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ABSTRACT

AI-driven models have shown great promise in detecting errors in radiology reports,
yet the field lacks a unified benchmark for rigorous evaluation of error detection and
further correction. To address this gap, we introduce CorBenchX, a comprehensive
suite for automated error detection and correction in chest X-ray reports, designed
to advance AI-assisted quality control in clinical practice. We first synthesize
a large-scale dataset of 26,326 chest X-ray error reports by injecting clinically
common errors via prompting DeepSeek-R1, with each corrupted report paired
with its original text, error type, and human-readable description. Leveraging this
dataset, we benchmark both open- and closed-source vision–language models (e.g.,
InternVL, Qwen-VL, GPT-4o, o4-mini, and Claude-3.7) for error detection and cor-
rection under zero-shot prompting. Among these models, o4-mini achieves the best
performance, with 50.6 % detection accuracy and correction scores of BLEU 0.853,
ROUGE 0.924, BERTScore 0.981, SembScore 0.865, and CheXbertF1 0.954, re-
maining below clinical-level accuracy, highlighting the challenge of precise report
correction. To advance the state of the art, we propose a multi-step reinforcement
learning (MSRL) framework that optimizes a multi-objective reward combining
format compliance, error-type accuracy, and BLEU similarity. We apply MSRL
to QwenVL2.5-7B, the top open-source model in our benchmark, achieving an
improvement of 38.3% in single-error detection precision and 5.2% in single-error
correction over the zero-shot baseline.

1 INTRODUCTION

In modern clinical practice, radiology examination is indispensable, and the demands are increasing
due to aging populations, broader imaging recommendations in updated clinical guidelines, and the
increasing availability of equipment Afshari Mirak et al. (2025). As demand surges, radiologists face
escalating workloads, which in turn heightens the risk of diagnostic errors in radiology reports Kim
et al. (2025). To alleviate diagnostic errors in radiology reports, general healthcare systems employ
a two-tiered reporting workflow: resident physicians draft preliminary reports that are reviewed,
corrected, and finalized by board-certified radiologists Gertz et al. (2024). While this hierarchical
process improves accuracy, it demands extensive human resources and is time-consuming. Despite
such efforts, diagnostic errors, including misdiagnoses, missed diagnoses, and delayed diagnoses,
occur at rates as high as 10–26% Zhang et al. (2023); Pesapane et al. (2024). These errors not only
pose serious threats to patient safety and impose substantial economic burden but also increase the
likelihood of malpractice suits against radiologists Kasalak et al. (2023).

Given these persistent challenges, there is increasing interest in leveraging Large language Models
(LLMs) to streamline radiology reporting and reduce human burden—yet current approaches face
critical limitations. Recent advances in LLMs have catalyzed interest in automated radiology report
generation Chen et al. (2024; 2023); Tanno et al. (2025); Lang et al. (2025). LLM-driven systems
can draft impressions and suggest follow-up recommendations, promising to alleviate radiologists’
workload. However, despite their fluency, these generative approaches often fall short of clinical-
grade reliability. Common issues such as hallucinated findings, formatting inconsistencies, and
domain-mistranslations remain prevalent Zeng et al. (2024), necessitating extensive human oversight
and limiting their integration into real-world clinical workflows. In contrast to the majority of prior
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Figure 1: Overview of CorBenchX. (a): Error report dataset construction pipeline and dataset
statistics. (b): Benchmark results across nine vision–language models for error detection and
correction. (c): Illustration of our proposed multi-step reinforcement learning (MSRL) method and
its performance improvements over the baseline.

work on generating reports, we shift the emphasis toward automated error detection and correction
in radiology reports, which is a critical yet underexplored task in radiology AI.

Recent studies have demonstrated the potential of LLMs for automated error detection in radiology
reports Gertz et al. (2024); Kim et al. (2025); Salam et al. (2025); Yan et al. (2025), and several special-
ized error datasets have been introduced, such as ReXVal Yu et al. (2023a) and RadEvalX Calamida
et al., RRED Min et al. (2022), and ReXErr Rao et al. (2024). However, these efforts exhibit critical
limitations: 1) most evaluations rely on small, manually curated corpora that fail to represent the
full diversity of clinical reporting mistakes; 2) they focus exclusively on error detection, offering
no end-to-end correction; and 3) many datasets are either not publicly accessible or omit clinically
common error types such as laterality confusion. Moreover, there is currently no unified benchmark
that evaluates both detection and correction across a large-scale, systematically constructed dataset.

To address these gaps, we introduce CorBenchX, a comprehensive benchmark for error detection and
correction in chest X-ray reports. As illustrated in Figure 1, we first construct a novel and large-scale
chest X-ray error dataset derived from the MIMIC-CXR dataset Johnson et al. (2019) by injecting
clinically common mistakes via DeepSeek-R1 prompting. Then we rigorously benchmark nine open-
and closed-source VLMs for error detection and correction under zero-shot prompting. Finally, we
propose a multi-step reinforcement learning method that optimizes for format compliance, error-type
accuracy, and textual fidelity, yielding substantial improvements (38.3% in detection and 5.2% in
error correction) over the baseline model. To sum up, our contributions are threefold:

• We present CorBenchX, a large-scale dataset comprising 26,326 chest X-ray error reports,
including 24,146 single-error and 2,180 multi-error cases, each annotated with error spans,
error type, and concise descriptions.

• We conduct extensive evaluations on the error dataset with various open and closed-source
VLMs for both single-error and multi-error detection and correction. The results reveal
that current VLMs, while powerful, fall short of meeting the clinical precision required for
reliable error detection and correction in radiology reports.

• We propose a novel multi-step reinforcement learning framework to enhance the VLMs via
sequential reasoning for error detection, description, and correction.
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2 RELATED WORKS

2.1 RADIOLOGY REPORT GENERATION AND EVALUATION

Automated radiology report generation has rapidly evolved. Early encoder–decoder frameworks
combined convolutional or transformer-based image encoders with BERT-style decoders to directly
translate image features into narrative reports Syeda-Mahmood et al. (2020); Wang et al. (2022).
Retrieval-based approaches, such as MedWriter Yang et al. (2021), which incorporated a hierarchical
retrieval mechanism and a hierarchical-LSTM decoder to generate the report by fusing the features
from the previous modules. CXR-RePaiR Endo et al. (2021), leverage pre-trained contrastive
image–text embeddings to retrieve the most similar reports from a large corpus and adapt them to
new cases. More recently, large-scale vision–language pretraining has enabled great progress in the
automatic report generation, such as CheXagent Chen et al. (2024), LLM-CXR Lee et al. (2023),
and VLCI_MIMIC Chen et al. (2023). Furthermore, ReXrank Zhang et al. (2024) provides a public
leaderboard for report generation evaluation, where 8 metrics are adopted as evaluation metrics.

Previous evaluation of generated reports has largely depended on lexical similarity (e.g., ROUGE-
L Lin (2004), BLEU Papineni et al. (2002)), which often fail to capture subtle but clinically meaningful
edits. To address this, entity–centric measures have emerged: CheXbert F1 Smit et al. (2020) assesses
agreement in disease labels inferred from text, while RadGraph-F1 Yu et al. (2023b) evaluates the
accuracy of extracted entity–relation graphs that encode findings and anatomical locations. Recently,
LLM-related metrics like GREEN Ostmeier et al. (2024) use LLM for error annotation, yielding both
quantitative scores and qualitative explanations of clinically significant mistakes.

2.2 REPORT ERROR DETECTION

LLMs have recently been applied to detecting errors in radiology reports. Gertz et al.Gertz et al.
(2024) evaluated GPT-4 on 100 chest X-ray reports with synthetically introduced errors, reporting
an average detection accuracy of 82.7%, which surpassed radiology residents (80.0%) but remained
below senior radiologists. Similarly, Kim et al.Kim et al. (2025) injected interpretive and factual
errors into 300 reports, finding that GPT-4 achieved 84% accuracy on interpretive errors and 89%
on factual errors. Salam et al.Salam et al. (2025) evaluated open-source (Llama 3-70B, Mixtral
8x22B) and closed-source (GPT-4o) models, with GPT-4o significantly outperforming others. Yan et
al.Yan et al. (2025) extended error detection to Chinese ultrasound reports, evaluating 400 reports
with 243 annotated errors; Claude 3.5 Sonnet achieved the highest detection rate. Although these
studies underscore the potential of LLMs for automated report review, they exhibit key limitations:
existing works rely on small, manually curated error sets that may not capture the full spectrum of
clinically errors; most works focus solely on error detection without correction, limiting their practical
utility; and many approaches depend on human-in-the-loop validation, which restricts scalability in
high-throughput clinical environments.

2.3 ERROR DETECTION DATASET

Several datasets have been introduced for radiology report error detection. Yu et al.Yu et al. (2023a)
proposed the ReXVal dataset, which includes 200 AI-generated/ground-truth report pairs that six
radiologists evaluated for clinically significant versus insignificant errors. RadEvalX Calamida et al.
comprising 74 chest X-ray reports generated by an M2Tr model on IU-Xray cases, each meticulously
annotated by expert radiologists for the presence and clinical severity of reporting. RRED Min et al.
(2022) utilized a "generator" to generate findings-impression inconsistent errors in MIMIC-CXR
reports and supplemented this with manual error annotations by two radiologists on 111 cases. Sun et
al.Sun et al. (2025) generated 1,656 chest X-ray reports using GPT-4. Half were error-free; the other
half contained errors introduced via prompts. Meanwhile, an additional set of 307 real MIMIC-CXR
reports was paired with 307 GPT-4 versions containing errors. While these datasets offer valuable
insights into error analysis and detection, their small scale (no more than 200 cases in ReXVal
and RadEvalX) and limited public accessibility (RRED and Sun’s dataset) hinder their suitability
for large-scale evaluation. ReXErr Rao et al. (2024) delivers a public large-scale dataset for chest
X-Ray error detection. However, its uniform injection of exactly three errors per report fails to
mirror real-world error distributions, omits critical categories such as laterality confusion, and risks
introducing internally contradictory mistakes. Moreover, ReXErr does not include standardized error
detection and correction benchmarks.
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Dataset Construction

FINDINGS:
PA and lateral views of the chest are 
provided.  Elevated right hemidiaphragm 
is unchanged.  There is minimal plate-like 
left basal atelectasis.  No focal 
consolidation, effusion, pneumothorax.  
The  cardiomediastinal silhouette appears 
stable.  Bony structures are intact.  
IMPRESSION:  
No acute findings in the chest.  

FINDINGS:
PA and lateral views of the chest are 
provided.  Elevated right  hemidiaphragm 
is unchanged.  There is minimal plate-like 
right basal  atelectasis.  No focal 
consolidation, effusion, pneumothorax.  
The  cardiomediastinal silhouette appears 
stable.  Bony structures are intact.  
IMPRESSION:  
No acute findings in the chest.  

[Original Text]: "minimal plate-
like left basal atelectasis"  
[Revised Text]: "minimal plate-
like right basal atelectasis"  
[Error Type]: Side Confusion  
[Error Description]: "Side 
confusion between 'left' and 'right'; 
it should be 'left', not 'right' in the 
FINDINGS section.“

Original Report LabelsError Report

Benchmark RL

FINDINGS:
------
IMPRESSION:  
------

review

Figure 2: Example of a chest X-ray, paired original radiology report, and the corresponding error-
injected report with labels. Text spans highlighted in red denote the injected errors, while the corrected
spans are shown in green.

Table 1: Error type explanation and data statistics

Error type Description Number of error instances

Omission Missing relevant clinical findings or words 6,267
Insertion The unintentional insertion of incorrect words or expressions 6,935
Spelling Error Spelling mistakes or typos 7,119
Side Confusion Errors involving side or orientation 7,615
Other Mistakes in units of measurement, punctuation mistakes, etc. 1,512
Total - 29,448

3 ERROR REPORT DATASET CONSTRUCTION

We introduce CorBenchX, a high-quality and systematically constructed dataset for chest X-ray
report error detection and correction. The dataset simulates realistic reporting errors across a range of
clinically motivated categories, providing a reliable foundation for training and evaluation.

Dataset Source and Sampling. CorBenchX is built on the publicly available MIMIC-CXR
dataset Johnson et al. (2019), which contains de-identified chest X-ray reports collected from Beth
Israel Deaconess Medical Center. We extract the “Findings” and “Impression” sections from each
report and remove records where both sections are empty. From the resulting pool, we randomly
sample 26,326 clean reports as the basis for synthetic error injection.

Error Injection Procedure. To create realistic errorful variants, we use the DeepSeek-R1 API with
a carefully designed prompt (see Appendix B.2 for details). Each API call outputs an error-injected
report along with: (i) the error type label, (ii) the paired original and altered text spans, and (iii) a
concise natural language error description (see Figure 2). To simulate clinically relevant reporting
errors, we introduce structured perturbations into clean reports in two types of samples:

• Single-error reports: Each report contains exactly one error from one of five cate-
gories—omission, insertion, spelling error, side confusion, or other—resulting in 24,146
single corrupted samples.

• Multi-error reports: To better reflect real-world reporting complexity, we additionally
generate 2,180 reports containing two to three independent errors.

Quality Control Pipeline. To ensure high-quality annotations, we implement a three-stage quality
control process (Figure 1 (a)). Stage 1: Expert Inspection. Two board-certified radiologists (each
>10 years’ experience) examine 2,000 reports to enumerate failure modes (e.g., missing injections,
nonsensical outputs). Stage 2: Script Validation. Automated scripts validate formatting consistency,
detect unchanged or malformed edits, remove redundant symbols, and ensure that exactly one or
the intended number of edits exist per sample. Guided by Stage-1 failure types, scripts scan the
remaining ∼24k reports and flag ∼900 candidates for human review. Stage 3: Final Review. The
annotators re-examine all flagged cases (∼30 s/case), resolve edge cases and ambiguities, and correct
any residual inconsistencies. This combined human–in-the-loop pipeline ensures both scalability and
reliability in dataset construction.
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Find the errors in the report, 
and provide the error type.

Query 1

Based on the identified error
type [Error Type], provide
the error description.

Query 2

Based on the identified 
error type [Error Type]
and error description 
[Error Description], 
provide a correct report.

Query 3

[Error Type]

Output 1

[Error 
Description]

Output 2

[Correct 
Report]

Output 3

Format 
+

Accuracy  

Reward 1

Format 
+

BLEU

Reward 2

Format 
+

BLEU  

Reward 3

<think> Analyze the 5 types of errors one by one: 
1. Spelling Error: There is no...</think>   
<answer>[Error Type]: Omission<answer>

<think> Considering the error type, description, 
and image, revise as follows … </think>
<answer> [Correct Report]:  FINDINGS:  AP and 
lateral views of the … </answer>

<think> The report contains an omission 
error. The report should include the… </think>
<answer> [Error Description]:  The term "fracture" 
was omitted from …</answer>

① Error Identification

② Error Description

③ Error Correction

Figure 3: Illustration of our multi-step reinforcement-learning framework: the model sequentially
performs error identification, description, and correction, with each stage guided by a tailored reward.

Dataset Composition and Availability. The CorBenchX consists of clean–corrupted report pairs
with detailed annotations, including error type, span-level edits, and error descriptions. An example
of a CXR image and its associated reports is shown in Figure 2, while Table 1 summarizes the error
categories and their distributions. The dataset serves as a comprehensive benchmark for developing
and evaluating radiology report error detection and correction systems. The complete dataset has
been submitted to PhysioNet and is currently under review; it will be publicly available soon.

4 MULTI-STEP REINFORCEMENT LEARNING

Correcting radiology report errors requires precise localization of erroneous spans and flexible,
context-aware revision strategies. Due to the diverse linguistic patterns across error types, fixed or
templated supervision is often inadequate. To address this, we introduce a novel method and formulate
the task as a three-stage reinforcement learning problem that promotes step-by-step reasoning and
fine-grained correction. We adopt Group Relative Policy Optimization (GRPO) as the training
objective to guide the model toward clinically consistent and contextually appropriate revisions.

4.1 THREE STAGE REINFORCEMENT LEARNING OPTIMIZATION

The report correction task can be decomposed into three stages: error identification →
error description → error correction. Based on this, we design a multi-step approach that breaks
the complete trajectory into multiple sub-trajectories to encourage the model to perform clear and
targeted reasoning at each step, thereby enabling supervision over intermediate reasoning processes,
as illustrated in Figure 3. Formally, the reasoning trajectory is denoted as

T = ((Q1, O1), . . . , (QK , OK)), (1)

where Qk and Ok denote the model’s query and output at each step, respectively. K represents the
total number of steps required by the reasoning trajectory, which is set to 3 in our task. The first state
Q1 serves as the initial prompt. Each subsequent query Qk contains the previous query Qk−1 and the
corresponding output Ok−1.

Step 1: Error Identification. First, we supervise the model to correctly identify the error type
by optimizing classification accuracy. The reward for this step, denoted as R1 , is the sum of the
Format Reward and the Accuracy Reward. Format Reward: The format reward Rformat ∈ {0, 1}
is designed to ensure that the model encloses its reasoning within the designated tags (e.g., <think>
and </think>) and wraps the final answer within <answer> and </answer> tags.

Rformat = 1(match(content)), (2)
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where match denotes the regular expression matching operation.

Accuracy Reward: The accuracy reward Racc ∈ {0, 1} is set to 1 if the model correctly identifies
the current error type, and 0 otherwise.

Racc = 1(Errpred = Errgt), (3)

where Errpred denotes the model’s predicted error type, and Errgt refers to the ground truth.

Step 2: Error Description. Based on the Step 1, we perform error description to help the model
better understand and localize different types of errors. This step also enables the model to provide
users with more detailed references and explanations during interaction. We supervise the quality of
error description using the Format Reward and the BLEU Reward. The Format Reward is the same
as above, and the BLEU Reward is defined as follows.

Rbleu = BLEU(Despred, Desgt), (4)

where Despred denotes the model’s predicted description, and Desgt refers to the ground truth.

Step 3: Error Correction. Building on the previous two steps, the model conducts evidence-based
error correction, with the accuracy of the corrections supervised by the Format and BLEU Reward.

4.2 TRAINING WITH GRPO

The model’s policy is optimized to maximize the cumulative reward over the entire trajectory for 3
stages RL learning, formulated as:

J(θ) =

K∑
k=1

Jk(θ). (5)

Here, πθ is the policy parametrized by θ. Jk(θ) denotes the optimization objective at step k. We
employ GRPO Guo et al. (2025), a variant of PPO Schulman et al. (2017) that introduces advantage
normalization within grouped samples, as the optimization objective at each step. The objective
guides the policy to generate structurally coherent and instruction-following report error corrections.

Jk(θ) = E[qk ∼ P (Qk), {oki }Gi=1 ∼ πθold(O
k|qk)] 1

G

G∑
i=1

(
min

( πθ(o
k
i |qk)

πθold(o
k
i |qk)

Ak
i ,

clip
( πθ(o

k
i |qk)

πθold(o
k
i |qk)

, 1− ε, 1 + ε
)
Ak

i

)
− βDKL(πθ∥πref)

)
.

(6)

where πθold presents the old policy model, Qk is the query for step k, ε and β are hyperparameters, G
denotes the number of outputs within a group. Ak

i is the advantage calculated based on rthe relative
rewards of the outputs within each group. During training, the number of grouped samples is set to 8.

5 EVALUATION

5.1 EXPERIMENTAL SETTINGS

Evaluation Models. We evaluate nine vision-language models (VLMs) alongside our proposed
method under a zero-shot setting for two tasks: error detection and error correction in chest X-ray
reports. The evaluated models include six open-source VLMs: MedVLM-R1 Pan et al. (2025),
CheXagent Chen et al. (2024), InternVL3-8B Zhu et al. (2025), Baichuan-Omni-1.5-7B Li et al.
(2025), QwenVL2.5-3B, and QwenVL2.5-7B Bai et al. (2025); and three closed-source models:
Claude 3.7 Sonnet, GPT-4o Achiam et al. (2023), and o4-mini OpenAI (2025).
Implementation Details. All experiments are conducted on NVIDIA A800 GPUs. For each model,
we prompt it to perform two tasks: (1) identify and classify the error type in the error report, and
(2) generate a corrected version of the report. No additional fine-tuning or in-domain training is
performed. Detailed hyperparameters and prompting templates are provided in Appendix A.

Evaluation Metrics. We assess each model’s performance along three dimensions: (1) Error
detection: measured by precision and recall over the five error types; (2) Error correction in report
level: assessed with two word level metrics: BLEU Papineni et al. (2002) and ROUGE Lin (2004),
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(a) Precision (b) Recall

Single 

Figure 4: Precision and recall for single-error detection across various VLMs and models enhanced
by our MSRL, broken down by the five error categories.

Table 2: Evaluation results on single-error report correction (report-level)/( sentence-level ). The
highest score in each column is highlighted in pink , and the second-best in blue .

Model BLEU ROUGE BERTScore SembScore CheXbertF1 RadGraphF1

Claude 3.7 sonnet 0.852 0.914 0.982 0.817 0.935 0.889
GPT-4o 0.787 0.872 0.964 0.782 0.898 0.843
o4-mini 0.853 0.924 0.981 0.865 0.954 0.905

MedVLM-R1 0.315 0.469 0.841 0.459 0.610 0.484
CheXagent 0.519 0.669 0.898 0.695 0.795 0.674
InternVL3-8B 0.768 0.848 0.948 0.777 0.903 0.813
Baichuan-Omni1.5-7B 0.792 0.876 0.966 0.784 0.899 0.826
QwenVL2.5-3B 0.786 0.892 0.971 0.807 0.907 0.863
QwenVL2.5-7B 0.830 0.906 0.974 0.793 0.905 0.863

QwenVL2.5-3B+MSRL 0.938 0.971 0.993 0.839 0.951 0.931
QwenVL2.5-7B+MSRL 0.960 0.984 0.997 0.905 0.984 0.958

Claude 3.7 sonnet 0.345 0.477 0.862 0.789 0.815 0.416
GPT-4o 0.365 0.550 0.870 0.795 0.843 0.465
o4-mini 0.386 0.547 0.876 0.852 0.878 0.482

MedVLM-R1 0.282 0.441 0.826 0.508 0.646 0.406
CheXagent 0.326 0.481 0.840 0.665 0.706 0.413
InternVL3-8B 0.516 0.719 0.914 0.775 0.863 0.606
Baichuan-Omni1.5-7B 0.504 0.713 0.920 0.762 0.862 0.591
QwenVL2.5-3B 0.486 0.702 0.919 0.773 0.836 0.580
QwenVL2.5-7B 0.467 0.686 0.911 0.790 0.849 0.554

QwenVL2.5-3B+MSRL 0.481 0.701 0.921 0.764 0.824 0.558
QwenVL2.5-7B+MSRL 0.400 0.536 0.868 0.897 0.929 0.446

two semantic level metrics: BERTScore Zhang et al. (2019) and SembScore Smit et al. (2020), and
two clinical efficacy level metrics: CheXbert Smit et al. (2020) and RadGraph-F1 Yu et al. (2023b);
and (3) Error correction in sentence level: apply the same suite of six metrics to the individual
corrected sentences, enabling fine-grained assessment of local edits.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

We first evaluate the performance of nine baseline VLMs on both single-error and multi-error
detection and correction tasks. We then compare these results with our proposed MSRL-enhanced
models—QwenVL2.5-3B+MSRL and QwenVL2.5-7B+MSRL—to assess the effectiveness of
multi-step reinforcement learning in improving fine-grained clinical reasoning and radiology report
correction. Finally, we conduct an ablation study to validate the contribution of our multi-step RL
framework compared to standard single-step reinforcement learning.
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(a) Precision (b) Recall

multi 

Figure 5: Precision and recall for multi-error detection across various VLMs and models enhanced
by our MSRL, broken down by the five error categories.

Results on Single-error Detection and Correction. Figures 4 (a) and 4 (b) present per-error-type
precision and recall for single-error detection across nine evaluated vision-language models (VLMs).
Table 2 summarizes the corresponding error correction performance, evaluated using six metrics
at both the report (upper part) and sentence levels (lower part). As shown in Figure 4, o4-mini
achieves the best overall detection performance, with an average precision of 0.486 and recall of
0.506. In terms of correction quality (Table 2), closed-source models—Claude 3.7 Sonnet, GPT-4o,
and o4-mini—consistently outperform their open-source counterparts in report-level metrics, with
o4-mini ranking highest across all evaluation scores. Within open-source models, QwenVL2.5-7B
leads the pack, whereas MedVLM-R1 performs markedly worse. Generally, sentence-level metrics
(lower part) are substantially lower than report-level scores, demonstrating that localized, span-
level evaluation reveals challenges masked by full-report metrics. Across all models, current error
correction capabilities of existing VLMs fall short of clinical-grade reliability, reinforcing the need
for more targeted and interpretable strategies.

Results on Multi-error Detection and Correction. Figure 5 (a) and Figure 5 (b) depict per-error-
type precision and recall for multi-error detection across all evaluated VLMs. Closed-source models
again dominate: Claude 3.7 achieves the highest average precision (0.612), while o4-mini attains the
highest average recall (0.580), both substantially outperforming open-source models. Table 3 reports
multi-error correction performance under the same six metrics. At the report level, QwenVL2.5-3B
is the top open-source performer. The results are far lower than those for single-error correction,
underscoring the substantial challenge that multi-error correction poses for current VLMs. At the
sentence level, Baichuan-Omni1.5-7B obtains the best results. Notably, o4-mini underperforms
because it paraphrases entire reports instead of making focused span-level corrections.

Effectiveness of Multi-step Reinforcement Learning. We perform our MSRL on Qwen-2.5-VL
3B and Qwen-2.5-VL 7B and compare its performance with other VLMs. As shown in Figures 4 and
Figures 5, our method achieves an average increase of 38.3% in precision and 30.5% in recall on the
single error detection task with Qwen-2.5-VL-7B. Similarly, for multi-error detection, we observe an
average improvement of 23.6% in precision and 1.5% in recall, validating the generalization capability
of the model. Notably, when our model is initialized with Qwen-2.5-VL 3B, its classification accuracy
on the “other” category remains at a very low level. The underlying reason is that Qwen-2.5-VL
3B, under zero-shot settings, fails to recognize the “other” category and tends to ignore its analysis
during the reasoning process (the content within the <think> </think>). This observation highlights
that without early-stage instruction fine-tuning, RL alone yields suboptimal reasoning performance,
which has been approved in Guo et al. (2025); Liu et al. (2025). For report-level correction, Table 2
shows that QwenVL2.5-3B and 7B models trained with multi-step RL outperform their zero-shot
baselines by 7.4% and 5.2% on single-error correction. Sentence-level gains are even larger. On
the more challenging multi-error task (Table 3), our model improvements reach 6.8% and 11.5%,
highlighting the effectiveness and generalization ability of our MSRL.

Ablation Studies. As shown in Table 4, we compare our MSRL with single-step RL, which
incorporates all processes into a single inference and simultaneously optimizes the Accuracy Reward,
Format Reward, and BLEU Reward. This approach fails to effectively follow instructions step by
step, resulting in an average performance gap of 13.3% compared to MSRL.
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Table 3: Evaluation results on multi-error report correction (report-level)/( sentence-level ). The
highest score in each column is highlighted in pink , and the second-best in blue .

Model BLEU ROUGE BERTScore SembScore CheXbertF1 RadGraphF1

Claude 3.7 sonnet 0.701 0.817 0.959 0.724 0.856 0.773
GPT-4o 0.629 0.769 0.935 0.669 0.801 0.719
o4-mini 0.404 0.619 0.909 0.670 0.788 0.596

InternVL3-8B 0.685 0.808 0.940 0.682 0.811 0.748
Baichuan-Omni1.5-7B 0.755 0.875 0.966 0.753 0.876 0.817
QwenVL2.5-3B 0.742 0.859 0.964 0.736 0.855 0.805
QwenVL2.5-7B 0.728 0.847 0.959 0.712 0.833 0.780

QwenVL2.5-3B+MSRL 0.874 0.940 0.985 0.794 0.908 0.866
QwenVL2.5-7B+MSRL 0.900 0.958 0.992 0.852 0.948 0.898

Claude 3.7 sonnet 0.461 0.666 0.919 0.684 0.781 0.577
GPT-4o 0.502 0.735 0.925 0.712 0.807 0.593
o4-mini 0.297 0.575 0.893 0.724 0.813 0.505

InternVL3-8B 0.538 0.761 0.932 0.697 0.812 0.631
Baichuan-Omni1.5-7B 0.591 0.810 0.952 0.737 0.828 0.680
QwenVL2.5-3B 0.569 0.783 0.943 0.709 0.810 0.657
QwenVL2.5-7B 0.560 0.800 0.945 0.714 0.806 0.640

QwenVL2.5-3B+MSRL 0.647 0.848 0.967 0.753 0.848 0.693
QwenVL2.5-7B+MSRL 0.636 0.827 0.961 0.829 0.901 0.691

Table 4: Ablation studies on RL and MSRL for single-error correction.

Model Method BLEU ROUGE BERTScore SembScore CheXbertF1 RadGraphF1

QwenVL2.5-3B RL 0.788 0.882 0.944 0.798 0.916 0.853
MSRL 0.938 0.971 0.993 0.839 0.951 0.931

QwenVL2.5-7B RL 0.873 0.939 0.978 0.838 0.945 0.906
MSRL 0.960 0.984 0.997 0.905 0.984 0.958

Table 5: OOD evaluation results on IU-Xray dataset for single-error correction.

Model BLEU ROUGE BERTScore SembScore CheXbert F1 RadGraph F1

QwenVL2.5-3B 0.338 0.411 0.754 0.435 0.400 0.399
+ MSRL 0.829 0.958 0.974 0.641 0.830 0.921

QwenVL2.5-7B 0.074 0.091 0.624 0.377 0.129 0.088
+ MSRL 0.840 0.964 0.975 0.713 0.958 0.935

Out-of-Distribution (OOD) Evaluation. To assess the robustness of the MSRL, we conduct
evaluation on the IU-Xray corpus. We uniformly sample 600 reports, inject synthetic errors using
the same taxonomy, and then evaluate zero-shot correction performance. As shown in Table 5,
augmenting QwenVL2.5 with MSRL yields large, consistent gains across lexical, semantic, and
clinical entity metrics, for both 3B and 7B backbones.

6 CONCLUSION
We present CorBenchX, the first large-scale benchmark for automated error detection and correction
in chest X-ray reports. By synthesizing 26,326 clinically motivated error cases via DeepSeek-R1, we
enable a rigorous evaluation of both open- and closed-source LLMs. Our experiments reveal that even
the best model achieves just 50.6 % error-type detection accuracy and remain below clinical-grade
correction. We further propose MSRL that sequentially supervises error identification, description,
and correction, yieding substantial gains over the baselines.

Limitations & Future Work. CorBenchX currently targets chest X-ray reports and does not model
errors tied to prior imaging or patient history. We will extend to CT/MRI and integrate EHR context
to assess longitudinal, patient-specific error detection and correction.
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Appendix

A IMPLEMENTATION DETAILS

A.1 HYPERPARAMETERS FOR VLM EVALUATION

For all VLMs evaluated, the image resolution for vision input is 336×336, and the maximum number
of generated tokens is 1024. The experiments of all publicly available models were conducted on a
single NVIDIA RTX 3090 GPU, and the proprietary models were evaluated with official APIs.

We used Claude 3.7 sonnet of 20250219 version, GPT-4o of gpt-4o-2024-11-20 version, and
o4-mini of o4-mini-2025-04-16 version.

A.2 EXPERIMENTAL SETTINGS ON MULTI-STEP REINFORCEMENT LEARNING

The training and test splits are detailed in Table 6.

Table 6: Training and test split.

Error type Training Test (single error) Test (multi error)
Omission 4,273 1,061 933
Insertion 4,380 1,280 1,275
Spelling Error 4,611 1,160 1,348
Side Confusion 4,540 1,482 1,593
Other 1,080 279 153
Total 18,884 5,262 5,302

The hyperparameter configurations for our MSRL are listed in Table 7.

Table 7: Detailed training hyperparameters for our MSRL.

Configuration MSRL
Model Init Qwen2.5-VL
Global batch size 128
Learning rate 2 × 10-5

Weight decay 0
Resolution 336
Num Generations 8
Optimizer AdamW
Epochs 2
GPU Usage 8 NVIDIA A800
Training time 3B-43h; 7B-51h

B PROMPTS

In this section, we provide the prompts for report error correction and error report generation.

B.1 PROMPTS FOR REPORT ERROR CORRECTION

In this section, we provide the precise prompt templates employed for both single-error and multi-
error correction under zero-shot and MSRL evaluation. The prompt for single-error correction is
given in Sec. B.1.1 and the prompt for multi-error correction is given in Sec. B.1.2.
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B.1.1 SINGLE ERROR CORRECTION

Single Error Correction Prompt

Report:
FINDINGS: PA and lateral views of the chest are provided. Elevated
right hemidiaphragm is unchanged. There is minimal plate-like
right basal atelectasis. No focal consolidation, effusion,
pneumothorax. The cardiomediastinal silhouette appears stable.
Bony structures are intact.
IMPRESSION: No acute findings in the chest.

You are a senior clinician reviewing a diagnostic report. The
report may inadvertently contain common errors in the following 5
categories:
1. Omission: The omission of relevant words or expressions,
including deletions or missing words (e.g., "fracture" instead of
"no fracture").
2. Insertion: The unintentional insertion of incorrect words
or expressions, including inappropriate words, wrong word
substitutions, or extra words (e.g., "abnormal" instead of
"normal").
3. Spelling Error: Spelling mistakes or word truncations due
to manual text processing errors (e.g., "pnuemothorax" instead of
"pneumothorax").
4. Side Confusion: Errors involving laterality or orientation
(e.g., "right" instead of "left," or "lateral" instead of
"medial").
5. Other: Includes mistakes in units of measurement (e.g.,
"centimeter" vs "millimeter") or punctuation mistakes.

Your task is to detect any errors present in the report and correct
them.

Output Format:
Please only output content strictly according to the format below
and there is only one error, do not output multiple errors, do not
output other content, the format is:
[Error Type]: (Omission / Insertion / Spelling Error / Side
Confusion / Other), your should strictly follow the format.
[Error Description]: [A concise explanation of the error]
[Correct Report]: [Based on the detected errors, revise the
original report and output the corrected version of the report.]

Ensure that all errors detected are clearly described and the
output strictly follows the structure and format provided above.
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B.1.2 MULTI-ERROR CORRECTION

Multi-Error Correction Prompt

Report:
FINDINGS: Cardiac silhouette size remains moderately enlarged due
to prominent epicardial fat pads. Mediastinal contour is unchanged,
and stably widened compatible with mediastinal lipomatosis. Hilar
contours are normal. Lungs are clear and the pulmonary vascularity
is normal. Pleural thickening is noted unilaterally due to pleural
fat deposition. No pleural effusion or pneumothorax is seen.
There are no acute osseous abnormalities.
IMPRESSION: No acute cardiopulmonnary process.

You are a senior clinician reviewing a diagnostic report. The
report may inadvertently contain common errors in the following 5
categories:
1. Omission: The omission of relevant words or expressions,
including deletions or missing words (e.g., "fracture" instead of
"no fracture").
2. Insertion: The unintentional insertion of incorrect words
or expressions, including inappropriate words, wrong word
substitutions, or extra words (e.g., "abnormal" instead of
"normal").
3. Spelling Error: Spelling mistakes or word truncations due
to manual text processing errors (e.g., "pnuemothorax" instead of
"pneumothorax").
4. Side Confusion: Errors involving laterality or orientation
(e.g., "right" instead of "left," or "lateral" instead of
"medial").
5. Other: Includes mistakes in units of measurement (e.g.,
"centimeter" vs "millimeter") or punctuation mistakes.

Your task is to detect any errors present in the report and correct
them.

Output Format:
Please only output content strictly according to the format below
and there may exist multiple errors. Do not output other content,
the format is:
[Error Type]: (Omission / Insertion / Spelling Error / Side
Confusion / Other), your should strictly follow the format.
[Error Description]: [A concise explanation of the error]
[Correct Report]: [Based on the detected errors, revise the
original report and output the corrected version of the report.]

Ensure that all errors detected are clearly described and the
output strictly follows the structure and format provided above.
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B.2 PROMPTS FOR ERROR REPORT GENERATION

In this section, we provide the exact prompts used to synthesize our error-injected chest X-ray reports.
The prompt for single-error injection is given in Sec. B.2.1, and the prompt for multi-error injection
appears in Sec. B.2.2.

B.2.1 SINGLE ERROR INJECTION

Below is the prompt used to inject a single Omission error into each report. To generate reports
with any of the other error categories, replace the “Omission” instruction and its description with the
desired error type and corresponding explanation.

Single Error Injection Prompt – Omission Error

Report:
FINDINGS: PA and lateral views of the chest are provided. Elevated
right hemidiaphragm is unchanged. There is minimal plate-like left
basal atelectasis. No focal consolidation, effusion, pneumothorax.
The cardiomediastinal silhouette appears stable. Bony structures
are intact.
IMPRESSION: No acute findings in the chest.

Add exactly one Omission error into the above report. An
Omission error is defined as the omission of relevant words or
expressions, which encompasses both deletions and missing words
(e.g., "fracture" instead of "no fracture").

Output Format:
First, output the modified report with one error introduced. After
the report, clearly identify and explain the introduced errors in
the following format:
[Original Text]: "XXX"
[Revised Text]: "YYY"
[Error Type]: Omission
[Error Description]: e.g.,’ Omission/Missing of an expression
in the FINDINGS section’, or ’Omission of "XXX" in the FINDINGS
section’. Do not use "changed", "modified", "revised", or
"original report" in the Error Description.

Ensure that:
- Only one error is introduced per report.
- The output remains medically realistic.
- The formatting is consistent and follows the structure exactly as
specified.
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B.2.2 MULTI-ERROR INJECTION

Below is the prompt used to inject three errors per report. To generate two-error variants, simply
replace “three” with “two” in the task instructions.

Multi-Error Injection Prompt

Report:
FINDINGS: PA and lateral views of the chest are provided. Elevated
right hemidiaphragm is unchanged. There is minimal plate-like left
basal atelectasis. No focal consolidation, effusion, pneumothorax.
The cardiomediastinal silhouette appears stable. Bony structures
are intact.
IMPRESSION: No acute findings in the chest.

You are a junior clinician reviewing the above diagnostic report.
As a junior clinician, you may inadvertently introduce some common
errors into the report. Your task is to introduce three errors
into the report. The error should be randomly selected from the
following five categories:
1. Omission: The omission of relevant words or expressions, which
encompasses both deletions and missing words (e.g., "fracture"
instead of "no fracture").
2. Insertion: The unintentional insertion of incorrect words
or expressions, including inappropriate words, incorrect word
substitutions, insertions, or word confusions (e.g., "abnormal"
instead of "normal").
3. Spelling Errors: Spelling mistakes, including word truncations,
likely due to manual text processing by radiologists through typing
errors or inaccurate selection of text that is to be removed or
edited, avoid change pneumothorax to pnuemothorax.
4. Side Confusion: Errors involving side or orientation (e.g.,
"right" instead of "left," "lateral" instead of "medial").
5. Other Errors: Including mistakes in units of measurement (e.g.,
"centimeter" vs "millimeter"), and punctuation mistakes.

Output Format:
First, output the modified report with three errors introduced.
After the report, clearly identify and explain the introduced
errors in the following format:
[Original Text]: "XXX"
[Revised Text]: "YYY"
[Error Type]: (Omission / Insertion / Spelling Error / Side
Confusion / Other)
[Error Description]: e.g., Omission of "XXX" in the FINDINGS
section, misspelling XXX as XXX, or insertion of XXX. Do not use
"changed", "modified", "revised", or "original report" in the Error
Description.

Ensure that:
- Three errors are introduced per report.
- The output remains medically realistic.
- The formatting is consistent and follows the structure exactly as
specified.

C LICENSES OF PUBLIC DATASET

The MIMIC-CXR v2.0.0 dataset, from which CorBenchX is derived, is released under the PhysioNet
Credentialed Health Data License 1.5.0, which requires all users to register for a PhysioNet account,
complete human-subjects protection training, and sign a Data Use Agreement (DUA) prohibiting any
attempt to re-identify patients or share the raw data.
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