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ABSTRACT

We formulate a hierarchical rectified flow to model data distributions. It hierarchi-
cally couples multiple ordinary differential equations (ODEs) and defines a time-
differentiable stochastic process that generates a data distribution from a known
source distribution. Each ODE resembles the ODE that is solved in a classic recti-
fied flow, but differs in its domain, i.e., location, velocity, acceleration, etc. Unlike
the classic rectified flow formulation, which formulates a single ODE in the loca-
tion domain and only captures the expected velocity field (sufficient to capture a
multi-modal data distribution), the hierarchical rectified flow formulation models
the multi-modal random velocity field, acceleration field, etc., in their entirety.
This more faithful modeling of the random velocity field enables integration paths
to intersect when the underlying ODE is solved during data generation. Intersect-
ing paths in turn lead to integration trajectories that are more straight than those
obtained in the classic rectified flow formulation, where integration paths cannot
intersect. This leads to modeling of data distributions with fewer neural function
evaluations. We empirically verify this on synthetic 1D and 2D data as well as
MNIST and CIFAR10 data. We will release our code.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021a;b) and particularly also flow matching (Liu
et al., 2023; Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023) have
gained significant attention recently. This is partly due to impressive results that have been reported
across domains from computer vision (Ho et al., 2020) and medical imaging (Song et al., 2022) to
robotics (Kapelyukh et al., 2023) and computational biology (Guo et al., 2024). Beyond impressive
results, flow matching was also reported to faithfully model multimodal data distributions. In ad-
dition, sampling is reasonably straightforward: it requires to solve an ordinary differential equation
(ODE) via forward integration of a set of source distribution points along an estimated velocity field
from time zero to time one. The source distribution points are sampled from a simple and known
source distribution, e.g., a standard Gaussian.

The velocity field is obtained by matching velocities from a constructed “ground-truth” integration
path with a parametric deep net using a mean squared error (MSE) objective. See Fig. 1(a) for the
“ground-truth” integration paths of classic rectified flow. Studying the “ground-truth” velocity dis-
tribution at a distinct location and time for rectified flow reveals a multimodal distribution. We derive
an analytic expression for the multimodal velocity distribution in case of a mixture-of-Gaussian data
distribution in Section 3.1. It is known that the MSE objective used in classic rectified flow does not
permit to capture this multimodal distribution. Instead, classic rectified flow leads to a model that
aims to capture the mean of the velocity distribution. This is illustrated in Fig. 1(b).

We do want to emphasize that capturing the mean of the velocity distribution is sufficient for charac-
terizing a multimodal data distribution (Liu et al., 2023). However, only capturing the mean velocity
also leads to unnecessarily curved forward integration paths. This is due to the fact that integration
paths cannot intersect when using an MSE objective, as can be observed in Fig. 1(b).

In this paper, we hence wonder whether it is possible to capture the velocity distribution in its en-
tirety. This enables integration paths to intersect during data generation, as illustrated in Fig. 1(c).
Intuitively, and as detailed in Section 3.2, we can capture the velocity distribution by formulating a
rectified flow objective in the velocity space rather than the location space. Hence, instead of training
a deep net to estimate the velocity for integration in location space, as done in classic rectified flow,
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(a) Samples (b) Rectified Flow (c) Ours

Figure 1: Particles flow from starting points (grey) to endpoints (blue) as time increases from 0 to
1. Ideally, the trajectories (green) are straight lines connecting two ends as shown in (a). Rectified
Flow captures the expected velocity field while our Hierarchical Rectified Flow can model the true
velocity field thus generating intersecting and more straight paths.

we train a deep net that estimates the acceleration for integration in velocity space. Sampling can
then be done by forward integrating two hierarchically coupled processes: first, forward integrate in
velocity space to obtain a sample from the velocity distribution; then use the velocity sample to per-
form a step in location space. While this nested integration of two processes seems computationally
more demanding at first, it turns out that fewer integration steps are needed, particularly in the latter
process. This is due to the fact that the integration path is indeed less curved, as shown in Fig. 1(c).
We also show in Section 3.3 that capturing the velocity distribution in its entirety permits to capture
a multimodal data distribution.

Going forward, instead of using ‘just’ two hierarchically coupled processes we can extend the for-
mulation to an arbitrary depth, which is detailed in Section 3.4. Using a depth of one defaults to
classic rectified flow (deep net captures the expected velocity field), while a depth of two leads to a
deep net that captures the acceleration, etc. We refer to this construction of hierarchically coupled
processes as a ‘hierarchical rectified flow.’

Empirically, we find that the studied hierarchical rectified flow leads to samples that better fit the
data distribution. Specifically, we find that this hierarchical rectified flow leads to slightly better
results than the vanilla rectified flow.

2 PRELIMINARIES

Given a dataset D = {(x1)} consisting of samples x1 ∼ ρ1, e.g., images, drawn from an unknown
target data distribution ρ1, the goal of generative modeling is to learn a model that faithfully captures
the dataset distribution ρ1 and permits to sample from the learned distribution.

Since we focus primarily on rectified flow, we provide the necessary background in the following. At
inference time, rectified flow starts from samples x0 ∼ ρ0 drawn from a known source distribution
ρ0, e.g., a standard Gaussian. The source distribution samples are pushed forward from time t = 0 to
target time t = 1 via integration along a trajectory specified via a learned velocity field v(zt, t). This
learned velocity field depends on the current time t and the sample location zt at time t. Formally,
we obtain samples by numerically solving the ordinary differential equation (ODE)

dzt = v(zt, t)dt, with z0 ∼ ρ0, t ∈ [0, 1]. (1)

Notably, this sampling procedure is able to capture multimodal dataset distributions, as one expects
from a generative model.

To learn the velocity field, at training time, rectified flow constructs random pairs (x0, x1), consisting
of a source distribution sample x0 ∼ ρ0 and a target distribution sample x1 ∼ D drawn from a given
dataset D consisting of samples which are assumed to be drawn from the unknown target distribution
ρ1. For a uniformly drawn time t ∼ U [0, 1], the time-dependent location xt is computed from the
pair (x0, x1) using linear interpolation of (x0, x1), i.e.,

xt = (1− t)x0 + tx1, wherex0 ∼ ρ0, x1 ∼ D. (2)

At this location xt and time t, the “ground-truth” velocity vgt(xt, t) = ∂xt/∂t = x1 − x0 is readily
available. It is then matched during training with a velocity model v(xt, t) via a standard ℓ2 loss,
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i.e., during training we address

inf
v
Ex0∼ρ0,x1∼D,t∼U [0,1]

[
∥x1 − x0 − v(xt, t)∥22

]
, (3)

where the optimization is over the set of all measurable velocity fields. In practice, the func-
tional velocity model v(xt, t) is often parameterized via a deep net with trainable parameters θ,
i.e., v(xt, t) ≈ vθ(xt, t), and the infimum resorts to a minimization over parameters θ.

Considering the training procedure more carefully, it is easy to see that different random pairs
(x0, x1) can lead to different “ground-truth” velocity directions at the same time t and at the same
location xt. The aforementioned ℓ2 loss hence asks the functional velocity model v(xt, t) to regress
to different “ground-truth” velocity directions. This leads to averaging, i.e., the optimal functional
velocity model v∗(xt, t) = E{(x0,x1,t):(1−t)x0+tx1=xt} [v(xt, t)].

According to Theorem 3.3 by Liu et al. (2023), if we use v∗ for the ODE in Eq. (1), then the
stochastic process associated with Eq. (1) has the same marginal distributions for all t ∈ [0, 1] as the
stochastic process associated with the linear interpolation characterized in Eq. (2).

Nonetheless, to avoid the averaging, in this paper we wonder whether it is possible to capture the
multimodal velocity distribution at each time t and at each location xt, and whether there are any
potential benefits to doing so.

3 TOWARDS HIERARCHICAL RECTIFIED FLOW

In the following Section 3.1, we first discuss the multimodality of the velocity distribution and pro-
vide a case study with Gaussian mixtures. The case study is designed to provide insights regarding
the velocity distribution. We then discuss in Section 3.2 a simple way to capture the multimodal
velocity distribution and how to use it to sample from the data distribution. Then, we show in
Section 3.3 that the proposed procedure indeed faithfully captures the data marginals. Finally, we
discuss in Section 3.4 an extension towards a hierarchical rectified flow formulation.

3.1 VELOCITY DISTRIBUTION AND CASE STUDY WITH GAUSSIAN MIXTURES

The linear interpolation in Eq. (2) defines a time-differentiable stochastic process with the random
velocity field v(xt, t) = x1 − x0, where x0 ∼ ρ0 and x1 ∼ ρ1. Note, the source and target
distributions are independent. The following theorem characterizes the distribution of the velocity
at a specific space time location xt,

Theorem 1 The velocity distribution π1(v;xt, t) at the space time location (xt, t) induced by the
linear interpolation in Eq. (2) is

π1(v;xt, t) = pV |Xt
(v|xt) =

ρ0(xt − tv)ρ1(xt + (1− t)v)

ρt(xt)
, (4)

for ρt(xt) ̸= 0 with (‘*’ denotes convolution)

ρt(xt) =


ρ0(x0) for t = 0,

1
t(1−t)ρ0

(
xt

1−t

)
∗ ρ1

(
xt

t

)
for t ∈ (0, 1),

ρ1(x1) for t = 1.

(5)

The distribution π1(v;xt, t) is undefined if ρt(xt) = 0.

The proof of Theorem 1 is deferred to Appendix A. Note that since ρ1 is typically multimodal,
the resulting π1(v;xt, t) is also multimodal. At t = 0, we have π1(v;xt, t) = ρ1(xt + v), which
corresponds to the data distribution shifted by −xt. At t = 1, we have π1(v;xt, t) = ρ0(xt − v),
which corresponds to the flipped source distribution shifted by xt.

To illustrate the multimodality of the velocity distribution, we consider a simple 1-dimensional
example. The source distribution is a standard Gaussian (zero mean, unit variance). The target
distribution is a Gaussian mixture. The following corollary provides the “ground-truth” velocity
distribution at any location xt.
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(a) (xt, t) = (−1.0, 0.0) (b) (xt, t) = (0.0, 0.4) (c) (xt, t) = (0.5, 0.6) (d) (xt, t) = (1.0, 1.0)

Figure 2: We verify the derived velocity distribution by comparing its probability density function
(blue) to the empirical sample histogram (orange) at different times t and locations xt.

Corollary 1 Assume ρ0 = N (x; 0, 1) and ρ1 =
∑K

k=1 wkN (x;µk, σ
2
k), then

π1(v;xt, t) =

K∑
k=1

w̃k,tN

(
v;

(1− t)(µk − xt) + tσ2
kxt

σ̃2
k,t

,
σ2
k

σ̃2
k,t

)
, (6)

where σ̃2
k,t = (1− t)2 + t2σ2

k and w̃k,t =
wkN (xt;tµk,σ̃

2
k,t)∑K

k′=1
wk′N (xt;tµk′ ,σ̃2

k′,t)
.

We defer the proof of Corollary 1 to Appendix B. To empirically check the fit of Corollary 1, in
Fig. 2, we compare the derived velocity distribution with empirical estimates at different locations
(xt, t). We observe a great fit and very clearly multimodal distributions.

It is very much worthwhile to study these distributions a bit more. In particular, we observe that
the velocity distribution at time t = 1 collapses to a single Gaussian, more specifically a shifted
source distribution. This can be seen from Fig. 2(d). Further, at time t = 0, we observe the velocity
distribution to be identical to a shifted data distribution. This can be seen from Fig. 2 (a).

This is valuable to know as it suggests that the velocity distribution is at least as complex as the data
distribution. Indeed, at t = 0, the velocity distribution is identical to a shifted data distribution.

3.2 MODELING THE VELOCITY DISTRIBUTION

The previous section showed that the velocity distributions can be multimodal. Knowing that the
optimal velocity model v∗(xt, t) of classic rectified flow averages “ground-truth” velocities, we
can’t expect classic rectified flow to capture this distribution. We hence wonder: 1) is it possible to
capture the multimodal velocity distribution at each time t and at each location xt; 2) are there any
benefits to capturing the multimodal velocity distribution as opposed to ‘just’ capturing its mean as
done by classic rectified flow.

Intuitively, an accurate characterization of the velocity distribution might be beneficial because we
obtain straighter integration paths, which in turn may lead to easier integration with fewer neu-
ral function evaluations (NFE). In addition, capturing the velocity distribution provides additional
modeling flexibility (an additional time axis), which might yield to improved results. Notably, mod-
eling of the velocity distribution does not lead to modeling of a simpler distribution. As mentioned
in Section 3.1, at time t = 0 the velocity distribution is identical to a shifted data distribution.

To accurately model the “ground-truth” velocity distribution, we can use rectified flow for velocities
rather than locations, which are used in the classic rectified flow formulation. This is equivalent to
learning the acceleration. To see this, first, consider classic rectified flow again: we construct a time-
dependent location xt from pairs (x0, x1), compute the “ground-truth” velocity v(xt, t) = ∂xt/∂t,
and train a velocity model vθ(xt, t) to match this “ground-truth” velocity v(xt, t).

To learn the acceleration, we introduce a source velocity sample v0 ∼ π0 drawn from a known
source velocity distribution π0. We also construct a target velocity sample v1(xt, t) ∼ π1(v;xt, t)
at time t and at location xt, which follows the target velocity distribution π1(v;xt, t) at time t and
at location xt. Note, the target velocity sample at time t and at location xt = (1 − t)x0 + tx1 is
obtained via v1(xt, t) = x1 − x0, when considering a rectified flow. The samples v1(xt, t) follow
the “ground-truth” velocity distribution π1(v;xt, t) at time t and at location xt.
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Algorithm 1: Hierarchical Rectified Flow Training
1 The source distributions ρ0 and π0 and the dataset D
2 while stopping conditions not satisfied do
3 Sample x0 ∼ ρ0, x1 ∼ D, and v0 ∼ π0 ; //better to sample a mini-batch
4 Sample t ∼ U [0, 1] and τ ∼ U [0, 1] ; //different t and τ for each mini-batch

sample
5 Compute loss following Eq. (8);
6 Perform gradient update on θ
7 end

Using both the source velocity sample v0 and the target velocity sample v1(xt, t), and following clas-
sic rectified flow, we introduce a new time-axis τ ∈ [0, 1] and construct a time-dependent velocity
vτ (xt, t) = (1 − τ)v0 + τv1(xt, t) at time t and at location xt. Using it, we obtain the “ground-
truth” acceleration from the time-dependent velocity vτ (xt, t) via a(xt, t, vτ , τ) = ∂vτ/∂τ =
v1(xt, t)− v0 = x1 − x0 − v0.

Note, for a specific (xt, t), we can get the following ODE induced from the linear interpolation of
the target velocity distribution to convert u0 ∼ π0 to u1 ∼ π1(v;xt, t),

duτ (xt, t) = a(xt, t, uτ , τ)dτ, with u0 ∼ π0. (7)

Here, a(xt, t, uτ , τ) = Eπ0,π1(v;xt,t)[V1−V0|Vτ = u] = Eπ0,ρ0,ρ1
[X1−X0−V0|Vτ = u,Xt = xt]

is the expected acceleration vector field.

Our approach aims to learn the acceleration vector field a though flow matching for all (xt, t), i.e.,
matching the “ground-truth” acceleration by addressing

inf
a
Ex0∼ρ0,x1∼D,t∼U [0,1],v0∼π0,τ∼U [0,1]

[
∥(x1 − x0 − v0)− a(xt, t, vτ , τ)∥22

]
. (8)

In practice, we use a parametric model aθ(xt, t, vτ , τ) to match the target “ground-truth” accel-
eration by minimizing the objective w.r.t. the trainable parameters θ. Training of the parametric
acceleration model is straightforward. It is summarized in Algorithm 1.

It remains to answer how we use the trained acceleration model aθ(xt, t, vτ , τ) during sampling. We
have the following coupled ODEs induced from the coupled linear interpolations:{

duτ (zt, t) = a(zt, t, uτ , τ)dτ, with u0(zt, t) ∼ π0, τ ∈ [0, 1],

dzt = u1(zt, t)dt, with z0 ∼ ρ0, t ∈ [0, 1].
(9)

Those coupled ODEs convert z0 ∈ ρ0 to z1 ∈ ρ1. After training, the ODEs in Eq. (9) are simulated
using the vanilla Euler method and aθ, as detailed in Algorithm 2. We first draw two random
samples: v0 ∼ π0 from the source velocity distribution and x0 ∼ ρ0 from the source location
distribution. We then integrate the velocity forward to time τ = 1 to obtain a sample from the
modeled velocity distribution v1(x0, 0). Subsequently, we use this sample to perform one integration
step on the location. We continue this procedure until we arrive at a sample x1.

Algorithm 2: Hierarchical Rectified Flow Sampling
Input : The source distributions ρ0 and π0, the number of t-discretization steps J , the number

of τ -discretization steps L, and the trained network parameters θ.
1 Sample z0 ∼ ρ0 and u0 ∼ π0;
2 Compute ∆t = 1

J−1 and ∆τ = 1
L−1 ;

3 for j = 1, . . . , J do
4 for l = 1, . . . , L do
5 Compute ul = ul−1 + aθ(ztj−1

, tj−1, ul−1, τl−1) ·∆τ
6 end
7 Compute zj = zj−1 + uL ·∆t
8 end

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Note that our use of the term acceleration is not due to second-order derivatives of the location, but
rather due to two hierarchically coupled linear processes. We hence refer to this construction as a
hierarchical rectified flow.

It remains to show that the obtained samples indeed follow the target data distribution. We will dive
into this topic next.

3.3 DISCUSSIONS ON THE GENERATED DATA DISTRIBUTION

We discuss below the property of the hierarchical rectified flow defined in Eq. (9). According to
rectified flow theory, we can generate samples from the velocity distribution using the expected
acceleration field. The following theorem states that the generation process defined in Eq. (9), which
uses the velocity distribution, leads to correct marginals for all times t ∈ [0, 1].

Theorem 2 The time-differentiable stochastic process Z = {Zt : t ∈ [0, 1]} generated by Eq. (9)
has the same marginal distribution as the time-differentiable stochastic process X = {Xt : t ∈
[0, 1]} generated by the linear interpolation in Eq. (2).

We defer the proof of Theorem 2 to Appendix C. Intuitively, the marginal preserving property is
because at each time t ∈ [0, 1], we can express zt as the linear interpolation of an x0 ∼ ρ0 and an
x1 ∼ ρ1 according to Eq. (2).

A key benefit of our approach is that the process Z can be piece-wise straight. Starting with samples
zt from ρt for t ∈ [0, 1], we propagate each sample by v(zt, t)∆t, where v(zt, t) ∼ π1(v; zt, t).
Since v(zt, t) = x1 − x0, where tx1 + (1− t)x0 = zt, the straight path following v(zt, t) will lead
to a sample from the data distribution. In other words, ∆t can be chosen arbitrarily in the interval
(0, 1− t]. In practice, the learned velocity distribution is not perfect. Therefore, instead of one-step
generation from the initial distribution, we choose to propagate the samples for a couple of steps. As
shown in Section 4, we typically only use 2-5 steps in the numerical integration for data generation.
Computationally, straight paths are very attractive as trajectories with nearly straight paths incur
small time-discretization error in numerical simulation.

3.4 EXTENDING TOWARDS HIERARCHICAL RECTIFIED FLOW

Consider the training objective for acceleration matching discussed in Eq. (8), and further consider
the coupled ODE solved when sampling from the constructed process as specified in Eq. (9). It is
straightforward to extend both to an arbitrary depth. I.e., instead of modeling the velocity distribu-
tion by matching accelerations, we can model the acceleration distribution by matching jerk or go
even deeper towards snap, crackle, pop, and beyond.

Formally, the training objective of a hierarchical rectified flow of depth D is given by

inf
f

Ex0∼ρ0,x1∼ρ1,t∼U [0,1]D

[∥∥(x1 − 1T
Dx0

)
− f (xt, t)

∥∥2
2

]
. (10)

Here, 1D is the D-dimensional all-ones vector and t =
[
t(1), . . . , t(D)

]T
is a D-dimensional

vector of time variables drawn from a D-dimensional unit cube U [0, 1]D. Moreover, we use
the D-dimensional vector of source distribution samples x0 = [x

(1)
0 , . . . , x

(D)
0 ]T , drawn from

a D-dimensional source distribution ρ0, e.g., a D-dimensional standard Gaussian. We further
use the D-dimensional location vector xt = [x

(1)
t , . . . , x

(D)
t ]T , with its d-th entry given as

x
(d)
t = (1 − t(d))x

(d)
0 + t(d)(x1 −

∑d−1
k=1 x

(k)
0 ). In addition, we refer to f as the functional field

of directions. Note that Eq. (10) is identical to Eq. (3) if D = 1 or Eq. (8) if D = 2.

Before discussing inference we want to highlight the importance of the first term in Eq. (10). Sub-
tracting a large number of Gaussians from a data sample x1 leads to a smoothed distribution. This
is another potential benefit of a hierarchical rectified flow formulation.
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Given a trained functional field of directions f we sample from the defined process via numerical
simulation according to the following coupled ODEs:

dz
(D)
t

(
z
(1:D−1)
t , t(1:D−1)

)
= f(zt, t)dt

(D), with z(D)
0 ∼ ρ

(D)
0 ,

dz
(D−1)
t

(
z
(1:D−2)
t , t(1:D−2)

)
= z

(D)
1

(
z
(1:D−1)
t , t(1:D−1)

)
dt(D−1), with z(D−1)

0 ∼ ρ
(D−1)
0 ,

...

dz
(1)
t = z

(2)
1

(
z
(1)
t , t(1)

)
dt(1), with z(1)0 ∼ ρ

(1)
0 .

(11)
Note that Eq. (11) is identical to Eq. (1) if D = 1 or Eq. (9) if D = 2.

Again, note that our use of the terms acceleration, jerk, etc. is not due to second, third, and higher-
order derivatives of the location, but rather due to hierarchically coupled linear processes.

4 EXPERIMENTS

The studied hierarchical rectified flow (HRF) formulation couples multiple ODEs to accurately
model the multimodal velocity distribution. To assess efficacy of this formulation, we first vali-
date the approach in low-dimensional settings, where the analytical form of the velocity distribution
is straightforward to compute. This allows us to verify that the model can indeed capture the veloc-
ity distribution accurately. We then investigate whether fitting the velocity distribution enhances the
model’s ability to fit the data distribution in generative tasks. We perform experiments on 1D data
(Section 4.1), 2D data (Section 4.2), and high-dimensional image data (Section 4.3) with depth two
HRF (HRF2) models: the models not only fit the velocity distribution but also enhance the quality
of the generative process. We also include results for depth three HRF (HRF3) models on low di-
mensional data to show the potential for exploring deeper hierarchical structures. Importantly, for
all experiments we report total neural function evaluations (NFEs), i.e., the product of the number
of integration steps at all HRF levels.

4.1 SYNTHETIC 1D DATA

For the 1D experiments, we first consider a standard Gaussian source distribution and a target dis-
tribution represented by a mixture of two Gaussians. Using Eq. (6), we can compute the analytical
form of the velocity distribution. As shown in Fig. 3, our model captures the analytic velocity distri-
bution with high accuracy. As expected, an increasing number of velocity integration steps increases
the accuracy of the estimated velocity. The only exception occurs when t approaches 1. The model
performance deteriorates, and excessive steps accumulate errors, leading to less accurate results.

Next, we examine the data generation quality. We use a mixture of five Gaussians as illustrated
in Fig. 4(a) and compare HRF to a baseline rectified flow (RF). We use the 1-Wasserstein distance
(WD) as a metric to assess the quality of the generated data. As shown in Fig. 4(b), for the same
neural function evaluations (NFEs), the HRF models outperform the baseline, producing data distri-
butions with a lower WD, indicating superior quality. In Fig. 4’s legend, the term “v steps” refers to
the number of velocity integration steps. In this 1D experiment, HRF3 demonstrates better perfor-
mance compared to HRF2. More 1D results are provided in Appendix H.1.

Additionally, we observe a fundamental difference in the generated trajectories. Since rectified flow
estimates only the mean of the velocity distribution, it tends to move towards the center of the target
distributions initially. In contrast, the HRF model determines the next direction at each space-time
location based on the current velocity distribution. As shown in Fig. 4(d), the HRF2 trajectories are
nearly linear and can intersect, which permits to use fewer data sampling steps during generation.

For the deep net, we use simple embedding layers and linear layers to first process the space and
time information separately. Afterward, we concatenate these representations. This combined input
is then passed through a series of fully connected layers, allowing the model to capture complex
interactions and extract high-level features essential for accurate velocity prediction. We use the
same architecture for the baseline model but increase the dimension of the hidden layers to opti-
mize its performance. In contrast, the HRF2 model contains only 74,497 parameters compared to
297,089 parameters for the baseline model. This demonstrates the potential efficiency of HRF in
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Figure 3: Numerical estimation of π1(xt, t) in HRF2 with different number of v integration steps.
The blue line shows the ground-truth π1, where ρ0 is a standard Gaussian and ρ1 is a mixture of two
Gaussians. The 1-Wasserstein distances (WD) for the estimates w.r.t. π1 are shown in the legend.
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Figure 4: Results on 1D example, where ρ0 is a standard Gaussian and ρ1 is a mixture of 5 Gaussians.
(a) Histograms of generated samples and ρ1. (b) The 1-Wasserstein distance vs. NFE. (c) and (d)
The trajectories of particles flowing from source distribution (grey) to target distribution (blue).

handling higher-dimensional data while maintaining a more compact architecture. More details of
the experiments are provided in Appendix F.

4.2 SYNTHETIC 2D DATA

For the 2D experiments, we consider two settings: 1) a standard Gaussian source distribution and a
target distribution consisting of a mixture of six Gaussians; and 2) a mixture of eight Gaussians as
the source distribution and the moons dataset as the target distribution. We employ the same network
architecture as used in the 1D experiments. Due to the 2D data, we now have 76,674 parameters for
the HRF2 model and 329,986 parameters for the baseline RF model. We measure the quality of data
generation using the sliced 2-Wasserstein distance (SWD). Fig. 5 shows the results. It is evident
that on these more complex datasets, the performance gap between an HRF model and the rectified
flow baseline is more pronounced. The trajectories demonstrate similar patterns to those observed in
the 1D experiments: HRF2 produces significantly straighter paths, while the rectified flow baseline
often exhibits large directional changes. Additionally, the HRF models consistently achieve higher
quality in data generation compared to the baseline. HRF3 outperforms HRF2 for generating the
moon data from a mixture of 8 Gaussians. However, HRF2 works better for the simpler mixture
of Gaussian target. There is room to improve the training and scheduling of the integration steps
among different layers for deeper HRF models.

4.3 IMAGE DATA

In addition to low-dimensional data, we also conduct experiments on high-dimensional image
datasets including MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky, 2009). We employ
the Fréchet Inception Distance (FID) as the metric for evaluating image generation quality. During
training, we use the same UNet architecture as Lipman et al. (2023) and adopt the parameter settings
and training procedures from Tong et al. (2024). For both MNIST and CIFAR-10, our rectified flow
baseline successfully reproduces state-of-the-art results. For the HRF model, we process twice the
amount of input data by enlarging the ResNet (He et al., 2016) blocks within the UNet (Ronneberger
et al., 2015) structure. Space information from different depths in the HRF will be processed first
separately and then jointly, enabling the model to capture multi-scale features and complex depen-
dencies. Architecture and training details are presented in Appendix F.
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Figure 5: Results on 2D data. Top row: ρ0 is a standard Gaussian and ρ1 is a mixture of 6 Gaussians.
Bottom row: ρ0 is a mixture 8 Gaussians and ρ1 is represented by the moons data. (a) Sliced
2-Wasserstein distance with respect to NFE. (b) and (c) show the trajectories (green) of sample
particles flowing from source distribution (grey) to target distribution (blue).
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Figure 6: Experimental results on MNIST and CIFAR-10 datasets. (a) Samples of generated images.
(b) FID scores with respect to NFEs.

As shown in Fig. 6, for the same NFEs, the HRF2 model demonstrates better performance on MNIST
and on-par performance on CIFAR-10 when compared to the rectified flow baseline.

5 RELATED WORK

Generative Modeling: GANs (Goodfellow et al., 2014; Arjovsky et al., 2017), VAEs (Kingma &
Welling, 2014), and normalizing flows (Tabak & Turner, 2013; Rezende & Mohamed, 2015; Dinh
et al., 2017; Huang et al., 2018; Durkan et al., 2019) are classic methods for learning deep generative
models. GANs excel in generating high-quality images but face challenges like training instability
and mode collapse due to their min-max update mechanism. VAEs and normalizing flows rely on
maximum likelihood estimation (MLE) for training, which necessitates architectural constraints or
special approximations to ensure manageable likelihood computations. VAEs often employ a con-
ditional Gaussian distribution alongside variational approximations, while the discrete normalizing
flows utilize specifically designed invertible architectures and require costly Jacobian matrix cal-
culations. Extending the discrete normalizing flow to continuous cases enabled the Jacobian to be
unstructured yet estimable using trace estimation methods (Hutchinson, 1989; Chen et al., 2018;
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Grathwohl et al., 2019). However, using maximum likelihood estimation (MLE) for this mapping
requires costly backpropagation through numerical integration. Regulating the path can minimize
solver calls (Finlay et al., 2020; Onken et al., 2021), but it doesn’t resolve the fundamental optimiza-
tion challenges. Rozen et al. (2021); Ben-Hamu et al. (2022) considered simulation-free training by
fitting a velocity field, but still present scalability issues (Rozen et al., 2021) and biased optimiza-
tion (Ben-Hamu et al., 2022).

Recent research has utilized diffusion processes, particularly the Ornstein-Uhlenbeck (OU) process,
to link the target distribution ρ1 with a source distribution ρ0. This involves a stochastic differ-
ential equation (SDE) that evolves over infinite time, framing generative model learning as fitting
the reverse evolution of the SDE from Gaussian noise to ρ1 (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021b). This method learns the velocity field by estimating the score function
∇ log(ρt(x)) using Fischer divergence instead of the maximum likelihood estimation (MLE) ob-
jective. Although the diffusion models have demonstrated significant potential for modeling high-
dimensional distributions (Rombach et al., 2022; Hoogeboom et al., 2022; Saharia et al., 2022), the
requirement for infinite time evolution, heuristic time step parameterization (Xiao et al., 2022), and
the unclear significance of noise and score (Bansal et al., 2024; Lu et al., 2022) pose challenges.
Notably, the score-based diffusion models typically require a large number of time steps to generate
data samples. In addition, calculating the actual likelihoods necessitates using the ODE probability
flow linked to the SDE (Song et al., 2021b). These highlight the need for further exploration of
effective ODE-driven methods for learning the data distribution.

Flow Matching: Concurrently, Liu et al. (2023); Lipman et al. (2023); Albergo & Vanden-Eijnden
(2023) presented an alternative to score-based diffusion models by learning the ODE velocity
through a time-differentiable stochastic process defined by interpolating between samples from the
source and data distributions, i.e., xt = ψt(x0, x1), with x0 ∼ ρ0 and x1 ∼ ρ1, instead of the OU
process. This offers greater simplicity and flexibility by enabling precise connections between any
two densities over finite time intervals. Liu et al. (2023) concentrated on a linear interpolation with
ψt(x0, x1) = (1 − t)x0 + tx1, i.e., straight paths connecting points from the source and the target
distributions. Lipman et al. (2023) introduced the interpolation through the lens of conditional prob-
ability paths leading to a Gaussian. Extensions of Lipman et al. (2023) were detailed by Tong et al.
(2024), generalizing the method beyond a Gaussian source distribution. Albergo & Vanden-Eijnden
(2023); Albergo et al. (2023) introduced stochastic interpolants with more general forms.

Straightening Flows: Liu et al. (2023) outlined an iterative process called ReFlow for coupling the
points from the source and target distributions to straighten the transport path and demonstrated that
repeating this procedure leads to an optimal transport map. Other related studies bypass the iterations
by modifying how noise and data are sampled during training. For example, Pooladian et al. (2023);
Tong et al. (2024) calculated mini-batch optimal transport couplings between the Gaussian and data
distributions to minimize transport costs and gradient variance.

Note that these approaches are orthogonal to our approach and can be adopted in our formulation
(see Appendix H).

6 DISCUSSION & CONCLUSION

We study a hierarchical rectified flow formulation that hierarchically couples linear ODEs, each
akin to a classic rectified flow formulation. We find this formulation to accurately model multi-
modal distributions for velocity, etc., which in turn enables integration paths to intersect during data
generation. As a consequence, integration paths are less curved leading to compelling results with
fewer neural function evaluations.

Currently, our sampling process is relatively simple, relying on the Euler method for multiple inte-
grations. We have only performed a basic grid search regarding possible integration schedules and
we have not explored other solvers. We suspect, better strategies exist and we leave their exploration
to future work.
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APPENDIX: TOWARDS HIERARCHICAL RECTIFIED FLOW

The appendix is organized as follows. We first provide a proof of Theorem 1 (the velocity distribu-
tion given xt) in Appendix A. We then provide a proof of Corollary 1 (velocity distribution for the
special case of a mixture of Gaussians target distribution) in Appendix B. Afterwards we provide
the proof of Theorem 2 (correctness of the marginals) in Appendix C. Then we discuss density es-
timation for HRF models in Appendix D. Next we provide more details regarding the hierarchical
rectified flow formulation in Appendix E. Subsequently, we discuss experimental and implemen-
tation details in Appendix F. Finally, we provide additional ablation studies in Appendix G and
additional experimental results in Appendix H.

A PROOF OF THEOREM 1

Proof of Theorem 1: The velocity at location xt and time t is v = x1 − x0 = x1−xt

1−t . The last
equality holds because (1 − t)x0 + tx1 = xt. Recall that for a random variable Y = αX + β

with α, β ∈ R and α ̸= 0, we have pY (y) = 1
αpX

(
y−β
α

)
. Since the random variable V is a linear

transform of the random variable X1, we get

π1(v;xt, t) = pV |Xt
(v|xt) = (1− t)pX1|Xt

((1− t)v + xt|xt) . (12)

Therefore, we need to evaluate pX1|Xt
. Using Bayes’ formula,

pX1|Xt
(x1|xt) =

pXt|X1
(xt|x1)pX1(x1)

pXt
(xt)

, (13)

assuming that pXt
(xt) ̸= 0. It is undefined if pXt

(xt) ̸= 0. Now it remains to find pXt|X1
and we

have

pXt|X1
(xt|x1) = p(1−t)X0+tx1

(xt) =
1

1− t
pX0

(
xt − tx1
1− t

)
. (14)

Plugging Eq. (13) and Eq. (14) into Eq. (12) and using x1 = xt + (1− t)v, we have

π1(v;xt, t) = pV |Xt
(v|xt) =

pX0
(xt − tv)pX1

(xt + (1− t)v)

pXt(xt)

=
ρ0(xt − tv)ρ1(xt + (1− t)v)

ρt(xt)
(15)

Since the random variable Xt is a linear combination of two independent random variables X0 and
X1 as defined in Eq. (2), we have

ρt(xt) = p(1−t)X0
(xt) ∗ ptX1

(xt) =

∫
p(1−t)X0

(z)ptX1
(xt − z)dz

=

∫
1

1− t
pX0

(
z

1− t

)
1

t
pX1

(
xt − z

t

)
dz

=
1

t(1− t)
ρ0

(
xt

1− t

)
∗ ρ1

(xt
t

)
, for t ∈ (0, 1). (16)

At t = 0, ρt = ρ0 since xt = x0. At t = 1, ρt = ρ1, since xt = x1. π1(v;xt, t) is undefined if
ρt(xt) = 0. This completes the proof. ■

B PROOF OF COROLLARY 1

Bromiley (2003) summarizes a few useful properties of the product and convolution of the Gaussian
distributions. We state the relevant results here for our proof of Corollary 1.

Lemma 1 For the linear transform of a Gaussian random variable, we have

N (ax+ b;µ, σ2) =
1

a
N
(
x;
µ− b

a
,
σ2

a2

)
.
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Lemma 2 For the convolution of two Gaussian distributions, we have

N (x;µ1, σ
2
1) ∗ N (x;µ2, σ

2
2) = N (x;µ1 + µ2, σ

2
1 + σ2

2).

Lemma 3 For the product of two Gaussian distributions, we have

N (x;µ1, σ
2
1)·N (x;µ2, σ

2
2) =

1√
2π(σ2

1 + σ2
2)

exp

[
− (µ1 − µ2)

2

σ2
1 + σ2

2

]
N
(
x;
µ1σ

2
2 + µ2σ

2
1

σ2
1 + σ2

2

,
σ2
1σ

2
2

σ2
1 + σ2

2

)
.

The proofs of the Lemmas are detailed by Bromiley (2003).

Proof of Corollary 1: We first compute the density of Xt using Theorem 1 using the specific ρ0
and ρ1.

ρt(xt) =
1

t(1− t)
ρ0

(
xt

1− t

)
∗ ρ1

(xt
t

)
=

1

t(1− t)
N
(

xt
1− t

; 0, 1

)
∗

(
K∑

k=1

wkN
(xt
t
;µk, σ

2
k

))
. (17)

By applying Lemma 1 and Lemma 2 to Eq. (17), we get

ρt(xt) = N
(
xt; 0, (1− t)2

)
∗

(
K∑

k=1

wkN
(
xt; tµk, t

2σ2
k

))

=

K∑
k=1

wk

(
N
(
xt; 0, (1− t)2

)
∗ N

(
xt; tµk, t

2σ2
k

))
=

K∑
k=1

wkN
(
xt; tµk, σ̃

2
k,t

)
. (18)

Using Theorem 1 and Eq. (18), we have

pV |Xt
(v|xt) =

N (xt − tv; 0, 1)
(∑K

k=1 wkN
(
xt + (1− t)v;µk, σ

2
k

))
∑K

k′=1 wk′N
(
xt; tµk′ , σ̃2

k′,t

)
a
=

N
(
v; xt

t ,
1
t2

) (∑K
k=1 wkN

(
v; µk−xt

1−t ,
σ2
k

(1−t)2

))
∑K

k′=1 wk′N
(
xt; tµk′ , σ̃2

k′,t

)
=

∑K
k=1 wkN

(
v; xt

t ,
1
t2

)
N
(
v; µk−xt

1−t ,
σ2
k

(1−t)2

)
t(1− t)

∑K
k′=1 wk′N

(
xt; tµk′ , σ̃2

k′,t

)
b
=

∑K
k=1 wk

t(1−t)√
2π((1−t)2+t2σ2

k)
exp

(
− (xt−tµk)

2

(1−t)2+t2σ2
k

)
N
(
v;

(1−t)(µk−xt)+tσ2
kxt

σ̃2
k,t

,
σ2
k

σ̃2
k,t

)
t(1− t)

∑K
k′=1 wk′N

(
xt; tµk′ , σ̃2

k′,t

)
c
=

∑K
k=1 wkN

(
xt; tµk, σ̃

2
k,t

)
N
(
v;

(1−t)(µk−xt)+tσ2
kxt

σ̃2
k,t

,
σ2
k

σ̃2
k,t

)
∑K

k′=1 wk′N
(
xt; tµk′ , σ̃2

k′,t

)
=

K∑
k=1

w̃k,tN

(
v;

(1− t)(µk − xt) + tσ2
kxt

σ̃2
k,t

,
σ2
k

σ̃2
k,t

)
. (19)

The equality a holds by applying Lemma 1. The equality b is derived by applying Lemma 3 to the
product of two Gaussian distributions. Simplifying the expressions, we get equality c and the final
expression of pV |Xt

(v|xt). This completes the proof. ■
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C PROOF OF THEOREM 2

According to Theorem 3.3 of Liu et al. (2023), the ODE in Eq. (7) generates the samples from the
ground-truth velocity distributions at space time location (xt, t).

We consider the characteristic function of zt+∆t = zt+ v(zt, t)∆t for t ∈ [0, 1] and ∆t ∈ [0, 1− t],
assuming that Zt has the same distribution as Xt. If the characteristic functions of zt+∆t and xt+∆t

agree, then we can show that Zt+∆t and Xt+∆t enjoy the same distributions. In addition, since Z0

and X0 have the same distributions, we can get Zt and Xt have the same distributions for t ∈ [0, 1].

To show this, we consider the characteristic function assuming zt = xt ∼ ρt,

E
[
eı⟨k,zt+∆t⟩

]
= Ext∼ρt,v∼π1(v;xt,t)

[
eı⟨k,xt+v∆t⟩

]
=

∫ ∫
eı⟨k,xt+v∆t⟩pV |Xt

(v|xt)pXt
(xt)dvdxt

a
=

∫ ∫
eı⟨k,xt+v∆t⟩ pX0

(xt − tv)pX1
(xt + (1− t)v)

pXt
(xt)

pXt
(xt)dvdxt

=

∫ ∫
eı⟨k,(xt+v∆t)⟩pX0

(xt − tv)pX1
(xt + (1− t)v)dvdxt

b
=

∫ ∫
eı⟨k,(1−t−∆t)x0+(t+∆t)x1⟩pX0(x0)pX1(x1)dx0dx1

= Ext+∆t∼ρt+∆t

[
eı⟨k,xt+∆t⟩

]
. (20)

We use the notation ⟨·, ·⟩ to denote the inner product. Equality a holds due to Theorem 1. Equality
b holds because x0 = xt − tv and x1 = xt + (1− t)v using the linear interpolation. Therefore, we
get the distributions of Zt+∆t and Xt+∆t are the same. This completes the proof.

D DENSITY ESTIMATION

In the following, we describe two approaches for density estimation. The resulting procedures are
summarized in Algorithm 3 and Algorithm 4. To empirically verify the correctness of the density
estimation procedures, we train an RF baseline and an HRF2 model using a bimodal Gaussian target
distribution and a standard Gaussian source distribution (see Appendix H.1 for more details). In
Fig. 7 we compare 1) the ground truth density, 2) the density estimated for the RF baseline model,
and 3) the densities estimated for the HRF2 model with both procedures. We also report bits per
dimension (bpd) for experiments on 1D 1N → 2N , 2D 8N → moon, MNIST, and CIFAR-10 data.
The results are shown in Table 1. We observe that HRF2 consistently outperforms the RF baseline.

To estimate the density, according to Eq. (4) in Theorem 1, we have

log ρ1(z1) = log π1(u; zt, t) + log ρt(zt)− log ρ0(zt − tu), with u =
z1 − zt
1− t

. (21)

This implies that for any given t ∈ [0, 1], we can use Eq. (21) to estimate the density for a generated
sample z1. We can choose zt using the linear interpolation in Eq. (2) with z0 ∼ ρ0.

For t = 0, we observe that ρ1(z1) = π1(z1 − z0; z0, 0), where z0 ∼ ρ0. In this case, we can directly
evaluate the likelihood of the generated sample via the velocity distribution. We discuss evaluation
of the likelihood below. The procedure to compute the density is summarized in Algorithm 3.

For t = 1, the right-hand side of Eq. (21) becomes log ρ1(z1) because log π1(u; z1, 1) = log ρ0(z1−
u), which cancels out with the last term in Eq. (21). Hence, t = 1 can’t be used to estimate the
density.

For t ∈ (0, 1), we need to evaluate ρt(zt) to estimate the likelihood of z1. Considering a one step
linear flow from z0 at time 0 to zt at t, we have zt = z0 + vt and ρt(zt|z0) = 1

tπ1(v; z0, 0). Using
it, the density at time t can be computed according to

ρt(zt) =

∫
1

t
π1

(
zt − z0
t

; z0, 0

)
ρ0(z0) dz0 ≈ 1

N

N∑
i=1

1

t
π1

(
zt − z

(i)
0

t
; z

(i)
0 , 0

)
. (22)
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Algorithm 3: Density Estimation 1 (t = 0)
Input : Generated sample z1 and the source distribution ρ0.

1 Sample z0 ∼ ρ0 ;
2 Compute u = z1 − z0 ;
3 Compute ρ̂1(z1) = π1(u; z0, 0) according to Eq. (23) ;
4 (Optional) Compute ρ̂1(z1) = 1

N

∑N
i=1 π1(u

(i); z
(i)
0 , 0), with u(i) = z1 − z

(i)
0 and z(i)0 ∼ ρ0 ;

Output: ρ̂1(z1)

Algorithm 4: Density Estimation 2 (t ∈ (0, 1))
Input : Generated sample z1 and the source distributions ρ0 and π0.

1 Draw random t ∼ Unif(0, 1) ;
2 Sample z0 ∼ ρ0 ;
3 Compute zt = tz1 + (1− t)z0 and u = z1−zt

1−t ;
4 Evaluate ρ0(zt − tu), ρt(zt) according to Eq. (22), and π1(u; zt, t) according to Eq. (23) ;
5 Compute the log likelihood according to Eq. (21) ;

Output: ρ̂1(z1)

Algorithm 4 outlines the procedure for the likelihood computation with a randomly drawn t ∈ (0, 1).
Optionally, we can average across randomly drawn t ∈ (0, 1).

To evaluate the (log-)likelihood of a velocity u at location zt and time t, which is needed in both
cases (t = 0 and t ∈ (0, 1)), we follow the approach introduced by Chen et al. (2018); Song et al.
(2021b) and numerically evaluate

log π1(u; zt, t) = log π0(u0; zt, t)−
∫ 0

1

∇uτ
· aθ(zt, t, uτ , τ) dτ. (23)

Here, the random variable uτ as a function of τ can be obtained by solving the ODE in Eq. (7)
backward with a fixed u at τ = 1. The term ∇uτ

·aθ(zt, t, uτ , τ) is computed by using the Skilling-
Hutchinson trace estimator Ep(ϵ)

[
ϵT∇uτ

a(zt, t, uτ , τ)ϵ
]

(Skilling, 1989; Hutchinson, 1990; Grath-
wohl et al., 2018). The vector-Jacobian product ϵT∇vτa(zt, t, uτ , τ) can be efficiently computed
by using reverse mode automatic differentiation, at approximately the same cost as evaluating
a(zt, t, uτ , τ).

In our experiments, we use the RK45 ODE solver (Dormand & Prince, 1980) provided by the
scipy.integrate.solve ivp package. We use atol = 1e−5 and rtol = 1e−5. When imple-
menting Algorithm 4, we use N = 1000 to evaluate ρt(xt).

As mentioned above, to empirically verify the correctness of the density estimation procedures, we
train an RF baseline and an HRF2 model using a bimodal Gaussian target distribution and a standard
Gaussian source distribution. We compare the density estimated for the RF baseline model and the
densities estimated for the HRF2 model with both Algorithm 3 and Algorithm 4. Fig. 7(a) compares
the results obtained with Algorithm 3 to the RF baseline and the ground truth. Fig. 7(b) compares
the density estimated for different times t with Algorithm 4 to the RF baseline and the ground truth.
Regardless of the choice of algorithm and time, we observe that the HRF2 model obtains a better
estimation of the likelihood. Importantly, both procedures provide a compelling way to estimate
densities.

In Table 1, we report bits per dimension (bpd) for experiments on 1D 1N → 2N , 2D 8N →
moon, MNIST, and CIFAR-10 data. For 1D data, z0 = 0 suffices for compelling results. For higher
dimensional data, we use N = 20 z0 as shown in the optional line 4 of Algorithm 3 to compute the
bits per dimension. We observe that HRF2 consistently outperforms the RF baseline.
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Figure 7: Density estimation results and comparison to ground truth. Irrespective of the choise of
algorithm and the choice of time, we observe compelling density estimation results. We also note
that the HRF2 model improves upon the RF baseline.

NLL (BPD↓) 1N → 2N 8N → moon MNIST CIFAR-10

Baseline (RF) 0.275 2.119 2.062 2.980
Ours (HRF2) 0.261 2.113 2.054 2.975

Table 1: Density estimation on 1D 1N → 2N , 2D 8N → moon, MNIST and CIFAR-10 data using
bits per dimension (bpd). We observe a consistently better density estimation with the HRF2 model.

E HIERARCHICAL RECTIFIED FLOW FORMULATION DETAILS

In this section, we show how Eq. (8) can be derived from Eq. (10). For convenience we re-state
Eq. (10):

inf
f

Ex0∼ρ0,x1∼ρ1,t∼U [0,1]D

[∥∥(x1 − 1T
Dx0

)
− f (xt, t)

∥∥2
2

]
. (24)

For D = 2, we note that x1 − 1T
Dx0 is equivalent to x1 − x

(1)
0 − x

(2)
0 . Letting x0 = x

(1)
0 and

v0 = x
(2)
0 , we obtain x1 − 1T

Dx0 = x1 − x0 − v0.

Further note that we obtain the time variables t = [t(1), t(2)] = [t, τ ] ∼ U [0, 1]2, since t and τ are
drawn independently from a uniform distribution U [0, 1]. Also, x0 = [x

(1)
0 , x

(2)
0 ] = [x0, v0] ∼ ρ0,

where x0 and v0 are drawn independently from standard Gaussian source distributions ρ0 and π0
because ρ0 is a D-dimensional standard Gaussian.

Based on the general expression x(d)t = (1 − t(d))x
(d)
0 + t(d)(x1 −

∑d−1
k=1 x

(k)
0 ) and the previous

results, we have xt = x
(1)
t = (1 − t(1))x

(1)
0 + t(1)x1 = (1 − t)x0 + tx1 and vτ = x

(2)
t =

(1− t(2))x
(2)
0 + t(2)(x1 − x

(1)
0 ) = (1− τ)v0 + τv1. This is identical to the computation of xt and

vτ . Combining all of these results while renaming the function from f to a, we arrive at

inf
a
Ex0∼ρ0,x1∼D,t∼U [0,1],v0∼π0,τ∼U [0,1]

[
∥(x1 − x0 − v0)− a(xt, t, vτ , τ)∥22

]
. (25)

This program is identical to the one stated in Eq. (8).

F EXPERIMENTAL AND IMPLEMENTATION DETAILS

F.1 LOW DIMENSIONAL EXPERIMENTS

For 1D and 2D experiments, we use the same neural network. It consists of two parts. The first
part processes the space and time information separately using a Sinusoidal Positional Embedding
and linear layers. In the second part, the processed information is concatenated and passed through
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Total NFEs Sampling Steps N → 2N N → 5N 2N → 2N N → 6N (2D) 8N → moon
1-WD 1-WD 1-WD 2-SWD 2-SWD

100 (1, 100) 0.020 0.031 0.045 0.070 0.172
100 (2, 50) 0.025 0.019 0.011 0.037 0.107
100 (5, 20) 0.022 0.020 0.010 0.045 0.119
100 (10, 10) 0.025 0.019 0.017 0.053 0.163
100 (20, 5) 0.026 0.017 0.030 0.062 0.201
100 (50, 2) 0.047 0.030 0.075 0.081 0.222
100 (100, 1) 0.032 0.030 0.050 0.085 0.177

Table 2: HRF2 performance for low dimensional experiments under the same NFE = 100 budget
with different choices of sampling steps. Sampling steps (J, L) indicates that we use J steps to
integrate x and L steps to integrate v. 1-WD refers to the 1-Wasserstein distance and 2-SWD refers
to the Sliced 2-Wasserstein distance. Bold for the best. Underline for the runner-up.

a series of linear layers to produce the final output. Compared to the baseline, our HRF model
with depth D takes D times more space and time information as input. Therefore, the first part
of the network has D times more embedding and linear layers to handle the spatial and temporal
information from different depths. However, by adjusting the dimensions of the hidden layers, the
size of our network is only one-fourth that of the baseline, while achieving superior performance.
For each dataset in the low-dimensional experiments, we use 100,000 data points for training and
another 100,000 data points for evaluation. For each set of experiments, we train five different
models using five random seeds. During evaluation, we conduct a total of 125 experiments and
average the results to ensure fairness and validity of our findings.

F.2 HIGH DIMENSIONAL EXPERIMENTS

In the high-dimensional image experiments, we used the UNet architecture described by Lipman
et al. (2023) for the baseline model. To handle the extra inputs, we designed two new UNet struc-
tures, one for MNIST data and one for CIFAR-10 data.

MNIST. Similar to the neural network used in our low-dimensional experiments, each ResNet block
has two parts. In the first part, we use convolutional layers to process spatial (data) information and
linear layers to handle time embeddings. In the second part, the data and time embeddings are
added together and passed through a series of linear layers to capture the space-time dependencies.
For a fair evaluation, we adjusted the number of channels such that the model sizes approximately
match (ours: 1.07M parameters vs. baseline: 1.08M parameters). We note that the HRF formulation
significantly outperforms the baseline. Results were shown in Fig. 6. More results are provided in
Appendix H.3.

CIFAR-10. For CIFAR-10 we use two UNets with the same number of layers but different channel
sizes. We use a larger UNet with channel size 128 to process the velocity vτ and time τ . We use
another smaller UNet with channel size 32 to process the location xt and time t. We merge the
output of each ResNet block of the smaller UNet with the corresponding ResNet block of the bigger
UNet. The size of this new UNet structure is 1.25× larger than the baseline (44.81M parameters in
our model and 35.75M parameters in the baseline). Our model achieves a slightly better generation
quality (see Fig. 6 in Section 4 and Table 7 in Appendix H.3).

For training, we adopt the procedure and parameter settings from Tong et al. (2024). We use the
Adam optimizer with β1 = 0.9, β2 = 0.999, and ϵ = 10−8, with no weight decay. For MNIST,
the UNet has channel multipliers [1, 2, 2], and for CIFAR-10, channel multipliers are [1, 2, 2, 2]. We
train both models on a single NVIDIA RTX A6000 GPU. For MNIST, we trained both the baseline
and our model for 150,000 steps while we use 400,000 steps for CIFAR-10.
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Figure 8: Training losses of HRF with different depths on 1D data, a standard Gaussian source
distribution to a mixture of 2 Gaussians target distribution. We observe training to remain stable.

Training 1D data 2D data
RF (0.30M) HRF2 (0.07M) HRF3 (0.67M) RF (0.33M) HRF2 (0.08M) HRF3 (0.71M)

Time (×10−2 s/iter) 1.292 0.736 2.202 1.503 0.737 2.252
Memory (MB) 2011 1763 2417 2091 1803 2605
Param. Counts 297,089 74,497 673,793 329,986 76,674 711,042

Table 3: Computational requirements for training on synthetic datasets. All models in this table are
trained for 15000 iterations with a batch size of 51200.

G ABLATION STUDIES

G.1 ABLATION STUDY FOR NFE

The sampling process of HRF with depth D involves integrating D ODEs using Euler’s method.
The total number of neural function evaluations (NFE) is defined as NFE =

∏
dN

(d) where N (d)

is the number of integration steps at depth d. Note, for a constant NFE budget, varying the N (d)

values can lead to different results. Therefore, we conduct an ablation study to understand suitable
choices for N (d).

As shown in Fig. 3, increasing the number of integration steps enhances the learning of the velocity
distribution. However, this improvement exhibits diminishing returns: beyond a certain threshold,
the benefit of additional steps does not justify the increased computational cost. Table 2 further
illustrates that, for a fixed NFE budget, a compelling strategy is to allocate a sufficient number of
steps to accurately sample v for a precise velocity distribution while using fewer steps to integrate
over x.

G.2 ABLATION STUDY FOR DEPTH

Our HRF framework can be extended to an arbitrary depth D. Here, we compare the performance
of HRF with depths ranging from 1 to 3, where HRF1 corresponds to the baseline RF. As illustrated
by the training losses shown in Fig. 8, training stability remains consistent across different depths,
with higher-depth HRFs demonstrating comparable stability to lower-depth models. Importantly,
note that Fig. 8 mainly serves to compare convergence behavior and not loss magnitudes as those
magnitudes reflect different objects, i.e., velocity for a depth of 1, acceleration for a depth of 2, etc.
Moreover, the deep net structure for the functional field of directions f depends on the depth, which
makes a comparison more challenging. Table 3 and Table 4 indicate that increasing the depth results
in manageable model size, training time, and inference time. These trade-offs are justified by the
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Inference Time (s) 1D data 2D data
Total NFEs RF (0.30M) HRF2 (0.07M) HRF3 (0.67M) RF (0.33M) HRF2 (0.08M) HRF3 (0.71M)

5 0.030 ± 0.014 0.014 ± 0.005 0.037 ± 0.030 0.035 ± 0.017 0.017 ± 0.006 0.041 ± 0.034
10 0.069 ± 0.020 0.033 ± 0.000 0.128 ± 0.001 0.078 ± 0.025 0.039 ± 0.000 0.145 ± 0.001
50 0.372 ± 0.024 0.164 ± 0.000 0.642 ± 0.001 0.440 ± 0.001 0.193 ± 0.000 0.727 ± 0.001

100 0.755 ± 0.001 0.327 ± 0.000 1.291 ± 0.002 0.884 ± 0.001 0.385 ± 0.000 1.455 ± 0.003

Table 4: Inference time comparison for synthetic data using a varying NFE budget. For HRF2, we
used sampling step combinations: (1, 5), (2, 5), (5, 10), (10, 10). For HRF3, we used sampling step
combinations: (1, 1, 5), (1, 2, 5), (1, 5, 10), (2, 5, 10). For all experiments, we set our batch size to
100,000.
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(a) Data distribution (b) Metrics (c) RF trajectories (d) HRF trajectories

Figure 9: More experiments on 1D data: top row shows results for a standard Gaussian source
distribution and a mixture of 2 Gaussians target distribution; bottom row shows results for a mixture
of 2 Gaussians source distribution and the same mixture of 2 Gaussians target distribution.

significant performance improvements observed in Fig. 4 and Fig. 5. See Appendix H.1 for details
regarding the training data.

H ADDITIONAL EXPERIMENTAL RESULTS

H.1 ADDITIONAL 1D RESULTS

The results for experiments used in Fig. 1 and Fig. 3 are shown in Fig. 9.

H.2 HIERARCHICAL RECTIFIED FLOW WITH OTCFM

As mentioned in Section 5, various approaches for straightening the paths in flow matching models
exist. These approaches are orthogonal to our work and can be easily incorporated in the HRF
formulation. To demonstrate this, we incorporate the minibatch optimal transport conditional flow
matching (OTCFM) (Tong et al., 2024) into the two layered hierarchical rectified flow (HRF2).
In OTCFM, for each batch of data ({x(i)0 }Bi=1, {x

(i)
1 }Bi=1) seen during training, we sample pairs

of points from the joint distribution γbatch(x0, x1) given by the optimal transport plan between the
source and target points in the batch. We follow the same procedure to couple noise with the data
points and use the batch-wise coupled x0 and x1 to learn the parameters in aθ. We refer to this
approach as HOTCFM2. We test its performance on two synthetic examples: 1) a 1D example with
a standard Gaussian source distribution and a mixture of two Gaussians as the target distribution;
and 2) a 2D example with a mixture of eight Gaussians as the source distribution and the moons
dataset as the target distribution. Fig. 10 and Fig. 11 show that hierarchical rectified flow improves
the performance of OTCFM.
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(a) Data distribution (b) Metrics (c) OTCFM trajectories (d) HOTCFM2 trajectories

Figure 10: Results for 1D data, with ρ0 being a standard Gaussian and ρ1 being a mixture of 2
Gaussians. (a) Histograms of generated samples and ρ1. (b) The 1-Wasserstein distance vs. total
NFEs. (c,d) The trajectories of particles flowing from source distribution (grey) to target distribution
(blue).
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Figure 11: Results for 2D data, with ρ0 being a mixture of 8 Gaussians and ρ1 being represented by
the moons data. (a) Sliced 2-Wasserstein distance vs. total NFEs. (b) and (c) show the trajectories
(green) of sample particles flowing from source distribution (grey) to target distribution (blue).

H.3 ADDITIONAL RESULTS ON MNIST AND CIFAR-10

Here we show additional results for experiments with MNIST and CIFAR-10 data. From Tables 5
to 7, we can observe the following: For MNIST, our model is comparable in size, comparable in
training times, and comparable in inference times, while outperforming the baseline. For CIFAR-10,
our model is 1.25× larger and has a slower inference time. However, as shown in Table 7, it still
outperforms the baseline. We believe that the modest trade-off in model size and inference time is
acceptable given the performance gains.
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Training MNIST CIFAR-10
RF (1.08M) HRF2 (1.07M) RF (35.75M) HRF2 (44.81M)

Time (s/iter) 0.1 0.1 0.3 0.4
Memory (MB) 3935 3931 8743 10639
Param. Counts 1,075,361 1,065,698 35,746,307 44,807,843

Table 5: Computational requirements during training on image datasets.

Inference time (s) MNIST CIFAR-10
Total NFEs RF (1.08M) HRF2 (1.07M) RF (35.75M) HRF2 (44.81M)

5 0.084 ± 0.001 0.085 ± 0.001 0.367 ± 0.000 0.519 ± 0.001
10 0.168 ± 0.000 0.169 ± 0.000 0.737 ± 0.000 1.041 ± 0.001
20 0.336 ± 0.000 0.339 ± 0.000 1.477 ± 0.002 2.092 ± 0.003
50 0.843 ± 0.001 0.851 ± 0.002 3.717 ± 0.013 5.248 ± 0.012

100 1.693 ± 0.002 1.706 ± 0.003 7.518 ± 0.013 10.565 ± 0.015
500 8.538 ± 0.030 8.598 ± 0.010 37.796 ± 0.028 52.885 ± 0.017

Table 6: Inference time comparison for MNIST and CIFAR-10 datasets using a
varying NFE budget. For HRF2 on MNIST we used sampling step combinations:
(1, 5), (2, 5), (5, 4), (5, 10), (5, 20), (5, 100). For HRF2 on CIFAR-10 we used sampling step
combinations: (1, 5), (1, 10), (1, 20), (1, 50), (2, 50), (2, 250). All experiments are conducted with
a batch size of 128.

Performance (FID) MNIST CIFAR-10
Total NFEs RF (1.08M) HRF (1.07M) RF (35.75M) HRF (44.81M)

5 19.187 ± 0.188 15.798 ± 0.151 36.209 ± 0.142 30.884 ± 0.104
10 7.974 ± 0.119 6.644 ± 0.076 14.113 ± 0.092 12.065 ± 0.024
20 6.151 ± 0.090 3.408 ± 0.076 8.355 ± 0.065 7.129 ± 0.027
50 5.605 ± 0.057 2.664 ± 0.058 5.514 ± 0.034 4.847 ± 0.028

100 5.563 ± 0.049 2.588 ± 0.075 4.588 ± 0.013 4.334 ± 0.054
500 5.453 ± 0.047 2.574 ± 0.121 3.887 ± 0.035 3.706 ± 0.043

Table 7: Performance comparison for MNIST and CIFAR-10 datasets using a vary-
ing NFE budget. For HRF2 on MNIST we used sampling step combinations:
(5, 1), (10, 1), (5, 4), (10, 5), (10, 10), (100, 5). For HRF2 on CIFAR-10 we used sampling
step combinations: (1, 5), (1, 10), (1, 20), (1, 50), (2, 50), (2, 250).

22


	Introduction
	Preliminaries
	Towards Hierarchical Rectified Flow
	Velocity distribution and case study with Gaussian Mixtures
	Modeling the Velocity Distribution
	Discussions on the generated data distribution
	Extending Towards Hierarchical Rectified Flow

	Experiments
	Synthetic 1D Data
	Synthetic 2D Data
	Image Data

	Related Work
	Discussion & Conclusion
	Proof of the:pvgivenxt
	Proof of clm:velocitydistribution
	Proof of the:1
	Density estimation
	Hierarchical Rectified Flow Formulation Details
	Experimental and Implementation Details
	Low Dimensional Experiments
	High Dimensional Experiments

	Ablation Studies
	Ablation Study for NFE
	Ablation Study for Depth

	Additional Experimental Results
	Additional 1D Results
	Hierarchical Rectified Flow with OTCFM
	Additional results on MNIST and CIFAR-10


