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ABSTRACT
Given a graph learning task, such as link prediction, on a new graph, how can we
select the best method as well as its hyperparameters (collectively called a model)
without having to train or evaluate any model on the new graph? Model selection
for graph learning has been largely ad hoc. A typical approach has been to apply
popular methods to new datasets, but this is often suboptimal. On the other hand,
systematically comparing models on the new graph quickly becomes too costly,
or even impractical. In this work, we develop the first meta-learning approach for
evaluation-free graph learning model selection, called METAGL, which utilizes
the prior performances of existing methods on various benchmark graph datasets
to automatically select an effective model for the new graph, without any model
training or evaluations. To quantify similarities across a wide variety of graphs, we
introduce specialized meta-graph features that capture the structural characteristics
of a graph. Then we design G-M network, which represents the relations among
graphs and models, and develop a graph-based meta-learner operating on this G-M
network, which estimates the relevance of each model to different graphs. Extensive
experiments show that using METAGL to select a model for the new graph greatly
outperforms several existing meta-learning techniques tailed for graph learning
model selection (up to 47% better), while being extremely fast at test time (∼1 sec).

1 INTRODUCTION

Given a graph learning (GL) task, such as link prediction, for a new graph dataset, how can we
select the best method as well as its hyperparameters (HPs) (collectively called a model) without
performing any model training or evaluations on the new graph? GL has received increasing attention
recently (Zhang et al., 2022), achieving successes across various applications, e.g., recommendation
and ranking (Fan et al., 2019; Park et al., 2020), traffic forecasting (Jiang & Luo, 2021), bioinformat-
ics (Su et al., 2020), and question answering (Park et al., 2022). However, as GL methods continue to
be developed, it becomes increasingly difficult to determine which model to use for the given graph.

Model selection (i.e., selecting a method and its configuration such as HPs) for graph learning has
been largely ad hoc to date. A typical approach, called “no model selection”, is to simply apply
popular methods to new graphs, often with the default HP values. However, it is well known that there
is no universal learning algorithm that performs best on all problem instances (Wolpert & Macready,
1997), and such consistent model selection is often suboptimal. At the other extreme lies “naive model
selection” (Fig. 1b), where all candidate models are trained on the new graph, evaluated on a hold-out
validation graph, and then the best performing model for the new graph is selected. This approach is
very costly as all candidate models are trained when a new graph arrives. Recent methods on neural
architecture search (NAS) and hyperparameter optimization (HPO) of GL methods, which we review
in Section 3, adopt smarter and more efficient strategies, such as Bayesian optimization (Snoek et al.,
2012; Tu et al., 2019), which carefully choose a relatively small number of HP settings to evaluate.
However, they still need to evaluate multiple configurations of each GL method on the new graph.

Evaluation-free model selection is yet another paradigm, which aims to tackle the limitations of the
above approaches by attempting to simultaneously achieve the speed of no model selection and the
accuracy of exhaustive model selection. Recently, a seminal work by Zhao et al. (2021) proposed a
technique for outlier detection (OD) model selection, which carries over the observed performance of
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Figure 1: (a) Given an unseen graph G and a large space M of models to search over, METAGL
efficiently infers the best modelM∗ ∈M without having to train a single model from M on the new
graphG. (b) Existing approaches, by contrast, need to train and evaluate multiple modelsMi ∈M to
be able to select the best one. (c) Given observed performance with varying sparsity levels, METAGL
consistently outperforms existing meta-learners, with up to 47% better model selection performance.

OD methods on benchmark datasets for selecting OD methods. However, it does not address the
unique challenges of GL model selection, and cannot be directly used to solve the problem. Inspired
by this work, we systematically tackle the model selection problem for graph learning, especially
link prediction. We choose link prediction as it is a key task for graph-structured data: It has many
applications (e.g., recommendation, knowledge graph reasoning, and entity resolution), and several
inference and learning tasks can be cast as a link prediction problem (e.g., Fadaee & Haeri (2019)).
In this work, we develop METAGL, the first meta-learning framework for evaluation-free selection
of graph learning models, which finds an effective GL model to employ for a new graph without
training or evaluating any GL model on the new graph, as Figure 1a illustrates. METAGL satisfies all
of desirable features for GL model selection listed in Table 1, while no existing paradigms satisfy all.

The high-level idea of meta-learning based model selection is to estimate a candidate model’s perfor-
mance on the new graph based on its observed performances on similar graphs. Our meta-learning
problem for graph data presents a unique challenge of how to model graph similarities, and what
characteristic features (i.e., meta-features) of a graph to consider. Note that this step is often not
needed for traditional meta-learning problems on non-graph data, as features for non-graph objects
(e.g., location, age of users) are often readily available. Also, the high complexity and irregularity of
graphs (e.g., different number of nodes and edges, and widely varying connectivity patterns among
different graphs) makes the task even more challenging. To handle these challenges, we design
specialized meta-graph features that can characterize major structural properties of real-world graphs.

Then to estimate the performance of a candidate model on a given graph, METAGL learns to embed
models and graphs in the shared latent space such that their embeddings reflect the graph-to-model
affinity. Specifically, we design a multi-relational graph called G-M network, which captures multiple
types of relations among models and graphs, and develop a meta-learner operating on this G-M
network, based on an attentive graph neural network that is optimized to leverage meta-graph features
and prior model performance into producing model and graph embeddings that can be effectively used
to estimate the best performing model for the new graph. METAGL greatly outperforms existing meta-
learners in GL model selection (Fig. 1c). In sum, the key contributions of this work are as follows.
• Problem Formulation. We formulate the problem of selecting effective GL models in an

evaluation-free manner (i.e., without ever having to train/evaluate any model on the new graph),
To the best of our knowledge, we are the first to study this important problem.

• Meta-Learning Framework and Features. We propose METAGL, the first meta-learning frame-
work for evaluation-free GL model selection. For meta-learning on various graphs, we design meta-
graph features that quantify graph similarities by capturing structural characteristics of a graph.

• Effectiveness. Using METAGL for GL model selection greatly outperforms existing meta-learning
techniques (up to 47% better, Fig. 1c), with negligible runtime overhead at test time (∼1 sec).

Benchmark Data/Code: To facilitate further research on this important new problem, we release
code and data at https://github.com/NamyongPark/MetaGL, including performances of
400+ models on 300+ graphs, and 300+ meta-graph features.
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Table 1: The proposed METAGL wins on features in comparison to existing graph learning (GL)
model selection (MS) paradigms, all of which fail to satisfy some of desirable properties for GL MS.

Desiderata for Graph Learning (GL) MS

GL Model Selection (MS) Paradigms No model
selection

Naive model
selection (Fig. 1b)

Graph HPO/NAS
(e.g., AutoNE, AGNN;
See Sec 3 and Fig. 1b)

METAGL
(Ours, Fig. 1a)

Evaluation-free GL model selection X !

Capable of MS from among multiple GL algorithms X !

Capitalizing on graph similarities for GL MS !

Estimating model performance based on past observations X !

2 PROBLEM FORMULATION

Given a new unseen graph, our goal is to select the best model from a heterogeneous set of graph
learning models, without requiring any model evaluations and user intervention. In comparison to
traditional meta-learning problems where a model denotes a single method and its hyperparameters,
a model in the graph meta-learning problem is more broadly defined to be

model M = {(graph embedding method, hyperparameters), (predictor, hyperparameters)}, (1)

as graph learning tasks usually involve two steps: (1) embedding the graph using a graph representation
learning method, and (2) providing node embeddings to the predictor of a downstream task like link
prediction. Both steps require learning a method with specific hyperparameters. Thus, there can be
many models with the same embedding method and predictor, which have different hyperparameters.
Also, the set M of models may contain many different graph representation learning methods (e.g.,
node2vec (Grover & Leskovec, 2016), GraphSAGE (Hamilton et al., 2017), DeepGL (Rossi et al.,
2020) to name a few), as well as multiple task-specific predictors, making M heterogeneous.

Given a training meta-corpus of n graphs G = {Gi}ni=1, andmmodels M = {Mj}mj=1 for GL tasks,
we derive performance matrix P ∈ Rn×m where Pij is the performance (e.g., accuracy) of model j
on graph i. Our meta-learning problem for evaluation-free GL model selection is defined as follows.

Problem 1 (Evaluation-Free Graph Learning Model Selection).

Given
• an unseen test graph Gtest /∈ G, and
• a potentially sparse performance matrix P ∈ Rn×m of m heterogeneous graph learning models
M = {M1, . . . ,Mm} on n graphs G = {G1, . . . , Gn},

Select
• the best model M∗ ∈M to employ on Gtest without evaluating any model in M on Gtest.

3 RELATED WORK

A majority of works on GL focus on developing new algorithms for certain graph tasks and applica-
tions (Xia et al., 2021; Zhang et al., 2022). In comparison, there exist relatively few recent works
that address the GL model selection problem (Zhang et al., 2021). They mainly focus on neural
architecture search (NAS) and hyperparameter optimization (HPO) for GL models, especially graph
neural networks (GNNs). Toward efficient and effective NAS and HPO in GL, they investigated
several approaches, such as Bayesian optimization (AutoNE by Tu et al. (2019)), reinforcement learn-
ing (GraphNAS by Gao et al. (2020), AGNN by Zhou et al. (2019), Policy-GNN by Lai et al. (2020)),
hypernets (ST-GCN by Zhu et al. (2021)), and evolutionary algorithms (Bu et al. (2021)), as well as
techniques like subgraph sampling (AutoNE by Tu et al. (2019)), graph coarsening (JITuNE by Guo
et al. (2021)), and hierarchical evaluation (HESGA by Yuan et al. (2021)). However, as summarized
in Table 1, these methods cannot perform evaluation-free GL model selection (Problem 1), since they
need to evaluate multiple configurations of each GL method on the new graph for model selection.
Further, they are limited to finding the best configuration of a single algorithm, and thus cannot select
a model from a heterogeneous model set M with various GL models, as Problem 1 requests. An
earlier work on GNN design space (You et al., 2020) is somewhat relevant, as it proposes an approach
to quantify graph similarities, which can be used to find an observed graph similar to the test graph,
and select a model that performed best on it. However, their approach evaluates a set of anchor models
on all graphs, and computes similarities between two graphs based on anchor models’ performance
on them. As it needs to run anchor models on the new graph, it is inapplicable to Problem 1. For the
first time, METAGL enables evaluation-free model selection from a heterogeneous set of GL models.
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Figure 2: Given a new graph G, METAGL extracts meta-graph features, and applies a meta-learned
model to them, which efficiently infers the best model M∗ ∈M for G, with no model evaluation.

4 FRAMEWORK

In this section, we present METAGL, our meta-learning based framework that solves Problem 1
by leveraging prior performances of existing methods. METAGL consists of two phases: (1) offline
meta-training phase (Section 4.1) that trains a meta-learner using observed graphs G and model
performances P, and (2) online model prediction phase (Section 4.2), which selects the best model
for the new graph. A summary of notations used in this work is provided in Table 3 in the Appendix.

4.1 OFFLINE META-TRAINING

Meta-learning leverages prior experience from related learning tasks to do a better job on the new
task. When the new task is similar to some historical learning tasks, then the knowledge from those
similar tasks can be transferred and applied to the new task. Thus effectively capturing the similarity
between an input task and observed ones is fundamentally important for successful meta-learning. In
meta-learning, the similarity between learning tasks is modeled using meta-features, i.e., characteristic
features of the learning task that can be used to quantify the task similarity.

Meta-Graph Features. Given the graph learning model selection problem (where new graphs
correspond to new learning tasks), METAGL captures the graph similarity by extracting meta-graph
features such that they reflect the structural characteristics of a graph. Notably, since graphs have
irregular structure, with different number of nodes and edges, METAGL designs meta-graph features
to be of the same size for any arbitrary graph such that they can be easily compared using meta-graph
features. We use the symbol m ∈ Rd to denote the fixed-size meta-graph feature vector of graph G.
We defer the details of how METAGL computes m to Section 4.3.

Model Performance Estimation. To estimate how well a model would perform on a given graph,
METAGL represent models and graphs in the latent k-dimensional space, and captures the graph-
to-model affinity using the dot product similarity between the two representations hGi and hMj

of the i-th graph Gi and j-th model Mj , respectively, such that pij ≈ 〈hGi ,hMj 〉 where pij is the
performance of model Mj on graph Gi. Then to obtain the latent representation h, we design a
learnable function f(·) that takes in relevant information on models and graphs from the meta-graph
features m and the prior knowledge (i.e., model performances P and observed graphs G). Below in
this section, we focus on the inputs to the function f(·), and defer the details of f(·) to Section 4.4.

We first factorize performance matrix P into latent graph factors U ∈ Rn×k and model factors
V ∈ Rm×k, and take the model factor Vj ∈ Rk (the j-th row of V) as the input representation
of model Mj . Then, METAGL obtains the latent embedding hMj of model Mj by hMj = f(Vj).
For graphs, more information is available since we have both meta-graph features m and meta-train
graph factors U. However, while we have the same number of models during training and inference,
we observe new graphs during inference, and thus cannot obtain the graph factor Utest for the
test graph as for the train graphs since matrix factorization (MF) is transductive by construction
(i.e., existing models’ performance on the test graph is needed to get latent factors for the test
graph directly via MF). To handle this issue, we learn an estimator φ : Rd 7→ Rk that maps the
meta-graph features m into the latent factors of meta-train graphs obtained via MF above (i.e., for
graph Gi with m, φ(m) = Ûi ≈ Ui) and use this estimated graph factor. We then combine both
inputs ([m;φ(m)] ∈ Rd+k), and apply linear transformation to make the input representation of
graph Gi to be of the same size as that of model Mj , obtaining the latent embedding of graph Gi
to be hGi = f(W[m;φ(m)]) where W ∈ Rk×(d+k) is a weight matrix. Thus in METAGL, the
performance pij of model Mj on graph Gi with meta-graph features m is estimated as

pij ≈ p̂ij = 〈f(W[m;φ(m)]), f(Vj)〉. (2)

Meta-Learning Objective. For tasks where the goal is to estimate real values, such as accuracy, the
mean squared error (MSE) is a typical choice for the loss function. While MSE is easy to optimize and
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effective for regression, it does not directly take the ranking quality into account. By contrast, in our
problem setup, accurately ranking models for each graph dataset is more important than estimating
the performance itself, which makes MSE a suboptimal choice. In particular, Problem 1 focuses on
finding the model with the best performance on the given graph. Therefore, we consider rank-based
learning objectives, and among them, we adapt the top-1 probability to the proposed Problem 1 as
follows. Let P̂i ∈ Rm be the i-th row of P̂ (i.e., estimated performance of all m models on graph
Gi). Given P̂i, the top-1 probability pP̂i

top1(j) of j-th model Mj in the model set M is defined to be

pP̂i
top1 (j) =

π(p̂ij)∑m
k=1 π(p̂ik)

=
exp(p̂ij)∑m
k=1 exp(p̂ik)

(3)

where π(·) is an increasing, strictly positive function, which we define to be an exponential function.

Theorem 1 (Cao et al. (2007)). Given the performance P̂i of all models on graph Gi, pP̂i
top1(j)

represents the probability of model Mj to be ranked at the top of the list (i.e., all models in M).

Top-1 probabilities pP̂i
top1 (j) for all j = 1, . . . ,m form a probability distribution over m models.

Based on Theorem 1, we obtain two probability distributions by applying top-1 probability to the
true performance Pi and estimated performance P̂i of m models, and optimize METAGL such that
the distance between the two resulting distributions gets decreased. Using the cross entropy as the
distance metric, we obtain the following loss over all n meta-train graphs G:

L(P, P̂) = −
n∑
i=1

m∑
j=1

pPi
top1 (j) log

(
pP̂i

top1 (j)
)

(4)

When P is sparse, meta-training can be performed via slightly modified Eqs. (3) and (4) in App. G.2.
4.2 ONLINE MODEL PREDICTION

In the meta-training phase, METAGL learns estimators f(·) and φ(·), as well as weight matrix W and
latent model factors V. Given a new graph Gtest, METAGL first computes the meta-graph features
mtest ∈ Rd as we discuss in Section 4.3. Then mtest is regressed to obtain the (approximate) latent
graph factors Ûtest = φ(mtest)∈Rk. Recall that the model factors V learned in the meta-training
stage can be directly used for model prediction. Then model Mj’s performance on test graph Gtest

can be estimated by applying Equation (2) with mtest and φ(mtest). Finally, the model that has the
highest estimated performance is selected by METAGL as the best model M∗, i.e.,

M∗ ← arg max
Mj∈M

〈
f(W[mtest;φ(mtest)]), f(Vj)

〉
(5)

Note that model selection using Equation (5) depends only on the meta-graph features mtest of the
test graph and other pretrained estimators and latent factors that METAGL learned in the meta-training
phase. As no model training or evaluation is involved, model prediction by METAGL is much faster
than training and evaluating different models multiple times, as our experiments show in Section 5.4.
Further, model prediction process is fully automatic since it does not require users to choose or
fine-tune any values at test time. Figure 2 shows an overview of the model prediction process, and
Algorithm 1 in the Appendix lists steps for offline meta-training and online model prediction.
4.3 STRUCTURAL META-GRAPH FEATURES

𝜓! 𝜓" 𝜓#

...

...

ΣΣΣ

...

(ψ )

][ 𝒎

Meta-
Graph

Features

Input Graph 𝐺

Figure 3: Meta-graph features in
METAGL are derived in two steps.
See Section 4.3 for details.

Meta-graph features are a crucial component of our meta-
learning approach METAGL since they capture important struc-
tural characteristics of an arbitrary graph. Meta-graph features
enable METAGL to quantify graph similarities, and utilize prior
experience with observed graphs for GL model selection. It is
important that a sufficient and representative set of meta-graph
features are used to capture the important structural properties
of graphs from a wide variety of domains, including biological,
technological, information, and social networks to name a few.

In this work, we are not able to leverage the commonly used
simple statistical meta-features used by previous work on model
selection-based meta-learning, as they cannot be used directly
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over irregular and complex graph data. To address this problem, we introduce the notion of meta-graph
features and develop a general framework for computing them on any arbitrary graph.

Meta-graph features in METAGL are derived in two steps, which is shown in Figure 3. First, we
apply a set of structural meta-feature extractors Ψ = {ψ1, . . . , ψq} to the input graph G, obtaining
Ψ(G) = {ψ1(G), . . . , ψq(G)}. Applying ψ ∈ Ψ to G yields a vector or a distribution of values
for the nodes (or edges) in the graph, such as degree distribution and PageRank scores. That is,
in Figure 3, ψ1 can be a degree distribution, ψ2 can be PageRank scores of all nodes, and so on.
Specifically, we use both local and global structural feature extractors. To capture the local structural
properties around a node or an edge, we compute node degree, number of wedges (i.e., a path of
length 2), triangles centered at each node, and also frequency of triangles for every edge. To capture
global structural properties of a node, we derive eccentricity, PageRank score, and k-core number of
each node. Appendix D summarizes meta-feature extractors used in this work.

Let ψ denote the local structural extractors for nodes. Given a graph Gi = (Vi, Ei) and ψ, we obtain
an |Vi|-dimensional node vector ψ(Gi). Since any two graphs Gi and Gj are likely to have a different
number of nodes and edges, the resulting structural feature matrices ψ(Gi) and ψ(Gj) for these
graphs are also likely to be of different sizes as the rows of these matrices correspond to nodes or
edges of the corresponding graph. Thus, in general, these structural feature-based representations of
the graphs cannot be used directly to derive similarity between graphs.

Now, to address this issue, we apply the set Σ of global statistical meta-graph feature extractors
to every ψi(G), ∀i = 1, . . . , q, which summarizes each ψi(G) to a fixed-size vector. Specifically,
Σ(ψi(G)) applies each of the statistical functions in Σ (e.g., mean, kurtosis, etc) to the distribution
ψi(G), which computes a real number that summarizes the given feature distribution ψi(G) from
different statistical point of view, producing a vector Σ(ψi(G)) ∈ R|Σ|. Then we obtain the meta-
graph feature vector m of graph G by concatenating the resulting meta-graph feature vectors:

m = [Σ(ψ1(G)) · · · Σ(ψq(G))] ∈ Rd. (6)

Table 5 in Appendix D lists the global statistical functions Σ used in this work to derive meta-
graph features. Further, in addition to the node- and edge-level structural features, we also compute
global graph statistics (scalars directly derived from the graph, e.g., density and degree assortativity
coefficient), and append them to m, i.e., the node- or edge-level structural features obtained above.

Most importantly, given any arbitrary graph G′, the proposed approach is guaranteed to output a fixed
d-dimensional meta-graph feature vector characterizing G′. Hence, the structural similarity of any
two graphs G and G′ can be quantified using a similarity function over m and m′, respectively.

4.4 EMBEDDING MODELS AND GRAPHS

Given an informative context (i.e., input features) of models and graphs that METAGL learns from
model performances P and meta-graph features M (Sections 4.1 and 4.3), how can we use it to
effectively learn model and graph embeddings that capture graph-to-model affinity? We note that
similar entities can make each other’s context more accurate and informative. For instance, in our
problem setup, similar models tend to have similar performance distributions over graphs, and likewise
similar graphs are likely to exhibit similar affinity to different models. With this consideration, we
model the task as a graph representation learning problem, where we construct a graph called G-M
network that connects similar graphs and models, and learn the graph and model embeddings over it.

G-M Network. We define G-M network to be a multi-relational graph with two types of nodes (i.e.,
models and graphs) where edges connect similar model nodes and graph nodes. To measure similarity
among graphs and models, we utilize the latent graph and model factors (U and V, respectively)
obtained by factorizing P, as well as the meta-graph features M. More precisely, we use the estimated
graph factor Û instead of U to let the same graph construction process work for new graphs. Note
that this gives us two types of features for graph nodes (i.e., Û and M), and one type of features for
model nodes (i.e., V). To let different features influence the embedding step differently as needed, we
connect graph nodes and model nodes using five type of edges: M-g2g, P-g2g, P-m2m, P-g2m, P-m2g
where g and m denote the type of nodes that an edge connects (graph and model, respectively), and
M and P denote that the edge is based on meta-graph features and model performance, respectively.
For example, M-g2g and P-g2g edges connect two graph nodes that are similar in terms of M and
Û, respectively. Then for each edge type, we construct a k-NN graph by connecting nodes to their
top-k similar nodes, where node-to-node similarity is defined as the cosine similarity between the
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corresponding node features. For instance, for P-g2m edge type, graph nodes and model nodes are
linked based on the similarity between Û and V. Fig. 7 in the Appendix illustrates the G-M network.

Learning Over G-M Network. Given the G-M network Gtrain with meta-train graphs and models,
graph neural networks (GNNs) provide an effective framework to embed models and graphs via
(weighted) neighborhood aggregation over Gtrain. However, since the structure of G-M network
is induced by simple k-NN search, some of the neighbors may not provide the same amount of
information as others, or may even provide noisy information. We found it helpful to perform
attentive neighborhood aggregation, so more informative neighbors can be given more weights. To
this end, we choose to use attentive GNNs designed for multi-relational networks, and specifically
use HGT (Hu et al., 2020). Then the embedding function f(·) in Section 4.1 is defined to be f(x) =
HGT(x,Gtrain) during training, which transforms the input node feature x into an embedding via
attentive neighborhood aggregation over Gtrain. Further details of HGT are provided in Appendix G.4.

Inference Over G-M Network. For inference at test time, we extend Gtrain to be a larger G-M
network Gtest that additionally contains test graph nodes, and edges between test graph nodes, and
existing graphs and models in Gtrain. The extension is done in the same way as in the training phase, by
finding top-k similar nodes. Then the embedding at test time can be done by f(x) = HGT(x,Gtest).

5 EXPERIMENTS
5.1 EXPERIMENTAL SETTINGS

Models and Evaluation. A model in our problem (Eqn. 1) consists of two components. The first
component performs graph representation learning (GRL), and the other component leverages the
learned embeddings for a downstream task of interest. In this work, we focus on link prediction,
which is a key task for graph-structured data as we discuss in Section 1. We evaluate the performance
of selecting a link prediction model for new graphs without any model evaluation. For the first
component, we use 12 popular GRL methods, and for the second component for link scoring, we use
a simple estimator that computes the cosine similarity between two node embeddings. This results in
a model set M with 423 models. The full list of models is given in Table 4 in Appendix C.

For evaluation, we create a testbed containing benchmark graphs, meta-graph features, and a perfor-
mance matrix. We construct the performance matrix by evaluating each link prediction model in M
on the graphs in the testbed, in terms of mean average precision score. Then we evaluate METAGL
and baselines via 5-fold cross validation where the benchmark graphs are split into meta-train Gtrain

and meta-test Gtest graphs for each fold, and meta-learners trained over the meta-train graph data are
evaluated using the meta-test graph datasets. Thus, model performances over the meta-test graphs
Gtest and the meta-graph features of Gtest were unseen during training, but used only for testing.

Table 2: The proposed METAGL outper-
forms existing meta-learners, given fully ob-
served performance matrix. Best results are
in bold, and second best results are under-
lined. “METAGL_Baseline” notation (e.g.,
METAGL_S2) indicate that the baseline meta-
learner uses METAGL’s meta-graph features.

Method MRR AUC NDCG@1

Random Selection 0.011 0.490 0.745

Si
m

pl
e

Global Best-AvgPerf 0.163 0.877 0.932
Global Best-AvgRank 0.103 0.867 0.930

METAGL_AS 0.222 0.905 0.947
METAGL_ISAC 0.202 0.887 0.939

O
pt

im
iz

at
io

n-
ba

se
d

METAGL_S2 0.170 0.910 0.945
METAGL_ALORS 0.190 0.897 0.950
METAGL_NCF 0.140 0.869 0.934
METAGL_MetaOD 0.075 0.599 0.889

METAGL 0.259 0.941 0.962

Since model selection aims to accurately predict
the best model for a new graph, we evaluate the
top-1 prediction performance in terms of MRR
(Mean Reciprocal Rank), AUC, and NDCG (Nor-
malized Discounted Cumulative Gain). To apply
MRR and AUC, we label models such that the top-
1 model (i.e., the model with the best performance
for the given graph) is labeled as 1, while all others
are labeled as 0. For NDCG, we report NDCG@1,
which evaluates the relevance of top-1 predicted
model. All metrics range from 0 to 1, with larger
values indicating better performance.

Baselines. Being the first work for evaluation-free
model selection in GL, we do not have immedi-
ate baselines for comparison. Instead, we adapt
baselines used for OD model selection (Zhao et al.,
2021) and collaborative filtering for our problem
setting. In Appendix A, we describe baselines in de-
tail. Baselines are grouped into two categories: (a)
Simple meta-learners select a model that performs
generally well, either globally or locally: Global Best (GB)-AvgPerf, GB-AvgRank, ISAC (Ka-
dioglu et al., 2010), and ARGOSMART (AS) (Nikolić et al., 2013); (b) Optimization-based meta-
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learners learn to estimate the model performance by modeling the relation between meta features
and model performances: Supervised Surrogates (S2) (Xu et al., 2012), ALORS (Misir & Sebag,
2017), NCF (He et al., 2017), and MetaOD (Zhao et al., 2021). We also include Random Selection
(RS) as a baseline to see how these methods compare to random scoring.

Note that, except the simplest meta-learners RS and GB, no baselines can handle graph data, and thus
they cannot estimate model performance on the new graph on their own. In that sense, they are not
direct competitors of METAGL. We enable them to be used for GL model selection by providing
the proposed meta-graph features. MetaOD, which was originally designed for OD model selection,
is also given the same meta-graph features to perform GL model selection. We denote baselines
either by combining METAGL with their names (e.g., METAGL_S2) to clearly show that they use
METAGL’s meta-graph features, or using their name alone (e.g., S2) for simplicity.

5.2 MODEL SELECTION ACCURACY

Fully Observed Performance Matrix. In this setup, meta-learners are trained using a full perfor-
mance matrix P with no missing entries. The model selection accuracy of all meta-learners in this
setup is reported in Table 2, where METAGL achieves the best performance in all metrics, with 17%
higher MRR than the best baseline (AS).

• Among simple meta-learners, Global Best meta-learners, which simply average model performance
or rank over all observed graphs, are outperformed by more sophisticated meta-learners AS and
ISAC, which leverage dataset similarities for model selection using meta-graph features.

• For optimization-based meta-learners, it is important to be aware of how models and graphs relate
to each other, and have high flexibility to capture that complex relationship. In methods like ALORS
and MetaOD, relations between models and datasets (i.e., relative position of models and datasets
in the embedding subspace) are learned rather indirectly via reconstructing the performance matrix.

• METAGL, in contrast, directly captures graph-to-model affinity by modeling their relations via
employing flexible GNNs over the G-M network, as well as reconstructing the performance matrix.
As a result, METAGL consistently outperforms other optimization-based meta-learners.

Partially Observed Performance Matrix. In this setup, meta-learners are trained using a sparse
performance matrix P, obtained by randomly masking out a full P. Figure 4 reports results obtained
with varying sparsity, ranging up to 0.9. In this more challenging setup, METAGL consistently
performs the best across all levels of sparsity, achieving up to 47% higher MRR than the best baseline.

• With increased sparsity, nearly all meta-learners perform increasingly worse, as one might expect.
• While AS was the best baseline given a full P, its accuracy decreased rapidly as sparsity increased.

Since AS selects a model based on the 1NN meta-train graph, it is highly sensitive to P’s sparsity.
• Baselines such as the Global Best baselines are more stable as they average across multiple graphs.
• Optimization-based methods like METAGL and S2 perform favorably to simple meta-learners in

sparse settings as they learn to reconstruct P by modeling the relation between graphs and models.
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Figure 4: METAGL consistently performs the best, as the sparsity of performance matrix P varies.
METAGL and all baseline meta-learners used the same meta-graph features proposed in this work.

5.3 EFFECTIVENESS OF META-GRAPH FEATURES

In Figure 5, we evaluate how the performance of meta-learners obtained with the proposed meta-graph
feature (Section 4.3) compares to that obtained with existing graph-level embedding (GLE) techniques,
GL2Vec (Chen & Koga, 2019), Graph2Vec (Narayanan et al., 2017), and GraphLoG (Xu et al., 2021).
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Figure 5: Using the proposed meta-graph features (Section 4.3), all meta-learners nearly consistently
perform better (i.e., points are below the diagonal) than with existing graph-level embedding methods.

Figure 8 in App. I.1 provides results for three other GLE methods, WaveletCharacteristic (Wang et al.,
2021), SF (de Lara & Pineau, 2018), and LDP (Cai & Wang, 2019).

• Most points are below the diagonal in Figure 5, i.e., all meta-learners nearly consistently perform
better when they use METAGL’s meta-graph features than when they use existing GLE methods.
This shows the effectiveness of METAGL’s features for the proposed task of GL model selection.

• METAGL performs the best, whether METAGL’s features or existing GLE methods are used.

5.4 MODEL SELECTION EFFICIENCY

0.5s 1.0s 1.5s 2.0s 2.5s 3.0s
Better

(a) METAGL’s runtime (seconds) at test time.

0% 10% 20% 30% 40% 50% 60% 70%
Better

(b) METAGL’s runtime / Time to train GL mod-
els for 5% of their potential settings (in pct.).

Figure 6: METAGL is fast (∼1 sec.), and in-
curs negligible overhead. Red and green lines
denote the median and mean, respectively.

To evaluate how efficient METAGL’s model selection
is, we measure its runtime (i.e., the time to create meta-
graph features for the new graph at test time, plus the
time to predict the best model), and compare it with the
time to train a GL model. Figure 6 shows the distribu-
tion in box plots, where red and green lines denote the
median and mean, respectively.

Results show that METAGL is fast, and incurs negligible
runtime overhead: its runtime is just around 1 seconds
or less in most cases (Figure 6a). Notably, compared
to training each GL model for only 5% of its available
model configurations, METAGL takes considerably less
time, i.e., a median of 5% and a mean of 11% of the time required for model training (Figure 6b).
Given large-scale test graphs in practice, the speed-up enabled by METAGL will be greater than that
reported in Figure 6b, due to the increased training time on such graphs. Also, METAGL’s model
selection process can be further streamlined, e.g., by parallelizing meta-feature generation process.
We provide additional results on the runtime of METAGL and naive model selection in Appendix I.2.

5.5 ADDITIONAL RESULTS

We present ablation study in Appendix I.3, which shows the effectiveness of METAGL’s proposed
components, e.g., the meta-learning objective, G-M network, and the graph encoder used by METAGL.
We evaluate the sensitivity of model selection approaches to the variance of performance matrix P
in Appendix I.4, and compare the predicted model performance with the actual best performance in
Appendix I.5.

6 CONCLUSION
As more and more GL models are developed, selecting which one to use is becoming increasingly
hard. Toward near-instantaneous, automatic GL model selection, we make the following contributions.

• Problem Formulation. We present the first problem formulation to select effective GL models in
an evaluation-free manner (i.e., without ever having to train/evaluate any model on the new graph).

• Meta-Learning Framework and Features. We propose METAGL, the first meta-learning frame-
work for evaluation-free GL model selection, and meta-graph features to quantify graph similarities.

• Effectiveness. Using METAGL for model selection greatly outperforms existing meta-learning
techniques (up to 47% better), while incurring negligible runtime overhead at test time (∼1 sec).
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In Appendix, we provide a description of the baselines (Appendix A), notations used in this work
(Appendix B), and the model set (Appendix C), and present a summary of meta-graph features
(Appendix D), details of graph datasets in the testbed (Appendix E), and experimental details
(Appendix F). We then provide additional details and analysis of METAGL (Appendix G), e.g., the
G-M network and the embedding function f(·) discussed in Section 4.4, as well as additional results
(Appendix I), e.g., ablation studies and sensitivity analysis.

A BASELINES

Being the first work for evaluation-free model selection in graph learning (GL), we do not have
immediate baselines for comparison. Instead, we adapt baselines used in MetaOD (Zhao et al., 2021)
for outlier detection (OD) model selection as well as collaborative filtering for our problem setting.
The baselines used in experiments can be organized into the following two categories.

(a) Simple meta-learners select a model that performs generally well, either globally or locally.

• Global Best (GB)-AvgPerf selects the model that has the largest average performance over all
meta-train graphs.

• Global Best (GB)-AvgRank computes the rank of all models (in percentile) for each graph, and
selects the model with the largest average ranking over all meta-train graphs.

• ISAC (Kadioglu et al., 2010) first clusters meta-train datasets using meta-graph features, and at
test time, finds the cluster closest to the test graph, and selects the model with the largest average
performance over all graphs in that cluster.

• ARGOSMART (AS) (Nikolić et al., 2013) finds the meta-train graph closest to the test graph (i.e.,
1NN) in terms of meta-graph feature similarity, and selects the model with the best result on the
1NN graph.

(b) Optimization-based meta-learners learn to estimate the model performance by modeling the
relation between meta-graph features and model performances.

• Supervised Surrogates (S2) (Xu et al., 2012) learns a surrogate model (a regressor) that maps
meta-graph features to model performances.

• ALORS (Misir & Sebag, 2017) factorizes the performance matrix into latent factors on graphs
and models, and estimates the performance to be the dot product between the two factors, where a
non-linear regressor maps meta-graph features into the latent graph factors.

• NCF (He et al., 2017) replaces the dot product used in ALORS with a more general neural
architecture that estimates performance by combining the linearity of matrix factorization and
non-linearity of deep neural networks.

• MetaOD (Zhao et al., 2021) pioneered the field of unsupervised OD model selection by designing
meta-features specialized to capture the outlying characteristics of datasets, as well as improving
upon ALORS with the adoption of an NDCG-based meta-training objective. We enable MetaOD
to be applicable to our problem setting, by applying our proposed meta-graph features to MetaOD.

In addition, we also include Random Selection (RS) as a baseline, to see how meta-learners perform
in comparison to random scoring. Note that among the above approaches, only GB-AvgPerf and
GB-AvgRank do not rely on meta-features for model selection. All other meta-learners make use of
the proposed meta-graph features to estimate model performances on an unseen test graph.

B NOTATIONS

Table 3 provides a list of notations frequently used in this work.

C MODEL SET

A model in the model set M refers to a graph representation learning (GRL) method along with its
hyperparameters settings, and a predictor that makes a downstream task-specific prediction given
the node embeddings from the GRL method. In this work, we use a link predictor which scores a
given link by computing the cosine similarity between the two nodes’ embeddings. Table 4 shows the

14



Published as a conference paper at ICLR 2023

Table 3: Summary of notations.

G set of graphs {G1, . . . , Gn} in the training set
n number of graphs in training set n = |G|
Gtest new unseen test graph Gtest 6∈ G
M model set {M1, . . . ,Mm} to search over
m number of models to search over m = |M|

Ψ set of structural meta-node/edge feature extractors
Σ set of meta-graph feature extractors
M meta-graph feature matrix where M ∈ Rn×d
d number of meta-graph features
mtest meta-graph feature vector for the new unseen test graph Gtest

k embedding size
P performance matrix of m models on n graphs
U latent graph factors obtained by factorizing P (P ≈ UVᵀ)
V latent model factors obtained by factorizing P (P ≈ UVᵀ)
f(·) learnable embedding function for models and graphs

Table 4: Graph representation learning (GRL) models and their hyperparameter settings, which collec-
tively comprise the model set M with 423 unique GRL models. For details of the hyperparameters,
please refer to the cited paper.

Methods Hyperparameter Settings Count

SGC (Wu et al., 2019a) # (number of) hops k ∈ {1, 2, 3} 3
GCN (Kipf & Welling, 2017) # layers L ∈ {1, 2, 3}, # epochs N ∈ {1, 10} 6
GraphSAGE (Hamilton et al., 2017) # layers L ∈ {1, 2, 3}, # epochs N ∈ {1, 10}, aggregation functions

f ∈ {mean, gcn, lstm}
18

node2vec (Grover & Leskovec, 2016) p, q ∈ {1, 2, 4} 9
role2vec (Ahmed et al., 2018) p, q ∈ {0.25, 1, 4}, α ∈ {0.01, 0.1, 0.5, 0.9, 0.99}, motif combinations

H ∈ {{H1}, {H2, H3}, {H2, H3, H4, H6, H8}, {H1, H2, . . . , H8}}
180

GraRep (Cao et al., 2015) k ∈ {1, 2} 2
DeepWalk (Perozzi et al., 2014) p = 1, q = 1 1
HONE (Rossi et al., 2018) k ∈ {1, 2}, Dlocal ∈ {4, 8, 16}, variant v = {1, 2, 3, 4, 5} 30
node2bits (Jin et al., 2019) walk num wn ∈ {5, 10, 20}, walk len wl ∈ {5, 10, 20}, log base b ∈

{2, 4, 8, 10}, feats f ∈ {16}
36

DeepGL (Rossi et al., 2020) α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, motif size ∈ {4},
eps tolerance t ∈ {0.01, 0.05, 0.1}, relational aggr. ∈
{{m}, {p}, {s}, {v}, {m, p}, {m, v}, {s,m}, {s, p}, {s, v}} where
m, p, s, v denote mean, product, sum, var

135

LINE (Tang et al., 2015) # hops/order k ∈ {1, 2} 2
Spectral Emb. (Luo et al., 2003) tolerance t ∈ {0.001} 1

Total Count 423

complete list of 12 popular GRL methods and their specific hyperparameter settings, which compose
412 unique models in the model set M. Note that the link predictor is omitted from Table 4 since we
employ the same link predictor based on cosine similarity to all GRL methods.

D META-GRAPH FEATURES

Structural Meta-Feature Extractors. To capture the local structural properties around a node or
an edge, we compute the distribution of node degrees, number of wedges (i.e., a path of length
2), triangles centered at each node, as well as the frequency of triangles for each edge. To capture
the global structural properties of a node, we derive the eccentricity, PageRank score, and k-core
number of each node. We also capture the global graph-level statistics (i.e., different from local
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node/edge-level structural properties), such as the density of A and AAT where A is the adjacency
matrix, and also the degree assortativity coefficient r.

Global Statistical Functions. For each of the structural property distributions (degree, k-core num-
bers, and so on) derived by the above structural meta-feature extractors, we apply the set Σ of
global statistical functions (Table 5) over it to obtain a fixed-length vector representation for the
node/edge/graph-level structural feature distribution.

After obtaining a set of meta-graph features, we concatenate all of them together to create the final
meta-graph feature vector m for the graph.

Table 5: Summary of the global statistical functions Σ for deriving a set of meta-graph features from
a graph invariant (e.g., k-core numbers, node degrees, and so on). Let x denote an arbitrary graph
invariant vector for some graph Gi = (Vi, Ei) and π(x) is the sorted vector of x. Note x can be any
representation, e.g., node degree vector (value for each node in Gi) or a degree distribution vector.

Name Equation
Num. unique values card(x)
Density nnz(x)/|x|

Q1, Q3 median of the |x| /2 smallest (largest) values
IQR Q3 −Q1

Outlier LB α ∈ {1.5, 3}
∑
i I(xi < Q1 − αIQR)

Outlier UB α ∈ {1.5, 3}
∑
i I(xi > Q3 + αIQR)

Total outliers α ∈ {1.5, 3}
∑
i I(xi<Q1−αIQR) +

∑
i I(xi>Q3 + αIQR)

(α-std) outliers α ∈ {2, 3} µx ± ασx
Spearman (ρ, p-val) spearman(x, π(x))
Kendall (τ , p-val) kendall(x, π(x))
Pearson (r, p-val) pearson(x, π(x))

Min, max min(x), max(x)
Range max(x)−min(x)
Median med(x)

Geometric Mean |x|−1∏
i xi

Harmonic Mean |x| /
∑
i

1
xi

Mean, Stdev, Variance µx, σx, σ2
x

Skewness E(x−µx)3/σ3
x

Kurtosis E(x−µx)4/σ4
x

Quartile Dispersion Coeff. Q3−Q1

Q3+Q1

Median Absolute Deviation med(|x−med(x)|)
Avg. Absolute Deviation 1

|x|e
T |x− µx|

Coeff. of Variation σx/µx

Efficiency ratio σ2
x/µ2

x

Variance-to-mean ratio σ2
x/µx

Signal-to-noise ratio (SNR) µ2
x/σ2

x

Entropy H(x) = −
∑
i xi log xi

Norm. entropy H(x)/log2|x|
Gini coefficient −
Quartile max gap max(Qi+1 −Qi)
Centroid max gap maxij |ci − cj |

Histogram prob. dist. ph = h
hT e

(with fixed # of bins)
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E GRAPH DATASETS

The testbed used in this work comprises 301 graphs that have widely varying structural characteristics.
Table 6 provides a list of all graph datasets in the testbed. All graph data are from (Rossi & Ahmed,
2015); they are publicly available under the Creative Commons Attribution-ShareAlike License.

Table 6: Summary of the 301 graph datasets that comprise the testbed.

Graph # Nodes # Edges Graph # Nodes # Edges

1 BA-1_10_60 804 46410 152 enzymes_g297 121 149
2 BA-1_11_40 917 35860 153 enzymes_g349 64 118
3 BA-1_12_10 827 8215 154 enzymes_g355 66 112
4 BA-1_13_10 1043 10375 155 enzymes_g504 66 120
5 BA-1_14_40 829 32340 156 enzymes_g523 48 111
6 BA-1_16_40 1126 44220 157 enzymes_g526 58 110
7 BA-1_17_10 895 8895 158 enzymes_g527 57 107
8 BA-1_18_40 1141 44820 159 enzymes_g532 74 120
9 BA-1_1_10 862 8565 160 enzymes_g575 51 110

10 BA-1_20_10 830 8245 161 enzymes_g578 60 103
11 BA-1_22_10 1094 10885 162 enzymes_g594 52 114
12 BA-1_24_40 946 37020 163 enzymes_g597 52 116
13 BA-1_3_40 1017 39860 164 enzymes_g598 55 100
14 BA-1_4_40 970 37980 165 enzymes_g8 88 133
15 BA-1_5_10 1050 10445 166 ER-1_11_5 917 20841
16 BA-1_6_60 803 46350 167 ER-1_14_5 829 17092
17 BA-1_7_40 832 32460 168 ER-1_15_5 826 17099
18 BA-1_8_10 1040 10345 169 ER-1_24_5 946 22383
19 bio-CE-GN 2220 53683 170 ER-1_4_5 970 23747
20 bio-CE-GT 924 3239 171 ER-2_6_5 8115 16868
21 bio-CE-HT 2617 2985 172 inf-euroroad 1174 1417
22 bio-CE-LC 1387 1648 173 inf-openflights 2939 15677
23 bio-CE-PG 1871 47754 174 KPGM-log10-10-trial1 845 7194
24 bio-DM-CX 4040 76717 175 KPGM-log10-10-trial2 830 7265
25 bio-DM-HT 2989 4660 176 KPGM-log10-10-trial3 837 7251
26 bio-DM-LC 658 1129 177 KPGM-log10-12-trial1 845 8467
27 bio-DR-CX 3289 84940 178 KPGM-log10-12-trial2 864 8339
28 bio-grid-fission-yeast 2026 12637 179 KPGM-log10-12-trial3 856 8393
29 bio-HS-CX 4413 108818 180 KPGM-log10-14-trial2 885 9405
30 bio-HS-HT 2570 13691 181 KPGM-log10-8-trial1 824 6055
31 bio-HS-LC 4227 39484 182 KPGM-log10-8-trial2 796 6040
32 bio-SC-CC 2223 34879 183 KPGM-log10-8-trial3 813 6052
33 bio-SC-GT 1716 33987 184 KPGM-log8-10-trial1 220 1502
34 bio-SC-HT 2084 63027 185 KPGM-log8-10-trial2 220 1518
35 bio-SC-LC 2004 20452 186 KPGM-log8-10-trial3 224 1520
36 bio-SC-TS 636 3959 187 KPGM-log8-12-trial1 224 1729
37 biogrid-human 2005 3959 188 KPGM-log8-12-trial2 229 1756
38 biogrid-mouse 1450 1636 189 KPGM-log8-12-trial3 230 1761
39 biogrid-plant 523 838 190 KPGM-log8-14-trial1 229 1947
40 biogrid-worm 1930 3576 191 KPGM-log8-14-trial2 233 1950
41 biogrid-yeast 836 1049 192 KPGM-log8-14-trial3 230 1943
42 bn-cat-mixed-species-brain1 65 730 193 KPGM-log8-16-trial1 232 2117
43 bn-fly-drosophila-medulla1 1781 9016 194 KPGM-log8-16-trial2 230 2152
44 bn-macaque-rhesus-brain1 242 3054 195 KPGM-log8-16-trial3 235 2178
45 bn-macaque-rhesus-brain2 91 582 196 KPGM-log8-8-trial1 223 1324
46 bn-macaque-rhesus-cerebral-cortex1 91 1401 197 KPGM-log8-8-trial2 218 1312
47 bn-macaque-rhesus-interareal-cortical2 93 2262 198 KPGM-log8-8-trial3 215 1303
48 bn-mouse-brain1 213 16242 199 nci1_g1677 102 106
49 bn-mouse-kasthuri-v4 1029 1559 200 nci1_g1863 107 111
50 bn-mouse-visual-cortex2 193 214 201 nci1_g1893 96 102
51 ca-AstroPh 17903 196972 202 nci1_g1894 104 108
52 ca-CondMat 21363 91286 203 nci1_g2079 88 103
53 ca-cora 2708 5278 204 nci1_g2082 86 101
54 ca-CSphd 1882 1740 205 nci1_g2172 106 107
55 ca-DBLP-kang 2879 11326 206 nci1_g2228 92 98
56 ca-Erdos992 5094 7515 207 nci1_g2229 92 98
57 ca-GrQc 4158 13422 208 nci1_g2443 91 97
58 ca-HepPh 11204 117619 209 nci1_g2455 90 96
59 ca-netscience 379 914 210 nci1_g3139 107 112
60 ca-sandi-auths 86 123 211 nci1_g3141 92 98
61 CL-1000-1d7-trial1 928 4653 212 nci1_g3145 91 97
62 CL-1000-1d7-trial2 932 4888 213 nci1_g3444 93 102
63 CL-1000-1d7-trial3 938 4840 214 nci1_g3449 95 99
64 CL-1000-1d8-trial1 925 3776 215 nci1_g3585 105 107
65 CL-1000-1d8-trial2 930 4136 216 nci1_g3700 111 119

Continued on the next page
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Table 6 – Continued from the previous page

Graph # Nodes # Edges Graph # Nodes # Edges

66 CL-1000-1d8-trial3 925 3714 217 nci1_g3711 89 106
67 CL-1000-1d9-trial1 928 3510 218 nci1_g3901 93 102
68 CL-1000-1d9-trial2 912 3053 219 nci1_g3990 90 105
69 CL-1000-1d9-trial3 932 3278 220 nci1_g4094 90 98
70 CL-1000-2d0-trial1 909 2795 221 power-1138-bus 1138 2596
71 CL-1000-2d0-trial2 899 2941 222 power-494-bus 494 1080
72 CL-1000-2d0-trial3 916 3010 223 power-662-bus 662 1568
73 CL-1000-2d1-trial1 903 2430 224 power-685-bus 685 1967
74 CL-1000-2d1-trial2 911 2734 225 power-bcspwr09 1723 4117
75 CL-1000-2d1-trial3 915 2782 226 power-eris1176 1176 9864
76 DD_g1 327 899 227 rec-amazon 91813 125704
77 DD_g10 146 328 228 rec-movielens-tag-movies-10m 16528 71081
78 DD_g100 349 1005 229 road-chesapeake 39 170
79 DD_g1000 183 408 230 road-ChicagoRegional 1467 1298
80 DD_g1001 88 203 231 road-euroroad 1174 1417
81 DD_g1002 104 255 232 road-luxembourg-osm 114599 119666
82 DD_g1003 53 116 233 road-minnesota 2642 3303
83 DD_g1004 94 230 234 road-usroads-48 126146 161950
84 DD_g1005 370 903 235 rt-retweet 96 117
85 DD_g1006 246 568 236 rt-twitter-copen 761 1029
86 DD_g1007 309 732 237 rt_alwefaq 4171 7063
87 DD_g1008 109 304 238 rt_assad 2139 2788
88 DD_g1009 129 272 239 rt_bahrain 4676 7979
89 DD_g101 306 728 240 rt_barackobama 9631 9775
90 DD_g1010 157 363 241 rt_damascus 3052 3869
91 DD_g1011 47 136 242 rt_dash 6288 7436
92 DD_g1012 146 365 243 rt_gmanews 8373 8721
93 DD_g1013 93 211 244 rt_gop 4687 5529
94 DD_g1014 119 273 245 rt_http 8917 10314
95 DD_g1015 102 244 246 rt_islam 4497 4616
96 DD_g1016 113 291 247 rt_israel 3698 4165
97 DD_g1017 162 376 248 rt_lebanon 3961 4436
98 DD_g1018 296 680 249 rt_libya 5067 5541
99 DD_g1019 131 353 250 rt_lolgop 9765 10075

100 DD_g102 561 1422 251 rt_obama 3212 3423
101 DD_g1020 228 541 252 rt_occupy 3225 3944
102 DD_g1021 329 787 253 rt_occupywallstnyc 3609 3833
103 DD_g1022 294 730 254 rt_oman 4904 6230
104 DD_g1023 172 425 255 rt_onedirection 7987 8103
105 DD_g1024 59 160 256 rt_p2 4902 6018
106 DD_g1025 88 205 257 rt_saudi 7252 8061
107 DD_g1026 247 578 258 rt_tcot 4547 5503
108 DD_g1027 108 223 259 rt_tlot 3665 4475
109 DD_g1028 72 137 260 rt_uae 5248 6387
110 DD_g1029 99 215 261 rt_voteonedirection 2280 2464
111 DD_g103 265 647 262 sc-nasasrb 54870 1311227
112 DD_g1030 136 351 263 soc-advogato 6551 43427
113 DD_g104 372 999 264 soc-dolphins 62 159
114 DD_g105 423 1192 265 soc-firm-hi-tech 33 91
115 DD_g106 574 1355 266 soc-gplus 23628 39194
116 DD_g107 130 292 267 soc-hamsterster 2426 16630
117 DD_g108 483 1137 268 soc-highschool-moreno 70 274
118 DD_g109 132 315 269 soc-physicians 241 923
119 DD_g11 312 761 270 soc-sign-bitcoinalpha 3783 14124
120 DD_g110 394 1137 271 soc-student-coop 185 311
121 DD_g111 483 1520 272 soc-wiki-Vote 889 2914
122 DD_g112 266 631 273 socfb-Amherst 2235 90954
123 DD_g113 347 853 274 socfb-Bowdoin47 2252 84387
124 DD_g114 334 761 275 socfb-Caltech 769 16656
125 DD_g115 336 946 276 socfb-Hamilton46 2314 96394
126 eco-everglades 69 885 277 socfb-Haverford76 1446 59589
127 eco-florida 128 2075 278 socfb-nips-ego 2888 2981
128 eco-foodweb-baydry 128 2106 279 socfb-Oberlin44 2920 89912
129 eco-foodweb-baywet 128 2075 280 socfb-Reed98 962 18812
130 eco-mangwet 97 1446 281 socfb-Simmons81 1518 32988
131 eco-stmarks 54 353 282 socfb-Smith60 2970 97133
132 email-dnc-corecipient 906 10429 283 socfb-Swarthmore42 1659 61050
133 email-dnc-leak 1891 4465 284 socfb-Trinity100 2613 111996
134 email-enron-only 143 623 285 socfb-USFCA72 2682 65252
135 email-EU 32430 54397 286 socfb-Vassar85 3068 119161
136 email-radoslaw 167 3251 287 socfb-Villanova62 7772 314989
137 email-univ 1133 5451 288 socfb-Wellesley22 2970 94899
138 enzymes_g103 59 115 289 socfb-Williams40 2790 112986
139 enzymes_g118 95 121 290 tech-routers-rf 2113 6632

Continued on the next page

18



Published as a conference paper at ICLR 2023

Table 6 – Continued from the previous page

Graph # Nodes # Edges Graph # Nodes # Edges

140 enzymes_g123 90 127 291 tech-routers-rf 2113 6632
141 enzymes_g199 62 108 292 web-BerkStan 12305 19500
142 enzymes_g204 57 105 293 web-edu 3031 6474
143 enzymes_g209 57 101 294 web-EPA 4271 8909
144 enzymes_g215 48 104 295 web-google 1299 2773
145 enzymes_g224 54 105 296 web-indochina-2004 11358 47606
146 enzymes_g279 60 107 297 web-polblogs 643 2280
147 enzymes_g291 62 104 298 web-spam 4767 37375
148 enzymes_g292 60 100 299 web-webbase-2001 16062 25593
149 enzymes_g293 96 109 300 web-wiki-chameleon 2277 31421
150 enzymes_g295 123 139 301 web-wiki-crocodile 11631 170918
151 enzymes_g296 125 141

F EXPERIMENTAL DETAILS

F.1 EXPERIMENTAL SETTINGS

Software. We used PyTorch1 for implementing the training and inference pipeline, and used the
DGL’s implementation of HGT2. For MetaOD (Zhao et al., 2021), we used the implementation
provided by the authors3. We used the Karate Club library (Rozemberczki et al., 2020) for the
implementations of the following graph-level embedding (GLE) methods, Graph2Vec (Narayanan
et al., 2017), GL2Vec (Chen & Koga, 2019), WaveletCharacteristic (Wang et al., 2021), SF (de Lara
& Pineau, 2018), and LDP (Cai & Wang, 2019). For GraphLoG (Xu et al., 2021), we used the authors’
implementation4. We used open source libraries, such as NetworkX5 and NumPy6, for implementing
meta-graph feature extractors.

Hyperparameters. We set the embedding size k to 32 for METAGL and other meta-learners that
learn embeddings of models and graphs. For METAGL, we created the G-M network by connecting
nodes to their top-30 similar nodes. As an the embedding function f(·) in METAGL, we used
HGT (Hu et al., 2020) with 2 layers and 4 heads per layer. HGT is included in the Deep Graph Library
(DGL), which is licensed under the Apache License 2.0. For training, we used the Adam optimizer
with a learning rate of 0.00075 and a weight decay of 0.0001. For GLE approaches, we used the
default hyperparameter settings specified in the corresponding library and GitHub repository.

Link Prediction Model Training. Given a graph G, we first hold out 10% of the edges in graph G
to be used for evaluation, and train GL models with the resulting subgraph for link prediction. The
training of GL models was performed by sampling 20 negative edges per positive edge, computing
the link score by applying a dot product between the two corresponding node embeddings, followed
by a sigmoid function, and then optimizing a binary cross entropy loss for the positive and negative
edge scores. For evaluation, we randomly sampled the same number of negative edges as the positive
edges, and evaluated the predicted link scores in terms of mean average precision.

F.2 EVALUATION OF MODEL SELECTION ACCURACY (SECTION 5.2)

In our evaluation involving a partially observed performance matrix, we extended baseline meta-
learners as follows so they can operate in the presence of missing entries in the performance matrix.

• Global Best-AvgPerf averaged observed performance entries alone, ignoring missing values. If an
average performance cannot be computed for some model (which is the case when a model has no
observed performance entries for all graphs), we use the mean of averaged performance for other
models in its place.

1https://pytorch.org/
2https://www.dgl.ai/
3https://github.com/yzhao062/MetaOD
4https://github.com/DeepGraphLearning/GraphLoG
5https://networkx.org/
6https://numpy.org/
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• Global Best-AvgRank computed the model rankings for each graph in percentile, as the number
of observed model performances may be different for different graphs, and averaged the rank
percentiles for observed cases only, as in Global Best-AvgPerf.

• ISAC handled the sparse performance matrix in the same way as Global Best-AvgPerf, except that
only a subset of graphs, which is similar to the test graph, is considered in ISAC.

• ARGOSMART (AS) computed the mean of observed performance entries of the 1NN graph, and
used this quantity in place of missing values.

• ALORS factorized the sparse performance matrix using a missing value-aware non-negative matrix
factorization algorithm.

• Supervised Sur. (S2), NCF, and MetaOD performed optimization by only considering observed
performance values in the loss function, while skipping over missing entries. Early stopping based
on the validation performance was also done with respect to the observed performances alone.

F.3 EVALUATION OF META-GRAPH FEATURES (SECTION 5.3)

Except for WaveletCharacteristic and GraphLoG, we applied graph-level embedding (GLE) ap-
proaches to all graphs in our testbed, and meta-learners were trained and evaluated using the rep-
resentations of all graphs via 5-fold cross validation. Since WaveletCharacteristic and GraphLoG
could not scale up to some of the largest graphs in the testbed (e.g., due to out-of-memory error), we
excluded 9% and 27% largest graphs for GraphLoG and WaveletCharacteristic, respectively, and
evaluated meta-learners using the resulting subset of graphs. Note that, in these cases, METAGL was
also trained and evaluated using the same subset of graphs.

G ADDITIONAL DETAILS AND ANALYSIS OF METAGL

G.1 METAGL ALGORITHM AND META-GRAPH FEATURES

Algorithm 1 provides detailed steps of METAGL, for both offline meta-training (top) and online
model selection (bottom). In METAGL, we log-transform the meta-graph features, and extend the
meta-graph features with them, as it helps with model selection. We use the notation m in Algorithm 1
as well as in the text to refer to these meta-graph features used by METAGL.

G.2 META-LEARNING OBJECTIVE FOR SPARSE PERFORMANCE MATRIX

Given a sparse performance matrix P, meta-training of METAGL can be performed by modifying the
top-1 probability (Equation (3)) and the loss function (Equation (4)), such that the missing entries in
P are ignored as follows:

pP̂i
top1 (j) =

Ipij (π(p̂ij))∑m
k=1 Ipik(π(p̂ik))

=
Ipij (exp(p̂ij))∑m
k=1 Ipik(exp(p̂ik))

, (7)

L(P, P̂) = −
n∑
i=1

m∑
j=1

Ipij

(
pPi

top1 (j) log
(
pP̂i

top1 (j)
))

. (8)

where Ipij (·) is defined as

Ipij (x) =

{
x if pij exists in the observed performance matrix P,
0 if pij is missing in the observed performance matrix P.

(9)

Thus the supervision signal for each graph comes only from the model performances observed on it. If
an entire row in P is empty, the loss terms for the corresponding graph are dropped from Equation (8).

G.3 G-M NETWORK

Figure 7 illustrates the G-M network (graph-model network) (Section 4.4), which is a multi-relational
bipartite network between graph nodes and model nodes. In the G-M network, model and graph
nodes are connected via five types of edges (e.g., P-m2m, P-g2m, M-g2g), which is shown as edges
with distinct line styles and colors. Note that while Figure 7 shows only one edge per edge type, in
the G-M network, each node is connected to its top-k similar nodes.
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Figure 7: An illustration of the G-M network (Section 4.4), which is a multi-relational bipartite
network between model nodes and graph nodes that are connected via five types of edges (e.g., P-
m2m, M-g2g). Note that only a subset of the edges in the G-M network is shown here for illustration
purposes. See Section 4.4 for more details.

G.4 ATTENTIVE GRAPH NEURAL NETWORKS AND HETEROGENEOUS GRAPH TRANSFORMER

The embedding function f(·) in METAGL (Section 4.4) produces embeddings of models and graphs
via weighted neighborhood aggregation over the multi-relational G-M network. Specifically, we
define f(·) using Heterogeneous Graph Transformer (HGT) (Hu et al., 2020), which is a relation-
aware graph neural network (GNN) that performs attentive neighborhood aggregation over the G-M
network. Let z`t denote the node t’s embedding produced by the `-th HGT layer, which becomes the

Algorithm 1: METAGL: Offline Meta-Training (Top) and Online Model Selection (Bottom)
Input: Meta-train graph database G, model set M, embedding dimension k
Output: Meta-learner for model selection
/* (Offline) Meta-Learner Training (Sec. 4.1) */

1 Train & evaluate models in M on graphs in G to get performance matrix P
2 Extract meta-graph features M for each graph Gi in G (Sec. 4.3)
3 Factorize P to obtain latent graph factors U and model factors V, i.e., P ≈ UVᵀ

4 Learn an estimator φ(·) such that φ(m) = Ûi ≈ Ui

5 Create meta-train graph Gtrain (Sec. 4.4)
6 while not converged
7 for i = 1, . . . , n do
8 Get embeddings f(W[m;φ(m)]) of train graph Gi on Gtrain

9 for j = 1, . . . ,m do
10 Get embeddings f(Vj) of each model Mj on Gtrain

11 Estimate p̂ij = 〈f(W[m;φ(m)]), f(Vj)〉 (Eqn. 2)
12 end
13 end
14 Compute meta-training loss L(P, P̂) (Eqn. 4) and optimize parameters
15 end

Input: new graph Gtest

Output: selected model M∗ for Gtest

/* (Online) Model Selection (Sec. 4.2) */
16 Extract meta-graph features mtest = ψ(Gtest)

17 Estimate latent factor Ûtest = φ(mtest) for test graph Gtest

18 Create the test G-M network Gtest by extending Gtrain with new edges between test graph node
and existing nodes in Gtrain (Sec. 4.4)

19 Get embeddings f(W[mtest; Ûtest]) of test graph on Gtest

20 Get embeddings f(Vj) of each model Mj on Gtest

21 Return the best model M∗ ← arg maxMj∈M
〈
f(W[mtest; Ûtest]), f(Vj)

〉
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input of the (`+ 1)-th layer. Given L total layers, the final embedding ht of node t is obtained to be
the output from the last layer, i.e., zLt . In general, node embeddings z`t produced by the `-th layer in
an attention-based GNN, such as HGT, can be expressed as:

z`t = Aggregate
∀s∈N(t),∀e∈E(s,t)

(
Attention(s, t) ·Message(s)

)
(10)

where s and t are source and target nodes, respectively; N(t) denotes all the source nodes of node
t; and E(s, t) denotes all edges from node s to t. There are three basic operators: Attention, which
assigns different weights to neighbors based on the estimated importance of node s with respect to
target node t; Message, which extracts the message vector from the source node s; and Aggregate,
which aggregates the neighborhood messages by the attention weight.

HGT effectively processes multi-relational graphs, such as the proposed G-M network, by designing
all of the above three operators to be aware of node types and edge types, e.g., by employing
distinct set of projection weights for each type of nodes and edges, and utilizing node- and edge-type
dependent attention mechanisms. We refer the reader to (Hu et al., 2020) for the details of how HGT
defines the above three operators. In summary, METAGL computes the embedding function f(xt)
by providing node t’s input features xt as the initial embedding (i.e., z0

t ) to HGT, and returning zLt ,
the output from the last layer, which is computed over the G-M network via relation-aware attentive
neighborhood aggregation.

G.5 TIME COMPLEXITY ANALYSIS

We now state the time complexity of our approach for inferring the best model given a new unseen
graph G′ = (V ′, E′). Let G = (V, E) be the G-M network, which is comprised of model nodes and
graph nodes, and induced by c-NN (nearest neighbor) search (Section 4.4 and Appendix G.3). Let k
denote the embedding size, and h be the number of attention heads in HGT (Appendix G.4). The
time complexity of METAGL is

O(q|E′|∆ + |V|ck2/h) (11)
where q is the number of meta-graph feature extractors, and |E′| is the number of edges in the new
unseen graph G′. Note that both q and ∆ are small and thus negligible. Hence, METAGL is fast and
efficient.

Meta-Graph Feature Extraction: The first term of the above time complexity includes the time
required to estimate the frequency of all network motifs with {2, 3, 4}-nodes, which is O(|E′|∆) in
the worst case where ∆ is a small constant representing the maximum sampled degree which can
be set by the user. See Ahmed et al. (2016) for further details. The other structural meta-feature
extractors such as PageRank all take at most O(|E′|) time. Furthermore, our approach is flexible
and supports any set of meta-graph feature extractors. Thus, it is straightforward to see that we can
achieve a slightly better time by restricting the set of such meta-graph feature extractors to those
that can be computed in time that is linear in the number of edges of any arbitrary graph. Hence, in
this case, the ∆ term is dropped and we have simply O(q|E′|+ |V|ck2/h). Also, note that feature
extractors are independent of each other, and thus can be run in parallel.

Embedding Models and Graphs: To augment the G-M network G given a new graph G′, we find a
fixed number of nearest neighbors for G′, which takes O(|V|k) time. Then we embed models and
graphs by applying HGT over the G-M network G = (V, E). Assuming an HGT with h attention
heads, the time to employ HGT over G is O(|V|k2 + |E|k2/h). More specifically, the time taken
for Attention(·) and Message(·) functions is O(|V|k2 + |E|k2/h), where O(|V|k2) is for feature
transformation by h heads for all nodes, and O(|E|k2/h) is for message transformation/attention
computation over each edge. Similarly, Aggregate(·) step takes O(|V|k2 + |E|k) time. Assuming
k2/h > k, the time for Aggregate(·) can be absorbed into the time for other steps. Further, given
that the G-M network is induced by c-NN search, we have that O(|E|) = O(c|V|), and thus the time
complexity for embedding models and graphs is O(|V|ck2/h).

H ADDITIONAL RELATED WORK

H.1 MODEL SELECTION IN MACHINE LEARNING

In this section, we provide a further review of model selection in machine learning, which we group
into two categories.
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Evaluation-Based Model Selection: A majority of model selection methods belong to this category.
Representative techniques used by these methods include grid search (Liashchynskyi & Liashchynskyi,
2019), random search (Bergstra & Bengio, 2012), early stopping-based (Golovin et al., 2017) and
bandit-based (Li et al., 2017b) approaches, and Bayesian optimization (BO) (Snoek et al., 2012; Wu
et al., 2019b; Falkner et al., 2018). Among them, BO methods are more efficient than grid or random
search, requiring fewer evaluations of hyperparameter configurations (HCs), as they determine which
HC to try next in a guided manner using prior experience from previous trials. Since these methods
perform model training or evaluation multiple times using different HCs, they are much less efficient
than the following group of methods.

Evaluation-Free Model Selection: Methods in this category do not require model evaluation for model
selection. A simple approach (Abdulrahman et al., 2018) identifies the best model by considering the
models’ rankings observed on prior datasets. Instead of finding the globally best model, ISAC (Kadio-
glu et al., 2010) and AS (Nikolić et al., 2013) select a model that performed well on similar datasets,
where the dataset similarity is modeled in the meta-feature space via clustering (Kadioglu et al.,
2010) or k-nearest neighbor search (Nikolić et al., 2013). A different group of methods perform
optimization-based model selection, where the model performance is estimated by modeling the
relation between meta-features and model performances. Supervised Surrogates (Xu et al., 2012)
learns a surrogate model that maps meta-features to model performance. Recently, MetaOD (Zhao
et al., 2021) outperformed all of these methods in selecting outlier detection algorithms. As a method
in this category, the proposed METAGL builds upon MetaOD and extends it for an effective and
automatic GL model selection. Most importantly, METAGL selects a graph learning model (e.g., link
predictor) for the given graph, while MetaOD selects an outlier detection (OD) model for the given
dataset (n-dimensional input features). To this end, METAGL designs meta features to capture the
characteristics of graphs, while MetaOD designs meta features specialized for OD tasks. Also, they
adopt different meta-training objectives: METAGL adapts the top-1 probability for meta-training,
whereas MetaOD uses an NDCG-based objective. Furthermore, METAGL learns the embeddings
of models and graphs by applying a heterogeneous GNN over the G-M network, which allows a
flexible modeling of the relations between different models and graphs. By contrast, in MetaOD, the
embeddings of models and datasets are optimized separately, where the relations between models
and datasets are modeled rather indirectly via reconstructing the performance matrix. Note that all
of these earlier methods, except the first simple approach, rely on meta-features, and they focus on
non-graph datasets. By using the proposed meta-graph features, they could be applied to the graph
learning model selection task.

H.2 COMPARISON WITH MODEL-AGNOSTIC META-LEARNING (MAML) (FINN ET AL., 2017)

MAML employs meta-learning to train a model’s initial parameters such that the model can perform
well on a new task after the parameters have been updated via a few gradient steps using the data
from the new task. In other words, given a model, MAML initializes one specific model’s parameters
via meta-learning over multiple observed tasks, such that the meta-trained model can quickly adapt to
a new task after learning from a small number of new data (i.e., few-shot learning). On the other hand,
METAGL employs meta-learning to carry over the prior knowledge of multiple different models’
performance on different graphs for evaluation-free selection of graph learning algorithms.

Since MAML meta-trains a specific model for fast adaptation to a new dataset, it is not for selecting a
model from a model set consisting of a wide variety of learning algorithms. Further, MAML fine-tunes
a meta-trained model in a few-shot learning setup, whereas in our problem setup, no training and
evaluation is to be done given a new graph dataset. Due to these reasons, MAML is not applicable to
the proposed evaluation-free GL model selection problem (Problem 1).

I ADDITIONAL RESULTS

I.1 EFFECTIVENESS OF META-GRAPH FEATURES

Figure 8 shows how accurately meta-learners can perform model selection when they use the proposed
meta-graph features (Section 4.3) vs. six state-of-the-art graph-level embedding (GLE) techniques,
i.e., GL2Vec (Chen & Koga, 2019), Graph2Vec (Narayanan et al., 2017), GraphLoG (Xu et al., 2021),
WaveletCharacteristic (Wang et al., 2021), SF (de Lara & Pineau, 2018), and LDP (Cai & Wang,
2019). As discussed in Section 5.3, all meta-learners achieve a higher model selection accuracy nearly
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Figure 8: Using the proposed meta-graph features (Section 4.3), all meta-learners nearly consistently
perform better than when they use existing graph-level embedding methods (most of the points are
below the diagonal).

consistently by using METAGL’s meta-graph features than when they use these GLE techniques, and
METAGL outperform all meta-learners, regardless of which features are used.

Table 7: METAGL is fast and incurs negligible overhead. The runtime (in secs) of naive model
selection (i.e., training each method using all configurations in the model set M), versus the runtime
of METAGL, i.e., the time to generate meta-graph features (the penultimate row) plus the time taken
for model prediction on average (the last row). Datasets are taken from (Rossi & Ahmed, 2015).

soc-wiki-
Vote

ia-
reality

tech-
routers-rf ca-cora power-

US-Grid web-EPA socfb-
Caltech tech-pgp

line 5.45 5.85 5.40 6.47 8.23 7.28 8.19 10.15
node2vec 65.28 504.38 154.54 159.32 315.35 317.55 184.09 722.66
deepwalk 7.03 55.01 16.89 17.95 35.62 33.09 18.24 84.35
HONE 203.71 53.15 552.31 276.11 127.4 882.35 737.49 2082.06
node2bits 64.85 113.06 92.22 93.37 211.3 117.55 106.66 284.42
deepGL 145.93 633.44 331.87 504.2 1027.25 880.03 445.89 2349.3
GraphSage 272.97 1451.87 513.18 283.35 115.86 1020.30 2586.93 1171.54
GCN 26.30 57.10 45.64 52.96 57.38 66.12 94.65 163.4

METAGL (meta feat. gen.) 0.16 0.97 0.36 0.4 1.07 0.78 0.61 2.05
(model pred.) 0.39

I.2 MODEL SELECTION TIME

50% 100% 150% 200% 250%

Figure 9: Distribution of the time for
METAGL to make a prediction / the time
to create meta-graph features (in percent-
age). Red and green lines denote the me-
dian and mean, respectively.

Table 7 shows results comparing the runtime (in seconds)
for naive model selection with the runtime of METAGL.
Note that naive model selection requires training and eval-
uating each method in the model set, while in METAGL,
the runtime involves only the time to generate meta-graph
feature (penultimate row) and predict the best model via
a forward pass (last row). Results show that METAGL is
fast, and incurs negligible computational overhead.
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Figure 9 shows the distribution of the time taken for METAGL to predict the best model, divided by
the time taken by METAGL for creating meta-graph features (in percentage). On average, it takes
∼20% less time for METAGL to make an inference than to generate meta-graph features.
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Figure 10: Ablation study of METAGL on several components that METAGL uses for meta-learning.
The proposed METAGL achieves the best performance, in comparison to the variants that adopt
different modeling choices.

I.3 ABLATION STUDY

Figure 10 presents ablation studies on several components of METAGL for meta-learning, namely,
meta-learning objective, the G-M network, the GNN encoder, and the input for embedding graphs. To
that end, we compare METAGL against several variants that differ from METAGL in just one aspect,
which we explain below. In Figure 10, METAGL refers to the proposed meta-learner as described
in Section 4.

I.3.1 META-LEARNING OBJECTIVE

To optimize the framework such that it can find the best model, METAGL employs the top-1
probability as its meta-learning objective (see Section 4.1). We evaluate how METAGL’s performance
changes when it uses different loss functions for meta-training. METAGL-MSE uses mean squared
error (MSE), METAGL-MLE employs ListMLE (Xia et al., 2008), and METAGL-lambda uses
LambdaLoss (Wang et al., 2018). Figure 10a shows that METAGL with the top-1 probability most
effectively identifies the top-performing model for the new graph, while variants that employ different
learning objectives obtain suboptimal results in terms of both MRR and AUC.
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I.3.2 G-M NETWORK

To learn the embeddings of models and graphs, METAGL uses a G-M network (GM), which is a multi-
relational network containing multiple types of nodes and edges (see Section 4.4 and Appendix G.3).
METAGL-SingleType GM is a variant of METAGL that uses a single-relational G-M network,
where all of the nodes and edges in the original G-M network have been converted to be of the same
type. METAGL-No GM is another variant where METAGL does not use the G-M network at all;
instead, the input features of models and graphs, which are normally provided as input to the GNN
in METAGL, were directly taken to be the final model and graph embeddings. Figure 10b shows
that METAGL with the multi-relational G-M network is the most effective, and in utilizing the G-M
network, it is helpful to be able to distinguish between the multiple types of nodes and edges. Further,
in comparison to METAGL-No GM, learning the embeddings of graphs and models via the G-M
network greatly improves the model selection performance.

I.3.3 GRAPH NEURAL NETWORKS

To effectively learn the embeddings of models and graphs over a multi-relational G-M network,
METAGL utilizes an attentive, heterogeneous graph neural network (GNN) as its graph encoder
(see Section 4.4 and appendix G.4), which can adaptively determine the aggregation weight of the
neighbors (thus attentive), while being aware of and utilizing the multiple node and edge types in
learning the embeddings (hence heterogeneous). To see how helpful attentive, heterogeneous GNNs
are in learning effective model and graph embeddings, here we create the following variants of
METAGL, which use GNNs that are not attentive and/or not heterogeneous (i.e., no mechanism to
handle different node and edge types). METAGL-RGCN uses RGCN (Schlichtkrull et al., 2018),
which is a heterogeneous GNN, but is not attentive. METAGL-GAT uses GAT (Velickovic et al.,
2018), which is an attentive GNN, but is not heterogeneous. METAGL-GCN uses GCN Kipf &
Welling (2017), which is neither heterogeneous nor attentive. In Figure 10c, the highest performance
is achieved by METAGL that uses heterogeneous and attentive GNNs, while the lowest performance
is obtained when it uses GCN, which is not attentive nor heterogeneous. Both the ability to perform
attentive neighborhood aggregation, and to be able to distinguish between and utilize different node
and edge types are essential in effectively capturing the complex relations between graphs and models.

I.3.4 INPUT FOR EMBEDDING GRAPHS

We have two sources of information for graphs: one is the performance matrix P, and the other is
graph data. Meta-graph feature m captures the information from the graph data, while φ(·) captures
the information from the performance matrix by estimating the latent graph factor obtained by
factorizing P. Therefore, the two terms m and φ(m) in Equation (2) aim to incorporate two different
sources of information. Here we create the following two variants of METAGL: In Equation (2),
METAGL-m uses m alone, and similarly METAGL-φ(m) uses only φ(m). Figure 10d shows that
they provide complementary information, and using both leads to the best result.

I.4 SENSITIVITY TO THE VARIANCE OF THE PERFORMANCE MATRIX
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Figure 11: Across varying performance perturbation rates, METAGL consistently improves upon
existing model selection approaches, achieving up to 53% higher MRR than the best baseline.
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We evaluate how sensitive METAGL and baselines are to the variance of the performance matrix P,
which can be introduced due to the non-deterministic nature of model training and evaluation. For
evaluation, we perturb all entries of the fully-observed performance matrix P to varying degrees, and
measure the model selection performance using the perturbed performance matrix P̃. Specifically,
given a performance perturbation rate r (r ≥ 0), we replace each performance entry n in P with
the perturbed performance ñ, which is uniformly randomly sampled from [n(1− r/2), n(1 + r/2)],
bounded by 0 and 1. For instance, given a perturbation rate of 0.2, a mean average precision of 0.5 is
perturbed by sampling from [0.45, 0.55]. As a result, higher perturbation rate makes the perturbed
matrix more random, and thus harder to predict. Figure 11 shows that while an increased perturbation
rate indeed makes model selection harder for all methods, METAGL consistently outperforms baseline
model selection approaches across varying performance perturbation rates, obtaining up to 53%
higher MRR than the best baseline.

I.5 COMPARISON WITH THE ACTUAL BEST PERFORMANCE
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Figure 12: The smallest performance difference between the actual best and predicted best models is
obtained with METAGL (27% and 20% less than the second smallest difference obtained by ALORS
in terms of median and mean, respectively). METAGL’s distribution is also much tighter than others.

Here we compare the actual best performance observed for each graph against the performance of the
model chosen by different model selection approaches. Figure 12 is a box plot showing how those
performance differences are distributed. Figure 12 shows that using METAGL leads to the smallest
performance difference between the actual best and the predicted best models (27% and 20% less
than the second smallest difference obtained by ALORS in terms of median and mean, respectively).
Further, the performance difference distribution obtained with METAGL is much tighter than that of
baselines.
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