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ABSTRACT

Explaining deep convolutional neural networks has been recently drawing increas-
ing attention since it helps to understand the networks’ internal operations and
why they make certain decisions. Saliency maps, which emphasize salient regions
largely connected to the network’s decision-making, are one of the most common
ways for visualizing and analyzing deep networks in the computer vision com-
munity. However, saliency maps generated by existing methods cannot represent
authentic information in images due to the unproven proposals about the weights
of activation maps which lack solid theoretical foundation and fail to consider the
relations between each pixels. In this paper, we develop a novel post-hoc visual
explanation method called Shap-CAM based on class activation mapping. Un-
like previous class activation mapping based approaches, Shap-CAM gets rid of
the dependence on gradients by obtaining the importance of each pixels through
Shapley value. We demonstrate that Shap-CAM achieves better visual perfor-
mance and fairness for interpreting the decision making process. Our approach
outperforms previous methods on both recognition and localization tasks.

1 INTRODUCTION

The sensational advance of machine learning within the form of deep neural networkss has opened
up modern Artificial Intelligence (AI) capabilities in real-world applications. Deep learning models
achieve impressive results in tasks like object detection, speech recognition, machine translation,
which offer tremendous benefits. However, the connectionist approach of deep learning is funda-
mentally different from earlier AI systems where the predominant reasoning methods are logical
and symbolic. These early systems can generate a trace of their inference steps, which at that point
serves as the basis for explanation. On the other hand, the usability of today’s intelligent systems is
limited by the failure to explain their decisions to human users. This issue is particularly critical for
risk-sensitive applications such as security, clinical decision support or autonomous navigation.

For this gap, various methods have been proposed by researchers over the last few years to figure
out what knowledge is hidden in the layers and connections when utilizing deep learning models.
For example, one category of methods rationalize the decision of a model by training another deep
model which comes up with explanations why the model behaved the way it did. Another approach
was to examine the neural network models of the black box by trying to intelligently modify the
input and analyze the model’s response to it. While encouraging development has been carrying this
field forward, existing efforts are restricted and the goal of explainable deep learning still has a long
way to go, given the difficulty and wide range of issue scopes.

In the context of understanding Convolutional Neural Networks (CNNs), Zeiler & Fergus made one
of the first efforts in understanding what a CNN learns (Zeiler & Fergus, 2014). However, their
method necessitates extensive computations to generate this explanation. Using a new technique
called CAM (Class Activation Mapping), Zhou et al. followed up on the same goal and demon-
strated that various levels of the CNN functioned as unsupervised object detectors (Zhou et al.,
2016). They were able to obtain heat maps that illustrate which regions of an input image were
looked at by the CNN for assigning a label by employing a global average pooling layer and show-
ing the weighted combination of the resulting feature maps at the penultimate (pre-softmax) layer.
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However, this technique was architecture-sensitive and involved retraining a linear classifier for each
class. Similar methods were examined with different pooling layers such as global max pooling and
log-sum-exp pooling (Oquab et al., 2015; Pinheiro & Collobert, 2015). After that, Selvaraju et al.
developed Grad-CAM, an efficient version of CAM that combines the class-conditional property of
CAM with current pixel-space gradient visualization techniques like Guided Back-propagation and
Deconvolution to emphasize fine-grained elements on the image (Selvaraju et al., 2016). Grad-CAM
improved the transparency of CNN-based models by displaying input regions with high resolution
details that are critical for prediction. Grad-CAM++, one of the variations of Grad-CAM, introduce
pixel-wise weighting of the gradients of the output w.r.t. a particular spatial position in the final
convolutional feature map of the CNN (Chattopadhay et al., 2018). In Grad-CAM++, more reliable
expressions for the pixel-wise weights were derived. However, gradient-based CAM methods can-
not represent authentic information in images due to the unproven proposals about the weights of
activation maps.

To this end, Wang et al. proposed Score-CAM which got rid of the dependence on gradients by
obtaining the weight of each activation map through its forward passing score on target class (Wang
et al., 2020). Though Score-CAM discarded gradients for generating explanations, it still suffered
from self designed expression of score which lacked solid theoretical foundation and failed to take
the relationship between pixels into consideration. In this work, we present a new post-hoc visual ex-
planation method, named Shap-CAM, where the importance of pixels is derived from their marginal
contribution to the model output utilizing Shapley value. Our contributions are:

• We propose a novel gradient-free visual explanation method, Shap-CAM, which introduce
Shapley value in the cooperative game theory to estimate the marginal contribution of pix-
els. Due to the superiority of Shapley value and the consideration of relationship between
pixels, more rational and accurate contribution of each pixel is obtained.

• We quantitatively evaluate the generated saliency maps of Shap-CAM on recognition and
localization tasks and show that Shap-CAM better discovers important features.

• We show that in a constrained teacher-student setting, it is possible to achieve an improve-
ment in the performance of the student by using a specific loss function inspired from the
explanation maps generated by Shap-CAM, which indicates that our explanations discover
authentic semantic information mined in images.

The remainder of the paper is organized as follows. In Section 2, we introduce the related work about
visual explanations and Shapley value. In Section 3, we develop our Shap-CAM for the generation
of visual explanations based on Shapley value. In Section 4, we present some experimental results
on recognition and localization tasks and show the effectiveness of our proposed method. We finish
the paper with final conclusions and remarks.

2 RELATED WORK

2.1 VISUAL EXPLANATIONS

We give a summary of related attempts in recent years to understand CNN predictions in this part.
Zeiler et al. provided one of the earliest initiatives in this field, developing a deconvolution approach
to better grasp what the higher layers of a given network have learned (Zeiler & Fergus, 2014).
Springenberg et al. extended this work to guided backpropagation, which allowed them to better
comprehend the impact of each neuron in a deep network on the input image (Springenberg et al.,
2014). From a different perspective, Ribeiro et al. introduced LIME (Local Interpretable Model-
Agnostic Explanations), an approach that uses smaller interpretable classifiers like sparse linear
models or shallow decision trees to make a local approximation to the complex decision surface of
any deep model (Ribeiro et al., 2016). Shrikumar et al. presented DeepLift, which approximates the
instantaneous gradients (of the output with respect to the inputs) with discrete gradients to determine
the relevance of each input neuron for a given decision (Shrikumar et al., 2017). Al-Shedivat et
al. presented Contextual Explanation Networks (CENs), a class of models that learns to anticipate
and explain its decision simultaneously (Al-Shedivat et al., 2017). Unlike other posthoc model-
explanation tools, CENs combine deep networks with context-specific probabilistic models to create
explanations in the form of locally-correct hypotheses.
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Class Activation Mapping (CAM) (Zhou et al., 2016) is a technique for discovering discriminative
regions and giving understandable explanations of deep models across domains. In CAM, the au-
thors demonstrate that a CNN with a Global Average Pooling (GAP) layer after the last convolutional
layer shows localization capabilities despite not being explicitly trained to do so. The CAM expla-
nation regards the importance of each channel as the weight of fully connected layer connecting the
global average pooling and the output probability distribution. However, an obvious limitation of
CAM is the requirements of a GAP penultimate layer and retraining of an additional fully connected
layer. To resolve this problem, Grad-CAM (Selvaraju et al., 2016) extends the CAM explanation and
regards the importance of each channel as the gradient of class confidence w.r.t. the activation map.
In Grad-CAM, the authors naturally regard gradients as the importance of each channel towards the
class probability, which avoids any retraining or model modification. Variations of Grad-CAM, like
Grad-CAM++ (Chattopadhay et al., 2018), use different combinations of gradients and revise the
weights for adapting the explanations to different conditions.

However, gradient-based CAM methods do not have solid theoretical foundation and receive poor
performances when the gradients are not reliable. Adversarial model manipulation methods fool
the explanations by manipulating the gradients without noticeable modifications to the original im-
ages (Heo et al., 2019), proving that the gradient-based CAM methods are not robust and reliable
enough. Score-CAM gets rid of the dependence of gradients and introduces channel-wise increase
of confidence as the importance of each channel (Wang et al., 2020). Score-CAM obtains the weight
of each activation map through its forward passing score on target class, the final result is obtained
by a linear combination of weights and activation maps. This approach however suffers from self
designed expression of score which lacked solid theoretical foundation. Besides, it fails to consider
the relationship between different pixels.

2.2 SHAPLEY VALUE

One of the most important solution concepts in cooperative games was defined by Shapley (Shapley,
1953). This solution concept is now known as the Shapley value. The Shapley value is useful when
there exists a need to allocate the worth that a set of players can achieve if they agree to cooperate.
Although the Shapley value has been widely studied from a theoretical point of view, the problem of
its calculation still exists. In fact, it can be proved that the problem of computing the Shapley value
is an NP-complete problem (Deng & Papadimitriou, 1994).

Several authors have been trying to find algorithms to calculate the Shapley value precisely for
particular classes of games. In Bilbao et al. for example, where a special class of voting game
is examined, theoretical antimatriod concepts are used to polynomially compute the Shapley value
(Fernández et al., 2002). In Granot et al. a polynomial algorithm is developed for a special case of
an operation research game (Granot et al., 2002). In Castro et al., it is proved that the Shapley value
for an airport game can be computed in polynomial time by taking into account that this value is
obtained using the serial cost sharing rule (Castro et al., 2008).

Considering the wide application of game theory to real world problems, where exact solutions are
often not possible, a need exists to develop algorithms that facilitate this approximation. Although
the multilinear extension defined by Owen is an exact method for simple games (Owen, 1972), the
calculation of the corresponding integral is not a trivial task. So, when this integral is approximated
(using the central limit theorem) this methodology could be considered as an approximation method.
In Fatima et al. , a randomized polynomial method for determining the approximate Shapley value
is presented for voting games (Fatima et al., 2006). Castro et al. develop an efficient algorithm that
can estimate the Shapley value for a large class of games (Castro et al., 2009). They use sampling to
estimate the Shapley value and any semivalues. These estimations are efficient if the worth of any
coalition can be calculated in polynomial time.

In this work, we propose a new post-hoc visual explanation method, named Shap-CAM, where
the importance of pixels is derived from their marginal contribution to the model output utilizing
Shapley value. Due to the superiority of Shapley value and the consideration of relationship between
pixels, more rational and accurate explanations are obtained.
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3 APPROACH

In this section, we first present the prelimilaries of visual explanations and the background the CAM
methods. Then we introduce the Shapley Value (Shapley, 1953), a way to quantify the marginal
contribution of each player in the cooperative game theory. We apply this theory to our problem
and propose the definition of Shap-CAM. Finally, we clarify the estimation of Shapley value in our
method.

3.1 PRELIMILARIES

Class Activation Mapping (CAM) (Zhou et al., 2016) is a technique for discovering discriminative
regions and giving understandable explanations of deep CNN across domains. Let function Y =
f(X) be a CNN which takes X as an input data point and outputs a probability distribution Y . We
denote Y c as the probability of class c. For the last convolutional layer, Ak denotes the feature map
of the k-th channel.

In CAM, the authors demonstrate that a CNN with a Global Average Pooling (GAP) layer after
the last convolutional layer shows localization capabilities despite not being explicitly trained to
do so.However, an obvious limitation of CAM is the requirements of a GAP penultimate layer and
retraining of an additional fully connected layer. To resolve this problem, Grad-CAM (Selvaraju
et al., 2016) extends the CAM explanation and regards the importance of each channel as the gradient
of class confidence Y w.r.t. the activation map A, which is defined as:

Lcij, Grad−CAM = ReLU
(∑

k

wckA
k
ij

)
(1)

where

wck =
1

Z

∑
i

∑
j

∂Y c

∂Akij
(2)

Constant Z stands for the number of pixels in the activation map. In Grad-CAM, the authors natu-
rally regard gradients as the importance of each channel towards the class probability, which avoids
any retraining or model modification. Variations of Grad-CAM, like Grad-CAM++ (Chattopadhay
et al., 2018), use different combinations of gradients and revise wck in Equation 1 for adapting the
explanations to different conditions.

However, gradient-based CAM methods do not have solid theoretical foundation and receive poor
performances when the gradients are not reliable. Adversarial model manipulation methods (Heo
et al., 2019) fool the explanations by manipulating the gradients without noticeable modifications
to the original images, proving that the gradient-based CAM methods are not robust and reliable
enough. Score-CAM (Wang et al., 2020) gets rid of the dependence of gradients and introduces
channel-wise increase of confidence as the importance of each channel. This approach however
suffers from self designed expression of score which lacked solid theoretical foundation. Besides, it
fails to consider the relationship between different pixels.

3.2 DEFINITION OF SHAPCAM

In order to obtain more accurate and rational estimation of the marginal contribution of each pixel
to the model output, we turn to the cooperative game theory. One of the most important solution
concepts in cooperative games was defined by Shapley (Shapley, 1953). This solution concept is
now known as the Shapley value. The Shapley value is useful when there exists a need to allocate
the worth that a set of players can achieve if they agree to cooperate. Consider a set of n players
P and a function f(S) which represents the worth of the subset s of players S ⊆ P. The function
f : P → R maps each subset to a real number. Shapley Value is one way to quantify the marginal
contribution of each player to the result f(P) of the game when all players participate. For a given
player i, its Shapley value can be computed as:

Shi(f) =
∑

S⊆P,i/∈S

(n− s− 1)!s!

n!

[
f(S ∪ {i})− f(S)

]
, i = 1, . . . , n (3)
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The Shapley value for player i defined above can be interpreted as the average marginal contribution
of player i to all possible coalitions S that can be formed without it.

Notably, it can be proved that Shapley value is the only way of assigning attributions to players that
satisfies the following four properties:

• Null player. If the class probability does not depend on any pixels, then its attribution
should always be zero.

• Symmetry. If the class probability depends on two pixels but not on their order (i.e. the
values of the two pixels could be swapped, never affecting the probability), then the two
pixels receive the same attribution. This property, also called anonymity , is arguably a
desirable property for any attribution method: if two players play the exact same role in the
game, they should receive the same attribution.

• Linearity. If the function f can be seen as a linear combination of the functions of two sub-
networks (i.e. f = af1 + bf2), then any attribution should also be a linear combination,
with the same weights, of the attributions computed on the sub-networks, i.e. Shi(x|f) =
a·Shi(x|f1)+b·Shi(x|f2). Intuitively, this is justified by the need for preserving linearities
within the network.

• Efficiency. An attribution method satisfies efficiency when attributions sum up to the differ-
ence between the value of the function evaluated at the input, and the value of the function
evaluated at the baseline, i.e.

∑n
i=1 Shi = ∆f = f(x)− f(0). In our problem, this prop-

erty indicates that all the attributions of the pixels sum up to the difference between the
output probability of the original feature map and the output of the feature map where no
original pixels remain. This property, also called completeness or conservation, has been
recognized by previous works as desirable to ensure the attribution method is comprehen-
sive in its accounting. If the difference ∆f > 0, there must exist some pixels assigned a
non-zero attribution, which is not necessarily true for gradient-based methods.

Back to our problem on class activation mapping, we consider each pixel (i, j) in the feature map of
the last convolutional layer A as a player in the cooperative game. Let P = {(i, j)|i = 1, . . . , h; j =
1, . . . , w} be the set of pixels in the feature map A, where h,w stand for the height and width of the
feature map. Let n = h · w be the number of pixels in the activation map. We then define the worth
function f in Equation 3 as the class confidence Y c, where c is the class of interest. For each subset
S ⊆ P, Y c(S) represents the output probability of class c when only the pixels in the set S remain.
By the symbolization above, the original problem turns to an n-player game (P, Y c). Naturally, the
Shapley Value of the pixel (i, j) represents its marginal contribution to the class confidence. Thus,
we define the Shapley Value as the saliency map of our Shap-CAM:

Lcij, Shap−CAM = Sh(i,j)(Y
c)

=
∑

S⊆P,(i,j)/∈S

(n− s− 1)!s!

n!

[
Y c(S ∪ {(i, j)})− Y c(S)

] (4)

The contribution formula that uniquely satisfies all these properties is that a component’s contri-
bution is its marginal contribution to the performance of every subnetwork of the original model
(normalized by the number of subnetworks with the same cardinality). Most importantly, this for-
mula takes into account the interactions between neurons. As a simple example, suppose there are
two neurons that improve performance only if they are both present or absent and harm performance
if only one is present. The equation considers all these possible settings. This, to our knowledge, is
one of the few methods that take such interactions into account and is inspired by similar approaches
in Game Theory.

Shapley value was introduced as an equitable way of sharing the group reward among the players
where equitable means satisfying the aforementioned properties. It’s possible to make a direct map-
ping between our setting and a cooperative game; therefore, proving the uniqueness of Shap-CAM.

3.3 ESTIMATION OF SHAPLEY VALUE

Exactly computing Equation 3 would requireO(2n) evaluations. Intuitively, this is required to eval-
uate the contribution of each activation with respect to all possible subsets that can be enumerated
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with the other ones. Clearly, the exact computation of Shapley values is computationally unfeasible
for real problems. Sampling is a process or method of drawing a representative group of individuals
or cases from a particular population. Sampling and statistical inference are used in circumstances
in which it is impractical to obtain information from every member of the population. Taking this
into account, we use sampling in this paper to estimate the Shapley value and any semivalues. These
estimations are efficient if the worth of any coalition can be calculated in polynomial time. Here we
use a sampling algorithm to estimate Shapley value which reduces the complexity toO(Kn), where
K is the number of samples taken (Castro et al., 2009).

Following the definition of Shapley value in Equation 3, an alternative definition of the Shapley value
can be expressed in terms of all possible orders of the players. Let O : {1, . . . , n} → {1, . . . , n} be
a permutation that assigns to each position k the player O(k). Let us denote by π(P) the set of all
possible permutations with player set P. Given a permutation O, we denote by Prei(O) the set of
predecessors of the player i in the order O, i.e. Prei(O) = {O(1), . . . , O(k − 1)}, if i = O(k).

Thus, the Shapley value can be expressed equivalently in the following way:

Shi(f) =
1

n!

∑
O∈π(P)

[
f(Prei(O) ∪ {i})− f(Prei(O))

]
, i = 1, . . . , n (5)

In estimation, we randomly take K samples of player order O from π(P), calculate the marginal
contribution of the players in the order O, which is defined in the summation of Equation 5, and
finally average the marginal contributions as the approximation.

Then we will obtain, in polynomial time, an estimation of the Shapley value with some desirable
properties. To estimate the Shapley value, we will use a unique sampling process for all players.
The sampling process is defined as follows:

(1) The population of the sampling process P will be the set of all possible orders of N players.

(2) The vector parameter under study is Sh = (Sh1, . . . , Shn).

(3) The characteristics observed in each sampling unit are the marginal contributions of the players
in the order O, i.e.

χ(O) = (χ(O)1, . . . , χ(O)n)

where χ(O)i = f(Prei(O) ∪ {i})− f(Prei(O))
(6)

(4) The estimate of the parameter will be the mean of the marginal contributions over the sampleM .

4 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness of the proposed explanation
method. First, we assess the fairness of the explanation (the significance of the highlighted region for
the model’s decision) on image recognition in Section 4.1. In Section 4.2 we show the effectiveness
for class-conditional localization of objects in a given image. The knowledge distillation experiment
is followed in Section 4.3.

In the following experiments, unless stated otherwise, we use pre-trained VGG16 network (Si-
monyan & Zisserman, 2014) from the Pytorch model zoo as a base model. Publicly available object
classification dataset, namely, ILSVRC2012 val (Russakovsky et al., 2015) is used in our experi-
ment. For the input images, we resize them to (224 × 224 × 3), transform them to the range [0,
1], and then normalize them using mean vector [0.485, 0.456, 0.406] and standard deviation vector
[0.229, 0.224, 0.225]. For simplicity, baseline image Xb is set to 0.

4.1 FAITHFULNESS EVALUATION VIA IMAGE RECOGNITION

The faithfulness evaluations are carried out as depicted in Grad-CAM++ (Chattopadhay et al., 2018)
for the purpose of object recognition. The original input is masked by point-wise multiplication with
the saliency maps to observe the score change on the target class. In this experiment, rather than do
point-wise multiplication with the original generated saliency map, we slightly modify by limiting
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Table 1: Recognition evaluation results on the ImageNet (ILSVRC2012) validation set (lower is
better in Average Drop, higher is better in Average Increase).

Method Mask RISE GradCAM GradCAM++ ScoreCAM ShapCAM

Average Drop(%) 63.5 47.0 47.8 45.5 31.5 28.0
Average Increase(%) 5.29 14.0 19.6 18.9 30.6 31.8

Table 2: Recognition evaluation results on the PASCAL VOC 2007 validation set (lower is better in
Average Drop, higher is better in Average Increase).

Method GradCAM GradCAM++ ScoreCAM ShapCAM

Average Drop(%) 28.5 19.5 15.6 13.2
Average Increase(%) 21.4 19.0 28.9 32.7

the number of positive pixels in the saliency map. Two metrics called Average Drop, Average
Increase In Confidence are introduced:

• Average Drop %: The Average Drop refers to the maximum positive difference in the pre-
dictions made by the prediction using the input image and the prediction using the saliency

map. It is given as:
∑N
i=1

max(0, Y ci −Oci )
Y ci

×100. Here, Y ci refers to the prediction score

on class c using the input image i and Oci refers to the prediction score on class c using the
saliency map produced over the input image i.

• Increase in Confidence %: In this metric, we measure the number of times in the entire
dataset, the model’s confidence increased when providing only the explanation map regions

as input. The Average Increase in Confidence is denoted as:
∑N
i=1

sign(Y ci < Oci )

N
× 100.

sign presents an indicator function that returns 1 if input is True.

Our comparison extends with state-of-the-art methods, namely gradient-based, perturbation-based
and CAM-based methods, including Mask (Fong & Vedaldi, 2017), RISE (Petsiuk et al., 2018),
Grad-CAM (Selvaraju et al., 2016) and Grad-CAM++ (Chattopadhay et al., 2018). Experiment con-
ducts on the ImageNet (ILSVRC2012) validation set, 2000 images are randomly selected. Results
are reported in Table 1. Results on the PASCAL VOC 2007 validation set are reported in Table 2.

As shown in Table 1 and Table 2, Shap-CAM outperforms other perturbation-based and CAM-based
methods. Shap-CAM can successfully locate the most distinguishable part of the target item, rather
than only determining what humans think is important, based on its performance on the recognition
challenge. Results on the recognition task show that Shap-CAM can more accurately reveal the
decision-making process of the original CNN model than earlier techniques.

4.2 LOCALIZATION EVALUATION

Bounding box evaluations are accomplished in this section. We employ the similar metric, as spec-
ified in Score-CAM, called the Energy-based pointing game. Here, the amount of energy of the
saliency map is calculated by finding out how much of the saliency map falls inside the bound-
ing box. Specifically, the input is binarized with the interior of the bounding box marked as 1
and the region outside the bounding box as 0. Then, this input is multiplied with the generated
saliency map and summed over to calculate the proportion ratio, which given as Proportion =∑

Lc
(i,j)∈bbox∑

Lc
(i,j)∈bbox

+
∑
Lc

(i,j)/∈bbox
. Two pre-trained models, namely VGG-16 (Simonyan & Zisserman,

2014), ResNet18 (He et al., 2016), are used to conduct the energy-based pointing game on the
2000 randomly chosen images from the ILSVRC 2012 Validation set.

As we observe, the object comprises the majority of the image region in the ILSVRC validation set,
making these images unsuitable for assessing the localization capabilities of the generated saliency
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Table 3: Localization Evaluations of Proportion (%) using Energy-based Pointing Game (Higher the
better).

Method GradCAM GradCAM++ ScoreCAM ShapCAM

VGG-16 39.95 40.16 40.10 40.45
ResNet18 40.90 40.85 40.76 41.28

Table 4: Results for knowledge distillation to train a student from a deeper teacher network.

Loss function used Test error rate
w/o LKD w/ LKD

Lcross ent 6.78 5.68
Lexp student(Grad-CAM) 6.86 5.80
Lexp student(Grad-CAM++) 6.74 5.56
Lexp student(Score-CAM) 6.75 5.42
Lexp student(Shap-CAM) 6.69 5.37

maps. Therefore, we randomly select images from the validation set by removing images where
object occupies more than 50% of the whole image. For convenience, we only consider these images
with only one bounding box for target class. We experiment on 500 random selected images from the
ILSVRC 2012 validation set. Evaluation result is reported in Table 3, which shows that our method
outperforms previous works. This also confirms that the Shap-CAM-generated saliency map has
fewer noises.

4.3 LEARNING FROM EXPLANATIONS: KNOWLEDGE DISTILLATION

Following the knowledge distillation experiment settings in Grad-CAM++ (Chattopadhay et al.,
2018), we show that in a constrained teacher-student learning setting, knowledge transfer to a shal-
low student (commonly called knowledge distillation) is possible from the explanation of CNN
decisions generated by CAM methods. Wide ResNets (Zagoruyko & Komodakis, 2016) for both
the student and teacher networks. We train a WRN-40-2 teacher network (2.2 M parameters) on the
CIFAR-10 dataset. In order to train a student WRN- 16-2 network (0.7 M parameters), we introduce
a modified loss Lexp student, which is a weighted combination of the standard cross entropy loss
Lcross ent and an interpretability loss Linterpret.

Table 4 shows the results for this experiment. Lcross ent is the normal cross entropy loss function,
i.e. the student network is trained independently on the dataset without any intervention from the
expert teacher. We further also included LKD, the knowledge distillation loss introduced by Hinton
et al. with temperature parameter set to 4 (Hinton et al., 2015). These results show that Shap-CAM
provides better explanation-based knowledge distillation than existing CAM-based methods.

5 CONCLUSION

We propose Shap-CAM, a novel CAM variant, for visual explanations of deep convolutional net-
works. We introduce Shapley value to represent the marginal contribution of each pixel to the
model output. Due to the superiority of Shapley value and the consideration of relationship be-
tween pixels, more rational and accurate explanations are obtained. We present evaluations of the
generated saliency maps on recognition and localization tasks and show that Shap-CAM better dis-
covers important features. In a constrained teacher-student setting, our Shap-CAM provides better
explanation-based knowledge distillation than the state-of-the-art explanation approaches.
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