
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DOES GRAPH PROMPT WORK? A DATA OPERATION
PERSPECTIVE WITH THEORETICAL ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, graph prompting has emerged as a promising research direction,
enabling the learning of additional tokens or subgraphs appended to the origi-
nal graphs without requiring retraining of pre-trained graph models across vari-
ous applications. This novel paradigm, shifting from the traditional “pre-training
and fine-tuning” to “pre-training and prompting” has shown significant empirical
success in simulating graph data operations, with applications ranging from rec-
ommendation systems to biological networks and graph transferring. However,
despite its potential, the theoretical underpinnings of graph prompting remain un-
derexplored, raising critical questions about its fundamental effectiveness. The
lack of rigorous theoretical proof of why and how much it works is more like
a “dark cloud” over the graph prompt area to go further. To fill this gap, this
paper introduces a theoretical framework that rigorously analyzes graph prompt-
ing from a data operation perspective. Our contributions are threefold: First,
we provide a formal guarantee theorem, demonstrating graph prompts’ capacity
to approximate graph transformation operators, effectively linking upstream and
downstream tasks. Second, we derive upper bounds on the error of these data op-
erations by graph prompts for a single graph and extend this discussion to batches
of graphs, which are common in graph model training. Third, we analyze the
distribution of data operation errors, extending our theoretical findings from lin-
ear graph aggregations (e.g., GCN) to non-linear graph aggregations (e.g., GAT).
Extensive experiments support our theoretical results and confirm the practical
implications of these guarantees.

1 INTRODUCTION

Graph Neural Networks (GNNs) have been widely used in analyzing various graph-structured data.
A standard workflow using GNNs is the “pre-training and fine-tuning” paradigm, where a model is
first trained on a large-scale, general-purpose dataset and then fine-tuned on a specific downstream
task. While this method has been effective in transferring learned representations, it often needs
many advanced tricks to retrain the model parameters for each new task, which can be compu-
tationally intensive and may not fully capture the unique characteristics of the downstream tasks,
potentially limiting the model’s generalization.

Inspired by the success of prompting techniques in natural language processing (NLP), there has
been a growing interest in adapting similar ideas to graph data through “pre-training and prompting”.
Graph prompts (Sun et al., 2023b) modify the input graphs by adding learnable tokens or subgraphs,
enabling the pre-trained GNN to better align with the requirements of downstream tasks without
tuning the model parameters. Many empirical works (Sun et al., 2022; Liu et al., 2023; Tan et al.,
2023; Huang et al., 2023; Ma et al., 2023) have found that graph prompting can reduce computational
overhead, preserve the generality of the pre-trained model, and allow for seamless application across
multiple tasks to achieve better expressive capability than the traditional paradigm.

Recently, some studies (Fang et al., 2024; Sun et al., 2023a) have realized that the reason why
graph prompts work may relate to their capability in simulating various data operations like delet-
ing/adding nodes/edges, changing node features, and even removing subgraphs. This makes graph
prompts stand out from their counterpart in the NLP area and inspires many empirical applications
like recommendation systems (Yang et al., 2023; 2024), biological networks (Diao et al., 2022),

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

transferring knowledge across different graph domains (Guo et al., 2023; Zhu et al., 2024b), and
more. Unfortunately, despite these promising results, the theoretical basis of graph prompting re-
mains underexplored. Existing works primarily rely on empirical validation and lack rigorous the-
oretical analysis to explain why graph prompts are effective and how they can be systematically
designed. This gap is just like a “dark could” over the graph prompt area, raising critical questions
about their broader applications and the development of more advanced methods that could leverage
their full potential.

In light of these limitations, this paper provides a comprehensive theoretical framework for graph
prompting from a data operation perspective. First, we establish rigorous guarantee theorems that
demonstrate the underlying reason why graph prompts work is their capacity to simulate various
graph data operations, and our theorems further answer why such capacity can make the pre-trained
model meet new task requirements without retraining. Second, we derive upper bounds on the er-
ror introduced by graph prompts when simulating these data operations. We analyze this error for
individual graphs and extend our discussion to batches of graphs, which is crucial for understanding
the scalability and generalization of graph prompts in practical scenarios where models are usually
trained on multiple graphs. Third, we explore the distribution of the data operation error and ex-
tend our theoretical findings from linear graph aggregations, such as Graph Convolutional Networks
(GCNs), to non-linear aggregations like Graph Attention Networks (GATs). This extension demon-
strates the robustness of our theoretical framework across different GNN architectures and provides
insights into how non-linearity affects the effectiveness of graph prompts. We conduct extensive
experiments to confirm our theoretical findings. By offering such a solid theoretical foundation for
graph prompting, our work advances the understanding of how and why graph prompts work, guides
for designing more effective prompting techniques, and empowers researchers and practitioners to
leverage them with greater confidence in various applications.

2 BACKGROUND

Graph Prompt. Compared with “pre-training and fine-tuning”, which first trains a graph model
via some easily accessible task on the graph dataset and then tries to adapt the model to a new task
(or even a new graph dataset), “pre-training and prompting” aims to keep the pre-trained model
unchanged but adjust the input data to make the downstream task compatible with the pre-training
task. Mathematically, let Fθ∗ be a graph model where its parameters (θ∗) have been pre-trained
and frozen; Tdow be the downstream task, in which the task objective is measured by a loss function
LTdow

. Let G be a graph dataset and each graph instance G ∈ G can be denoted as G = (V, E ,X,A)
where V denotes the node set with a node feature matrix X ∈ R|V|×F ; E denotes the edge set and
the connection of nodes can be further indicated by the adjacent matrix A ∈ {0, 1}|V|×|V|. Let
Pω denote a parameterized graph prompt function with learnable ω. In most cases, graph prompts
consist of some token vectors or subgraphs which will be integrated into the original graph G. Pω

indicates how to define such graph prompts and how to combine them with the original graph to
generate a new graph: Gω = Pω(G). Graph prompt learning aims to optimize the following target:

ω∗ = argmin
ω

∑
G∈G

LTdow
(Fθ∗(Pω(G)) (1)

Without loss of generality, we assume all these tasks are graph level (e.g., graph classification). That
means Fθ(G) will output a graph-level embedding for the downstream task. For node-level and
edge-level tasks, many studies (Sun et al., 2023a; Liu et al., 2023) have proved that we can always
find solutions to translate these tasks to the graph-level task.

GPF and All-in-One. Current graph prompt designs, as described in the review by Sun et al.
(2023b), can be primarily categorized into two types: prompt as token vectors added to node fea-
tures, and prompt as additional graph inserted to the original graph. In the rest of this paper, we
focus on two representative frameworks: GPF (Fang et al., 2022) as an example of adding extra
prompt vectors, and All-in-One (Sun et al., 2023a) as an example of adding prompt subgraphs. Our
choice is motivated by our interest in simulating graph operations at a theoretical level. The GPF
and All-in-One frameworks provide the most fundamental approaches among these methods. The
rest graph prompt designs can usually be treated as their special cases or natural extensions (Sun
et al., 2023b).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Specifically, GPF aims to learn a token vector ω ∈ R1×F where F is the same dimension of the node
features in the original graph, then the prompt token is directly added to each node’s feature vector,
making the original feature matrix X = {x1, · · · , xN} changed to Xω = {x1 + ω, · · · , xN + ω}.
In this way, the original graph G = (V, E ,X,A) is changed to Pω(G) = Gω = (V, E ,Xω,A).

All-in-One offers the prompt as a graph format by defining prompt tokens, token structures and
inserting patterns. Let Ω ∈ Rk×F be the learnable matrix corresponding to K prompt tokens. Let
Ain ∈ {0, 1}k×k indicate token structures where Aij = 1 means there is an inner link connecting
the i-th and the j-th tokens and vice versa. Ain can be calculated by the inner product of these
tokens. Similarly, the inserting pattern tells us how to connect each token to the original graph
nodes, which is denoted by a cross matrix Acro ∈ {0, 1}k×N . Then the graph prompt changes
the original graph G to Gω = (Vω, Eω,X,Ω,Aω) where Vω is the collection of the original nodes
and the token nodes; Eω includes the original edges, inner links among tokens and the cross links
between tokens and the original nodes; Aω is the collection of A,Ain, and Acro.

Motivations. Initially, Fang et al. (2022) have proved that graph prompt can simulate any graph
data operation (e.g., deleting/adding nodes/edges, changing node features, or removing subgraphs,
etc). That means for any graph data operation t(·), we can always learn a graph prompt reaching
Fθ∗(Gω) = Fθ∗(t(G)). However, this equivalence needs a very strong precondition: the graph
model F should not contain any non-linear layer, which is apparently very hard to meet in the
practical solutions. Later, Sun et al. (2023a) extended this finding with more advanced prompts and
empirically observed that the error to such approximation Fθ∗(Gω) → Fθ∗(t(G)) may relate to
the non-linear layers of the graph model and the prompt design. However, these observations are
not followed by a critical theory proof. Recently, there has been an increasing number of empirical
works on graph prompts achieving success in various applications. Unfortunately, the theoretical
basis of graph prompt is still very tumbledown and we still have not figured out why graph prompts
work in theory, especially for questions like how powerful the graph prompt is in manipulating
graph data? and why such capability works for downstream tasks?

In this paper, we go deeper in theory for the graph prompt capability of manipulating data. We con-
duct a comprehensive effectiveness analysis of general graph prompt learning through the concepts
of “bridge sets” and “ϵ-extended bridge sets” (see in section 3.3). Based on extensive theoretical
derivations and substantial experimental evidence, we establish theorems related to the error bound
of graph prompts in simulating graph data operations. Our goal is to figure out in theory how this er-
ror changes from a single graph to a batch of graphs, from a linear model to a non-linear model, and
which factors relate to this error. Through this work, we wish to push forward the graph prompt area
with a more solid theory basis, help researchers to design more scientific graph prompt techniques,
and offer them theory confidence for their further usage.

3 WHY GRAPH PROMPT WORKS? A DATA OPERATION PERSPECTIVE

Let Fθ∗ be any given GNN model that has been pre-trained on a given task Tpre. Here θ∗ means
the parameters have been determined and frozen. For a given graph instance Gori, we can expect
the model to output appropriate graph-level embedding on Tpre because this model has already
been trained on this task. However, when we try to use this model on a new task Tdow, the output
embedding, Fθ∗(Gori), can not guarantee acceptable performance because the pre-training task Tpre

may be incompatible with downstream tasks Tdow.

3.1 PERSPECTIVE FROM MODEL TUNING

To fill this gap, “pre-training and fine-tuning” aims to adapt the pre-trained model to a new version
and wish it could perform better. Assume there exists an optimal function, say C, which can map
Gori to the embedding C(Gori) to achieve good performance on Tdow. The nature of “pre-training
and fine-tuning” is to hope the fine-tuned graph model could approximate to C(Gori):

Fθ∗→θ#(Gori) → C(Gori) (2)

However, achieving this goal usually requires fine-tuning the graph model, which is not always
efficient and needs many empirical tuning tricks. The tuning course may be even harder if the
pre-trained model is ill-designed for the downstream task. In addition, we can not guarantee that

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

fine-tuning the pre-trained model (i.e. θ∗ → θ#) can always surpass training the model from scratch
because the preserved knowledge may contribute negatively to the downstream task.

3.2 PERSPECTIVE FROM DATA OPERATION

Instead of the above model-level tricks, graph prompts provide a data-level alternative. Some prior
works (Fang et al., 2024; Sun et al., 2023a) have initially proved that graph prompts can simulate
any graph operations (e.g., deleting/adding nodes/edges/subgraphs, changing node features, etc).
However, how effective of graph prompt is and why this works for the new task are still not yet
answered. To answer these questions, we first explain our data operation perspective by a theorem
as follows:

Theorem 1. Let Fθ∗ be a GNN model pre-trained on task Tpre with frozen parameters (θ∗); let
Tdow be the downstream task and C is an optimal function to Tdow. Given any graph Gori, C(Gori)
denotes the optimal embedding vector to the downstream task (i.e. can be parsed to yield correct
results for Gori in the downstream task), then there always exists a bridge graph Gbri such that
Fθ∗(Gbri) = C(Gori).

A detailed proof of Theorem 1 can be seen in Appendix A.3.1, from which we can find that for any
given graph Gori, there always exists a bridge graph, say Gbri, making the following equation hold:

Fθ∗(Gbri) = C(Gori) (3)

That means, without needing to tune the model, we can try to find a data operation method that
translates Gori to Gbri with the pre-trained model unchanged. Graph prompts can be treated as a
learnable data operation framework to help us manipulate these graph data. In this way, we can
significantly reduce the difficulty of traditional fine-tuning work, improve the performance on a new
task (or even a new dataset), and further enhance the generalization of graph neural networks. With
this perspective, our next question is: How difficult to find such a bridge graph using graph prompts?

3.3 MEASURING THE DIFFICULTY OF FINDING BRIDGE GRAPHS VIA GRAPH PROMPTS

Graph prompts can be viewed as a type of graph transformation operator. For example, the simplest
graph prompt is just adding a specific prompt token vector pω to each node feature of the graph and
then we can transform this graph G into a family of graphs {Pω(G)|ω ∈ RF }, where Pω(G) rep-
resents the output graph obtained by graph prompt on G. Once ω is determined, the corresponding
data transformation rule and unique output graph data are also defined. This family can be under-
stood as the “transformation space” of graph G under prompt P , denoted as DP (G). If the prompt
operator maps the original graph Gori to a bridge graph Gbri (i.e., P (Gori) = Gbri), then applying the
pre-trained model Fθ∗ yields Fθ∗(P (Gori)) = Fθ∗(Gbri), which conforms to the downstream task.
In this process, we achieve seamless alignment of upstream and downstream tasks solely through
data transformation operators, without relying on tuning the model’s parameters.

Definition 1 (Bridge Set and ϵ-extended Bridge Set). The bridge set of a graph G is defined as:

BG = {Gp | Fθ∗(Gp) = C(G)}

where Fθ∗ is the frozen graph model from the pre-training task, and C is the optimal function for
the downstream task. The ϵ-extended bridge set of G is a relaxed version of the bridge set, which is
defined as:

ϵ-BG = {Gp | ϵ = ∥Fθ∗(Gp)− C(G)∥ ≤ ϵ∗}.

Achieving a transformation exactly equivalent to C(G) is highly non-parametric and nonlinear.
Finding the corresponding Gbri or even the bridge set for any Gori involves solving complex, high-
order nonlinear equations. This task becomes virtually impossible manually, especially if the pre-
training method integrates multiple tasks or intricate mechanisms. Fortunately, graph prompts Pω

can be viewed as parameterized fitting for these operators and they usually contain very lightweight
parameters, which dramatically simplify the search space compared with manually designed strate-
gies. The effectiveness of graph prompting methods hinges on their ability to approximate these
operators closely—whether they can uniformly project G in the dataset into the bridge set BG, or at
least map them into the extended bridge set with a small upper error bound ϵ∗.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 THE UPPER BOUND OF DATA OPERATION ERROR VIA GRAPH PROMPT

4.1 UPPER BOUND OF THE ERROR ON A SINGLE GRAPH

Here we aim to demonstrate that using graph prompts provided by frameworks such as GPF and All-
in-One, denoted as parameterized operators Pω with parameter ω, can consistently project G into an
ϵ-extended BG, where ϵ has a uniform upper bound. This would initially validate the effectiveness
of graph prompting methods in leveraging the potential of pre-trained models without compromising
their expressive power. If G can be seamlessly projected into BG or an ϵ-extended BG (for small ϵ),
it would indicate excellent performance and full utilization of the model’s capabilities.

To this end, we first conduct a quantitative analysis of Pω’s graph transformation approximation
ability on a single graph. With our proposed data operation perspective, we canreformulate the
findings in Fang et al. (2022) as follows:
Theorem 2. Given a GPF-like prompt vector pω , if a GCN model Fθ does not have any non-linear
transformations, then there exists an optimal ω for any input graph G such that Pω(G) ∈ BG.

This theorem is proved by Fang et al. (2022) but it’s important to note that all GNN models employ
non-linear transformations. According to the function approximation theorem for neural networks
(Hornik et al., 1989), the core of improving a model’s approximation and simulation ability lies in
its non-linear components. Removing these non-linear parts would limit the model to approximating
only linear transformations and functions. To demonstrate the effectiveness of graph prompt learning
in real downstream tasks, we offer the following theorems further:
Theorem 3. Given a GPF-like prompt vector pω , if a GCN model Fθ has non-linear function layers
but the model’s weight matrix is row full-rank, then there exists an optimal ω for any input graph G
such that Pω(G) ∈ BG.
Theorem 4. Given the All-in-One-like prompt graph SGω (a subgraph containing prompt tokens
and token structures), if a GCN model Fθ does not have any non-linear transformations, or has
non-linear layers but the model’s weight matrix is row full-rank, then there exists an optimal ω for
any input graph G such that Pω(G) ∈ BG.

Theorems 3 and 4 are proved in Appendix A.3.2. Although we’ve only added the row full-rank
condition, these two theorems significantly expand the applicability of Theorem 2. According to
Pennington & Worah (2017), well-trained models mostly contain full-rank matrices, which can be
easily guaranteed by some tricks like orthogonal initialization, He initialization, etc. Raghu et al.
(2017) also find that a full-rank parameter matrix in the model usually indicates stronger expressive-
ness. Intuitively, a weight matrix in the graph model usually indicates how to project the input graph
into some latent embedding for the downstream task. According to the basic knowledge of linear al-
gebra, when the weight matrix is row full-rank, we can always restore the input from the output. That
means we can always find an appropriate input format to meet various downstream requirements.
Therefore, from a practical empirical perspective, we can assume that in most cases, both GPF-like
and All-in-One-like frameworks can achieve seamless projection of G into BG, demonstrating the
effectiveness and rationality of graph prompting.

For the cases where weight matrices are not full-rank, we have found that the error value (ϵ) of the
extended bridge set (ϵ-BG), into which the prompting framework can map G, is positively correlated
with the distance of the graph model parameter matrix from being full-rank. However, a consistent
upper bound does exist for the error ϵ of the extended bridge set when the matrix rank is determined.
This means that even in some extreme cases, graph prompt learning can still guarantee a certain
level of performance without experiencing extremely unexpectedly poor results:
Theorem 5. For a GCN model Fθ, assume at least one layer’s parameter matrix is not full rank, for
GPF or All-in-One prompt, there exists an upper bound of ϵ such that for any input graph G, there
exists an optimal ω where Pω(G) ∈ ϵ-BG, with ϵ ≤ ζ(θ∗) ·κ(G), where ζ(θ∗) is an implict function
correspond to the model and κ(G) is an implic function corresponding graph G, denoting the two
parts of the error boundaries.

Theorem 5 is proved in Appendix A.3.3, where the upper bound of the error ϵ can be further ex-
pressed as follows:

ζ(θ∗)κ(G) = sin(Φ/2)∥C(G)∥ (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The upper bound has two terms, one part is related to the model because sin(Φ/2) can be treated as
a measurement of the model’s expressiveness, the details of which can be seen in Appendix A.3.3.
The other part is related to ∥C(G)∥. Since the graph prompt aims to approximate G with Pω(Gori),
that means the error is also related to the prompt design. In this way,we . . .intheory.confirm.. . . .the
.intuitionalfindings by Sun et al. (2023a) as mentioned in our motivation section.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4 All In One
Fit All In One: 0.106·x^0.5
All In One-Plus
Fit All In One-Plus: 0.087·x^0.5
GPF
Fit GPF: 0.301·x^0.5
GPF-Plus
Fit GPF-Plus: 0.259·x^0.5

Rank lost

E
m

pi
ri

ca
l M

ax
 E

rr
or

Figure 1: Error w.r.t matrices rank.

The upper bound of ϵ given in Theorem 5 reveals the potential
distortion of BG’s shape when the matrix is not full-rank and
the model’s expressive power is insufficient. This can lead to
an increased distance between BG and the transformation do-
main DP (G) of GPF or All-in-One prompts. To confirm this
judgment, we conducted a quantitative analysis using numeri-
cal methods for the case of non-full rank matrices. We make
the graph model weight matrix be not full-rank (with rank n−r
where n is the full rank number and r = 0, · · ·n) and use the
distance between the embedding vectors of Pω(G) and C(G)
as the loss function. We applied stochastic gradient descent
with a learning rate of 0.0001 to optimize ω until convergence.
To avoid local optima, we repeated the process multiple times
with different initializations for each graph. The results are shown in Figure 1, where the vertical axis
is the empirical max ϵ of the extended BG and the horizontal axis is r where r = 0, 1, 2, · · · , 9, 10,
making the matrix rank become n − r. Here GPF-Plus contains multiple tokens, and All-in-One-
Plus treats the inserting pattern as learnable weights. We can find that with the increase of r, the
rank of the model matrix becomes lower, making the model expressiveness worse and then leading
to a larger error bound. Besides, more advanced graph prompts (e.g., GPF-Plus, All-in-One, and
All-in-One-Plus) generally have a lower bound than the naive one (e.g., GPF).

4.2 EXTEND THE ERROR BOUND DISCUSSION TO A BATCH OF GRAPHS

In Sections 3 and 4.1, we have proved that graph prompting frameworks can indeed fit graph trans-
formation operators given a single graph, thereby exploiting model capabilities. However, in other
cases, we often train the model via a batch of graphs and seek to find better performance over the
whole graph dataset. Correspondingly, we should aspire to transform each graph G in the down-
stream dataset into its corresponding BG or ϵ-BG (for small ϵ). If such a uniform upper bound
ϵ∗ exists, it would theoretically validate the excellent performance of graph prompting in general
downstream tasks, confirming the rational utilization of powerful upstream models.

For a batch of graphs, the complexity and information contained in the graph prompt become partic-
ularly important. For instance, the increased number of prompt vectors in GPF (a.k.a GPF-Plus) and
the selection of a larger size of the prompt graph in All-in-One greatly expand the transformation
space of graph G under prompt P (see DP (·) in section 3.3). A larger transformation space corre-
sponds to a smaller ϵ upper bound. In our theoretical analysis, we found that when the prompt takes
an overly simple form, the capability of prompt learning is limited. This manifests as a theoretical
lower bound of the bridge set extension as suggested in Theorem 6:

Theorem 6. For a GCN model Fθ, for GPF with a single prompt vector or All-in-One with a single-
token graph prompt, given a batch of graphs G = {G1, · · · , Gi, · · · , Gn}, the root mean squared
error (RMSE) over {ϵ1, · · · , ϵn} has a lower bound ϵo such that RMSE(ϵ1, · · · , ϵn) ≥ ϵo.

Theorem 6 is proved in Appendix A.3.4 and we also give the detailed formulation of ϵo in the
proof, from which we can find that ϵo is related to graph data and the prompt token. This indicates
that when the downstream task dataset is relatively large, we must correspondingly increase the
transformation space of the prompt to better utilize the model’s capabilities, which also aligns with
existing empirical observations (Liu et al., 2021). Then our next question is: With the increase of
graphs, how does graph prompt complexity increase with their error bound increased?

Intuitively, a good graph prompt should not increase its complexity faster than the growth of the
dataset because in that case the effectiveness of prompt learning in practical applications would
be significantly compromised. Fortunately, we found that for relatively large datasets, the scale of
prompts required for prompt learning is highly controllable with the number of needed tokens for
the prompt almost constant, far from the increase of graphs. This explains why even with relatively

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

large downstream datasets, as reflected in Sun et al. (2023a), empirical results using medium-scale
prompts can still achieve excellent outcomes. Compared to fine-tuning the entire model parameters,
Theorem 7 (see the proof in Appendix A.3.4) indicates why graph prompting can achieve compara-
ble or even better results with less parameter adjustment scale:

Theorem 7. Given a GCN model Fθ, an All-in-One-like graph prompt with multiple prompt tokens,
and a dataset G with M graphs, there exists an upper bound denoted by ϵ∗, making an optimal Pω

such that ∀Gi ∈ G, Pω(Gi) ∈ ϵi-BGi
, and

√∑M
i=1 ϵ

2
i /M ≤ ϵ∗. ϵ∗ can be further calculated as

follows:

ϵ∗ =

√√√√ M∑
i=k+1

λi/M (5)

Here for the M graphs in G, we first construct an optimal solution matrix according to function C,
thus have: S = [C(G1), . . . , C(GM)]. Then V = S⊤S ∈ RM×M denotes the correlation matrix
of downstream solutions upon such graph dataset. The eigenvalues of V sorted by the descending
order can be denoted as {λ1, · · · , λM}. Then the upper bound ϵ∗ can be treated as the mean square
over the smallest M − k eigenvalues. In practice, the eigenvalues of V in datasets often exhibit an
exponential decay (Johnstone, 2001). This explains the rapid decrease in error rate as k increases,
proving that prompts are not only effective but also efficient. With the increasing number of graphs
M in the dataset, the largest k (k ≪ M) eigenvalues can almost explain most of the matrix, which
means using small-scaled prompt tokens can achieve reasonably accurate results. This finding is
also consistent with many existing empirical researches (Liu et al., 2023; Sun et al., 2023a; Wang
et al., 2024; Zhu et al., 2024a).

4.3 VALUE DISTRIBUTION OF THE DATA OPERATION ERROR WITH GRAPH PROMPT

In the previous sections, we established a theoretical upper bound of ϵ ≤ ϵ∗, allowing the graph
prompt Pω to map a given graph G into the ϵ-extended BG range. However, the conditions to reach
this upper bound are often difficult to meet, making the theoretical upper bound usually correspond
to some corner cases which may be not that practical in processing empirical experimental analy-
sis. To offer stronger practical guidance for researchers’ general experimental purposes, the value
distribution of ϵ (a.k.a “error range”), comes to our next point of interest. The error range analysis
indicates a quantitative degree of the bridge set extension, which includes estimating the mean, and
variance, and finding the approximate distribution pattern.

Definition 2 (Graph Embedding Residual Vector). Consider a graph model with Leaky-Relu as
their activation function, we denote the graph embedding residual vector as β ∈ R1×F where F is
the graph embedding dimensions. Each entry of β is related to the bridge graph embedding, graph
prompt, and the original graph, which is mathematically defined as follows:

[β]j =
∑
i

−αkwivij (6)

Figure 2: real ϵ distribution and fitted curves

where α is the parameter of Leaky-Relu;
vij is the j-th element in the i-th node em-
bedding of the bridge graph Gbri; wi is the
weight of the i-th node for graph pooling
(e.g., summation graph pooling means for
any node i in Gbri, we have wi = 1); k can
be either 0 or −1 and depends on the orig-
inal graph, graph prompt, and the bridge
graph, the details of which can be seen in
Appendix A.3.5. Here, we assume that β
should follow an i.i.d. normal distribution
with mean 0 and variance c (we carefully
discuss the rationality of this assumption in Appendix A.3.5): β ∼ N (0, cIn) where In is the n×n
identity matrix and c is a positive constant. Then we theoretically find that ϵ conforms to the Chi
distribution (χk):

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 8. Given a GCN model Fθ with the last layer parameter matrix having rank F − r
(F is the graph embedding dimension, r is the rank lost), an input graph G, for the optimal ω,
Pω(G) ∈ ϵ-BG. If the Graph Embedding Residuals follow the i.i.d. normal distribution, then ϵ
follows a Chi distribution χr with r free variables.

Distribution Notation p-value
Chi χ 0.65
Gamma Γ 0.23
Chi-squared χ2 0.04
Exponential Exp 0.01

Table 1: p-values w.r.t distributions

We give the proof of Theorem 8 in Appendix A.3.5. In the
practical settings, the distribution of graph residual terms may
slightly diverge from i.i.d. normal distribution, making the real
distribution of ϵ a little different from standard χk. Besides,
there is also a theoretical upper bound ϵ∗, making the real dis-
tribution of ϵ more like a truncated χk. The statistical measures
of this distribution can be easily obtained as follows:

Corollary 1 (Statistical Measures and Confidence Values of ϵ). The mean of ϵ is c
√
2Γ((r+1)/2)

Γ(r/2) , the

variance is c2
(
r − 2 [Γ((r+1)/2)]2

[Γ(r/2)]2

)
, and confidence values can be obtained through Cr,p

χ using nu-
merical methods or table lookup, where c is the scaling factor compared to the standard distribution,
and r is the number of dimensions lost compared to a full-rank matrix.

To further confirm our theoretical findings, we compare the real-world distribution of ϵ with 4 com-
monly used distribution patterns (Chi, Chi-square, Exponential, and Gamma). Figure 2 presents
the fitting results and Table 1 shows the p-value significance, from which we can see that the Chi
distribution provides the best approximation within a non-extreme range of ϵ.

4.4 EXTEND THE DISCUSSION FROM LINEAR TO NON-LINEAR AGGREGATIONS

While our previous analysis focused on GCN or linear aggregation models that can be represented
in the form of “diffusion matrices”, many advanced models utilizing attention mechanisms exhibit
distinctly different characteristics. Their aggregation methods involve the computation of attention
matrices, which in turn depend on the node feature vectors of G. This can be considered as a non-
linear model w.r.t G’s feature matrix. In our analysis, we use Graph Attention Networks (GAT) as an
exemplar, as the attention mechanism in GAT is a common component in many non-linear models.
Fortunately, the guarantees provided by our theorems do not differ significantly for these models.
This indicates that even as models become more non-linear and complex, graph prompting can still
effectively harness the powerful capabilities of pre-trained models:
Theorem 9. Let Fθ be a GAT model. If any layer of the model has a full row rank parameter matrix,
then for the All-in-One prompting framework, for any input graph G, there exists an optimal ω such
that Pω(G) ∈ BG. When the parameter matrix is not full rank, there is an upper bound µ(θ) · λ(G)
making Pω(G) ∈ ϵ-BG, ϵ ≤ µ(θ) · λ(G).

We give a detailed proof in Appendix A.3.6. The above theorem demonstrates the robustness of
graph prompting methods across different types of GNN architectures, including those with non-
linear attention mechanisms. The consistency of these results with our earlier findings for linear
models suggests that the fundamental principles of graph prompting remain effective even as we
move towards more complex and non-linear model architectures.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Data Preparation: We first confirm our theoretical findings on synthetic datasets because these
datasets offer controlled environments, allowing us to isolate specific variables and study their im-
pacts. We generate these datasets by defining the dimension of graph feature vector (F), average of
graph node numbers (Navg), average of graph edge numbers (Eavg), and number of graphs in the
dataset (M). These parameters characterize both individual graphs and the entire dataset, facilitating
our study of the relationship between these features and ϵ. We further conduct the experiments on
the real-world dataset in Appendix B, from which we can find similar observations.

Model Settings: We utilize two GNN frameworks: GCN (representing linear models) and GAT
(representing non-linear models). We limit our experiments to these two models as other models

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

follow similar patterns. Unless otherwise specified, we use a 3-layer GNN with Leaky-ReLU acti-
vation function and feature dimension F = 25. For full-rank matrix studies, we ensure each layer’s
matrix is full-rank (selected after pre-training). For non-full-rank matrix studies, we set the rank loss
to 5 by default. The default ReadOut method is mean pooling.

3 4 5 6 7 8 9
1000

2 3 4 5 6
10μ
2

5

100μ
2

5

0.001
2

5

0.01
2

5

0.1
2

5

1
2

5

10

Prompt method: GPF
Period 1 Fit line of GPF: -2.9·x
Period 2 Fit line of GPF: -4.2·x
Prompt method: All in one
Period 1 Fit line of All in one: -1.7·x
Period 2 Fit line of All in one: -13.1·x

Epochs

L
os
s(
ep
si
lo
n)

(a) GCN

3 4 5 6 7 8 9
1000

2 3 4 5 6

10μ
2

5

100μ
2

5

0.001
2

5

0.01
2

5

0.1
2

5

1
2

5

10
2

Prompt method: GPF
Period 1 Fit line of GPF: -3.1·x
Period 2 Fit line of GPF: -1.7·x
Prompt method: All in one
Period 1 Fit line of All in one: -1.6·x
Period 2 Fit line of All in one: -16.4·x

Epochs

L
os
s(
ep
si
lo
n)

(b) GAT
Figure 3: convergence rate analysis

Training: In the graph prompting training process, we
perform gradient descent on the parameters ω of the graph
prompt Pω using the Adam optimizer. We use a learn-
ing rate of 1 × 10−4 and weight decay of 5 × 10−5.
We implement an early stopping mechanism with a max-
imum of 2,000 epochs by default. Our loss function is
defined as ∥Fθ∗(Gp) − C(G)∥ for single-graph tasks,

and
√∑

G∈G ∥Fθ∗(Gp)− C(G)∥2/M for multi-graph
tasks where Gp is the combined graph with G and graph
prompt, and C(G) means an optimal function to the
downstream task, which is not accessible without a spe-
cific task. Since the ultimate purpose of graph prompting
is to approximate graph operation, we here treat C(·) as
various graph data permutations such as adding/deleting
nodes, adding/deleting/changing edges, and transform-
ing features of a given graph G. Then we wish to see
how well the graph prompt reaches C(G) by manipulat-
ing graph data with a graph prompt. For more detailed
experimental settings, please check in the Appendix C.
We open our testing code at https://anonymous.
4open.science/r/dgpwadopwta/

5.2 ON MAPPING TO BG WITH SINGLE GRAPH

According to Theorems 3, 4, and 9, error-free projection
can be achieved in full-rank situations. Here we investigate convergence properties with a maximum
of 5,000 epochs. Figure 3 presents the results for GPF and All-in-One prompts with GCN and GAT,
respectively. From the results we can find that for single-graph, full-rank matrix scenarios, both GPF
and All-in-one approaches show loss converging to zero, which is consistent with our theoretical
findings.

5.3 ON MAPPING TO ϵ-BG WITH SINGLE GRAPH

Theorem 5 states that in non-full-rank situations, there exists an upper bound on the error. Here we
extensively examine the relationship between various parameters and the error upper bounds in the
context of non-full-rank matrices given a single graph. Since showing this upper bound in practice
is usually intractable, we fix all other parameters and employ five pre-trained models. For each fixed
pre-trained model, we conduct experiments and repeat each experiment 30 times. Then we take the
maximum loss from these repetitions as the approximation to the upper bound.

15 18 21 24 27 30 33 36 39 42

0.3

0.4

0.5

0.6

0.7

0.8

0.9
All In One
Fit All In One: 0.075·x^0.5
GPF
Fit GPF: 0.133·x^0.5

Feature Number

E
m

pi
ri

ca
l M

ax
 E

rr
or

(a) Feature Number vs. epsilon

50 58 66 74 82 90 98 106 114 122
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
All In One
Fit All In One: 0.004·x + 0.31
GPF
Fit GPF: 0.006·x + 0.41

Graph Size

E
m

pi
ri

ca
l M

ax
 E

rr
or

(b) Graph Size vs. epsilon

1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
All In One
Fit All In One: -0.007·x^2 + 0.06·x + 0.5
GPF
Fit GPF: -0.008·x^2 + 0.05·x + 0.7

GNN Layer

E
m

pi
ri

ca
l M

ax
 E

rr
or

(c) Layer Number vs. epsilon

Figure 4: epsilon range analysis

9

https://anonymous.4open.science/r/dgpwadopwta/
https://anonymous.4open.science/r/dgpwadopwta/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Subsequently, we calculate the mean and standard deviation of these upper bounds to generate plots.
The parameters of interest include rank loss (as shown in Figure 1 in section 4.1), node feature
dimension (Figure 4a), graph size (Figure 4b), and model layer number (Figure 4c). Intuitively,
with the increase of data complexity (e.g., larger features and graph size), the upper bound becomes
larger in general. As the graph model becomes more complicated (e.g., layer number increase),
the projected space becomes larger making the error bound intend to be smaller. When weight
rank declines, the model’s capacity intends to poor results, making the error bound increase. More
advanced graph prompts (e.g., All-in-One) usually have a lower error bound than the naive one (e.g.,
GPF). These observations can be naturally inferred from our theoretical analysis in section 4.1.

5.4 ON MAPPING TO ϵ-BG WITH MULTIPLE GRAPHS

Theorem 6 discusses a lower bound on the RMSE over the errors on multiple graphs with a single
prompt token. In this section, we conducted experiments on the number of graphs in the dataset w.r.t
the empirical minimum error. As shown in Figure 5a, the minimum error shows an upward trend
and then tends to saturate, which is highly consistent with the findings in Theorem 6.

2 4 6 8 10

0

5

10

15

20

25

Prompt method: GPF
Prompt method: All In One

Graph Number

E
m

pi
ri

ca
l M

in
 E

rr
or

(a) Simple Prompt (b) GPF Plus (c) All in one

Figure 5: ϵ range based on multiple graphs analysis

Theorem 7 suggests that for the graph prompt with multiple tokens and multiple graphs, a small
k tokens is sufficient to achieve good performance. In particular, we wish to see how the error
(loss) changes as M (number of graphs) increases while k remains fixed, and its counterpart case:
how does the error change as k increases while M remains fixed? Here we explored the relationship
between the number of prompt tokens, the number of graphs in the dataset, and the error. We present
experimental results in Figure 5b and Figure 5c, which indicate two surfaces. From these figures
we can find that both GPF and All-in-One show similar effects: when the number of prompt tokens
exceeds 10, the error becomes relatively small. As the number of prompt tokens increases further,
the loss does not significantly decrease. Similarly, when the number of graphs increases and the
number of prompt tokens is large, the decrease in error is also not that obvious.

6 CONCLUSION

This paper addresses the theoretical gap in graph prompting by introducing a comprehensive frame-
work from a data operation perspective. We introduced the concepts of “bridge sets” and “ϵ-extended
bridge sets” to formally demonstrate that graph prompts can approximate graph transformation op-
erators, effectively bridging pre-trained models with downstream tasks without retraining. Our con-
tributions are threefold: first, we established guarantee theorems confirming that graph prompts
can simulate various graph data operations, explaining their effectiveness in aligning upstream and
downstream tasks. Second, we derived upper bounds on the approximation errors introduced by
graph prompts for both individual graphs and batches of graphs, highlighting how factors like model
rank and prompt complexity influence these errors. Third, we analyzed the distribution of these er-
rors and extended our theoretical findings from linear models like GCNs to non-linear models such
as GATs, showcasing the robustness of graph prompting across different architectures. Our extensive
experiments validate these theoretical results and confirm their practical implications, demonstrat-
ing that graph prompts can effectively leverage pre-trained models in various settings. By providing
solid theoretical foundations, our work not only explains why graph prompts work but also guides
the design of more effective prompting techniques. This empowers researchers and practitioners to
utilize graph prompts with greater confidence, potentially leading to more efficient and generalized
graph neural network models across diverse applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: analysis, algo-
rithms, and engineering applications. SIAM, 2001.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Cameron Diao, Kaixiong Zhou, Zirui Liu, Xiao Huang, and Xia Hu. Molcpt: Molecule continuous
prompt tuning to generalize molecular representation learning. arXiv preprint arXiv:2212.10614,
2022.

Mingchen Fang, Yuan Zhang, Ke Jiang, Kaiqi Zhao, Qingyun Xue, Beilun Zheng, Guan Qin, and
Xinwang Zhang. Graph prompt learning: Towards generalization of graph neural networks for
out-of-distribution data. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, pp. 442–452, 2022.

Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt tuning
for graph neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

Yuxin Guo, Cheng Yang, Yuluo Chen, Jixi Liu, Chuan Shi, and Junping Du. A data-centric frame-
work to endow graph neural networks with out-of-distribution detection ability. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 638–648,
2023.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal
of Educational Psychology, 24(6):417–441, 1933.

Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy Liang, and Jure
Leskovec. PRODIGY: Enabling In-context Learning Over Graphs. In NeurIPS, 2023.

Iain M Johnstone. On the distribution of the largest eigenvalue in principal components analysis.
The Annals of statistics, 29(2):295–327, 2001.

Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments.
Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sci-
ences, 374(2065):20150202, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Liming Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang.
Pre-training graph neural networks: A comprehensive review. arXiv preprint arXiv:2102.00611,
2021.

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
downstream tasks for graph neural networks. In Proceedings of the ACM Web Conference 2023,
pp. 417–428, 2023.

Yihong Ma, Ning Yan, Jiayu Li, Masood Mortazavi, and Nitesh V. Chawla. HetGPT: Harnessing the
Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks. arXiv preprint,
2023.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL www.
graphlearning.io.

Jeffrey Pennington and Pratik Worah. Nonlinear random matrix theory for deep learning. In Ad-
vances in Neural Information Processing Systems, pp. 2637–2646, 2017.

11

www.graphlearning.io
www.graphlearning.io

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the ex-
pressive power of deep neural networks. In international conference on machine learning, pp.
2847–2854. PMLR, 2017.

R. Tyrrell Rockafellar. Convex analysis. Princeton University Press, 1970.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. GPPT: Graph Pre-Training
and Prompt Tuning to Generalize Graph Neural Networks. In KDD, pp. 1717–1727, 2022.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 1894–1904, 2023a.

Xiangguo Sun, Jiawen Zhang, Xixi Wu, Hong Cheng, Yun Xiong, and Jia Li. Graph prompt learn-
ing: A comprehensive survey and beyond. arXiv preprint arXiv:2311.16534, 2023b.

Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. Virtual Node Tuning for Few-shot Node
Classification. In KDD, pp. 2177–2188, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Yingying Wang, Yun Xiong, Xixi Wu, Xiangguo Sun, and Jiawei Zhang. Ddiprompt: Drug-drug
interaction event prediction based on graph prompt learning. CIKM, 2024.

Haoran Yang, Xiangyu Zhao, Yicong Li, Hongxu Chen, and Guandong Xu. An Empirical Study
Towards Prompt-Tuning for Graph Contrastive Pre-Training in Recommendations. In NeurIPS,
2023.

Yuhao Yang, Lianghao Xia, Da Luo, Kangyi Lin, and Chao Huang. Graphpro: Graph pre-training
and prompt learning for recommendation. In Proceedings of the ACM on Web Conference 2024,
pp. 3690–3699, 2024.

Dan-Hao Zhu, Xin-Yu Dai, and Jia-Jun Chen. Pre-train and learn: Preserving global information for
graph neural networks. Journal of Computer Science and Technology, 36:1420–1430, 2021.

Jiapeng Zhu, Zichen Ding, Jianxiang Yu, Jiaqi Tan, Xiang Li, and Weining Qian. Relief: Rein-
forcement learning empowered graph feature prompt tuning. arXiv preprint arXiv:2408.03195,
2024a.

Yun Zhu, Yaoke Wang, Haizhou Shi, Zhenshuo Zhang, Dian Jiao, and Siliang Tang. Graphcon-
trol: Adding conditional control to universal graph pre-trained models for graph domain transfer
learning. In Proceedings of the ACM on Web Conference 2024, pp. 539–550, 2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

The appendix of this paper is organized as follows: Appendix A presents the detailed theoretical
content on the main findings in the paper. In order to reduce the bar of reading this content, we
first give some preliminaries and definitions in Appendix A.1, followed by fundamental lemmas
(Appendix A.2) that will be used to prove our theorems. In Appendix A.3, we carefully prove the
theorems in the main body of this paper, followed by a further mathematical discussion in Appendix
A.4. Beyond theoretical analysis, Appendix B presents additional experimental results on the real-
world datasets, which have similar observations to the main experiments in the paper. Appendix C
introduces more details on the settings of the experiment.

A THEORETICAL ANALYSIS AND PROOFS

Reading Guideline: Appendix A “Theoretical Results and Proofs” is divided into four subsections:

• A.1 Definitions and Preliminaries: Readers are advised to initially skip this subsection.
It serves as a reference for unfamiliar terms encountered later in the text.

• A.2 Fundamental Lemmas: These properties are essential components for proving the
main theorems. We will clearly express what each lemma demonstrates. Readers are rec-
ommended to refer to this subsection when encountering these lemmas while reading the
theorem proofs.

• A.3 Detailed Proofs of Main Theorems: This subsection is recommended as the primary
focus for readers. It contains the core ideas behind why prompts work, even though some
lemmas may be required for complete understanding.

• A.4 Additional Mathematical Lemmas: This subsection includes purely mathematical
lemmas encountered during the proofs in A.2 or A.3. These lemmas are not directly related
to GNN models or prompts. Readers are advised to review this subsection after reading the
previous content.

A.1 PRELIMINARIES AND DEFINITIONS

A.1.1 PRELIMINARIES

Preliminary 1 (GCN and GAT).
Graph Convolutional Networks (GCN) Kipf & Welling (2016) perform convolution operations
on graph-structured data by aggregating feature information from a node’s neighbors. The recursive
update rule for a GCN layer is:

H(i+1) = σ
(
ÃH(i)W(i)

)
, (7)

where Ã = D−1/2AD−1/2 is the normalized adjacency matrix, H(i) is the node feature matrix at
layer i, W(i) is the learnable weight matrix, and σ is a nonlinear activation function.

Graph Attention Networks (GAT) Veličković et al. (2017) enhance GCNs by introducing attention
mechanisms to weigh the importance of neighboring nodes during aggregation. In the simplest form
of self-attention, the attention coefficient between node j and node k is based on the inner product
of their feature vectors:

ejk = X⊤
j Xk, (8)

αjk =
exp(ejk)∑

m∈N (j) exp(ejm)
, (9)

H
(i+1)
j = σ

 ∑
k∈N (j)

αjkH
(i)
k W(i)

 , (10)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

where N (j) denotes the neighbors of node j, αjk is the normalized attention coefficient, and W(i)

is the learnable weight matrix at layer i. This mechanism allows the model to focus on the most
relevant neighbors when updating node representations.

Preliminary 2 (Pre-training and Fine-tuning vs Pre-training and Prompt).
Pre-training and Fine-tuning Zhu et al. (2021)involves two stages: first, a model is pre-trained on
a large dataset to learn general representations, and then it is fine-tuned on a specific downstream
task.

Formally, let Fθ∗ be the pre-trained model and C(·) be the optimal mapping function that maps the
original graph to the embedding vector of the downstream task (i.e., can be parsed to yield correct
results for Gori in the downstream task)

Fine-tuning aims to adjust the model parameters from θ∗ to θ# so that:

Fθ∗→θ#(Gori) ≈ C(Gori). (11)

Pre-training and Prompting keeps the pre-trained model parameters fixed and instead modifies the
input data to bridge the pre-training and downstream tasks. Specifically, it seeks a transformation
from the original graph Gori to a prompt-enhanced graph Gbri such that:

Fθ∗(Gbri) = C(Gori). (12)

This approach leverages the frozen pre-trained model by adapting the input data through graph
prompts, eliminating the need to fine-tune the model parameters.

Preliminary 3 (GPF and All-in-One).
Graph Prompt Frameworks introduce learnable modifications to input graphs to enhance the per-
formance of frozen pre-trained GNNs on downstream tasks. Two primary frameworks are prompt
token vectors like GPF/GPF-Plus Fang et al. (2022) and prompt subgraph like All-in-One Sun
et al. (2023a).

GPF (Graph Prompt Feature) adds a prompt vector to each node’s feature vectors. Let ω = {p},
p ∈ RF×1 be the learnable prompt vector, then the updated node features are:

[Xω]i = Xi + p (13)

The original graph G = (X,A) becomes the prompt-enhanced graph Gω = (Xω,A). The prompt
vector p is optimized to minimize the loss on the downstream task:

p∗ = argmin
p

∑
G∈G

LTdow (Fθ∗(Pω(G))) (14)

GPF-Plus adds a combination of multiple prompt vectors to each node’s features. Let ω =

{p1, · · · , pk, Q}, pi ∈ RF×1 be the learnable prompt vector, Q ∈ RM×k. Let P =

p⊤1
...
p⊤k

.

The node features are updated in such a way:

[Xω]i = Xi +QiP (15)

The original graph Gi = (X,A) becomes the prompt-enhanced graph Gi,ω = (Xω,A).

All-in-One incorporates entire prompt subgraphs into the original graph. Let P ∈ Rk×F repre-
sent K learnable prompt token vectors, and Ain ∈ {0, 1}k×k denote the internal adjacency among
prompt tokens. The connections between prompt tokens and original nodes are defined by a cross
adjacency matrix Acro ∈ {0, 1}k×N . The prompt-enhanced graph is:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Gω = (A ∪Ain ∪Acro,X ∪ Ω) . (16)

All-in-One optimizes the prompt tokens and their connections to adapt the pre-trained model to
downstream tasks without altering the model parameters.
Preliminary 4 (Diffusion Matrix).
Diffusion Matrix Gasteiger et al. (2019) plays a crucial role in representing the diffusion process on
a graph. Specifically, many GNN architectures can be expressed using the following formulation:

H = S ·X ·W, (17)

Where: S is the diffusion matrix, derived from the graph’s adjacency matrix and model structure,
which governs how information propagates across the graph. X is the original node feature matrix.
W is the learnable weight matrix associated with the GNN layer. H is the node feature embedding
matrix after message transformation and aggregation.

A.1.2 DEFINITIONS

We provide a glossary and default symbols meanings here for the reader’s convenience.

Term Explanation
Bridge Set BG BG = {Gp | Fθ∗(Gp) = C(G)}
ϵ-extended Bridge Set
ϵ-BG

ϵ-BG = {Gp | ∥Fθ∗(Gp)− C(G)∥ ≤ ϵ}

Adjacency matrix A square matrix used to represent a finite graph, where Aij = 1 if there is an
edge from vertex i to vertex j, and 0 otherwise

Diffusion matrix The matrix equivalent to graph aggregation in GNNs
Span For a set V , we say “p spans V” if p can take any value in V
i-th order embedding
matrix

The embedding matrix after i iterations of message passing and aggregation in
a GNN

Cone A set C such that for any x ∈ C and α ≥ 0, αx ∈ C
Convex set A set S such that for any x, y ∈ S and α ∈ [0, 1], αx+ (1− α)y ∈ S
Convex hull The smallest convex set containing a given set of points
Graph Embedding
Residual Vector

A vector representing the additional error in graph fitting due to non-linear com-
ponents. For details, refer to the related A.3.5

Table 2: Glossary

Symbol Description
Gori The original graph without prompting
Pω Graph prompting method with parameter ω
C(Gori) The optimal embedding vector for the downstream task. C(·) can be understood

as the optimal downstream task model
Gbri The bridge graph that can be used to obtain C(Gori) using the original model
Gp The graph after prompting
Gω The graph after prompting with parameter ω
ϵ Represents the extent of Bridge set expansion, i.e. the “error”
n Generally represents the number of layers in the GNN
F Represents the dimension of the graph feature vector
N Represents the number of nodes in the graph
M Represents the number of graphs in the dataset Ω
Φ Represents the aperture of the convex cone can be understood as the maximum

opening angle

Table 3: Symbol Table

A.2 FUNDAMENTAL LEMMAS

This lemma serves as a foundational component for proving the theorem. However, readers may
choose to skip the lemma initially and return to it when it is referenced in the theorem’s proof.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Default Case By default, we consider the GNN model as a surjective mapping operator from
the graph set {G} to RF , obtained after pre-training tasks. This operator can provide sufficient
information to express the correct results of the graph in the pre-training task. (For instance, through
a task-specific head mapping to the likelihood of a 0/1 decision.)

Notations Here and in subsequent related content, we use Fθ to represent a GNN model whose
aggregation process can be described by a diffusion matrix S. Here, S is derived from the model
type and the adjacency matrix A. For instance, in GCN, S = A+ϵI . The graph aggregation process
is described as:

H(i) = σ(S ·H(i−1) ·W) (18)

Where H(0) is exactly the node feature matrix X , and H(i) is referred to as the i-th order embed-
ding matrix. Without loss of generality, we analyze the non-linear function σ using Leaky ReLU.
Other non-linear functions such as sigmoid can be analyzed similarly.

Denote the transformation space of Pω and G by DP (G) = {Pω(G)|ω ∈ R|ω|}, where ω is the
parameter of method P , |ω| denotes the dimensionality of the parameter ω, and P represents either
GPF or All In One prompt method. We denote Pω(G) as Gω , and the corresponding diffusion matrix
and node feature matrix S and X after prompt as Sω and Xω respectively.

Hence, the graph embedding vector obtained from graph Gω prompted by Pω after passing through
the GNN model Fθ can be denoted as Fθ(Gω).

Then, we can take each graph Gω from the transformation space DP (G) and pass it through the
GNN model Fθ to obtain the corresponding embedding vector. These embedding vectors can be
collected into a set, the transformation embedding vector set:

{Fθ(Gω)| for all Gω ∈ DP (G)} (19)

Here, Fθ(Gω) can be expressed in formula form as:

Fθ(Gω) = ReadOut(σ(Sω(· · ·σ(SωXωW) · · ·)W)) = ReadOut(H(n)) (20)
Where, the dots (· · ·) indicate that the parentheses are nested n times, representing n iterations of
the message passaging and aggregation. n is the number of layers. H(n) is the n-th embedding
matrix.

ReadOut process is viewed as the linear combination of the embedding matrix H , i.e.
ReadOut(H(n)) = wH(n), where w is determined by the pre-trained model.

Specifically, we denote the process of obtaining the n-th order embedding matrix (i.e. final embed-
ding matrix) as:

Kθ(Gω) = H(n) = σ(Sω(· · ·σ(SωXωW) · · ·)W) (21)

A.2.1 ON THE RANGE OF GRAPH EMBEDDING MATRIX AFTER GRAPH PROMPTING, ONE
PROMPT NODE CASE

Lemma 1 (Transformation of Graph after Prompt).

Here we consider GPF and All-in-One methods. Without loss of generality, we assume that the
prompt subgraph in All-in-One has only one node.

For GPF, the prompt vector is added to each node of graph G, while the topological connections of
the graph remain unchanged. Therefore:

Sω = S, Xω = X + 1Np⊤ (22)
Where N is the number of nodes in the graph, p is the prompt vector, p ∈ RF , F represents the
dimension of the parameter vector, 1N is a vector ∈ RN with every component to be 1.

For All-in-One, the prompt subgraph is connected to graph G in a parameterized way, i.e. there exist
parameters that control the connection relationship between any two nodes in the prompt subgraph
and the original graph.(as defined in A.1.1). Therefore:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Sω =

(
S l
l⊤ SNN

)
, Xω = X + eNp⊤ (23)

Where l ∈ RN−1 is a column vector, li ≥ 0, ∀i ∈ {1, · · · , N − 1}, eN is a vector ∈ RN with N-th
component to be 1 and others to be 0. Kindly note that the number of graph nodes here is denoted
as N − 1 for consistency with GPF in form and X ∈ RN×F here is the natural extension of node

attribute matrix X0 ∈ RN−1×F by adding an additional zero vector 0F ∈ R1×F like
[
X0

0F

]
. In

summary, the transformation of Xω can be denoted as:

Xω = X + cp⊤, where ci ≥ 0 (24)

Where can be referred to as the coefficient vector.
Lemma 2 (Range of Embedding Matrix after Nonlinear Transformation).

Consider a weight matrix W ∈ RF×F , and let R(W) denote its row space. Suppose there exists
a matrix R such that each row of matrix R is taken from the space R(W). Let c be a vector with
ci ≥ 0, and let I be the set of indices where c takes strictly positive values. Let p be vector spans
R(W)(i.e. could take any value in R(W)).

Now, we consider R + cp⊤. For i ∈ I, the i-th row of R + cp⊤ is: R⊤
i + cip

⊤ where ci > 0,
Ri ∈ R(W), p spans R(W). Therefore, R⊤

i + cip
⊤ ∈ R(W), and spans R(W). For i /∈ I, c = 0,

the i-th row of R+ cp⊤ is simply R⊤
i .

Hence, R+cp⊤ can be written in the form of R′+(∆R+cp⊤), where p spans R(W), R′ represents
the matrix with the rows whose index i /∈ I, and all other rows set to zero. ∆R = R−R′.

Noted that every row of ∆R+cp⊤ with index i ∈ I, such row vector spans R(W), as shown above,
regardless of what the specific matrix ∆R is. Hence, the expressive power of graph prompting does
not fundamentally differ for different ∆R. We claim that from the perspective of embedding vectors
(i.e., if the same embedding vectors can be produced through Readout, we don’t distinguish the
specific form of the matrix), we can simplify ∆R into cp⊤

0 , where c is exactly the same c as the
c in the assumption in the lemma, p0 ∈ R(W) is a vector with the same size as c. More detailed
discussion refer to A.4. In this way, the calculation is greatly simplified.

Now, consider adding a nonlinear function σ(·) = Leaky-ReLU(·). We examine σ(R′+∆R+cp⊤):

Scenario 1: When W has full row rank, i.e., p⊤, σ(p⊤) spans RF . In this case, for each row, we
have:

For i ∈ I
σ(R′⊤

i +∆R+ cip
⊤) = σ(R′⊤

i + cip
⊤ + cip

⊤
0) = σ(ci(p

⊤ + p0
⊤))

since R′
i = 0. After the Leaky-ReLU transformation, σ(ci(p⊤ + p0

⊤)) can still span RF . Let’s
denote σ(p⊤ + p0

⊤) as p′⊤, i.e. σ(p⊤ + p0
⊤) = p′⊤

For i /∈ I,

σ(R′⊤
i + cip

⊤ + cip
⊤
0) = σ(R′⊤

i)

we use R̂′⊤
i to denote σ(R′⊤

i) .

In conclusion, σ(R′ +∆R + cp⊤) can be written as R̂′ + cp′⊤, where p, p′ spans RF . Note that
the property of p and p′ is the same and there is a natural bijection between them as pointed out
A.4. Without causing confusion in notation, we can use p to represent p′ here.

Scenario 2: When W is not full rank, p spans R(W) space. In this case, row-wise, similar to
Scenario 1:

σ(R′ + cp⊤) = R̂′ + cp′⊤ (25)
where the set of all possible values of p′ is Vα, defined as:

Vα = {Leaky-ReLU(v) | v ∈ R(W)} (26)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lemma 3 (Range of Embedding Matrix after Prompt, Single Layer Case).

Consider a single-layer GNN model Fθ. Kθ represents the embedding process for obtaining graph
embedding matrix H . Then, we have:

Kθ(Pω(G)) = σ(SωXωW)

= σ(Sω(X + cp⊤)W)

= σ(SωXW + Sωcp
⊤W)

= σ(R+ c′p′⊤)

Where R = SωXW , each row of R is a vector in the row space R(W). c′ = Sωc, c′i ≥ 0,
p⊤W = p′⊤. Here, p′ spans R(W) since p spans RN . (c′i ≥ 0 since each element of Sω is non-
negative, the sum of each column in Sω is strictly greater than 0 and the initial value of c is either
eN or 1N . Note that the number of positive terms increases in c.)

According to lemma 2, σ(R+ c′p′⊤) can be written as R̂′ + c′p⊤
† . Here R̂′ represents the element-

wise Leaky-ReLu of the rows of R with index i ∈ I and other rows take 0.p⊤
† represents p⊤

(p spans RN) if W is of full row rank; p⊤
† represents p′⊤ (p′ spans Vα) if W is non-full-rank,

Vα = {Leaky-ReLU(v) | v ∈ R(W)}.

Hence, in conclusion, we have: Kθ(Pω(G)) = R̂′ + c′p⊤
†

Lemma 4 (Range of Embedding Matrix after Prompt, Multiple Layer Full Rank Case).

Consider a multiple-layer GNN model Fθ. Then, we have:

Kθ(Gω) = σ(Sω(· · ·σ(SωXωW1) · · ·)Wn) (27)

According to lemma 3, we have:

σ(SωXωW1) = R̂′ + c′p⊤
† (28)

We are considering the full-rank case, i.e. W is a full-rank matrix, according to lemma 3, we should
take the equation for the full-rank case, which is:

σ(SωPωW1) = R̂′
1 + c1p

⊤ (29)

where p spans RN , [c1]i ≥ 0.

For this output, consider:

σ(Sω(R̂
′
1 + c1p

⊤)W2) = σ(SωR̂
′
1W2 + c2p

⊤) (30)

where c2 = Sωc1, [c2]i > 0. Compared with the equation in lemma 3, we find only R has been
replaced by SωR̂

′
1W2, and components remain unchanged, so this lemma can be used again. Hence,

we have:

σ(Sω(R̂
′
1 + c1p

⊤)W2) = σ(SωR̂
′
1W2 + c2p

⊤) = R̂′
2 + c2p

⊤ (31)

where p spans RN .

Iteratively, we complete the entire n aggregation processes of the GNN, and obtain:

Kθ(Pω(G)) = R̂′
n + cnp

⊤ (32)

where p spans the RN . (This formula can represent the expressiveness of prompt Pω in the full-rank
case)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Remark 1. We can interpret this result as follows: (1) R̂′
n is related to the embedding matrix of

the original graph G (2) cnp⊤ describes the additional range of the expression of GNN model after
adding prompt.

A.2.2 ON THE RANGE OF GRAPH EMBEDDING MATRIX AFTER GRAPH PROMPTING,
MULTIPLE PROMPT NODE CASE

Lemma 5 (Range of Embedding Matrix after multiple prompt, Single Layer Case).

We are considering single layer GNN Fθ here.

For the GPF or All in one Prompt Method, we can use the following uniform formula: we have k
independent prompt vectors pi ∈ RF (or equivalently k prompt nodes with pi as its node feature),

which form a k × F matrix P , where P =

p⊤
1
...

p⊤
k

. Denote by M the number of graphs in the

dataset Ω. There exists an M × k coefficient matrix Q, each row vector of this coefficient matrix,
denoted as Qi ∈ Rk, express how to linearly combine these k vectors to add them to ith graph, i.e.:

Gi,ω = (Aω, X + c ·Q⊤
i P)

According to lemma 3, the embedding matrix for the ith graph is:

Hi = Kθ(Gi,ω)

= σ(Si,ωXi,ωW)

= σ(Si,ω(Xi,ω + 1NQ⊤
i P)W)

= σ(R+ c1,iQ
⊤
i P)

= σ(R+ c1,ip
⊤
i)

= R̂′ + c1,ip
′⊤
i

Where p′
i spans RF . (Implicit assumption is W is full rank. we are discussing the upper limit of the

expressive power of graph prompting, so we should use the full-rank model with stronger expressive
power)

As discussed in lemma 2, we are considering from the perspective of embedding vectors. We claim
that we can write p′

i = (Q′
i)

⊤P ′, where Q′⊤
i denotes the ith row of Q′, Q′ is a linear combination

coefficient matrix, which is a mapping of Q. P ′ spans Rk×F , which is a mapping of P . More
detailed discussion is referred to A.4.

Without causing confusion in notation, we can directly use P , Q to denote P ′, Q′ here.

In summary, for a single-layer GNN with multiple prompts, the embedding matrix takes the form:

Hi = K(Gi,ω) = R̂′ + c1,ip
⊤
i

where for any i ∈ {1, . . . ,M}, pi = QiP , and R̂′ is defined consistently with Lemma 3.
Lemma 6 (Range of Embedding Matrix after Prompt, Multiple Layer Case).

We now consider a multiple-layer GNN model. For this model, we have:

Kθ(Gi,ω) = H
(n)
i = σ(Si,ω(· · ·σ(Si,ωXi,ωW) · · ·)W)

where, according to lemma 5,

σ(Si,ωXi,ωW) = σ(Si,ω(Xi + 1NQiP)W) = R̂′ + c1,ip
⊤

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

with p⊤ = QiP , and P is the collection of k prompts, spans Rk×F space.

This form is consistent with lemma 5, except R is replaced by R̂′ and c0 is replaced by c1,i. Apply-
ing this result again, we get:

σ(Si,ωσ(Si,ωXi,ωW1)W2) = σ(Si,ω(R̂
′ + c1,iQiP)W2)

= R̂′′ + c2,iQiP

Where P spans Rk×F .

Iterativly applying lemma 5 n times, we obtain:

Kθ(Gi,ω) = H
(n)
i = R̂(n) + cn,ip

⊤
i = R̂(n) + cn,iQ

⊤
i P

where P spans Rk×F , and Q spans RM×k.

In summary, for a multi-layer GNN with full-rank W matrices in each layer, and for a dataset Ω
with multiple graphs and use multiple prompts P , we have:

Kθ(Gi,ω) = R̂(n) + cn,ip
⊤
i = R̂(n) + cn,iQ

⊤
i P

where P spans Rk×F , Q spans RM×k, for any i ∈ {1, . . . ,M}.

A.2.3 ON THE RANGE OF GRAPH EMBEDDING MATRIX AFTER GRAPH PROMPTING, NOT
FULL-RANK CASE

Lemma 7 (Range of Embedding after Prompt, Multiple Layer Non-Full Rank Case).

We consider a multiple-layer GNN model Fθ with a potential non-full-rank weight matrix.
We have:

Kθ(Gω) = σ(Sω(· · ·σ(SωXωW) · · ·)W) (33)

According to lemma 3, we have:

σ(SωXωW) = R̂′ + c′p⊤
† (34)

Since we are considering the non-full rank case, according to lemma 3, we should consider the
non-full rank equation:

σ(SωPωW) = R̂′
1 + c1p

⊤ (35)

where p spans the set V 1
α as defined in lemma 3.

At this point, we can consider R̂′
1 equal to zero. Since, for GPF, c0 = 1N , and the monotonicity of

c implies that each component of the vector c is strictly greater than 0. For All-in-One, c = eN . We

have Sω = [s1, . . . , sN], where sN =

(
l

SNN

)
, c′ = sN . we assume l > 0 component-wise(This

can be achieved by adjusting parameters in All in one), then c′ is component-wise > 0.

Recall that R′
1 only preserves rows where the corresponding component of c = 0. Hence, R̂′

1 can
be considered to be zero.

For this output, we consider:

σ(Sω(R̂
′
1 + c1p

⊤)W) = σ(Sω(c1p
⊤)W) = σ(c2p

′⊤) = c2p
′′⊤ (36)

Here, p′⊤ = p⊤W . This demonstrates that: (1). p′ spans V 1
αW (2). p′ ∈ R(W). Hence, the set

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

of the range of p′ is only a linear transformation to V 1
α , i.e. V 1

αW . The set of the range of p′′ is
operating Leaky-ReLU to the set V 1

αW , i.e. σ(V 1
αW), denoted by V 2

α .

Iteratively, We have:

Fθ(Gω) = cnp
(n)⊤ (37)

where p(n) spans V n
α . Specifically, according to lemma 12, V n

α is a cone surface, i.e., for any
v ∈ V n

α and λ ∈ R+, λv ∈ V n
α .

Remark 2. Choosing R̂′
1 to be zero is to simplify the calculation without affecting the theorem.

Based on the principle that the minimum of the whole is less than or equal to the minimum of a part,
under this assumption, we have obtained that the upper bound of the error for the prompt satisfy our
assumption is certainly the upper bound for the optimal prompt.

Lemma 8 (Embedding Matrix Property, Multiple Layer GNN Non-Full Rank Case).

We consider the GNN model Fθ be multi-layered and could have not a full-rank weight matrix.
Then, the embedding matrix of graph G, according to the iterative formula of GNN, is:

Kθ(Gω) = σ(S(· · ·σ(S ·X ·W) · · ·)W) (38)

Let S ·X be denoted as X ′. Then X ′W is an N×F embedding matrix where each row is in the row
space of W . According to the properties of Leaky-ReLU and the definition of V 1

α , σ(X ′W) = Y ′

where each row vector is in the set V 1
α .

Then SY ′ = H ′, where each row of H ′ is a positive linear combination of rows in Y ′. Hence, each
row of H ′ should also be in the convex hull of cone surface V 1

α . We name such a convex hull to be
C1

α , and further, C1
α is a convex cone. Based on lemma12, iteratively, we have each row of H(i)

should also be in the convex hull Ci
α of cone surface V i

α.

We conclude the following: For any graph G, each row vector of the embedding matrix H(n),
obtained after applying the GNN model Fθ to G, lies within a specific convex cone, whose surface
is exactly V n

α mentioned in lemma 7

Remark 3. Lemma 8 characterizes the properties of each row vector in the embedding matrix after
it has been processed by a non-full rank GNN model.

A.3 PROOF OF THEOREM IN THE PAPER

A.3.1 BRIDGE GRAPH EXISTENCE THEOREM

Proof of Theorem 1

Proof. For a given Gori and a downstream task Tdow, the embedding vector corresponding to the
downstream task is formally defined as the embedding vector produced by the optimal downstream
model for Tdow, which is thus uniquely determined.

Given our previous definition for the default case A.2, the Fθ discussed here is a surjective mapping
from the graph space {G} to RF . According to the properties of surjective mappings, for this
particular C(Gori) ∈ RF , there must exist a special graph Ĝbri such that:

Fθ(Ĝbri) = C(Gori) (39)

Upon examining the definition of Gbri, we find that Ĝbri = Gbri. Theorem 1 is thereby proved.

A.3.2 ON ERROR-FREE MAPPING TO BRIDGE SET

Proof of Theorem 3 and 4

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. We aim to prove that there exists an optimal parameter ω0 such that the transformed graph
obtained through the graph prompting method Pω0

(G) ∈ BG. This is equivalent to proving that
there exists ω0 such that Fθ(Pω0

(Gori)) = Fθ(Gbri) = C(Gori), where the existence of Gbri is
guaranteed by Theorem 1.

Consider a multi-layer GNN model Fθ where each layer has full-rank matrices and non-linear func-
tion σ(·). According to lemma 4, regardless GPF or All-in-One prompt method, we have:

Kθ(Pω(Gori)) = H(n) = R(n) + cp⊤

Where ci ≥ 0, ∥c∥ > 0, p spans RF , Kθ(·) denote the process of obtaining the embedding matrix,
R(n) a matrix ∈ RN×F , which is related to the embedding matrix of the original graph G without
prompting, ω denotes the parameter of the Prompt method.

Then, Fθ(Pω(Gori)) = Readout(H(n)). Considering the readout function as linearly combines the
embedding vectors of nodes 1 to n with certain weights: w = [w1, . . . , wn], where wi > 0, as
defined in A.2, we have:

Fθ(Pω(Gori)) =
∑
i

wiH
(n)
i

Then:
Fθ(Pω(Gori)) = wR(n) +w⊤cp⊤ = R⊤

0 + λp⊤

where R⊤
0 = wR(n), λ = w⊤c (λ > 0), since p spans RF , we know that Fθ(Pω(Gori)) =

R⊤
0 + λp⊤ is a surjective mapping from the range of ω to RF . Meanwhile, Fθ(Gbri) is a fixed

vector in RF .

By the surjective property, there must exist an ω0 such that:

Fθ(Pω0
(Gori)) = Fθ(Gbridge) = C(G)

This completes the proof.

A.3.3 ON ERROR UPPER BOUND ANALYSIS OF MAPPING TO BRIDGE SET AT SINGLE
GRAPH LEVEL

Proof of Theorems 5

Proof. (Prompt Error Upper Bound on Single Graph With GCN model with layers containing non-
linear functions and possibly non-full rank matrices)

Consider the optimal ω0 such that the transformed graph Pω0
(G) ∈ ϵ-BG, where the “error” ϵ takes

the minimum possible value: ϵ0.
We aim to prove Theorems 5 by showing that for any graph G there exists an δ0 such that:

∥Fθ(Pω0
(Gori))− Fθ(Gbri)∥
∥Fθ(Gbri)∥

< δ0

According to lemma 7 and 8, for both GPF and All-in-One prompts, there exists a convex cone C
such that:

Kθ(Gω) = H(n) = cp⊤

where p is on the surface of such convex cone, i.e., ∂C, and Fθ(Gbri) is a vector inside the convex
cone C.

Using the same readout method as in A.3.2, we have:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Fθ(Pω(Gori)) =
∑
i

wiH
(n)
i = w⊤cp⊤ = λp⊤

where p spans surface of the convex cone (∂C). Based on the properties of the cone surface, λp is
on the cone surface for any λ > 0, so we have Fθ(Pω(Gori)) spans the cone surface ∂C.

Consider ∥Fθ(Gbri)−Fθ(Pω(Gori))∥. The minimum value of this distance, according to definition
3, is the distance from an element in the convex cone to the cone surface, which is sin(θ)∥v∥, where
θ represents the angle of v to the surface.

This proves that ∥Fθ(Pω(Gori))−Fθ(Gbridge)∥
∥Fθ(Gbridge)∥ has a upper bound, sin(θ), where θ is related to both v

and C.

According to definition 4, we know that θ ≤ Φ/2, where Φ represents the aperture of the cone C.

In summary:

∥Fθ(Pω(Gori))− C(Gori)∥ = ∥Fθ(Pω(Gori))− Fθ(Gbri)∥ (40)
≤ sin(Φ/2) · ∥Fθ(Gbri)∥ (41)
= sin(Φ/2) · ∥C(Gori)∥ (42)

The left part of the error upper bound (sin(Φ/2)) is only related to the model, while the right part
is only related to the data (Gori). This indicates that the error upper bound grows linearly with
∥C(Gori)∥ by a coefficient, i.e. sin(Φ/2).

Since the features magnitude and number of node of the graph data in the dataset have upper bounds,
∥C(Gori)∥ also has an upper bound C.Hence, for the dataset, there is a uniform upper bound, which
demonstrates that the model is effective and can utilize the powerful pre-trained model within a
certain error range.

A.3.4 ERROR BOUND ANALYSIS OF MAPPING TO BRIDGE SET AT MULTIPLE GRAPH LEVEL

Proof of Theorems 6

Proof. We prove this theorem by considering the sum of squared of ϵ, where ϵ denotes the degree
of the bridge set extension. For simplicity, we will refer to it as the “error”.
Consider a dataset with M graphs. We use either a single prompt vector GPF or a single node-
prompted subgraph All-in-one approach. According to lemma 4, for each graph, we have the fol-
lowing formula:

Kθ(Gi, ω) = H
(n)
i = R

(n)
i + cip

⊤ (43)

where ci have the subscript i to indicate that different graphs produce different c, p spans RF .
Note that p does not have a subscript i because single Prompt Vector is used for all graphs, despite
different graphs having different diffusion matrices S and feature matrices X .

After performing the ReadOut operation, we get:

Fθ(Gi) = w⊤H
(n)
i = w⊤R

(n)
i +w⊤cip

⊤ = R⊤
0 + λip

⊤ (44)

Where λi = w⊤ci. We can assume R⊤
0 is a zero matrix without loss of generality as discussed in

lemma 7.

Now, consider the sum of squared “errors”:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

M∑
i=1

∥C(Gi)− λip∥2 =

M∑
i=1

λ2
i ∥(1/λi)C(Gi)− p∥2 (45)

=

M∑
i=1

λ2
i ∥Cλi(Gi)− p∥2 (46)

The optimal ω0 corresponds to correspond to minimizing the following loss value.

J =

M∑
i=1

λ2
i ∥Cλi(Gi)− p∥2 (47)

Which is the weighted sum of squared distances from p to M different points in the space, denoted
as: D((Cλ1

(G1), . . . , Cλn
(Gn)), (λ1, . . . , λn))

The optimal p is the weighted centroid of these n vectors (Cλi(Gi))
M
i=1, as pointed out at Boyd &

Vandenberghe (2004), i.e.:

p∗ =

∑M
i=1 λiC(Gi)∑M

i=1 λ
2
i

(48)

The closed-form expression for Jmin is:

Jmin =

M∑
i=1

∥C(Gi)− λip
∗∥2 (49)

Therefore, the minimum root mean squared of ϵ value(“RMSE”) I(G1, . . . , Gn) satisfies

I(G1, . . . , GM) = min
ω

(

√√√√ M∑
i=1

λ2
i ∥Cλi

(Gi)− p∥2/M) =

√√√√ M∑
i=1

∥C(Gi)− λip∗∥2/M (50)

=

√
Jmin

M
(51)

Here, I(G1, . . . , GM) is a lower bound that is independent of the value of ω, but is related to the
distances between C(Gi). This proves that the capability of a single prompt has an upper limit in
this case, which proves Theorem 6.

Proof of Theorem 7

Proof. We validate this theorem by minimizing the sum of squared of ϵ, where ϵ denotes the degree
of the bridge set extension. For simplicity, we will refer to it as the “error”.
Consider a dataset with M graphs. We use k prompt vectors for GPF or k node-prompted subgraphs.
According to lemma 6, for each graph, we have:

H
(n)
i = Kθ(Gi, ω) = R

(n)
i + ciQ

⊤
i P (52)

where P spans Rk×F , Q represents the combination coefficients of different Prompts, and spans
RM×k. As discussed in Proof for Theorem 6, we can assume R

(n)
i is a zero matrix for simplicity.

After the ReadOut operation:

Fθ(Gi) = w⊤H
(n)
i = w⊤ciQ

⊤
i P = λiQ

⊤
i P (53)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Since Qi spans Rk, λiQi = Q′
i also spans Rk (λi > 0). Thus, Fθ(Gi) spans the row space R(P),

which is (at most) a k-dimensional vector space determined by k independent prompt vectors.
Consider:

M∑
i=1

∥C⊤(Gi)−Q′⊤
i P∥2 =

M∑
i=1

∥C(Gi)− p′
i∥2 (54)

where p′
i spans the row space of P . Equation 54 is the sum of squared distances from n vectors to

the vector space P . We want to minimize:

J =

M∑
i=1

∥C(Gi)− p′
i∥2 (55)

Let S = [C(G1), . . . , C(GM] and V = S⊤S. According to lemma 11, the minimum value of J is
the sum of the (k + 1)-th to M -th largest eigenvalues of V :

Jmin =

M∑
i=k+1

λV
i (56)

Where λV
i denotes the ith largest eigenvalue of symmetric matrix V . Therefore, there exists an

optimal ω0 such that the mean squared epsilon(error) is:

L(G1, · · · , GM) =

√∑M
i=k+1 λ

V
i

M
(57)

This indicates that in the multiple prompt framework, the optimal mean squared ϵ has an upper
bound L(G1, · · · , GM), which proves Theorem 7.

Notably, if k ≥ n, we can find a suitable P such that Fθ(Gi) and C(Gi) are error-free for any
i ∈ {1, · · · ,M}. This can be seen as an extension of Theorems 3 and 4.

Remark 4. As Johnstone (2001) pointed out, the eigenvalues of V = C⊤C in datasets often exhibit
a truncated eigenvalue distribution. The first k0 eigenvalues explain most of the variance. Further-
more, Jolliffe & Cadima (2016) shows that in many datasets, eigenvalues may exhibit exponential
decay. Hence, the sum of remaining eigenvalues decreases rapidly as k increases. This could explain
why moderate-scale prompts are sufficient to achieve good results on large graph datasets.

A.3.5 ERROR DISTRIBUTION ANALYSIS OF MAPPING TO BRIDGE SET

Proof of Theorem 8

Proof. Consider a GNN model Fθ where the W matrix in the last layer is not full rank. Denote by
F − r the rank of the W weight matrix in the last layer. Consider a GPF prompt or a single node
prompt in an All-in-one framework.

According to lemma 4, we have:

H(n−1) = R(n−1) + cp⊤ (58)

where H(n−1) is the (n− 1)th order embedding matrix, p spans RF . As discussed in lemma 7, for
simplicity, we can assume R(n−1) = 0. Then:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Kθ(Gω) = Hn(Gω) = σ(Sω(R
(n−1) + cp⊤)W)

= σ(Sωcp
⊤W)

= σ(c′p′⊤)

(59)

where p′ spans the row space R(W).

Consider Kθ(Gbri) = H(n)(Gbri) =

v⊤
1
...

v⊤
n

, where vi ∈ RF .

Then, ∆Fθ(Gori) = Fθ(Gω) − C(Gori) = w⊤H(n)(Gω) −w⊤H(n)(Gbri) = w⊤(H(n)(Gω) −
H(n)(Gbri)) = w⊤∆H .

Here, ∆Hij = σ(cip
′
j)− vij = σ(cip

′
j − σ−1(vij)).

Therefore, [∆Fθ(G)]j =
∑

i wiσ(cip
′
j − σ−1(vij)). This is a piecewise linear function of p′j ,

denoted as g(p) = α(p)p− β(p) for simplicity, where α and β are the coefficients of this piecewise
linear function when x takes the value p.

When ω (the graph prompt coefficient) is optimal, due to the independence of pj , all [∆Fθ(G)]j

should take the minimum absolute value. That is, p∗ minimizes |g(p∗j)|, for any j ∈ {1, · · · , F}.

At this point, ∥∆Fθ(G)∥ =
√∑F

j=1 g(p
∗
j)

2, where g(p∗j) =
∑N

i=1 wiσ(cip
∗
j−σ−1(vij)) = αjp

∗
j−

βj .

Let p′∗ =

α1 · · · 0
...

. . .
...

0 · · · αF

 p∗ and β = [β1, . . . , βF]
⊤.

Then p′∗ ∈ R(W), so ∥∆Fθ(G)∥ = ∥p′∗ − β∥. This value represents the distance between β and
p′∗. Since p′∗ already minimizes ∥Ap′ − β∥ and Ap′ ∈ R(AW), ∀p′ ∈ R(W), where A denotes
diag(α1, · · · , αF),we can estimate ∥p∗′ − β∥ using the distance from β to the space R(AW).

Consider the projection matrix P onto the space R(AW). Then ∥∆Fθ(G)∥ = ∥(I − P)β∥.

We make the following assumption: when pj = p∗j , βj follows an i.i.d. normal distribution.

βj =
N∑
i=1

−(α)kwivij , where k =

{
0 if σ(cip′j − σ−1(vij)) > 0

−1 otherwise
(60)

Where α is the is the parameter of the Leaky-ReLU. According to the Central Limit Theorem and
the independence of different components in β, it is reasonable to assume that β follows an n-
dimensional i.i.d. normal distribution with mean 0 and variance c for some positive constant c as
discussed in A.3.5.

Since P is an (F − r)-dimensional projection matrix, according to lemma 13,we know that ∥(I −
P)β∥ follows a Chi distribution with r degrees of freedom and scalar c, i.e. cχr.

Remark 5. Here, our equation 58 implicitly assumes that the first N − 1 layers of GNN are of full
rank. However, even if the rank of the first N−1 layers of GNN could be non-full-rank, we still have
p′ ∈ R(W), according to lemma 3. Therefore, we can still use this theorem for approximation.

Normal Distribution Assumption

We assume that the vector β, which we call the graph embedding residual vector, follows an F -
dimensional i.i.d. normal distribution with mean 0 and variance c:

β ∼ N (0, cIF) (61)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

where IF is the F × F identity matrix.

Intuitively, this graph embedding residual vector β represents the additional term that the graph
needs to fit due to non-full-rank and non-linear components. Formally, its components are defined
as:

[β]j =

N∑
i=1

−(α)kwivij , where k =

{
0 if σ(cip′j − σ−1(vij)) > 0

−1 otherwise
(62)

The reasons behind this assumption are as follows: (1). Symmetry (2). The sum of random variables
and Central Limit Theorem: Each βj is a sum of multiple terms, each of which can be considered a
random variable. The Central Limit Theorem suggests that its distribution should approach a normal
distribution. (3). Continuous and smooth distribution (4). Independence: The components of β are
assumed to be independent due to the independence of the input features and the structure of the
GNN.

Therefore, it is reasonable to assume that β follows an F -dimensional i.i.d. normal distribution with
mean 0 and variance c for some positive constant c.

A.3.6 ANALYSIS OF NONLINEAR GRAPH NEURAL NETWORKS

Proof of Theorem 9

Proof. According to Preliminary A.1.1, we choose the simplest form of GAT here, with only a self-
attention mechanism. We consider the diffusion matrix S as a weighted adjacency matrix, where
each entry Sij represents the coefficient of the edge between node i and node j. Such coefficient
is a non-negative scalar, which can be understood as the weight of the edge connecting node i and
node j, S ∈ [0, 1]N×N . Here, single-node All-in-one connection matrices Ain ∈ [0, 1]1×1 and

Acro ∈ [0, 1]N×1 respectively. Then, we have such an iterative formula:

H = σ((Sω ⊙ ⟨Xω, Xω⟩) ·Xω ·W)

where ⊙ denotes the Hadamard product, representing element-wise multiplication of two matrices,
⟨·, ·⟩ represents the inner product of 2 matrices. In this case, we have:

Xω =

(
X
p⊤

)

⟨Xω, Xω⟩ =
(
X⊤X Xp
p⊤X⊤ p⊤p

)

Sω =

(
S l
l⊤ 0

)
Where l denotes the cross adjacency matrix Acro ∈ [0, 1]N . We set Ain to 0, hence, SNN is 0. p is
the prompted vector or node feature. Then, we have:

Sω ⊙ ⟨Xω, Xω⟩W =

(
S ⊙ ⟨X,X⟩ l ⊙ (X · p)
lT ⊙ (X · p)T 0

)
·
(
X
p⊤

)
·W (63)

=

(
S ⊙ ⟨X,X⟩ X · (l ⊙ p)
lT ⊙ (X · p)T 0

)
·
(
X
p⊤

)
·W (64)

For simplification, we consider only updating the embedding of rows of original nodes in the em-
bedding matrix. Then we can obtain:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

H[1 : N,] = [

(
S ⊙ ⟨X,X⟩ X · (l ⊙ p)
lT ⊙ (X · p)T (p⊤p)

)
·
(
X
p⊤

)
·W][1 : N,] (65)

= σ((S ⊙ ⟨X,X⟩ X(l ⊙ p)) ·
(
X
p⊤

)
·W) (66)

H[N + 1] = p⊤ (67)

Here, we can choose li =
ci
pi

. Then, we have:

H[1 : N,] = σ((S ⊙ ⟨X,X⟩ c) ·
(
X
p⊤

)
·W) (68)

= σ(S′XW + c′p⊤W) (69)

= R+ cp⊤ (70)

H[N + 1,] = p⊤ (71)

H = R′ + cp⊤ (72)
(73)

where c is chosen independent of p, c′ =
(
c
1

)
. This translates to the iterative formula we have

discussed earlier in 2. By analogy with the proofs of Theorems 3, 4, and 5, we can obtain similar
Theorem 9.

A.4 FURTHER MATHEMATICAL DISCUSSION

Discussion on p: In lemma 2, we rely on the claim that assumes ∆R = cp⊤
0 won’t lose the

generality. This assumption is mainly for simplification, allowing us to obtain σ(∆R + cp⊤) =
cp′⊤, p,p′ spans RF .

The core purpose of this assumption is that when ∆R = cp⊤, the τij below is invariant to i.

[σ(R+ cp⊤)]ij =

{
[R+ cp⊤]ij when pj ≥ τij
α[R+ cp⊤]ij when pj < τij

Use τij is independent of i, we can immediately establish a one-to-one mapping between p′ and

p, (i.e., p′j =

{
pj − τj when pj ≥ τj
(pj − τj)/α when pj < τj

), thereby successfully establishing an equivalence

between changes in p at the input end and the p′ at the output end. This is what lemma 2 is doing.
Noted that ∆R = cp⊤

0 don’t hold in general.

Now let us prove that the specific form of R does not affect the results based on ReadOut. This is
equivalent to proving the following lemma:
Lemma 9 (Equivalence of R under ReadOut). Considering a vector p spans RF , then (1)
ReadOut(σ(R+ cp⊤)) spans RF . (2) Given pi is independent of each other, then [ReadOut(σ(R+
cp⊤))]i is independent of each other.

Consider the ReadOut of the Output Matrix σ(R+ cp⊤
0), i.e. ReadOut(σ(R+ cp⊤)). Then the jth

compoenet of such a RF vector is:

N∑
i=1

wi[σ(R+ cp⊤)]ij =

N∑
i=1

[wi(Rij(pj) + cij(pj)pj)]

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

where Rij(p) =

{
Rij when p ≥ −Rij/ci
αRij otherwise

, cij likewise.

Here, subscript i indicates summing by row. Then, considering each column j, we have F indepen-
dent functions of pj :

p′j(pj) =

N∑
i=1

wi(Rij(pj) + cij(pj)pj) = R′
j(pj) + C ′

j(pj)pj

Where p′j(·) is a piece-wise linear function of pj and C ′
i and R′

i are corresponding piecewise linear
coefficients of pj . such a piecewise linear function takes values in (−∞,+∞). Considering the
independence of F columns, it follows that (1) ReadOut(σ(R+cp⊤)) spans RF (2) each component
of [ReadOut(σ(R + cp⊤))] is independent of each other. Which is what we need for the proofs of
Theorems 3 and 4.

Discussion on Q and P : As lemma 7 pointed out, we may use the same notations Q and P in
the preceding and following layers, but they have different meanings. We write it to simplify the
expressions. To verify it is valid under ReadOut perspective, as A.4 pointed out, the following
lemma is required:

Lemma 10. (Equivalence of P and Q under ReadOut) Consider a matrix P ∈ Rk×F , a matrix
Q ∈ RM×k, p⊤

i = Q⊤
i P then ReadOut(σ(cp⊤

i)) spans RF .

According to lemma 9, we have:

[C(pi)]j = [ReadOut(σ(cpi
⊤))]j =

N∑
i=1

wiciσ([pi]j) = λσ([pi]j)

Where pi = QiP , wi is the coefficient of ReadOut process, C(pi) denotes the embedding vector

after ReadOut, λ denotes
∑N

i=1 wici.

Hence, every component (with subscript j) of the embedding vector C(·) is a piece-wise linear
function of [pi]j . Specifically, this function is:

p′(pj) =

{
λpj if pj ≥ 0

αλpj otherwise

where α is the coefficient of the leaky ReLU. range of such a function is (−∞,+∞). Since F
components of C(pi) is independent, ReadOut(σ(cp⊤

i)) = C(pi) spans RF .

Specific form of the bijective mapping of P and Q

Then, for each i ∈ {1, · · · ,M}, we have a Embedding Vector C(pi). Considering putting such

Embedding Vectors into a matrix, i.e., C̃ =

 C(p1)
...

C(pM)

. Then:

C̃ = diag(λ1, . . . , λn)

σ(p⊤
1)

...
σ(p⊤

M)

 (74)

= diag(λ1, . . . , λn)

 αI11 [p1]1 · · ·αI1F [p1]F
...

αIM1 [pM]1 · · ·αIMF [pM]F

 (75)

(76)

Here, we claim that we can take Iij = Ij by 6, i.e. for any i ∈ {1, · · · ,M}, Iij = Ij .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Then we have:

C̃ = diag(λ1, . . . , λn)

 [p1]1 · · · [p1]F
...

[pM]1 · · · [pM]F

 diag(αI1 , · · · , αIF) (77)

= diag(λ1, . . . , λn) ·

 p1
⊤

...
pM

⊤

 · diag(αI1 , · · · , αIF) (78)

= diag(λ1, . . . , λn) ·QP · diag(αI1 , · · · , αIF) (79)

= Q′P ′ (80)

Where P ′ and Q′ give out the specific form of the bijective mapping between P and Q in lemma 5.
Remark 6. We demonstrate that the claim in Explanation A.4 does not affect the results in Theorems
6 and 7.

Theorem 6 is about the case of a single prompt, making the claim trivially true.

For Theorem 7, we are seeking an upper bound for the optimal case. Among all prompt parameters
satisfying the claim, if we can obtain the result in 7. Then, based on the principle that the global
minimum is less than or equal to any partial minimum, the error in the optimal prompt would only
be smaller, making such upper bound smaller.

In conclusion, our assumption is valid.
Lemma 11 (Minimum Sum of Squared Distances from M Vectors to a k-dimensional Subspace).

Suppose we have M vectors in RF and a k-dimensional subspace of RF . We consider the minimum
sum of squared distances from these M vectors to the k-dimensional subspace. This is equivalent to
minimizing the following objective:

J = ∥X −XWWT ∥2F = Tr((X −XWWT)T (X −XWWT))

Where W is a k × F matrix. According to Hotelling (1933), let: XTX = V ΛV T where V is the
matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues. The optimal W is then the first
k columns of V : W = V [:, : k]. Substituting this into the objective function:

J = Tr(V ΛV T − V ΛV TV V [:, : k]V [:, : k]T

− V V [:, : k]V [:, : k]TΛV T + V V [:, : k]V [:, : k]TΛV TV [:, : k]V [:, : k]T)

Simplifying, we get:
J = Tr(Λ− Λ[: k, : k]− Λ[: k, : k] + Λ[: k, : k])

= Tr(Λ)− Tr(Λ[: k, : k])

=

M∑
i=k+1

λi

Therefore, the minimum sum of squared distances from M vectors to a k-dimensional subspace is∑M
i=k+1 λi, where λi is the i-th eigenvalue of XTX .

Remark 7. This result is essentially the property of dimensionality reduction of M vectors to k-
dimensional.
Definition 3 (Minimum Projection Distance to Cone Surface).

Given a cone C ⊆ Rn with surface ∂C, and any vector v ∈ C, we define L(v, ∂C) as the minimum
distance (projection distance) from v to the surface of C. Formally:

L(v, ∂C) = min
x∈∂C

∥v − x∥ (81)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Definition 4 (The angle to boundary and the aperture of the cone).

For any interior point x of a convex cone C, we define:

(i) The minimum distance from x to the boundary of C:

d(x, ∂C) = min{∥x− y∥ | y ∈ ∂C} = d(x, projC(x)),

where projC(x) is the projection of x onto C.

(ii) The cosine of the angle θ between x and the boundary of C:

cos θx,C =
⟨x, projC(x)⟩
∥x∥∥projC(x)∥

.

(iii) The relationship between the distance and the angle θ:

d(x, ∂C) = ∥x∥ sin θx,C .

(iv) The aperture Φ of the cone

sin(Φ) = max
v,u∈C

(|< v, u >

∥v∥ · ∥u∥
|)

Moreover, for any interior point x, we have θx,C ≤ Φ/2. This formulation is based on the Distance-
Support Theorem by Rockafellar (1970).

Lemma 12 (Relationship between Range of Prompted and Embedding matrix).

As mentioned in lemma 3, V 1
α = Vα = {σ(v) | v ∈ R(W)}. In lemma 8, under the al-

ternating action of the non-linear function Leaky-ReLU and linear transformation W , we have
V i
α = σ(V i−1

α W).

First prove V i
α is a cone surface. For V 1

α , given λ > 0 and v ∈ R(W), we have σ(λv) = λσ(v).
Thus, if σ(v) ∈ V 1

α , then ∀λ > 0, λσ(v) ∈ V 1
α . Furthermore, consider v ∈ V i−1

α , ∀λ > 0,
σ((λv)W) = λσ(vW). It follows that, ∀v ∈ V i

α,∀λ > 0, λv ∈ V i
α, hence, V i

α is a cone surface.
Iteratively, we obtain that V i

α is a cone surface for i ∈ {1, . . . , n}.

Next, consider Ci
α as the convex hull of V i

α. Specifically, since V i
α is a cone surface, Ci

α is a
convex cone. By linearity of multiple a matrix, Ci

αW remains a convex cone. After applying σ(·),
this convex hull transforms into another convex cone or cone surface, namely, σ(Ci

αW), and the
corresponding V i+1

α is the surface of Ci+1
α . σ(Ci

α) is then the convex hull of σ(Ci
αW).

After n iterations of the aggregation, we can conclude that: V i
α is a cone surface, Ci

α is a convex
cone, and V i

α is the surface of Ci
α.

Remark 8. Here we assume that the process of obtaining the convex hull Ci+1
α from σ(Ci

αW) keeps
the V i+1

α to be the surface of Ci+1
α . This always holds true unless the nonlinear transformation σ(·)

turns the convex cone V i
αW non-convex, which is unlikely when piece-wise linear function Leaky-

ReLU is used as the nonlinear function as discussed in Ben-Tal & Nemirovski (2001).

Lemma 13 (Distribution of the Norm of an n-Dimensional i.i.d. Normal Vector After Multiplying
Projection Matrix).

Let P be a projection matrix onto a linear subspace V . Then I − P is a projection matrix onto the
orthogonal complement of V . Assume ς is an n-dimensional random vector following a normal dis-
tribution with mean 0 and covariance matrix cIF , where c is a positive constant. i.e., ς ∼ N (0, cIF

Let ζ = (I − P) · ς , according to the linear property of Gaussian Random vector, we have ζ ∼
N(µ′,Σ′), where:

µ′ = (I − P) · µ
= 0

Σ′ = (I − P)T · Σ · (I − P)

= c(I − P)2 = c(I − P)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Denote by r the rank of matrix I − P .

Apply decorrelation to ζ, we have ι = UT · ζ, ι ∼ N (⃗0,Σ′′), where Σ′′ =

(
c2 · Ir O
O OF−r×F−r

)
,

U is a orthogonal matrix. Hence,

∥(I − P)ς∥ = ∥ι∥ =

√√√√ r∑
i=1

ι2i

Since
∑r

i=1 ι
2
i ∼ χ2(r), we have: ∥ζ∥ =

√∑r
i=1 ι

2
i ∼ χ(r)

It follows that the norm of an n-dimensional i.i.d. normal vector after multiplying projection matrix:
∥(I − P)ς∥ obey Chi-Distribution with r degrees of freedom.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

B SUPPLEMENTARY EXPERIMENTS

We conducted supplementary experiments on real-world datasets to validate our results. We per-
formed similar experiments as in the main text using entirely different datasets, namely NCI1 and
DD Morris et al. (2020). The NCI1 dataset has 37-dimensional node features, 4,110 subgraphs, an
average of 29.87 nodes per subgraph, and an average of 64.60 edges per subgraph. The DD dataset
has 89-dimensional node features, 1,178 subgraphs, an average of 284.32 nodes per subgraph, and
an average of 1,431.32 edges per subgraph. Our results are shown in the following figures.

1 2 5 10 2 5 100 2 5 1000 2 5
2

5

100μ
2

5

0.001
2

5

0.01
2

5

0.1
2

5

1
2

5

10
2

Prompt method: GPF
Period 1 Fit line of GPF: -0.4·x
Period 2 Fit line of GPF: -13.4·x
Prompt method: All In One
Period 1 Fit line of All In One: -0.5·x
Period 2 Fit line of All In One: -13.6·x

Epochs

E
m

pi
ri

ca
l M

in
 E

rr
or

(a) NCI1

1 2 5 10 2 5 100 2 5 1000 2 5
100μ

2

5

0.001
2

5

0.01
2

5

0.1
2

5

1
2

5

10
2

5

100

Prompt method: GPF
Period 1 Fit line of GPF: -0.5·x
Period 2 Fit line of GPF: -8.4·x
Prompt method: All In One
Period 1 Fit line of All In One: -0.3·x
Period 2 Fit line of All In One: -9.0·x

Epochs

E
m

pi
ri

ca
l M

in
 E

rr
or

(b) DD
Figure 6: convergence analysis

Exp1 we examined the loss curves during training for GPF and All-in-one prompting methods with
full-rank matrices. Similar to observations from synthetic datasets, the prompt method shows a
period of steady decline followed by a rapid decrease to a small magnitude, then slowly converging
to zero. This aligns with our theoretical results.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
GPF
Fit GPF: 0.338·x^0.5
All In One
Fit All In One: 0.195·x^0.5

Rank Lost

E
m

pi
ri

ca
l M

ax
 E

rr
or

(a) NCI1

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2 GPF
Fit GPF: 0.522·x^0.5
All In One
Fit All In One: 0.282·x^0.5

Rank Lost

E
m

pi
ri

ca
l M

ax
 E

rr
or

(b) DD
Figure 7: Empirical Max Error v.s. Rank Lost

Exp 2 we investigated the relationship between empirical maximum error and rank loss for non-
full-rank matrices. The results here are similar to those in the main text, with loss (empirical maxi-
mum error) increasing as rank loss increases. Where rank loss is r means the rank of weight matrix
W in GNN is n− r.

2 4 6 8 10

0

5

10

15

20

Prompt method: GPF
Prompt method: All In One

Graph Number

E
m

pi
ri

ca
l M

in
 E

rr
or

(a) NCI1

2 4 6 8 10

0

5

10

15

20

25

30

35

Prompt method: GPF
Prompt method: All In One

Graph Number

E
m

pi
ri

ca
l M

in
 E

rr
or

(b) DD
Figure 8: Empirical Min Error v.s. Graph Number

Exp 3 We examined how the RMSE of GPF or single-node All-in-one Prompt methods change as
the number of graphs increases in multiple graph mapping scenarios. We observed that in real-
world datasets, RMSE also increases rapidly as the number of graphs increases, which aligns with
our observation in the main experiment.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

C EXPERIMENT DETAILS

Data Preparation: We first confirm our theoretical findings on synthetic datasets because these
datasets offer controlled environments, allowing us to isolate specific variables and study their im-
pacts. We generate these datasets by defining the dimension of graph feature vector(F), average of
graph node numbers (Navg), average of graph edge numbers (Eavg), and number of graphs in the
dataset (M). These parameters characterize both individual graphs and the entire dataset, facilitating
our study of the relationship between these features and ϵ. In detail, the distribution of graph node
feature vectors is set to a normal distribution N (0, 1); the graph edge density ρ is set to 0.15, where
ρ represents the probability of an edge existing between any two nodes.

Model Settings: To evaluate our approach, we conduct experiments using two representative Graph
Neural Network (GNN) architectures: Graph Convolutional Networks (GCN) as linear propagation
models and Graph Attention Networks (GAT) as non-linear propagation models. We focus on these
two architectures because other models tend to exhibit similar behavior patterns. Unless stated
otherwise, our default configuration employs a three-layer GNN with a feature dimension of F = 25
and utilizes the Leaky-ReLU activation function. For experiments involving full-rank matrices,
we ensure that each layer’s weight matrix is full rank, selected after an initial pre-training phase.
Conversely, for studies with non-full-rank matrices, we set the rank loss parameter to a default value
of 5. We adopt mean pooling as the default readout method throughout our experiments.

Task Settings: Our loss function is defined as ∥Fθ∗(Gp) − C(G)∥ for single-graph tasks, and√∑
G∈G ∥Fθ∗(Gp)− C(G)∥2/M for multi-graph tasks. Here Gp is the combined graph with G

and graph prompt. Kindly note that C(G) means an optimal function to the downstream task,
which is not accessible without a specific task. Since the ultimate purpose of graph prompting
is to approximate graph operation, we here treat C(·) as various graph data operations such as
adding/deleting nodes, adding/deleting/changing edges, and transforming features of a given graph
G. The intensity of these graph operations is controlled by a parameter β ∈ [0, 1], where 0 indicates
no change and 1 indicates generating a completely random new graph. In our experiments, we fix β
at 0.7, which means we have a 0.7 probability of removing a node/edge or masking some features.

Definition of C(G). In our experiments, C(G) represents the optimal graph-level embedding of a
modified graph G′ derived from the original graph G. Specifically, G′ is obtained by performing
a graph data manipulation operation on G, such as removing a certain percentage ϵ% of edges or
nodes. The function C(G) is defined as:C(G) = Pooling(GNN(G′)) where GNN is a graph neural
network, and Pooling is a graph-level pooling operation that aggregates node embeddings into a
single vector representing the entire graph G′. This embedding C(G) serves as the ground truth in
our experiments.

Experimental Procedure. We focus on a graph-level task that inherently requires graph data manip-
ulation. The experimental procedure is as follows:

1. Graph Manipulation: Starting with an original graph G, we create a modified graph G′

by randomly removing ϵ% of edges or nodes. This simulates a data operation that alters
the graph structure.

2. Computing Ground Truth Embedding C(G): We pass G′ through a pre-trained and
fixed GNN model followed by a pooling operation to obtain the graph-level embedding
C(G): G′ → GNN → Pooling → C(G) This embedding represents the desired outcome
of the data operation.

3. Graph Prompting on G: Instead of directly manipulating G, we apply a graph prompt Pw

to the original graph G to approximate the effect of the manipulation: G → Pw(G) Here,
Pw(G) is the prompted graph, where Pw is a learnable function parameterized by w.

4. Computing Prompted Graph Embedding: We pass the prompted graph Pw(G) through
the same GNN and pooling operations to obtain the embedding Fθ(Pw(G)): Pw(G) →
GNN → Pooling → Fθ(Pw(G))

5. Error Computation: We compute the error between the embeddings of the prompted
graph and the ground truth embedding: Error = ∥Fθ(Pw(G))− C(G)∥ This error quanti-
fies how well the graph prompt approximates the desired graph data manipulation.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Empirical Maximum Error in Figure 1. Figure 1 in our paper illustrates the empirical maximum
error observed in our experiments, corresponding to the theoretical upper bound discussed in The-
orem 5. To approximate this upper bound: We perform multiple trials by repeating the experiment
with different random removals of edges or nodes (i.e., generating different G′) and different ini-
tializations of the graph prompt Pw. For each trial, we compute the error as described above. We
record the maximum error observed across all trials, which serves as an empirical approximation of
the theoretical upper bound.

Training: In the graph prompting training process, we perform gradient descent on the parameters
ω of the graph prompt Pω using the Adam optimizer. We use a learning rate of 1× 10−4 and weight
decay of 5 × 10−5. We implement an early stopping mechanism with a maximum of 2000 epochs
by default. When analyzing the upper bound of the error of the prompt method, it is crucial to
ensure that the convergence value of P is indeed the global minimum. To prevent the training of
prompt parameters from falling into local minima, we approximate the global minimum by indepen-
dently training k times with random initialization for each prompt, and selecting the minimum loss.
Typically, k is set to 3.

Testing: Note that the error bound in Theorem 5 is the product of two terms: sin(Φ/2) and ∥C(G)∥.
For a fixed pre-trained model, sin(Φ/2) is consistent, but C(G) varies with different generated
datasets. In our experiments, the 30 graphs used to find the empirical maximum value are from the
same dataset, while the different empirical maximum values are obtained from different datasets.
Considering the average value better represents the change in the Error Bound relative to the inde-
pendent variables like “Rank Lost”.

Codes: https://anonymous.4open.science/r/dgpwadopwta/

35

https://anonymous.4open.science/r/dgpwadopwta/

	Introduction
	Background
	Why Graph Prompt Works? A Data Operation Perspective
	Perspective from Model Tuning
	Perspective from Data Operation
	Measuring the Difficulty of Finding Bridge Graphs via Graph Prompts

	The Upper Bound of Data Operation Error via Graph Prompt
	Upper Bound of the Error on A Single Graph
	Extend the Error Bound Discussion to A Batch of Graphs
	Value Distribution of the Data Operation Error with Graph Prompt
	Extend the Discussion from redLinear to Non-linear Aggregations

	Experiments
	Experimental Settings
	On mapping to BG with single graph
	On mapping to -BG with single graph
	On mapping to - BG with multiple graphs

	Conclusion
	Theoretical Analysis And Proofs
	Preliminaries And Definitions
	Preliminaries
	Definitions

	Fundamental Lemmas
	On the Range of Graph Embedding Matrix After Graph Prompting, one prompt node case
	On the Range of Graph Embedding Matrix After Graph Prompting, multiple prompt node case
	On the Range of Graph Embedding Matrix After Graph Prompting, Not Full-Rank Case

	Proof of Theorem in the Paper
	Bridge Graph Existence Theorem
	On Error-free Mapping to Bridge Set
	On Error Upper Bound Analysis of Mapping to Bridge Set at Single Graph Level
	Error Bound Analysis of Mapping to Bridge Set at Multiple Graph Level
	Error Distribution Analysis of Mapping to Bridge Set
	Analysis of Nonlinear Graph Neural Networks

	Further Mathematical Discussion

	Supplementary Experiments
	EXPERIMENT DETAILS

