E ⊆ {(i, j) | i, j ∈
V, i ̸= j} is the set of edges. We denote a pair (i, j) ∈ E
as i→ j.

A (directed) path from node i to node j in G is a sequence of
nodes π = (i1 = i, . . . , ik+1 = j) such that is → is+1 ∈
E for s ∈ {1, . . . , k}. A cycle in G is a path from a node
i to itself. A Directed Acyclic Graph (DAG) is a directed
graph without cycles. If i→ j ∈ E, we say that i is a parent
of j, and j is a child of i. If there is a path from i to j in
G, we say that i is an ancestor of j and j is a descendant of
i. The sets of parents, children, ancestors, and descendants
of a given node i are denoted by pa(i), ch(i), an(i), and
de(i), respectively. In our work, we distinguish between
observed and latent variables by partitioning the nodes in
two sets V = O∪L, of respective sizes po and pl. Moreover,
we define the set of observed descendants of a node i as
deo(i) := (de(i) ∪ {i}) ∩ O.

We write vectors and matrices in boldface. The entry (i, j)
of a matrix A is denoted by [A]i,j . Let I, J be subsets of
the row and column sets of A, respectively. We denote the
submatrix containing only the rows in I and the columns in

J as [A]I,J . For a permutation σ, Pσ denotes the associated
permutation matrix.

2.2. Model

Let G = (V, E) be a fixed DAG on p nodes. In a fixed
probability space, let V = (V0, . . . , Vp) be a random vector
taking values in Rp and satisfying the following structural
equation model:

V = AV +N = BN, (1)

where [A]j,i = 0 if i → j /∈ E, B := (I−A)−1, and the
enteries of the exogenous noise vector N are assumed to be
jointly independent and non-Gaussian. V is partitioned to
[Vo,Vl], where Vo is observed of dimension po, while Vl

is latent and of dimension pl. We can rewrite (1) as[
Vo

Vl

]
=

[
Ao,o Ao,l

Al,o Al,l

] [
Vo

Vl

]
+

[
No

Nl

]
,

which implies that the observed random vector satisfies

Vo = B′N =
[
Bo Bl

] [No

Nl

]
(2)

with B′ := [(I−A)−1]O,V . We refer to this model as the
latent variable LiNGAM (lvLiNGAM).1

Salehkaleybar et al. (2020, §3) show that the matrix B′ can
be expressed as follows:

Bo = (I−D)−1, Bl = (I−D)−1Ao,l(I−Al,l)
−1, (3)

with D = Ao,o +Ao,l(I−Al,l)
−1Al,o. The matrices B′

and D contain information on the interventional distribu-
tions of Vo. In particular,2

[B′]i,j =
∂E(Vi | do(Vj))

∂Vj
,

[D]i,j =
∂E(Vi | do(Vpa(i)))

∂Vj
.

(4)

In other words, [B′]j,i is the average total causal effect of j
on i, while [D]j,i is the average causal effect of j on i that
is not mediated by other observed nodes. With slight abuse
of terminology, we refer to the entries of B′ as total causal
effects and to those of D as direct causal effects.

Hoyer et al. (2008) show that for any lvLiNGAM model,
an associated canonical model exists, in which, in the cor-
responding graph, all the latent nodes have at least two

1Although our results are presented for the lvLiNGAM model,
our analysis only relies on the identifiability of the mixing matrix
B′ up to permutation and scaling. This can be also achieved in
other settings as explained in Yang et al. (2022, §2.3) or Adams
et al. (2021, §3). Hence, our results also hold in these settings.

2Please see Pearl (2009, §3) for the definition of do interven-
tion.
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children and have no parents. We refer to the graph corre-
sponding to a canonical model as a canonical graph. The
original and the associated canonical model are observa-
tionally and causally equivalent (Hoyer et al., 2008, §3).
Subsequently, without loss of generality, we will assume
our model is canonical in this sense. Salehkaleybar et al.
(2020, Cor. 11) proved that the number of latent variables is
identifiable in canonical models.
Remark 2.1. Throughout the paper, we assume that the
number of latent variables pl is known.

In canonical models, Al,o = Al,l = 0, and in particular

Bo = (I−Ao,o)
−1, Bl = (I−Ao,o)

−1Ao,l. (5)

For every canonical G, let RG
A be the set of all p × p real

matrices A such that [A]i,j = 0 if j → i /∈ G. Let RG be
the set of all po × p matrices, B′ = [Bo,Bl] that can be
obtained from a matrix A ∈ RG

A from (5). Let NGp be the
set of p dimensional, non-degenerate, jointly independent
non-Gaussian random vectors, and letM(G) be the set of
all po dimensional random vectors that can be expressed
according to (2), where the matrix B′ ∈ RG .

2.3. Identifiability

According to (2), the mechanism generating the observa-
tional distribution, i.e., the probability distribution of Vo,
only depends on the matrix B′ and the exogenous noise
vector N. Therefore, the parameters of interest such as the
causal effects in (4), are functions ϕ(B′). As generally there
are multiple pairs (B′,N), with different B′s, that gener-
ate the same observational distribution, it is important to
clarify whether a parameter ϕ is identifiable. This holds if
ϕ(B′) takes the same value in all considered pairs (B′,N)
generating the same observational distribution. Adding fur-
ther assumptions about the causal graph may limit the data-
generating mechanisms compatible with the observational
data, leading to more parameters becoming identifiable.

In this paper, we study the identification of causal effects
in two scenarios: when the causal graph G is known and
when it is not. The remainder of the section provides a
formal description of the resulting parameter identification
problems in the lvLiNGAM setting.

Fix a DAG G. The observational random vector is obtained
from the noise and the matrix B′ according to the mapping

ΦG : RG ×NGp −→M(G)

(B′,N) 7→ B′N =
[
Bo Bl

] [No

Nl

]
.

(6)

Let ϕ be a real-valued function on RG . We say that the
parameter ϕ is globally identifiable without knowledge of
the graph if for every pair (B′,N) ∈ RG × NGp and the

associated observed random vector Vo := ΦG(B
′,N) ∈

M(G), there does not exist a DAG G̃ and a pair (B̃′, Ñ) ∈
RG̃ ×NGp such that

ΦG̃(B̃
′, Ñ) =d Vo but ϕ(B′) ̸= ϕ(B̃′). (7)

Here, =d denotes equality in distribution of two random vec-
tors. Note that the above definition allows for consideration
of any G̃, possibly, different from G.

In contrast, we say that ϕ is globally identifiable with
knowledge of the graph if for every pair (B′,N) ∈ RG ×
NGp and the associated observed random vector Vo :=
ΦG(B

′,N) ∈ M(G), there does not exist another pair
(B̃′, Ñ) ∈ RG ×NGp with

ΦG(B̃′, Ñ) =d Vo but ϕ(B′) ̸= ϕ(B̃′). (8)

In latent variable models such as lvLiNGAM, global identifi-
ability, as defined above, is often too stringent of a condition
and fails to apply even in many commonly used models such
as the instrumental variable model. Thus, a weaker notion
of so-called generic identifiability is often considered for
linear models (Maathuis et al., 2019, §16.4). We say that
the parameter ϕ is generically identifiable with (or without)
knowledge of the graph, if the condition in (8) (or (7)) holds
for every (B′,N) ∈ (RG \ Bexcept)×NGp where Bexcept is
a Lebesgue measure zero subset of RG .

Our results give necessary and sufficient conditions for
generic identifiability of the parameters [Ao,o]i,j and
[Bo]i,j , both with and without knowledge of the underlying
graph G.

3. Main Results on Causal Effect Identification
This section presents our main identifiability results for
lvLiNGAM. In Sections 3.2 and 3.1, we characterize the
identifiable causal effects, respectively, with or without
knowledge of the graph. In Section 3.3, we provide sev-
eral examples in which our identifiability criteria hold; in
Section 3.4, we propose an algorithm to certify our criteria
efficiently in time. Finally, in Section 3.5, we present an
estimation algorithm to estimate the causal effect from the
observational data. All proofs appear in the Appendix B.

3.1. Identification with an Unknown Graph

In Salehkaleybar et al. (2020), it is shown that if the total
causal effect between any ancestor-descendent pair is non-
zero, the mixing matrix B′ can be identified by means of
overcomplete independent component analysis (ICA), up
to a permutation of the columns corresponding to a pair
(j, l) ∈ O × L such that deo(j) = deo(l). This leads to a
graphical criterion for the identification of the entire mixing
matrix, which we rephrase herein using our notation.
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Theorem 3.1. (Salehkaleybar et al., 2020, Theo. 16) For
B′ ∈ RG , matrix Bo is generically identifiable without
knowing the causal graph if and only if there are no pairs
j ̸= i ∈ V such that deo(j) = deo(i).

Remark 3.2 (The scaling matrix). Equation (5) implies that
as long as we are focused on identifying the causal effect
between observed variables alone, the scaling of the latent
columns does not make a difference. Hence, without loss
of generality, in the sequel, we assume that all the mixing
matrices are scaled in such a way that the first non-zero
entry in each column is equal to 1. In other words, Ail = 1
if i and l are, respectively, observed and latent variables and
i is the first child of l in a given causal order. Note that this
is always the case if deo(l) = deo(i).

In this section, we extend the result in Theorem 3.1 by
providing necessary and sufficient graphical conditions for
the generic identifiability for the entries of Bo and Ao,o.

Our first result refines the graphical condition of Theo-
rem 3.1 by adding (10). This provides a complete graphical
characterization of the identifiable total causal effects.

Theorem 3.3 (Total causal effect). Consider any two ob-
served variables i and j. The total causal effect of j on i is
generically identifiable without knowledge of the graph if
and only if there is no l ∈ L, such that

deo(j) = deo(l), and (9)

i ∈ de
G\j
o (l), (10)

where de
G\j
o (l) is the set of observed descendents of l in the

graph obtained from G by removing all the edges pointing
to j.

The next result provides a complete graphical characteriza-
tion of the identifiable direct causal effects.

Theorem 3.4 (Direct causal effect). Consider any two ob-
served variables i and j. The direct causal effect of j on i
is generically identifiable without knowledge of the graph if
and only if there are no pairs (k, l) ∈ O × L such that

deo(k) = deo(l), (11)
i ∈ ch(l), (12)
k ∈ ch(j) ∪ {j}. (13)

Example 3.5 (Identification with instrumental variables).
The mixing matrix for the instrumental variable (IV) graph
(Cunningham, 2021, §7.1) in Figure 1 has the following
form

B′ =

 1 0 0 0
bTI 1 1 0

bTIbY T bY T bY T + bLY 1

 .

The parameter of interest in the IV graph of Figure 1 is bY T ,
i.e., the causal effect of the treatment T on the outcome Y .
Since deo(T ) = deo(L) = {T, Y }, we can consider

B̃′ = B′ ·Pσ, Ñ = P−1
σ ·N,

where σ is the transposition that permutes the columns
corresponding to T and L. From (6), one can see that

ΦG̃IV
(B̃′, Ñ) =d ΦGIV

(B′,N), ∀N ∈ NGp,

where G̃IV is the graph obtained from the IV graph after
adding an edge from I to Y (see Figure 12 in Appendix B).

Since [B̃′]Y T ̸= [B′]Y T the total causal effect of T on Y is
not identifiable without knowing the true causal graph.

GIV : I T Y

L

bTI bY T

1 bY L

Figure 1. Instrumental variable graph. The parameters in blue are
identifiable without knowledge of the graph, while the parameters
in red are not identifiable.

Notice that we could derive this result by applying Theo-
rem 3.4 to the pair (k, l) = (T, Y ) directly.

3.2. Identification with a Known Graph

A permutation of two columns of the matrix B′ may result
in different graphs. This implies that if the graph is known,
we can narrow down the set of possible permutations. In this
section, we study how this additional assumption allows us
to identify a parameter of interest (which is not generically
identifiable). We will discuss an instance of this situation in
Example 3.7.

The first result of this section provides a characterization of
the column permutations that leave the graph unchanged.
Theorem 3.6. For every B′ outside a Lebesgue zero subset
of RG , let B̃′ = B′ · Pσ, where σ is any permutation. We
have B̃′ ∈ RG , if and only if

deo(i) = deo(σ(i)), ∀i ∈ V,

and there are no i, j ∈ O and l ∈ L such that

i ∈ pa(j) ∪ {j}, σ(j) = l, ch(l) \ ch(i) ̸= ∅.

Example 3.7 (Example 3.5 continued). We now show that
the causal effect of T on Y is identifiable if we assume the
graph in Figure 1 is the true underlying graph.

The adjacency matrix corresponding to B̃′ has the following
form

Ão,o = I− B̃−1
o =

 1 0 0
bTI 1 0

−bTIbY L bY T + bY L 1

 .
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This form is not compatible with the graph in Figure 1 since
the entry corresponding to the edge from I to Y is nonzero.
Hence, if we were told that the graph in Figure 1 is the true
underlying causal structure, the only valid permutation of
B′ would be the identity. Therefore, we can identify bY T ,
the parameter of our interest.

Notice that we could derive this result by applying The-
orem 3.6 to the triple (i, j, l) = (I, T, L) directly. See
Example B.3 for more discussion of the IV graph.

Using Theorem 3.6, we can refine the criteria of Section 3.1
for the setting of known causal graph. In particular, the
next two theorems characterize all the total and direct causal
effects that are identifiable when the graph is known.

Theorem 3.8 (Total Causal Effect). Consider any two ob-
served variables i and j. The total causal effect of j on i is
generically identifiable with knowledge of the graph if and
only if there is no l ∈ L, such that

deo(j) = deo(l), (14)

i ∈ de
G\j
o (l), (15)

ch(l) \ ch(k) = ∅, ∀k ∈ pa(j) ∪ {j}. (16)

Theorem 3.9 (Direct Causal Effect). Consider any two
observed variables i and j. The direct causal effect of j on
i is generically identifiable if and only if there are no pairs
(k, l) ∈ O × L such that

deo(k) = deo(l), (17)
i ∈ ch(l), (18)

k ∈ ch(j) ∪ {j}, (19)
ch(l) \ ch(k1) = ∅, ∀k1 ∈ pa(k) ∪ {k}. (20)

We conclude the section by giving the graphical condition
for identification of the whole mixing matrix with knowl-
edge of the graph.

Corollary 3.10 (Mixing matrix identification). For B′ ∈
RG , the entire matrix Bo is generically identifiable with
knowledge of the graph if and only if there are no i, j ∈ O,
and l ∈ L such that (14), (15), and (16) are satisfied.

3.3. Examples

We now highlight different scenarios in which the results
in this section allow us to relax standard assumptions in
identifying the causal effect. For the sake of simplicity in
presentation, in the first two scenarios, we only consider two
latent confounders in the system. Although these scenarios
can be easily extended to any arbitrary number of latent
confounders.

1. Proxy Variables
The presence of proxy variables allow the identification of

the causal effect in linear models. In particular, it has been
shown that the causal effect of treatment T on outcome Y
is identifiable if the following two conditions hold (see, e.g.,
Kuroki & Pearl (2014, §4), Liu et al. (2023, §2)):

(a) There are as many proxies as there are confounders,
(b) W ⊥⊥ (T, Y ) | L for every proxy variable W and

every latent confounder L.

L1 L2

T Y

W

Figure 2. Causal graph with proxy variable. The parameter corre-
sponding to the blue edge is generically identifiable if the graph is
known, while those corresponding to the red edges are not. The
dashed edge is dropped in the corresponding canonical model.

Consider the causal graph in Figure 2. Both aforementioned
conditions are violated as there are two latent confounders
but a single proxy and there is an edge from this proxy
to the treatment. Yet, in lvLiNGAM, we show that the
causal effect from T to Y is identifiable. For both the latent
variables we have W ∈ deo(L) \ deo(T ), hence condition
(14) cannot be satisfied. Using Theorem 3.8, this implies
that the causal effect of our interest is identifiable.

2. Longitudinal Data
The causal graph associated with a longitudinal data model
(Imai & Kim, 2019) is given in the left plot in Figure 3,
where L is the latent confounder, T is the time-varying
treatment, and Y is the time-varying outcome. The com-
mon identifiability assumptions in a linear setting are that
the causal effect is constant through time, i.e., [A]Y1,T1

=
[A]Y2,T2 and there is no time-varying confounding, see, e.g.,
Cunningham (2021, §8). In lvLiNGAM, these assumptions
can be relaxed by having access to some covariates. In
particular, suppose that there is a covariate Ci such that
deo(Li) = deo(Ci) for every time period i (see the right
plot in Figure 3). We have Ci ∈ deo(Li) \ deo(Ti) and the
condition (14) is not satisfied. This implies that the causal
effect of Ti on Yi is identifiable for every time period i.

3. Underspecified Instruments
A standard assumption for identifying the causal effect us-
ing instrumental variables is that there are at least as many
instruments as treatments (Brito & Pearl, 2002, Thm. 1).
Recently, Ailer et al. (2023) showed that in the linear un-
derspecified setting, i.e., when the number of instruments
is less than the number of treatments, one can identify the
projection of the treatment on the instrument space, but this
can be different from the causal effect. We now show that in
the lvLiNGAM model, the treatment effects are identifiable
in the underspecified case.
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L

C

T1 T2

Y1 Y2

L1 L2

C1 C2

T1 T2

Y1 Y2

Figure 3. The causal graphs for longitudinal data. The graph on
the right allows for a time-varying confounder. The parameters
corresponding to the blue edges are generically identifiable with
the knowledge of the graph, while the ones corresponding to the
red edges are not. The dashed line is dropped in the corresponding
canonical model.

We say that I is a valid instrument for the treatments
T1, . . . , Tn on Y if the following conditions hold

I ∈ pa(Ti) ∀ i ∈ {1, . . . , n},
I ⊥G\T Y,

where ⊥denotes d-separation (Pearl, 2009, §1.2), and G\T
is the graph obtained from G by removing all the edges from
Ti to Y . See Figure 4 for an instance with two treatments
and one instrument.

For every latent variable Li such that deo(Ti) = deo(Li)
and Y ∈ ch(Li), we have Y ∈ ch(Li) \ ch(I). Hence con-
dition (16) does not hold. By Theorem 3.8, in lvLiNGAM,
the causal effect of Ti on Y is identifiable for every i, even
when only one instrumental variable is available.

I

T1

T2

Y

L1

L2

Figure 4. An example of causal graph for underspecified instru-
mental variable. The parameters corresponding to the blue edges
are generically identifiable with knowledge of the graph.

3.4. Certifying Identifiability

In this section, we prove that the graphical condition for
identification given in Theorem 3.8 can be certified in poly-
nomial time in the size of the graph, and we provide a sound
and complete algorithm (Algorithm 1) for this task.

The algorithms for the other identification criteria can be
found in Appendix B.3.
Theorem 3.11. Algorithm 1 is sound and complete for
certifying the generic identifiability of the total causal effect
of j on i with knowledge of the graph G. The computational
complexity of the algorithm is O(pl(p2o + |E|)) = O(p3).

Algorithm 1 Total Causal Effect Identification with Known
Graph
INPUT: V = O ∪ L,G, {ch(i) | i ∈ V}, (j, i)

1: ID← TRUE
2: Sort V according to an ascending topological order
3: Compute deo(j)
4: while ID == TRUE and |L| > 0 do
5: l← L[1]{The first element in the list}
6: Sort ch(l) according to the topological order defined

in step 2
7: if ch(l)[1] = j then
8: Compute de

G\j
o (l)

9: if i ∈ de
G\j
o (l) then

10: Compute deo(l)
11: if deo(l) = deo(j) then {(15)}
12: ID← FALSE {(14)}
13: Compute pa(j)
14: for all k ∈ pa(j) ∪ {j} do
15: if ch(l) \ ch(k) ̸= ∅ then
16: ID← TRUE {(16)}
17: L ← L \ {l}
18: RETURN: ID

Remark 3.12. Algorithm 1 is simple in the sense that it
directly checks the graphical conditions in Theorem 3.8.
This is not the case for checking most identifiability results
in linear models, which often requires building an auxiliary
graph and solving a maximum-flow problem on it (which
becomes prohibitive for large graphs), (Brito & Pearl, 2006;
Kumor et al., 2020; Barber et al., 2022).

3.5. Estimation Algorithms

When the graph structure is unknown, Salehkaleybar et al.
(2020, Alg. 1) proposed an algorithm that first solves an over-
complete ICA problem and then post-process the estimated
mixing matrix to enumerate all the possible causal effects.
This usually entails solving a high-dimensional non-convex
optimization problem. If the DAG structure is known, one
can enforce this knowledge to reduce the problem’s dimen-
sionality from p2 to |E| and improve the performance. We
follow this approach and propose an adaptation of the RICA
algorithm for recovering the mixing matrix (Le et al., 2011).

The objective function optimized by RICA is a weighted
sum of two terms; the first term is a contrast function that
measures the non-Gaussianity of the exogenous noise, e.g.,
the l1-loss, and the second term is a reconstruction loss
that enforces the orthonormality of the rows of the mixing
matrix. The only instance in which the rows of a matrix
in RG might be orthonormal is when all the causal effects
are zero. Hence, we drop the reconstruction loss and only
optimize the contrast function.
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For a given DAG G, given observed data X1, . . . ,XN ∈
Rpo , and a contrast function g, our algorithm solves the
following optimization problem

Graphical RICA: argmin
B′∈RG

1

N

N∑
i=1

g((B′)T ·Xi).

We evaluate the performance of our algorithm in comparison
with existing methods in Section 5.2.

4. Related Work
There is a rich literature on graphical criteria for the iden-
tifiability of causal effects. In the nonparametric setting,
the ID algorithm is a sound and complete algorithm that
solves the global identification problem given the causal
graph (Shpitser & Pearl, 2006; Shpitser, 2023).

In the parametric case, most results are for the semi-
Markovian and linear Gaussian models; for these models, a
necessary and sufficient criterion for global identifiability
is known, (Drton et al., 2011), while a complete characteri-
zation for generic identifiability remains unknown, (Kumor
et al., 2020). For Gaussian models with explicit linear con-
founders, a sufficient graphical criterion for generic identifi-
ability was proposed in Barber et al. (2022).

For linear non-Gaussian models, Salehkaleybar et al. (2020)
proposed necessary and sufficient graphical criterion for
the identifiability of the whole mixing matrix, Yang et al.
(2022) defines a notion of equivalence class for lvLiNGAM
models, and Cai et al. (2023) provide sufficient graphical
conditions for the identification of the mixing matrix using
explicit moment equations. Kivva et al. (2023) proposed an
identification formula that works for the causal graph with
one proxy variable; in contrast, Shuai et al. (2023) proved
that if one assumes that only the treatment is non-Gaussian
and pre-treatment covariates are available, then the causal
effect can be identified in the presence of latent confounders.
Tramontano et al. (2024) proposed a necessary and sufficient
graphical criterion for the identifiability of the direct causal
effect in linear models for acyclic-directed mixed graphs.

5. Experimental Results3

5.1. Identification

We used Algorithms 1 and 2 to check the identifiability
of a causal effect for randomly selected edges in random
graphs. The graphs are generated according to an Erdős-
Rényi model in which we ensure that the sampled graphs are
canonical. The probability of the causal effect of a randomly
selected edge being identifiable versus the probability of

3The code to replicate the experiments can be found
at : https://github.com/danieletramontano/Causal-Effect-
Identification-in-LiNGAM-Models-with-Latent-Confounders.

accepting an edge in the graph generation model is plotted in
Figure 5. For each setup, we randomly sample 500 graphs.

Interestingly, we found that for all the graphs and all the
edges we sampled, the corresponding causal effects are
identifiable with the knowledge of the graph. As expected,
when we do not assume the graph is known, the probability
of identifying the causal effect of randomly selected edge
drops and it depends both on the density of the graph and
the proportion of observed nodes (see Figure 5).

Figure 5. On the x-axis, the probability of acceptance of an edge.
On the y-axis, the percentage of identifiable parameters.

The average run time of Algorithm 1 for different graph sizes
is shown in Figure 6. It is noteworthy that our algorithm
can handle graphs with a thousand nodes in about a second;
this is due to the simplicity of our identification criteria, as
explained in Remark 3.12.

Figure 6. On the x-axis, the size of the graph. On the y-axis, the
average running time in seconds. po/p is fixed to 0.5.

5.2. Causal Effect Estimation

In this section, we provide experimental results for Graph-
ical RICA (GRICA), which we introduced in Section 3.5.
We present experiments for data generated according to
the causal structures in Figure 7, and compare the perfor-
mance of GRICA with the state-of-the-art. As a measure
of performance, we used the relative error metric given
by: error = |Estimated Value − True Value|/|True Value|.
Further experimental results are provided in Appendix C.
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G1
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T Y

W
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Figure 7. The causal graphs considered in the experiments.

(a) G1.

(b) G2.

Figure 8. Relative error vs sample size

1. Relative error vs sample size.

We evaluated performance of the GRICA with respect to
the observational sample size. We considered the settings
that are compatible with the graphs G1 and G2 of Figure 7
to recover the direct causal effect of variable T on Y . We
compared the performance of GRICA with the adaptation
of the RICA algorithm implemented in Salehkaleybar et al.
(2020) and the recently developed Cross-Moment method
in Kivva et al. (2023). We assumed all exogenous noises
have the same distribution. Moreover, all direct causal co-
efficients in matrix A are generated uniformly at random
from [−1,−0.5] ∪ [0.5, 1].4 In Figure 8, we observe that
GRICA consistently recovers the correct causal effect for
both graphs, even with a few number of samples. Note that

4We consider this interval to ensure a fair comparison with
RICA’s implementation for causal effect estimation in Salehka-
leybar et al. (2020) as it requires the absolute values of all causal
coefficients to be smaller than one.

(a) G1.

(b) G3.

Figure 9. Relative error vs noise scaling ratio.

the Cross-Moment is a consistent estimator for the causal
graph G1. It performs better than the rest when there are
enough samples to compute high-order moments accurately.
Furthermore, the RICA algorithm often gets stuck in bad
local minima, and as a result is unstable.

2. Relative error vs observations noise. In Figure 9, we
illustrate how the variances of certain exogenous noise im-
pact the accuracy of the estimation. All causal coefficients
in both settings are set to one.

For the experiment over G1, we scaled the standard devia-
tion of exogenous noise NW corresponding to variable W
by a factor displayed on the x-axis of Figure 9a. We ob-
served that GRICA performs similarly to the Cross-Moment
method, which is specifically designed for the graph G1.

The experiment for G3 is similar to the one performed in
Kivva et al. (2023). Here, we scaled NW and NZ by Ratio
and 1/Ratio, respectively, where Ratio is plotted on the
x-axis of Figure 9b. We compared the performance of
GRICA with RICA and methods developed specifically
for this causal graph in (Kivva et al., 2023; Tchetgen et al.,
2020). As depicted in Figure 9b, GRICA can benefit from
the noiseless observation of L1 through proxy Z, while all
other algorithms are affected by the presence of noise in the
observations from W .

3. Causal effect estimation on random graphs. In this sec-
tion, we will present experiments for larger causal graphs. In

8
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particular, we compare the GRICA algorithm with the RICA
algorithm on graphs randomly sampled from an Erdős-
Rényi model. The probability of accepting an edge is set to
1/2. Similarly to the previous experiments, we generated
all causal coefficients in the matrix A uniformly at random
from [−1,−0.5] ∪ [0.5, 1]. As a measure of performance,
we use the normalized Frobenius loss between the estimated
mixing matrix and the true one, i.e., ||B̃ − B||F /||B||F .
Note that according to the experiments in Section 5.1, we
expect all the causal effects of interest to be identifiable.
Figures 10a and 10b show the experimental results for the
Erdős-Rényi model in graphs with one latent and five ob-
served variables and graphs with two latent and ten observed
variables, respectively. The results are averaged over ten
trials. As can be seen, GRICA significantly outperforms the
RICA algorithm in larger causal graphs.

(a) One latent and five observed variables.

(b) Two latent and ten observed variables.

Figure 10. Results for the Erdős-Rényi model.

5.3. Consistency Guarantees

The OICA problem is known to be identifiable but not sepa-
rable; see (Eriksson & Koivunen, 2004). This implies that,
as opposed to the complete ICA, minimizing a measure of
non-Gaussianity does not necessarily lead to the identifica-
tion of the mixing matrix.

In the past, various Expectation-Maximization (EM) algo-
rithms have been proposed to work under specific paramet-
ric models for the exogenous noise model, e.g., Mixture of
Gaussians (Olshausen & Millman, 1999) or Laplace distri-

bution (Lewicki & Sejnowski, 2000). These algorithms have
been proven to be consistent if the assumptions are satisfied.
At the same time, they are very computationally demanding
and have been shown to perform poorly in practice. For
this reason, the core of the research on the topic has shifted
to heuristic methods, in which the mixing matrix is found
as a solution to a suitable smooth optimization problem.
The RICA algorithm (Le et al., 2011) is arguably the most
prominent in this class of algorithms and has already been
used in causality, see, e.g., Yang et al. (2022). However, due
to the complications stated above, the RICA algorithm has
not yet been equipped with consistency guarantees.

Being an adaptation of the RICA algorithm, also the large
sample size performance of our algorithm is not well under-
stood in rigorous mathematical terms. However, we point
out that the same parametrization of the mixing matrix can
be utilized in any OICA algorithm to reduce the dimen-
sionality of the problem. What our experiments suggest
is that this simple step can improve remarkably the perfor-
mances of OICA algorithms, when applied to the estimation
of causal effects.

6. Conclusions
We considered the problem of generic identifiability of
causal effects in LiNGAM models when only observational
data are available. We solved the problem by providing effi-
ciently implementable, graphical criteria for identification of
the causal effect with and without knowledge of the graph.
To estimate the effect, we proposed a flexible adaptation
of the RICA algorithm, (Le et al., 2011), that incorporates
the knowledge of the graph to reduce the dimension in the
optimization problem.

To conclude, we highlight possible future directions.

Cyclic Models. When the acyclicity assumption is dropped,
Lacerda et al. (2008) showed that, in the fully observed
case, the structure of the graph can be recovered up to an
equivalence class. There are no explicit graphical criteria
for the identification of the causal effects in cyclic LiNGAM
models. It is worth exploring whether our proof techniques
could be extended to this setting.
Relaxing non-Gaussianity. Ng et al. (2023) proved that in
the complete ICA case, non-Gaussianity of the noises can be
relaxed if the mixing matrix has a specific sparse structure.
Extensions of these results to the overcomplete case might
offer results on identification of the causal effects when
some of the exogenous noises are allowed to be Gaussian.
Non-linear ICA. There is an active line of work that aims to
exploit non-linear ICA, (Hyvärinen et al., 2024), to construct
causal discovery algorithms, (Reizinger et al., 2023). There
is no literature that leverages these results to understand the
identifiability of the causal effects.
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A. Notions of Non-Linear Algebra
In this section, we give the basic definitions of non-linear algebra we will need for the proofs; we refer the interested reader
to Cox et al. (2015); Michałek & Sturmfels (2021) for more details.

Definition A.1. For every natural number n, we denote the ring of polynomials in n variables x1, . . . , xn by R[x1, . . . , xn].
Let S be a, possibly infinite, subset of R[x1, . . . , xn]. The affine variety associated to it is defined as V(S) = {x ∈ Rn |
f(x) = 0, ∀f ∈ S}. The vanishing ideal associated to a variety V is I(V) = {f ∈ R[x1, . . . , xn] | f(x) = 0 ∀x ∈ V}.
The coordinate ring of V is defined as R[V] = R[x1, . . . , xn]/I(V).
Lemma A.2 (Lemma (Okamoto, 1973)). Let f(x1, . . . , xn) be a polynomial in real variables x1, . . . , xn, which is not
identically zero. The set of zeros of the polynomial is a Lebesgue measure zero subset of Rn.

Remark A.3 (Notation). For a given matrix A, we denote the submatrix in which the i-th row and the j-th column are
excluded by [A]\i,\j .

Lemma A.4. Let RG
A and RG defines as in Section 2.2. Then we have RG ∼ RG

A ∼ R|e|, where with the symbol ∼, we
denote an isomorphism of affine varieties, see, e.g., Cox et al. (2015, Def. 6, §5) for a definition. Moreover R[G], R[GA],
and R[ai,j | j → i ∈ G] are isomorphic as rings.

Proof. The isomorphism RG
A ∼ R|e| comes directly from its definition. Indeed it is easy to see that RG

A is an |e|-dimensional
linear subspace of Rp×p = (ai,j)i,j∈p×p, defined by the linear equations ai,i = 1, and ai,j = 0, ∀i, j ∈ V such that
j → i /∈ G.

To prove the isomorphism RG ∼ RG
A, we need to prove that there is a polynomial bijective map between the two spaces. From

(5), and using [Bo]i,j = [(Ao,o)
−1]i,j = (−1)i+j det([Ao,o]\j,\i), where we used that det(Ao,o) = 1. It is clear that RG is

the image of polynomial map of RG
A. Let us call this polynomial map ψ and assume ψ(A) = ψ(Ã). Then from the definition

of ψ we have (I −Ao,o)
−1 = (I − Ão,o)

−1 that implies Ao,o = Ão,o. Moreover, (I −Ao,o)
−1Ao,l = (I − Ão,o)

−1Ão,l

that implies Ao,l = Ão,l and so A = Ã.

The isomorphisms between the rings come from Cox et al. (2015, §5, Thm. 9).

Corollary A.5. Let f ∈ R[G] be a non-zero polynomial. Then the subset of RG on which f vanishes is a Lebesgue measure
0 subset of RG .

Proof. Thanks to the isomorphism in Lemma A.4, we can apply Lemma A.2 to RG .

Definition A.6 (Leibniz Expansion of the Determinant). For any M ∈ Rn×n, the determinant of M can be computed using
the following formula:

det(M) =
∑

σP∈S(n)

(−1)σP

n∏
i=1

MσP (i),i, (21)

where S(n) is the set of all the permutations of n elements, and (−1)σP is the sign of the permutation. See, e.g., Axler
(2015, Def. 10.33) for more details.

Definition A.7. Let π ∈ P(j, i). The path monomial associated to it is defined as

aπ = ai1,i2 · · · · · aik,ik+1
∈ R[GA].

Lemma A.8. Let A defined as in (1). We have

B = (I −A)−1 =

∞∑
i=0

Ai = I +A+A2 + · · ·+Ap,

[B]i,j =
∑

P∈P(i,j)

aP .

In particular [B]i,j = 0 ∈ R[GA] if and only if P ∈ P(i, j) = ∅.
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Definition A.9. Let I = {i1, . . . , in}, J = {j1, . . . , jn} ⊂ V . P = P1, . . . , Pn is system of paths between I, J , if there
exists a permutation σP ∈ Sn, such that Pk ∈ P(ik, jσP (k)). We denote the set of all such systems by P(I, J). Moreover, a
system of paths is non-intersecting if Pk ∩ Pl = ∅ for k ̸= l. The set of all such systems is denoted by P̃(I, J). The path
monomial associated to P , is defined as:

aP = aP1 · · · · · aPn .

i1

i2

j1

j2

c

i1

i2

j1

j2

Figure 11. The system on the left has no sided intersection while the system on the right has.

Theorem A.10 (Gessel-Viennot-Lindström Lemma). Let I, J ⊂ V having the same size; then it holds that

det(I −A)−1
I,J =

∑
P∈P(J,I)

(−1)σP aP =
∑

P∈P̃(J,I)

(−1)σP aP .

In particular, det(I −A)−1
I,J = 0 ∈ R[GA] if and only if P̃(J, I) = ∅.

B. Proofs and Lemmas
B.1. Proofs of Section 3.1

Proof of Theorem 3.3. From Salehkaleybar et al. (2020, Theo. 15), we know that the entire j-th column B′ is identifiable if
and only if there is no latent variable l such that deo(j) = deo(l). Thus, we know that if this condition is satisfied, the entry
[B′]i,j is identifiable. Hence, we can assume that such an l exists to conclude the proof.

We will prove that [PσB
′]i,j = [B′]i,l ̸= [B′]i,j , in general, if and only if i ∈ de

G\j
o (l), where σ is the transposition that

swaps j and l. In particular, we will show that [B′]i,j − [B′]i,l ∈ R[G] where R[G] (the coordinate ring associate to G as
defined in Definition A.1), is a non-zero polynomial if and only if the graphical condition is satisfied. Notice that from
Corollary A.5, we know this is enough to show that the parameters are generically identifiable.

Using Lemma A.8, we can write the entries of B′ as

[B′]i,l = (I −A)−1
i,l =

∑
P∈P(l,i)

aP ,

where P(l, i) denotes the set of all the paths from l to i. Now let Pj(l, i) be the set of directed path from l to i that passes
through j, and P\j(l, i) = P(l, i) \ Pj(l, i). We can rewrite the formula above as follows

[B′]i,l =
∑

P∈P(l,i)

aP =
∑

P∈Pj(l,i)

aP +
∑

Q∈P\j(l,i)

aQ.

Note that P ∈ Pj(l, i) if and only if there are Pj ∈ P(l, j) and Pi ∈ P(j, i) such that aP = aPjaPi . Finally, we can write
[B′]i,l as: ∑

P∈Pj(l,i)

aP +
∑

Q∈P\j(l,i)

aQ =
∑

Pi∈P(j,i)
Pj∈P(l,j)

aPjaPi +
∑

Q∈P\j(l,i)

aQ

=
∑

Pi∈P(j,i)

aPi

︸ ︷︷ ︸
[B′]i,j

∑
Pj∈P(l,j)

aPj

︸ ︷︷ ︸
[B′]i,l

+
∑

Q∈P\j(l,i)

aQ = [B′]i,j [B
′]j,l +

∑
Q∈P\j(l,i)

aQ

=[B′]i,j +
∑

Q∈P\j(l,i)

aQ,

(22)
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where we used [B′]j,l = 1 from Remark 3.2 that we can assume without loss of generality. Finally, we have [B′]i0,j −
[B′]i0,l =

∑
Q∈P\j(l,i0)

aQ ∈ R[GA]. From Lemma A.8, we know it is the zero polynomial if and only if P\j(l, i0) = ∅,

i.e., i0 /∈ de
G\j
o (l). Notice that we proved that [B′]i,j − [B′]i0,l is non zero in R[GA], that is enough to show thanks to

Lemma A.4.

Lemma B.1. Let j and l be observed and latent variables, respectively, such that deo(j) = deo(l). Let B̃′ = B′Pσ , where
σ is the transposition swapping the columns corresponding to l and j. For every i, k ∈ O, and h ∈ L we have:

[Ão,o]i,k = [Ao,o]i,k + 1ch(l)(i)c
j
l,i[I −Ao,o]j,k, (23)

[Ão,l]i,h = [Ao,l]i,h − 1ch(l)(i)c
j
l,i[Ao,l]j,h, (24)

where cjl,i = (−1)i+j
∑

Q∈P\j(l,i)
aQ, and 1X represent the indicator function of a set X .

In particular, [Ão,o]i,k = [Ao,o]i,k, if i /∈ ch(l) or k /∈ pa(j) ∪ {j}.

Proof of Lemma B.1. We first show the equality in (23). According to (22), B̃o can be written as Bo + C:

Ci,k =


∑

Q∈P\j(l,i)

aQ if k = j and i ∈ de
G\j
o (l),

0 otherwise.
(25)

From the formula for the inverse of a matrix, we know that

[Bo + C]−1
i,k = (−1)i+k det([Bo + C]\k,\i).

Note that det(Bo + C) = 1 since it is a lower triangular matrix with one on the diagonal. Thus, we can imply that
[Ão,o]j,k = [(Bo + C)−1]j,k = [Bo]

−1
j,k = [Ao,o]j,k. Hence, we only need to consider the entries of [Ão,o]i,k where i ̸= j.

To compute det([Bo + C]\k,\i) with respect to the j-th column, we have:

det([Bo + C]\k,\i) =
∑

(−1)s+j [Bo]s,j det([Bo]\(j,s),\(i,j)) +
∑

(−1)s+jCs,j det([Bo]\(j,s),\(i,j))

= det([Bo]\k,\i) +
∑

(−1)s+jCs,j det([Bo]\(j,s),\(i,j))

= (−1)i+j [Ao,o]i,k +
∑

s∈de
G\k
o (l)

(−1)s+j
∑

Q∈P\j(l,s)

aQ det([Bo]\(k,s),\(i,j)),

where in the last equality, we plug in Cs,j according to (25).

Based on Theorem A.10,

det([Bo]\(k,s),\(i,j)) = det([(I −Ao,o)
−1]\(k,s),\(i,j)) =

∑
P∈P̃(O\{i,j},O\{k,s})

(−1)σP aP .

In the following, we show that that P̃(O \ {i, j},O \ {k, s}) can be non-empty only if:{
s = i or s→ i ∈ G,
k = j or k → j ∈ G.

(26)

To show this, let
P = {π1, . . . , πj−1, πj+1, . . . , πi−1, πi+1, . . . , πp}

be a system of paths in P̃(O \ {i, j},O \ {k, s}), where with πa we denote the path starting at the node a. Consider the
path πs = sa0 . . . at. If there is a x ∈ {0, . . . , t} such that ax /∈ {i, j}, then πs would intersect πax and thus P would have
an intersection. The same argument applies for πk. Therefore,

πs = sa0, πk = kb0, {a0, b0} = {i, j}.
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To conclude the argument, please note that, since from (25) we see that Cs,j = 0 if s /∈ de
G\j
o (l), we can restrict ourselves

to the case in which s ∈ de
G\j
o (l) ⊆ de(j). Since the graph is acyclic, this implies a0 = i and b0 = j.

We now prove that if for all the paths from l to i, there is an observed variable s0 ̸= i on the path, the quantity∑
s∈de

G\k
o (l)

(−1)s+j
∑

Q∈P\j(l,s)

aQ det([Bo]\(k,s),\(i,j)),

is equal to 0. We can rewrite the sum above as follows:∑
s∈de

G\k
o (l)

∑
Q∈P\j(l,s)

P∈P̃(O\{i,j},O\{k,s})

(−1)s+j+σP aQaP . (27)

Let π0 be a path from l to i that can be decomposed in the following way:

π0︷ ︸︸ ︷
l→ · · · → s0︸ ︷︷ ︸

Q0

→ i,

for some s0 ∈ V . If s0 is observed, the monomial associated with this path will appear in the sum twice in (27); the first
time when considering Q = Q0 and s = s0 while the second time when considering Q = π0 and s = i. The last thing to
prove is that the sign will differ in the two cases. This comes from the Leibniz expansion for the determinant, (21). Indeed,
the sign associated with each monomial is the sign associated with the permutation in the Leibniz formula. In the first case,
the associated permutation is the following:

σ1(a) =


a if a /∈ {s0, i, j},
j if a = s0,

s0 if a = i,

k if a = j,

while for the second case, the associated permutation is:

σ2(a) =


a if a /∈ {j, i},
j if a = i,

k if a = j.

As the two permutations can be obtained one from the other via the transposition corresponding to swapping the columns
corresponding to j and s0, they have different signs.

The same argument also implies that all the elements in (27), involving s ∈ pa(i) cancel out allowing us to rewrite the sum
as: ∑

Q∈P\j(l,i)

P∈P̃(O\{i,j},O\{i,k})

(−1)i+j+σP aQaP .

With the same argument used to prove (26), one can see that the only element in P̃(O \ {i, j},O \ {i, k}), is the system of
paths that sends k to j directly and all the other elements remain fixed. This system of paths has a negative sign if k ̸= j and
a positive sign otherwise, implying that the sum is equal to:

(−1)i+j [I −Ao,o]j,k
∑

Q∈P\j(l,i)

aQ,

which concludes the first part of the proof. We now prove (24). Using (5) we can write [Ão,l]i,h = [(B̃o,o)
−1(B̃o,l)]i,h =∑

s∈O[(B̃o,o)
−1]i,s[(B̃o,l)]s,l.
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We first prove the case h = l. In this case, by definition of B̃′, we have [B̃o,l]s,l = [Bo]s,j . Thus, plugging in (23) we can
write [Ão,l]i,l as ∑

s∈O
[(Bo)

−1]i,s[Bo]s,j − cjl,i
∑
s∈O

[(Bo)
−1]j,s[Bo]s,j

= δi,j − cjl,i = δi,j − cjl,i[A]j,l,

where, again, we used [A]j,l = 1, that comes from Remark 3.2. For the case h ̸= l we use again (23), and write [Ão,l]i,h as∑
s∈O

[(Bo)
−1]i,s[Bl]s,h − cjl,i

∑
s∈O

[(Bo)
−1]j,s[Bl]s,h

= [Ao,l]i,h − cjl,i[Ao,l]j,h,

where for the last equality we only used Ao,l = (Bo)
−1Bl that comes from (5).

Proof of Theorem 3.4. From Lemma B.1, we can conclude that if there are no k and l satisfying the conditions in Equations
(11)-(13), then the entry [Ao,o]i,j remains unchanged when swapping the columns of B′, proving that the condition is
sufficient. To prove the necessity, it is enough to show that

∑
Q∈P\j(l,i)

aQ ̸= 0 ∈ R[GA], which is equivalent to proving
that P\j(l, i) ̸= ∅. This is true since i ∈ ch(l) from Equation (12).

B.2. Proofs of Section 3.2

Lemma B.2. For every B′ outside of a Lebesgue zero subset of RG , let B̃′ = B′ ·Pσ, where σ is the transposition that
swaps j and l, and Pσ is the associated permutation matrix. We have B̃′ ∈ RG if and only if

deo(I) = deo(σ(I)), ∀i ∈ V,

and there is no k ∈ pa(j) ∪ {j}, such that ch(l) \ ch(k) ̸= ∅.

Proof of Lemma B.2. From Salehkaleybar et al. (2020, Thm. 15), we know that the only permutations that result in matrices
in RG̃ for some DAG G̃, are the ones for which

deo(I) = deo(σ(I)), ∀i ∈ V.

Hence this condition is necessary.

The edges in G̃ are given by the support of the matrix Ã. In particular G = G̃ if and only if

[Ao,o]i,k = 0 ∈ R[GA] ⇐⇒ [Ão,o]i,k = 0 ∈ R[GA]

[Ao,l]i,l = 0 ∈ R[GA] ⇐⇒ [Ão,l]i,l = 0 ∈ R[GA]
(28)

We provide the proof only for Ao,o since the one for Ao,l follows the same argument only using (24) instead of (23).

From Lemma B.1 we know that [Ão,o]i,k = [Ao,o]i,k, if i /∈ ch(l) or k /∈ pa(j)∪{j}. Thus, the only the entries to consider
are i ∈ ch(l) and k ∈ pa(j) ∪ {j}.
We know that [Ao,o]i,k ̸= 0 if and only if i ∈ ch(k), while [Ão,o]i,k is always different from 0. Therefore, the condition in
(28) fails if and only if there is an i ∈ ch(l) \ ch(j).

Proof of Theorem 3.6. In Lemma B.2, we have shown that the statement is true if σ is a transposition. We now assume that
σ = σn · · ·σ1 where σs is a transposition for every s ∈ {1, . . . , n}, such that if σs(j) ̸= j for some j then also σ(j) ̸= j.
This can be done without loss of generality since every permutation can be written this way.

We can see that the condition is sufficient from Lemma B.2; if it is satisfied, the support of Aσ cannot change. In order to
prove that the condition is also necessary, we need to verify that if there is a σs such that [Aσs ]i,k ̸= 0 then [Aσ]i,k ̸= 0 as
well. Again, we will prove the result for a pair of observed variables i and k since the result follows the same way when
considering latent variables.
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In particular, we are going to prove the following

[Aσ
o,o]i,k = [Ao,o]i,k +

∑
s

1ch(ls)(i)c
js
ls,i

[I −Ao,o]js,k + rσ, (29)

where σs is the transposition that swaps js with ls and rσ is either 0 or a polynomial of degree at least two in R[GA]. We
proceed by induction on n. If n is equal to 1, then we apply Lemma B.1 with rσ = 0.

In order to proceed with the induction step, let us define σ[s] = σs · · ·σ1 so that we can write σ as σk+1 · σ[k]. From the
induction, we know that

[A
σ[n]
o,o ]i,k = [Ao,o]i,k +

n∑
s=1

1ch(ls)(i)c
js
ls,i

[I −Ao,o]js,k + rσ[n]
,

and by construction we can write Bσ = Bσ[n] + C(n+1) where

C
(n+1)
i,k =


∑

Q∈P\jn+1
(ln+1,i)

aQ if k = jn+1 and i ∈ de
G\j
o (ln+1),

0 otherwise.
(30)

Following the same steps of the proof of Lemma B.1, with the only difference of using Bσ in place of B̃′, and Bσ[n] in
place of B′ we obtain

[Aσ]i,k = [Aσ[n] ]i,k +
∑
s

(−1)s+jn+1C
(n+1)
s,jn+1

det([B
σ[n]
o ]/(k,s),/(i,jn+1)). (31)

Thus, the only thing that is left to prove is that the last term on the right-hand side of the equation is equal to
1ch(ln+1)(i)c

jn+1

ln+1,i
[I − Ao,o]jn+1,j + rσn+1

. In order to do so note that using the same formula as above we can write
B

σ[n]
o = B

σ[n−1]
o + Cn, and thus

det([B
σ[n]
o ]/(k,s),/(i,jn+1)) = det([B

σ[n−1]
o ]/(k,s),/(i,jn+1)) + r′σ[n−1]

.

Plugging the above equation in (31), concludes the proof, following the same steps as in the proof of Lemma B.1.

Proof of Theorem 3.8. The only difference with respect to Theorem 3.3 is the condition

ch(l) \ ch(k1) = ∅, ∀k1 ∈ pa(k) ∪ {k},
that comes from Theorem 3.6. Indeed, if this condition is not satisfied, then the permutation that swaps the columns
corresponding to k and l, cannot result in a model in RG .

Proof of Theorem 3.9. As in the proof of Theorem 3.8, the difference from the conditions of Theorem 3.4 and Theorem 3.9
is condition (20). This is, again, a direct consequence of Theorem 3.6.

Proof of Corollary 3.10. The mixing matrix Bo is identifiable if and only if all of its parameters are. Hence, the result is a
direct consequence of Theorem 3.8.

Example B.3 (Examples 3.5 and 3.7 continued). Here, we report the mixing matrices corresponding to the two models that
are compatible with the observed distribution

B′ =

 1 0 0 0
bTI 1 1 0

bTIbY T bY T bY T + bLY 1

 , B̃′ =

 1 0 0 0
bTI 1 1 0

bTIbY T bY T + bLY bY T 1

 ,
together with the corresponding adjacency matrices

Ao,o =

 1 0 0
bTI 1 0
0 bY T 1

 , Ão,o =

 1 0 0
bTI 1 0

−bTIbY L bY T + bY L 1

 .
The two models are depicted in Figure 12. A parameter is generically identifiable without knowledge of the graph if it is
the same for both models. Since there is only one model that is compatible with GIV , all the parameters are generically
identifiable with knowledge of the graph. These results are summarized in Table 1.
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GIV : I T Y

L

bTI bY T

1 bY L

G̃IV : I T Y

L

bTI

−bTIbY L

bY T + bY L

1 −bY L

Figure 12. The graphs corresponding to the two models.

Table 1. Summary of the identifiable parameters in the IV graph.

Known DAG Unknown DAG
TCE DCE TCE DCE

I → T ✓ ✓ ✓ ✓

I → Y ✓ ✓ ✓ ✗

T → Y ✓ ✓ ✗ ✗

B.3. Proofs of Section 3.4

Theorem B.4. Algorithms 1, 2, 3, 4, 5, and 6 are sound and complete for solving the corresponding identifiability queries,
as summarized in Table 2.

Moreover, the computational complexity the algorithms is O(pl(p2o + |E|)) = O(p3).

Table 2. Summary of the identification algorithms, with the corresponding identifiability queries.

Known DAG Unknown DAG
TCE DCE TCE DCE

Given Pair Algorithm 1 Algorithm 3 Algorithm 2 Algorithm 4
Complete Matrix Algorithm 5 Algorithm 5 Algorithm 6 Algorithm 6

Proof of Theorem 3.11 and Theorem B.4. In order to prove that correctness of Algorithm 1, it is enough to show that if
deo(l) = deo(j) then j < k for every k ∈ ch(l) \ {j}. Assume by contradiction that there is k < j in ch(l). Then k cannot
be a descendent of j and so deo(l) ̸= deo(j). This implies that the total causal effect is identifiable if the condition at line
7 : in Algorithm 1 is not satisfied for any latent variable. The rest of the algorithm is just a translation of the conditions in
Theorem 3.8.

The nodes can be arranged in a topological order inO(p+ |E|) time with one run of depth-first search, see e.g., Cormen et al.
(2009, §22.4). Computing the descendants of a node can be done again with depth-first search in the graph in which only
the observed nodes are considered since we assume no edges from observed to latent variables. Therefore, it has a cost of
O(po + |E|), sorting ch(lk) in line 5 of the algorithm is O(polog(po)), while computing the parents of a node can be done
in O(p2o). Therefore, the internal loop that starts at line 4 has the complexity of O(p2o + |E|) and this is repeated at most pl
times. Hence, the loop costs O(pl(p2o + |E|)). The final cost is O(pl(p2o + |E|) + p+ |E|) = O(pl(p2o + |E|)) = O(p3).

The result for Theorem B.4 follows in the same way. Note that a consequence of Lemma A.4 is that when one is interested
in identifying the whole matrix, it is not necessary to distinguish between direct and total causal effects.
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Algorithm 2 Total Causal Effect Identification without knowledge of the graph
INPUT: V = O ∪ L,G, {ch(i) | i ∈ V}, (j, i)

1: ID← TRUE
2: Sort V according to an ascending topological order
3: Compute deo(j)
4: while ID == TRUE and |L| > 0 do
5: l← L[1]{The first element in the list}
6: Sort ch(l) according to the topological order defined in step 2
7: if ch(l)[1] = j = j then
8: Compute de

G\j
o (l)

9: if i ∈ de
G\j
o (l) then {(10)}

10: Compute deo(l)
11: if deo(l) = deo(j) then
12: ID← FALSE {(9)}
13: L ← L \ {l}
14: RETURN: ID

Algorithm 3 Direct Causal Effect Identification with knowledge of the graph
INPUT: V = O ∪ L,G, {ch(i) | i ∈ V}, (j, i)

1: ID← TRUE
2: Sort V according to an ascending topological order
3: for all l ∈ L do
4: Sort ch(l) according to the topological order defined in step 2
5: Compute deo(l)
6: if i ∈ ch(l) then {(18)}
7: for all k ∈ ch(j) ∪ {j} do
8: Compute deo(k)
9: if deo(k) = deo(l) then {(17)}

10: ID← FALSE
11: Compute pa(j)
12: for all k1 ∈ pa(j) ∪ {j} do
13: if ch(l) \ ch(k1) ̸= ∅ then {(20)}
14: ID← TRUE
15: RETURN: ID

Algorithm 4 Direct Causal Effect Identification without knowledge of the graph
INPUT: V = O ∪ L, {ch(i) | i ∈ V}, (j, i)

1: ID← TRUE
2: Sort V according to an ascending topological order
3: for all l ∈ L do
4: Sort ch(l) according to the topological order defined in step 2
5: Compute deo(l)
6: if i ∈ ch(l) then {(12)}
7: for all k ∈ ch(j) ∪ {j} do
8: Compute deo(k)
9: if deo(k) = deo(l) then {(11)}

10: ID← FALSE
11: RETURN: ID
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Algorithm 5 Matrix Identification with knowledge of the graph
INPUT: V = O ∪ L,G, {ch(i) | i ∈ V}

1: ID← TRUE
2: Sort V according to an ascending topological order
3: for all l ∈ L do
4: Sort ch(l) according to the topological order defined in step 2
5: j ← ch(l)[1]
6: Compute deo(l) and deo(j)
7: if deo(j) = deo(l) then
8: ID← FALSE
9: for all k ∈ ch(j) do

10: for all k1 pa(k) ∪ {k} do
11: if ch(l) \ ch(k1) ̸= ∅ then
12: ID← TRUE
13: RETURN: ID

Algorithm 6 Matrix Identification without knowledge of the graph
INPUT: V = O ∪ L, {ch(i) | i ∈ V},G

1: ID← TRUE
2: Sort V according to an ascending topological order
3: for all l ∈ L do
4: Sort ch(l) according to the topological order defined in step 2
5: j ← ch(l)[1]
6: Compute deo(l) and deo(j)
7: if deo(j) = deo(l) then
8: ID← FALSE
9: RETURN: ID
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Figure 13. On the x-axis, the probability of acceptance of an edge. The y-axis shows the percentage of graphs in which all the parameters
are identifiable

Figure 14. On the x-axis, the size of the graph. On the y-axis, the average running time in seconds, po/p is fixed to 0.5.

C. Details on the Experimental Setting and Additional Experiments
C.1. Identification

C.1.1. MIXING MATRIX IDENTIFICATION EXPERIMENTS

We used Algorithm 5 and Algorithm 6 on randomly generated graphs. In Figure 5, we report the percentage of graphs
in which all the causal effects are identifiable for graphs of size 10 and 100. The graphs are generated according to an
Erdős-Rényi model in which we ensure that the graph we sample is canonical. The probability of acceptance of an edge is
plotted on the x-axis. For each setup, we randomly sample 500 graphs.

For the case in which the graph is known, we find the same qualitative behavior observed in Section 5.1. In contrast, when
we do not assume the graph to be known, the probability that all the parameters in the graph are identifiable drops drastically.
We found the same qualitative behavior with larger graphs.

The average running time for different graph sizes is shown in Figure 14.

C.2. Estimation

L1 L2

T Y

W

Figure 15. G4
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(a) G4 (b) Underspecified instrument

Figure 16. Laplace distribution

C.2.1. SAMPLE SIZE VS RELATIVE ERROR

In this subsection we present additional experiments on synthetic data to illustrate the performance of GRICA algorithm in
comparison with the RICA algorithm implemented by Salehkaleybar et al. (2020) and Cross-Moment method by Kivva et al.
(2023).

Experimental setup. All the experiments in this subsection are done on the synthetic data generated according to the
specific causal structure established for it. To generate synthetic data we specify all exogenous noises to be i.i.d., and select
all non-zero entries within the matrix A through uniform sampling from [−1,−0.5] ∪ [0.5, 1]. In the following, we display
the results for the setups described in Table 3.

Table 3. Summary of the experimental setups.

Figure Causal Graph Distribution Parameter of Interest
Family µ scale

16a G4 Laplace 0 1 T → Y
16b IV, Figure 4 Laplace 0 1 T2 → Y
17a G1 Exponential - 1 T → Y
17b G2 Exponential - 1 T → Y
17c G4 Exponential - 1 T → Y
17d IV, Figure 4 Exponential - 1 T2 → Y

On the figures, we plot the average relative error over 10 independent experiments, with its standard deviation visualized
with a transparent area filled with the respective color. From the experiments, we see that GRICA outperforms other methods
in all setups, except the one for the graph G1. Note that for this specific graph, the Cross-Moment method gives us an exact
statistical solution that requires computing high-order moments. This results in a less statistically robust estimation when
the sample size is small, but it is more accurate if the sample size is large enough.

C.2.2. MODEL MISSPECIFICATION

Here we consider the robustness of GRICA algorithm when data generation process is not linear SEM, but close to it. For
these experiments the data is generated with the following machanism:{

Vj = tanh (
∑p

i=1 Aj,iVi) +Nj , if Vj ̸= Y,

Vj = tanh
(∑p

i=1,i̸=k Aj,iVi

)
+Aj,kVk +Nj , if Vj = Y and Vk = T,

where T → Y is a direct causal effect that we want to estimate.
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(a) G1 (b) G2

(c) G4 (d) Underspecified instrument

Figure 17. Exponential distribution
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(a) G1 (b) G2

Figure 18. Laplace distribution

Experimental setup. For each experiment we generate the synthetic data accordingly to the causal structure chosen for
it. All exogenous noises are i.i.d., and all non-zero non-diagonal entries within the matrix A sampled uniformly from
[−1,−0.5] ∪ [0.5, 1]. In the following, we display the results for the setups described in Table 4.

Table 4. Summary of the experimental setups.

Figure Causal Graph Distribution Parameter of Interest
Familiy µ scale

18a G1 Laplace 0 1 T → Y
18b G2 Laplace 0 1 T → Y
19a G1 Exponential - 1 T → Y
19a G2 Exponential - 1 T → Y

On the figures, we plot the average relative error over 10 independent experiments, with its standard deviation visualized with
transparent area filled with respective color. We observe that GRICA outperforms all other methods for these experiments.

C.2.3. RELATIVE ERROR VS OBSERVATIONS NOISE

These experiments illustrate how the variances of certain exogenous noise impact the performance of GRICA algorithm in
comparison to the state-of-the-art algorithms for the considered settings. Herein we considered three main setups. In each of
the setup we initialize all the non-zero entries of matrix A to be equal to 1 and all exogenous noises are modeled as i.i.d.
distributions.

1. Causal structure: G1. The experiment for this causal structure is illustrated in Figure 20a. In this experiment, we
initialize all exogenous noises as Exponential distributions. Then we scaled the standard deviation of exogenous noise
NW corresponding to the variable W by a factor displayed on x-axis of the Figure 20a and plotted the performance of
GRICA algorithm against the performance of RICA algorithm.

2. Causal structure: G3. The experiment for this causal structure is illustrated in Figure 20b. In this experiment, we
initialize all exogenous noises as Exponential distributions. Then we scaled NW and NZ by Ratio and 1/Ratio,
respectively, where Ratio is plotted on the x-axis of Figure 20a and plotted the performance of GRICA algorithm
against the performance of RICA, Cross-Moment method and method proposed by Tchetgen et al. (2020).

3. Causal structure: underspecified instrument. The experiments for this causal structure are illustrated in Figures 21a and
21b. In Figure 21a all exogenous noises are modeled as a Laplace distribution and in Figure 21b all exogenous noises
are modeled as an Exponential distribution. Then we scaled NL1 and NL2 by a factor displayed on the x− axis of
each Figure and estimated the direct causal effect from T2 to Y with GRICA and RICA algorithms. The relative error
of the estimations is plotted in the Figures.
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(a) G1 (b) G2

Figure 19. Exponential distribution

(a) G1 (b) G3

Figure 20. Exponential distribution

(a) Laplace distribution (b) Exponential distribution

Figure 21. Underspecified insturment
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