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Figure 1: Image segmentation. Slot-TTA parses completely novel scenes into familiar entities via slow
inference, i.e., gradient descent on the reconstruction error of the scene example under consideration. Slot-TTA
outperforms Mask2Former [6], a SOTA 2D image segmentor, on segmenting novel images by gradient descent
on image synthesis of neighboring image views.

Abstract

We consider the problem of segmenting scenes into constituent objects. Current
supervised visual detectors, though impressive within their training distribution,
often fail to segment out-of-distribution scenes. Recent test-time adaptation meth-
ods use auxiliary self-supervised losses to adapt the network parameters to each
test example independently and have shown promising results towards generaliza-
tion outside the training distribution for the task of image classification. In our
work, we find evidence that these losses can be insufficient for instance segmen-
tation tasks, without also considering architectural inductive biases. For image
segmentation, recent slot-centric generative models break such dependence on
supervision by attempting to segment scenes into entities in a self-supervised man-
ner by reconstructing pixels. Drawing upon these two lines of work, we propose
Slot-TTA, a semi-supervised instance segmentation model equipped with a slot-
centric image rendering component, that is adapted per scene at test time through
gradient descent on reconstruction or novel view synthesis objectives. We show that
test-time adaptation greatly improves segmentation in out-of-distribution scenes.
We evaluate Slot-TTA in scene segmentation benchmarks and show substantial
out-of-distribution performance improvements against state-of- the-art supervised
feed-forward detectors and self-supervised domain adaptation models. Please find
the full version of our paper at: https://arxiv.org/abs/2203.11194

1 Introduction

While significant progress has been made in machine scene perception and segmentation within
the last decade, object detectors continue to generalize poorly outside their training distribution
[12, 22]. Consider the extremely cluttered scenes shown in Figure 1. We can intuitively reason
about meaningful parts that this scene could be broken into. Yet, a state-of-the-art 2D detector [6]
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trained to segment similar objects in less cluttered scenes (5-7 object instances) struggles with this
decomposition. This lack of generalization requires us to build systems that can robustly adapt to
such changes in distribution.

Test-time adaptation (TTA) [13, 37, 40] describes a setting where a model adapts to changes in
distribution at test-time, at the cost of additional computation. In recent years, a variety of methods
based on TTA have been proposed, focusing on few-shot adaptation [32] where the network is given
access to a few labelled examples, or unsupervised domain adaptation (UDA) [43] where the network
is given access to many unlabelled examples from the new distribution. Of particular relevance is a
specific UDA setting where model parameters are adapted independently to each unlabelled example
in the test-set. This setting has been previously referred to as single-example UDA, and here we also
refer to it as slow inference since it is similar to a human taking more time to parse a difficult example.
Existing approaches for this setting typically devise a self-supervised loss that aligns well with the
task of image classification and then optimize this loss during test-time adaptation [37, 11, 1, 20].
However, despite their success for image classification, these approaches do not provide adequate
support for other scene understanding tasks, and in particular scene segmentation, as we showcase in
Section 3.1.One potentially important aspect to supporting TTA for other scene understanding tasks
is the inductive bias of the underlying architecture. In the context of segmentation, there has been a
lot of recent development in building models that segment scenes into entities in an unsupervised way
by optimizing a reconstruction objective [10, 18, 38, 15, 8, 28, 44]. These methods differ in details
but share the notion of incorporating a fixed set of entities, also known as slots or object files. Each
slot extracts information about a single entity during encoding, and is “synthesized” back to the input
domain during decoding. Their ability to distinguish visual objects at a representation level makes
them a particularly promising candidate for TTA for segmentation tasks.

In light of the above, we propose Slot-centric Test-time adaptation (Slot-TTA), a semi-supervised
approach that combines Slot Attention [28] (in the 2D image) or Object Scene Representation
Transformer [34] (in multi-view image setting) with a supervised segmentation loss to enable it to
leverage instance-level image. Slot-TTA is trained jointly to synthesize and segment scenes. At test
time, the model adapts without supervision to a single test sample by optimizing the self-supervised
objective alone. Different from fully-unsupervised object-centric generative models, Slot-TTA uses
annotations at training time to help it develop the notion of what an object is, which lets it scale to
more complex visual settings. Different from existing TTA methods, Slot-TTA uses a slot-centric
architecture and self-supervised synthesis loss that better aligns with the task of segmentation.
Different from state-of-the-art detectors, Slot-TTA is equipped with reconstruction feedback that
allows it to adapt at test time without supervision, i.e. without using additional annotated data. Indeed,
we show that test-time adaptation via image synthesis in Slot-TTA enables successfully parsing
completely unfamiliar scenes composed of familiar entities.

We test Slot-TTA’s instance segmentation ability on the two datasets: MultiShapeNet-Hard [35]
and Multi-Shape. We evaluate Slot-TTA’s ability to parse out-of-distribution scenes and compare
it against state-of-the-art entity-centric generative models [34] and supervised visual detectors [6]
trained with labeled data to segment objects. We show improvements over all baselines in Slot-TTA
ability to segment novel scenes. Additionally, we ablate different design choices of Slot-TTA.

2 Method

We consider Slot-TTA in two settings: (i) auto-encoding of images, and (ii) novel view synthesis.
For (i), we use the architecture proposed by Slot Attention [28], where a 2D broadcast decoder [41]
is used to render the input view. For (ii), we use OSRT’s architecture which combines the Slot
Attention bottleneck with the geometry-free backbone of SRT [35] to perform object-centric novel
view synthesis.

Training for joint segmentation and reconstruction We train all the parameters of our model
to jointly optimize image reconstruction or novel view image synthesis objectives and the task
segmentation objective over all the n examples in the training set, where x represents the input scene
and y the segmentation labels:

min
θ

1

n

n∑
i=1

λslseg(xi, yi; θ) + λrlrecon(xi; θ) (1)
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For reconstruction, we minimize the mean squared error between the predicted and ground truth RGB
images. For segmentation, we supervise the alpha masks ai of each slot as provided by the decoders.
We use Hungarian matching [27] to associate the ground truth masks with the predicted masks, and
upon association we apply a categorical cross-entropy loss lseg . We weight the segmentation and
reconstruction loss by λs and λr.

Test-time adaptation In this work, we refer to a single forward pass through our trained model
without any test-time adaptation as fast inference (same as regular inference). We call the process
of test-time adapting the model on each example independently slow inference, using only the
reconstruction objective of Eq. 1. We use this terminology to emphasize that the only difference
between both settings is the added computation time which results in an effective speed difference
between the two inference schemes. We adapt only the encoder parameters θenc in our model, which
we found to improve results compared to adapting the entire model as shown in our supplementary
Section D.1. We train for 150 steps per example using the Adam optimizer [25]. For further details
on our model architectures and model figure please refer to supplementary Section B

3 Experiments

We test Slot-TTA capability for segmenting posed multi-view and single-view RGB images. We
use Adjusted Random Index (ARI) as our evaluation metric for segmentation accuracy [31]. Our
experiments aim to answer the following questions: (i) How does Slot-TTA compare against state-of-
the-art 2D segmentation models [6]? (ii) How does slow inference through reconstruction feedback
affect segmentation accuracy in Slot-TTA and its variants? (iii) How much does supervision during
training contribute to segmentation performance?

3.1 Segmenting RGB images in multi-view scenes

Dataset We evaluate Slot-TTA on the MultiShapeNet (MSN) dataset from SRT [35]. The dataset
is constructed by rendering 51K ShapeNet objects using Kubric [16] against 382 HDR backgrounds
so that there is no overlap of objects between the train and test sets. Further train and tests sets differ
in the number of objects present: scenes with 5-7 object instances are in the training set and scenes
with 16-30 objects are in the test set. For more details please refer to supplementary Section A.

Method in-dist (5-7 instances) out-of-dist (16-30 instances)
Fast Infer. Slow Infer. Fast Infer. Slow Infer.

Slot-TTA-w/o supervision 0.32 0.30 0.33 0.29

Mask2Former 0.93 N/A 0.74 N/A
Mask2Former+BYOL 0.93 0.95 0.75 0.74
Mask2Former+Recon 0.93 0.92 0.74 0.67

Slot-TTA (Ours) 0.92 0.95 0.70 0.83

Table 1: Instance Segmentation accuracy (higher is better) in the multi-view RGB setup for in-distribution
test set of 5-7 object instances and out-of-distribution 16-30 object instances.

Baselines We compare to three baselines: (i) Mask2Former [6], a state-of-the-art 2D image segmen-
tor which adapts detection transformers [4] to image segmentation by using multiscale segmentation
decoders with masked attention. (ii) Mask2Former+BYOL which combines the segmentation model
[6] with test time adaptation using BYOL self-supervised loss [1]. (iii) Mask2Former+Recon which
combines the segmentation model [6] with rendering submodules and image reconstruction loss for
test-time adaptation.

Results We show quantitative segmentation results of our model and baselines on target camera
viewpoints in Table 1 and qualitative TTA results in Figure 2. In Slot-TTA-w/o supervision, instead of
training jointly for reconstruction and segmentation, we train using only cross-view image synthesis,
similar to OSRT [34].
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Figure 2: Test-time adaptation via slow inference in Slot-TTA for multi-view scenes. In the right top we
visualize the RGB loss (blue curve) and the segmentation ARI accuracy (red curve). As can be seen, during slow
inference the segmentation accuracy improves as reconstruction loss reduces.

It can be observed that: (i) Slot-TTA-Slow outperforms the feedforward Mask2Former-Fast, especially
for out-of-distribution scenes; (ii) adding self-supervised losses of SOTA image classification methods
[1] to Mask2Former (eg. Mask2Former+BYOL) does not suffice to adapt them effectively at test
time and (iii) Slot-TTA without supervision, which is identical to OSRT [34] is not competitive with
supervised models for object segmentation.1

3.2 Segmenting single-view RGB images

As a proof of concept, in this section, we test our model and the baseline Mask2Former in segmenting
single RGB images comprised of multiple samples from five shapes of distinct colors, organized in
heavily occluded configurations, a dataset we create and we call Multi-Shape. Our training set consists
of images with 3-5 object instances, while the test set consists of images with 10-16 object instances.
For this setting, we report the ARI scores for the foreground objects only, since in this dataset the
background occupies a large image area and a method that assigns most pixels to background already
achieves a very high ARI. We find the performance accuracy ordering of the methods to be the
same. As can be seen in Table 2, before TTA Mask2former and Mask2former+Recon outperform our
method. After TTA, our method significantly outperforms the baselines.

Method in-dist (3-5 instances) out-of-dist(10-16 instances)
Fast Infer. Slow Infer. Fast Infer. Slow Infer.

Mask2Former 0.96 N/A 0.44 N/A
Mask2Former+Recon 0.95 0.94 0.43 0.47

Slot-TTA (Ours) 0.96 0.95 0.39 0.69

Table 2: Foreground instance segmentation accuracy (higher is better) for single-view RGB images. In-
distribution images have 3-5 objects and out-of-distribution images have 10-16 objects.

Please refer to Section D.1 and Section D.2 in the supplementary for qualitative results and ablations
in our mult-view RGB and single-view RGB settings respectively.

4 Conclusion

In this work we show that the architectural choices found in unsupervised object discovery methods
such as Slot Attention, could be very helpful in test-time adaptation. Additionally we show sufficient
evidence in our work that a future version of Slot-TTA could potentially compete with state-of-the-art
segmentation methods when allowed to do test-time adaptation.

1Although OSRT performs poorly in the ARI metric, it achieves substantially better results in terms of
foreground-ARI (yet still not competitive). This is because it is unable to segment out the background.
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A Datasets

A.1 Multi-view RGB

Training Set Test Set

Test SetTraining Set

Figure 3: We visualize samples from the train-test split used by us in experiment Section 3.1. Different rows
correspond to different scenes and different columns correspond to different viewpoints.

We use the MultiShapeNet-Hard dataset of Scene Representation Transformer, a complex photo-
realistic dataset for Novel View Synthesis [35]. Our train split consists of 5-7 ShapeNet objects
placed at random locations and orientations in the scene. The backgrounds are sampled from 382
realistic HDR environment maps. Our test set consists of 16-30 objects placed at novel arrangements.
We sample objects from a pool of 51K ShapeNet objects across all categories, we divide the pool into
train and test such that the test set consists of objects not seen during training. The train split has
200K scenes, and the test set consists of 4000 scenes, each with 10 views. We had to regenerate the
dataset for this specific train-test split.

A.2 Single-view RGB

Training Set Test Set

Test SetTraining Set

Figure 4: We visualize the samples of our MultiShape dataset.

Multi-Shape is a dataset built by us for proof-of-concept. It consists of 5 shapes of distinct colors
uniformly placed at a random location in a 2D canvas. Our training set consist of 3-5 object instances,
while the test set consists of a highly occluded setting with 10-16 object instances.

B Method

Slot Attention Current state-of-the-art detectors and segmentors instantiate slots (i.e. the query
vectors) from 2D visual feature maps [4]. Most works use iterative cross-attention (features to slots)
and self-attention (slot-to-slots) operations [4] to map a set of N input feature vectors to a set of K
slot vectors. Attention-based competition amongst slots and iterative routing popularized in [15, 28]
encourages a single location in the input to be assigned to a unique slot vector.

Given a visual scene encoded as a set of feature vectors M ∈ RN×C and K randomly initialized slots
sampled from a multivariate Gaussian distribution with a diagonal covariance S ∼ N (µ,Diag(σ2)) ∈
RK×D, where µ, σ ∈ RC are learnable parameters of the Gaussian, Slot Attention [28] computes an
attention map a between the feature map M and the slots S:

a = Softmax(k(M) · q(S)T , axis=“slots”) ∈ RN×K . (2)
k, q, and v are learnable linear transformations that map inputs and slots to a common dimension
D. The softmax normalization over slots ensures competition amongst them to attend to a specific
feature vector in M. Updates to the slots are computed based on the input features they attend to:

updates = aT v(M) ∈ RK×C ,where ai,k =
ai,k∑N−1
i=0 ai,k

(3)
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Figure 5: Model architecture for multi-view images. Given multi-view RGB images as input. Slot-TTA (here
using OSRT [34] as a backbone) maps them to a set of token features, which are then mapped to a set of slot
vectors. Conditioned on the camera-viewpoint Slot-TTA then decodes each slot into its respective segmentation
mask and RGB image. It then uses weighted averaging to render the RGB image for the whole scene as seen
from the camera viewpoint. On the training dataset, we jointly optimize using reconstruction and segmentation
loss. On the test set, we optimize only using the reconstruction loss. We use a similar training pipeline for other
input modalities.

which are then fed into a GRU [7]: S = GRU(state = S, input = updates). We iterate 3 times over
equations 2 and 3. For detailed description, please refer to [28].

We first describe the encoders and decoders that form the foundation of Slot-TTA for each modality.
Further we detail how we train Slot-TTA and perform test time adaptation through slow inference.

B.0.1 Encoding and Decoding Backbones

Posed multi-view 2D RGB images As shown in Figure 5, Slot-TTA builds upon the architecture
of OSRT [34], which is an object-centric, geometry-free novel view synthesis method. Given a
set of multi-view RGB images as input, a CNN encodes each input image Ii into a feature grid,
which is then flattened into a set of tokens with camera pose and ray direction information added in
each of the tokens, similar to SRT [35]. These are then encoded into a set of latent features using
a transformer [39] Enc with multiple self-attention blocks z = Enc(CNN(Ii)). The latent features
z are then mapped into a set of slots S using Slot Attention (Section B). For decoding, we adopt
the spatial broadcast decoder [41] formulation, where a render MLP takes as input the slot vector
Sk and the pixel location p parameterized by the camera position and the ray direction pointing to
the pixel to be decoded. It outputs an RGB color ck and an unnormalized alpha score ak for each
pixel location ck, ak = Dec(p, Sk). The ak’s are normalized using a Softmax and used as weights to
aggregate the predicted RGB values ck for each slot.

Single-view 2D RGB images For this setting, Slot-TTA uses a ResNet-18 [21] to encode the input
RGB image into a feature grid. We then add positional vectors to the feature grid and map to a set of
slot vectors using Slot Attention. Similar to the multi-view setting, each slot vector is decoded to the
RGB image and an alpha mask using an MLP renderer. We parameterize pixel location p as (x, y)
points on the grid instead of camera position as the above setting.

C Related Work

Entity-centric generative models for scene decomposition Entity-centric (or object-centric)
models use architectural inductive biases to represent perceptual inputs, such as an observa-
tion of a visual scene, in terms of separate object variables, often referred to as slots or object
files [19, 33, 26, 9, 14, 23, 3, 17, 42, 30]. Prominent examples of such models include MONet [3],
GENESIS [9], IODINE [17], and Slot Attention (SA) [28], which are trained in a fully-unsupervised
setting via a simple auto-encoding objective. Object representations and scene decomposition emerge
via the inductive bias of the model architecture (and in some cases, additional regularizers). However,
without any form of supervision, scene decompositions can be ambiguous, which is particularly
challenging for complex real-world scenes or in the presence of complicated textures. In Slot-TTA,
we aid the competition mechanism in SA to address this issue by jointly training with a supervised
segmentation loss. OSRT [34] is a cross-view geometry-free encoder-decoder method, that segments
an image into objects through reconstructing novel viewpoints. OSRT combines SA with SRT [35], a
view synthesis model that uses transformer encoder and decoders to fuse information across views, as
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well as the camera pose, without any explicit 3D information. Our multi-view RGB Slot-TTA builds
upon their architecture.

Test-time adaptation In test-time adaptation, model parameters are updated at test-time to better
generalize to the distribution shift. In recent years, there has been significant development in this
direction. Methods such as pseudo labelling and entropy minimization [36, 40, 2] have demonstrated
that supervising the model using its own confident predictions could help improve its accuracy.
Adaptive BatchNorm methods [24, 5] have shown that updating the BatchNorm parameters using
the new examples can help adaptation. Despite these successes, these methods by definition are data
inefficient as they require confident predictions or a batch of examples to adapt. Self-supervised
learning (SSL) [37, 1, 11] based methods on the other hand, have empirically shown to be data
efficient. During training, they jointly train using the task and SSL loss, and during test-time, they
train only using the SSL loss. All of the methods in the SSL setting thus far focus on the task of
classification and mainly differ in terms of the SSL loss used. For example TTT [37] uses rotation
angle prediction as their SSL loss, MT3 [1] uses a BYOL [20] loss and TTT-MAE [11] uses Masked
autoencoding loss [29]. In our work, we show that these losses do not generalize to segmentation,
and how we might need specific architectural biases to close the gap.

D Additional Experiments

D.1 Segmenting RGB images in multi-view scenes

Method in-dist (5-7 instances) out-of-dist (16-30 instances)
Fast Infer. Slow Infer. Fast Infer. Slow Infer.

Slot-TTA-SlotMixer_Decoder 0.94 0.89 0.65 0.72
Slot-TTA-SRT_Decoder 0.92 0.88 0.60 0.63

Slot-TTA-tta_All_param N/A 0.92 N/A 0.82
Slot-TTA-tta_Norm_param N/A 0.94 N/A 0.79
Slot-TTA-tta_Slot_param N/A 0.94 N/A 0.76

Slot-TTA w/o Weighted_Sample N/A 0.93 N/A 0.81

Slot-TTA (Ours) 0.92 0.95 0.70 0.83

Table 3: ARI Segmentation accuracy (higher is better) in the in-distribution test set of 5-7 object instances
and out-of-distribution 16-30 object instances.

We conduct various ablations of Slot-TTA in Table 3. In Figure 6, we show additional qualitative
results comparing Slot-TTA-Fast and Slot-TTA-Slow.

(i) We ablate different decoder choices in the topmost section where instead of using the broadcast de-
coder we use the Scene representation transformer (SRT) decoder [35] which we refer to as Slot-TTA-
SRT_Decoder or the SlotMixer decoder [34], referred to as Slot-TTA-SlotMixer_Decoder.

(ii) We ablate what parameters to adapt at test time. As it’s unclear since TENT [40] optimizes
BatchNorm or LayerNorm parameters, but TTT [37] optimizes the shared parameters between
the SSL and the task-specific branch, which in our case will be all the parameters in the network.
In Table 3, Slot-TTA-tta_All_param is when we adapt all the network parameters, Slot-TTA-
tta_Norm_param adapts only the Layer or BatchNorm parameters and Slot-TTA-tta_Slot_param
adapts only the learnable slot embeddings. We find that optimizing only the encoder parameters
works the best for our setting.

(iii) Further, we ablate error-conditioned pixel sampling where Slot-TTA w/o Weighted_Sample
refers to our model that uses uniform sampling instead of the error weighted sampling.
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Before Adaptation After Adaptation Loss & Accuracy

Figure 6: On the left, we visualize Slot-TTA-Fast. In the middle, we visualize Slot-TTA-Slow. In the first row
we visualize the ground truth target RGB views. In the second and third row we visualize Slot-TTA predicted
target RGB views and their segmentation masks. On the right-most column we visualize the RGB loss and
segmentation accuracy when doing slow inference.
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D.2 Segmenting single-view RGB images

In Figure 7 we qualitatively compare Slot-TTA-Slow with Slot-TTA-Fast. We show that slow
inference can help discover objects missed by Slot-TTA. We also show some failure cases where
slow inference could override the object-centric bottleneck to achieve higher reconstruction accuracy.

Input RGB Before adaptation After adaptation

Successes - ARI increases by 20-30%

Failures - ARI reduces by 10%

Figure 7: Success and Failure cases of slow-inference on Multi-Shape dataset. Same setting as Section 3.2
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