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Abstract001

Large Language Models (LLMs) have been002
found to struggle with systematic reasoning.003
Even on tasks where they appear to perform004
well, their performance often depends on short-005
cuts, rather than on genuine reasoning abilities,006
leading them to collapse on out-of-distribution007
examples. Post-training strategies based on008
reinforcement learning and chain-of-thought009
prompting have recently been hailed as a step010
change. However, little is still known about011
the potential of the resulting “Large Reason-012
ing Models” (LRMs) beyond problem solving013
in mathematics and programming, where find-014
ing genuine out-of-distribution problems can015
be difficult. In this paper, we focus on tasks016
that require systematic reasoning about rela-017
tional compositions, especially for qualitative018
spatial and temporal reasoning. These tasks019
allow us to control the difficulty of problem in-020
stances, and measure in a precise way to what021
extent models can generalise. We find that that022
the considered LLMs and LRMs overall per-023
form poorly overall, albeit better than random024
chance.025

1 Introduction026

Large Language Models (LLMs) have shown a027

remarkable generalization abilities, being able to028

learn from in-context demonstrations, and to gen-029

eralize to unseen tasks in multi-task settings (Rad-030

ford et al., 2019; Brown et al., 2020; Bubeck et al.,031

2023), with abilities in mathematics and program-032

ming that appear to go beyond the level of high-033

school students (Guo et al., 2024; Jimenez et al.,034

2024; OpenAI et al., 2025). Moreover, recent035

advances in post-training based on reinforcement036

learning have unlocked a further axis along which037

the ability of LLMs can be improved, for easily ver-038

ifiable analytical problems (such as mathematics039

and programming) (Guo et al., 2025; Shao et al.,040

2024). The resulting models, called Large Rea-041

soning Models (LRMs), are then encouraged to042

leverage chains-of-thought (CoT) or thinking to- 043

kens (Wei et al., 2022) to search though a solution 044

space, which provably increases the complexity of 045

problems that can be tackled (Feng et al., 2023), 046

compared to standard LLM prompting. 047

Yet, a competing narrative is that current LLMs 048

are not, in fact, general-purpose reasoners and 049

rather rely on shallow pattern matching (Dziri et al., 050

2023; McCoy et al., 2024; Nguyen, 2024) and 051

heuristics (Nikankin et al., 2024). There are recur- 052

ring issues, even with the latest LLMs and LRMs, 053

such as memorization of training data (Zhang et al., 054

2024b), the reversal curse (Berglund et al., 2024) 055

and an over-reliance on co-occurrence statistics 056

(Kang and Choi, 2023). This line of argument 057

is further bolstered by the risk that popular static 058

benchmarks, such as GSM8k and MMLU, may 059

have been included in training corpora (Zhang et al., 060

2024b; Oren et al., 2024). The potential for dataset 061

contamination is increasingly problematic, given 062

the scaling laws for memorization (Carlini et al., 063

2023), and may explain why despite displaying eru- 064

dite behaviour, current models still fail at seemingly 065

basic tasks that are trivial for ordinary humans. 066

In this paper, we highlight the importance of 067

using benchmarks that require Systematic Gener- 068

alization (SG) for reliably evaluating the reason- 069

ing capabilities of LLMs and LRMs. SG is the 070

ability of a model to solve test instances by com- 071

posing knowledge that was learned from multiple 072

training instances (Hupkes et al., 2020), where the 073

test instances are systematically made larger than 074

the training instances. This ensures that the test 075

instances are new, while at the same time guaran- 076

teeing that the model has access to all the knowl- 077

edge that is required for solving them. Composing 078

atomic units into larger pieces for constructing a so- 079

lution to an arbitrarily large problem is an essential 080

ingredient for machines and humans to generalize 081

from a limited amount of data (Lake et al., 2017). 082

We specifically advocate the use of synthetic bench- 083
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marks, where the difficulty of problem instances084

can be controlled along different dimensions.085

For the analysis in this paper, we leverage the086

Spatial Temporal and Reasoning (STaR) bench-087

mark (Khalid and Schockaert, 2025). Its problem088

instances have a combinatorial structure, which089

makes it straightforward to generate large num-090

bers of previously unseen cases, and in particular091

avoid issues of dataset contamination. The StaR092

benchmark has proven challenging for state-of-the-093

art neuro-symbolic reasoning methods (Minervini094

et al., 2020; Cheng et al., 2023; Lu et al., 2022),095

but has not yet been used for evaluating LLMs096

and LRMs. It poses an interesting challenge, be-097

cause the disjunctive nature of the rules that gov-098

ern the temporal and spatial reasoning problems099

means that the answer cannot be obtained by a sin-100

gle derivation (i.e. a single chain-of-thought) and101

essentially requires simulating the algebraic clo-102

sure algorithm (Renz and Ligozat, 2005). Note,103

however, that these problems are computationally104

tractable (i.e. they can be solved in polynomial105

time) and should thus, in principle, be within the106

reach of LRMs. This is fundamentally different107

from evaluating LRMs on PSPACE-hard planning108

problems, where at best strong heuristic approxi-109

mations can be expected (Valmeekam et al., 2024).110

Our main finding is that many popular LLMs and111

LRMs struggle on STaR but do reason beyond ran-112

dom chance. We analyze the effects of increasing113

model size, fine-tuning and CoT test-time compute114

on reasoning performance.115

2 Related Work116

Spatial Reasoning The spatial reasoning capabil-117

ities of LLMs have already been studied from vari-118

ous angles. For instance, SPARTQA (Mirzaee et al.,119

2021), StepGame (Shi et al., 2022) and RoomSpace120

(Li et al., 2024b) are question answering datasets121

which require the model to infer the relative posi-122

tion of two objects based on a description of their123

position relative to other objects. Similarly, Ya-124

mada et al. (2024) test the ability of LLMs to follow125

natural language descriptions of trajectories in grid-126

like environments. STBench (Li et al., 2024c) eval-127

uates LLMs on a suite of 13 tasks, most of which128

involve some form of spatial reasoning. However,129

rather than focusing on qualitative reasoning, these130

tasks essentially involve some form of geometric131

computation, e.g. determining if a given point be-132

longs to some region or determining the regions133

through which a given trajectory passes. Cohn and 134

Blackwell (2024a) evaluate whether LLMs can in- 135

fer the composition of two RCC-8 relations, when 136

given a description of their meaning, while Cohn 137

and Blackwell (2024b) evaluate their commonsense 138

understanding of cardinal directions (e.g. you are 139

walking along the East shore of a lake, in which 140

direction is the lake?). Wang et al. (2024) consider 141

spatial reasoning in a multi-modal setting. 142

Several authors have also tried to improve LLM 143

spatial reasoning. Li et al. (2024a) study the effec- 144

tiveness of chain-of-thought (Wei et al., 2022) and 145

tree-of-thoughts (Yao et al., 2023) prompting. They 146

also show the effectiveness of using the LLM for 147

semantic parsing and leaving the reasoning aspects 148

themselves to a symbolic solver. A similar strategy 149

is also pursued by Zhang et al. (2024a), who con- 150

struct a graph representation of the input, and then 151

either call a symbolic solver or rely on the LLM 152

itself to reason about the extracted graph. Wu et al. 153

(2024) improve chain-of-thought methods for spa- 154

tial reasoning, by generating a visualization after 155

each inference step. In multimodal settings, pre- 156

training the model on synthetic data is a common 157

strategy. Interestingly, Tang et al. (2024) found 158

that by training the model on basic (visual) spatial 159

reasoning capabilities (direction comprehension, 160

distance estimation and localization), the model 161

also performs better on out-of-distribution com- 162

posite spatial reasoning tasks, such as finding the 163

shortest path between two objects. 164

Systematic Generalization There is a plethora 165

of work on measuring systematic generalization be- 166

yond relational reasoning, including SCAN (Lake 167

and Baroni, 2018) for RNNs (Schuster and Pali- 168

wal, 1997), addition (Nye et al., 2021) and LEGO 169

(Zhang et al., 2023), for transformers trained from 170

scratch (Vaswani, 2017). This line of work clearly 171

suggests that transformers struggle with SG. The 172

most popular benchmark for systematic general- 173

ization in the context of relational reasoning is 174

CLUTRR Sinha et al. (2019), which involves pre- 175

dicting family relations. Zhu et al. (2024) evaluated 176

LLMs on this benchmark, showing that even mod- 177

ern LLMs with CoT prompting struggle with this 178

task. The problems we consider in this paper are 179

more challenging than those in CLUTRR, due to 180

the need for combining multiple reasoning paths. 181

Rule-based Reasoning with LLMs Sun et al. 182

(2024) studied the ability of LLMs to apply a given 183

rule, when provided as part of the prompt. In con- 184

2



1

Instruction (Q): You are a helpful assistant. Just answer the question as a single

integer. Given a consistent graph with edges comprising the 8 base relations, predict the

label of the target edge. More specifically, Given a data row delimited by a comma with

the following columns: `graph_edge_index`, `edge_labels`, `query_edge`, predict the label

of the `query_edge` as one of the 8 base relations as a power of 2 as defined above.

Composition Table (T): The following are the base elements of RCC-8: DC = 1 EC = 2 PO = 4

TPP = 8 ...

Graph Edge Index (E_i): "[(0, 1), (1, 2)]"

Edge labels (L_i): "['EC' 'NTPPI']"

Query Edge ( (0, n_i) ): "(0, 2)"

Figure 1: An illustration of the input representation to the language model which is prompted to respond (modulo
thinking tokens) with a single label for the query edge.

Figure 2: Illustration of the RCC-8 relations.

trast to our experiments in this paper, they only185

evaluated the application of a single rule, some of186

which were complex (e.g. encoding the composi-187

tion of a path of several relations). They found188

chain-of-thought prompting to be largely ineffec-189

tive, which appears to be related to the fact that190

multi-hop reasoning was not required for their191

benchmark. They also found evidence that mod-192

els rely on prior knowledge about the considered193

domains (e.g. the composition of family relations).194

3 The STaR Problem195

In each problem instance of STaR, we are given196

a set of facts F , referring to a set of binary rela-197

tionsR and a set of entities E . The set of relations198

is fixed across problem instances, but the entities199

are not. Each of the facts is an atom of the form200

r(a, b), with r ∈ R and a, b ∈ E . The problems we201

consider essentially require models to learn a set of202

rules K, which they can then use to decide whether203

a given atom r(a, b) can be inferred from the set204

of facts F . To be successful, models must be capa-205

ble of composing the learned rules in a systematic206

way. In particular, most problem instances require207

multiple rule applications to be chained, and the 208

number of such inference steps may be larger for 209

test examples than for training examples. 210

Disjunctive Rules Most reasoning benchmarks 211

focus on Horn rules of the following form (k ≥ 3): 212

r(X1, Xk)←
k−1∧
i=1

ri(Xi, Xi+1) (1) 213

where Xi are entity variables. Given a setK of such 214

rules, the main reasoning task of interest is typi- 215

cally to decide whether some hypothesis rℓ(e, f) 216

can be inferred from a set of facts F using the rules 217

in K. This can be decided by repeatedly selecting 218

facts r1(e1, e2), ..., rk−1(ek−1, ek) that match the 219

body of a rule of the form (1) in F and adding the 220

conclusion r(e1, ek) of that rule to F . This itera- 221

tive derivation of facts is well-aligned with the style 222

of reasoning that is enabled by chain-of-thought 223

prompting, which can partially explain the success 224

of such strategies for tasks that require simple log- 225

ical reasoning. However, in many domains, Horn 226

rules are not sufficient for capturing the required 227

knowledge. A more general approach is to focus 228

on disjunctive rules of the following form: 229

m∨
i=1

sl(X1, Xks)←
k−1∧
i=1

ri(Xi, Xi+1) (2) 230

Given such a rule and the facts
r1(e1, e2), ..., rk−1(ek−1, ek), then all we can infer
is that one of s1(e1, ek), ..., sm(e1, ek) must be
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true. When reasoning with disjunctive rules, we
are typically also given a set of constraints, such
as:

⊥ ← r1(X,Y ) ∧ r2(X,Y )

encoding that at most one of the facts231

r1(e, f), r2(e, f) can be true for any entities232

e, f . Reasoning with disjunctive rules is provably233

more expressive, but computationally also more234

expensive: while reasoning with Horn rules is235

possible in polynomial time, reasoning with236

disjunctive rules and constraints is an NP-complete237

problem. However, there are important special238

cases where reasoning with disjunctive rules is still239

possible in polynomial time. This is the case, in240

particular, for many of the calculi that have been241

proposed for qualitative reasoning about time and242

space, such as the Interval Algebra (IA (Allen,243

1983)) and the Region Connection Calculus (RCC8244

(Randell et al., 1992)).1245

StaR Benchmark STaR (Khalid and Schockaert,246

2025) consists of spatial and temporal reasoning247

problems. The spatial reasoning problems involve248

reasoning in RCC-8 (Randell et al., 1992). This249

calculus is defined using 8 relations, illustrated in250

Fig. 2. The entities in this case represent spatial re-251

gions. For instance, the fact ec(a, b) specifies that252

the region a is adjacent (i.e. Externally Connected)253

to the region b. Reasoning in RCC-8 is based on254

two types of knowledge. First, we have the knowl-255

edge that the relations are Jointly Exhaustive and256

Pairwise Disjoint (JEPD), meaning that there is ex-257

actly one of the eight relations that holds between258

any two regions. Second, we have knowledge about259

the composition of the eight relations. For instance,260

knowing that ec(a, b) and po(b, c) hold, the rela-261

tions that may hold between a and c are dc, ec, po,262

tpp and ntpp. This knowledge can be encoded us-263

ing a disjunctive rule. It is typically summarized in264

a so-called composition table, which encodes the265

compositions of all relations in a compact format.266

The temporal instances in StaR involve reasoning267

in IA (Allen, 1983). The overall structure of these268

reasoning problems is similar as in RCC-8, but here269

there is a set of 13 JEPD relations. The entities in270

this case represent time intervals, and we have rela-271

tions such as m(e, f), encoding that the end point272

of e coincides with the starting point of f .273

1When the F is allowed to contain disjunctions of facts,
then reasoning with these calculi is NP-complete. However,
since we only focus on the case where F is a set of facts,
reasoning for our purposes is tractable in these calculi.

Model Param. Quantization Reasoning

A B C

Sm
al

l Qwen-2.5 7B × × ✓ N/A

Qwen-2.5 (R) 7B × × ✓ ✓

Llama-3 8B × × ✓ N/A

Gemma-2 9B × × ✓ N/A

M
ed

iu
m Phi-4 14B × × ✓ N/A

Qwen-2.5 14B × × ✓ N/A

Qwen-2.5 (R) 14B × × ✓ ✓

Gemma-2 27B × × ✓ N/A

L
ar

ge

Llama-3.3 70B ✓ ✓ N/A N/A

Qwen-2.5 72B ✓ ✓ N/A N/A

o3-mini ? N/A N/A N/A ✓

Table 1: Model configurations for experimental settings
in 4. All the quantizations are four-bit. (R) denotes the
R1 distilled models (Guo et al., 2024).

Each problem instance is formulated as a di- 274

rected labelled graph G, where the vertices rep- 275

resent entities and the edges are labelled with a 276

relation fromR, whereR is either the set of RCC- 277

8 relations or the set of IA relations. The goal is to 278

infer the relation between two designated entities: 279

a head entity h and a tail entity t. The problem in- 280

stances are constructed such that there is a unique 281

relation that can be inferred. To find this relation, 282

however, information from multiple paths between 283

h and t may need to be combined. Each of these 284

paths makes it possible to infer a conclusion of the 285

form r1(h, t)∨ ...∨ rm(h, t). In other words, each 286

path allows us to eliminate certain relationships 287

as candidate answers, but we may need to com- 288

bine several paths to eliminate all-but-one of the 289

relations and thus obtain the answer. The dataset 290

is constructed with two levers of complexity: b, 291

the number of simple paths between the head and 292

tail entity, and k, the length of each simple path. 293

In accordance with the focus on SG, the training 294

data is comprised of relatively small problem in- 295

stances, with k ∈ {2, 3, 4} and b ∈ {1, 2, 3}. The 296

test data contains instances with k ∈ {2, . . . , 10} 297

and b ∈ {1, 2, 3, 4}. 298

4 Experimental Setup 299

Input representation In principle, the only con- 300

textual information needed to solve an instance 301

of STaR is the composition table. Khalid and 302

Schockaert (2025) considered to what extent neuro- 303
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symbolic models were able to learn (and then sys-304

tematically apply) this composition table from the305

training data provided. Here, we focus on a simpler306

setting, where we provide the composition table307

as part of the prompt. Our main focus is thus on308

whether LLMs and LRMs are able to follow the309

instructions and apply the composition rules in a310

systematic way. This allows us to evaluate mod-311

els in a zero-shot fashion, or with a small number312

of in-context demonstrations (as well as evaluat-313

ing fine-tuned models which should in principle be314

able to learn the composition table). We specify315

the composition table using a compact integer en-316

coding (using powers of two; see the appendix for317

an example of the full prompt). The graph that de-318

fines a given problem instance is similarly encoded319

using integer labels. The model is furthermore320

instructed to provide the answer using the same321

integer encoding. This is illustrated in Fig. 1.322

Evaluation setup To evaluate the models, for323

each combination of (k, b), we use a uniform sub-324

sample of the full set of test problem instances for325

RCC-8 and IA. For RCC-8, each of the eight re-326

lations appears equally frequently as gold labels,327

meaning that the performance of naive baselines328

such as random guessing is at 1/8 = 0.125. Sim-329

ilarly, the performance of naive baselines on IA330

is at 1/13 ≈ 0.076. We evaluate 2 types of mod-331

els, LLMs (instruction tuned) and LRMs, on 3 dis-332

tinct settings: (A) Zero-shot, (B) Few-shot and333

(C) Fine-tuned. Settings (A) and (B) evaluate the334

model’s in-context learning and instruction follow-335

ing abilities. For the few-shot experiments, we336

provide 5 in-context demonstrations of the desired337

input/output pairs. For the experiments with fine-338

tuned models, we leverage the entire training set339

comprising 57600 and 93400 instances for RCC-340

8 and IA respectively. For testing, for settings341

(A) and (B) we use 500 test sample instances for342

RCC-8 and 100 for IA, for each combination of k343

and b. We use 50 samples per (k, b) configuration344

for setting (C) and the reasoning experiment. We345

use the following models: Llama-3 and Llama-3.3346

(Grattafiori et al., 2024), Qwen (Qwen et al., 2025),347

Phi-4 (Abdin et al., 2024), Gemma-2 (Team et al.,348

2024) o3-mini (OpenAI et al., 2025). The setup349

is summarized in Table 1. Further implementation350

details and data statistics are provided in App. B.351

5 Results 352

We now present an overview of the results, focusing 353

first on the non-reasoning models in Section 5.1 354

(i.e. the standard LLMs), and then on the reasoning 355

models in Section 5.2. 356

5.1 Non-reasoning models 357

The results for RCC-8 are summarized in Figure 3 358

and for IA in Figure 4. Broadly, both of these are 359

similar. We therefore focus on RCC-8 below. 360

For the zero-shot experiments, all models per- 361

form close to random guessing for all but the 362

simplest problem instances. Somewhat better re- 363

sults are observed only when b ≤ 2 and k ≤ 4. 364

Qwen2.5-72B overall emerges as the strongest 365

model. Its results remain clearly above random 366

chance (although still very weak) for b = 1 and 367

k ≥ 5. For lower values of k, gemma-2-9b and 368

gemma-2-27b are the next best-peforming mod- 369

els. Interestingly, the much larger Llama-3.3-70B 370

model performs poorly for low values of k, but 371

performs the best for b = 2, k = 10, and similar to 372

Qwen2.5-72B for b = 1, k = 10. 373

The results for the few-shot experiments are sim- 374

ilar, with non-trivial performance only achieved for 375

k ≤ 3. Qwen2.5-72B performs consistently better 376

than in the zero-shot case. For Llama-3.3-70B we 377

also see clear improvements for b ∈ {1, 2} (and 378

to some extent also b = 4). The most interest- 379

ing changes can be seen for b = 1, where some 380

of the smaller models now perform notably better, 381

especially Qwen2.5-14B, gemma-2-9b and phi-4. 382

Finally, the results for the fine-tuned models 383

are much better. We can see a noticeable perfor- 384

mance gap, with the Qwen models and gemma-2- 385

27b clearly outperforming the others. Interestingly, 386

this is also the case for the smallest Qwen model 387

(Qwen2.5-7B). In contrast, the two Llama models 388

clearly underperform, with even Llama-3.3-70B 389

only beating the much smaller phi-4 model on the 390

hardest problem instances. It is surprising to see 391

that the performance for b = 2, b = 3 and b = 4 is 392

similar, despite the latter setting being much harder. 393

We will come back to this point in Section 6. In 394

short, however, this is due to the fact that these 395

models have learned to reliably predict some of 396

the simplest relations. For instance, eq can only 397

be predicted if there is a path between the head 398

and tail entities that only consists of eq relations. 399

For some of the other relations, there are similar 400

insights that can be leveraged. The ability of these 401
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Figure 3: The results for the non-reasoning models on RCC-8 for the 3 settings (accuracy).
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Figure 4: The results for the non-reasoning models on IA for the 3 settings (accuracy).

models to discover the underlying principles, and402

reliably apply them to out-of-distribution settings403

is remarkable. At the same time, however, it is404

clear that they are not capable of principled reason-405

ing, as their performance on the hardest relations406

remains poor. The performance of all the consid-407

ered models, even the best-performing fine-tuned408

models, remains far below that of state-of-the-art409

neuro-symbolic methods (Khalid and Schockaert,410

2025), which achieve near-perfect results on these411

problem instances, despite having to learn the com- 412

position table from training examples. 413

5.2 Reasoning models 414

For the reasoning models, we focus on the zero- 415

shot evaluation setting. The results are summarized 416

in Table 2. Note that we only include results for a 417

sample of all (k, b) configurations due to the much 418

higher cost that is involved in using these models. 419

Compared to the non-reasoning models without 420
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Conf. o3-mini Qwen 7B Qwen 14B

(k, b) Acc F1 Acc F1 Acc. F1
R

C
C

-8

(9, 3) 0.30 0.24 0.12 0.07 0.06 0.05
(9, 2) 0.48 0.38 0.06 0.02 0.26 0.23
(9, 1) 0.90 0.85 0.08 0.07 0.20 0.15
(8, 4) 0.44 0.35 0.10 0.08 0.16 0.12
(8, 3) 0.56 0.52 0.12 0.11 0.14 0.10
(5, 2) 0.68 0.63 0.12 0.07 0.18 0.15

IA

(9, 3) 0.30 0.29 0.04 0.03 0.10 0.10
(9, 2) 0.44 0.42 0.06 0.04 0.22 0.18
(9, 1) 0.78 0.74 0.20 0.15 0.14 0.09
(8, 4) 0.36 0.30 0.04 0.06 0.12 0.07
(8, 3) 0.34 0.36 0.04 0.03 0.14 0.07
(5, 2) 0.56 0.52 0.04 0.03 0.04 0.03

Table 2: Zero-shot (setting (A)) results for the reasoning
models on the STaR benchmark. The Qwen models are
distilled R1 models which were run locally. The accura-
cies and macro F1 scores are reported for a sample of
test configurations due to API resource constraints.

fine-tuning, the performance of o3-mini (OpenAI421

et al., 2025) is remarkably strong. The setting with422

b = 1 is intuitively well-aligned with the chain-423

of-thought process. Accordingly, we can see that424

the model performs well for b = 1, even with425

k = 9, achieving an accuracy of 0.9, which is sub-426

stantially higher than what any of the fine-tuned427

models has achieved. However, for b ≥ 2 the428

results quickly deteriorate. Interestingly, this be-429

havior is qualitatively different from that of the430

fine-tuned models. Where the fine-tuned models431

have learned to identify easy-to-predict relations,432

o3-mini seems capable of interpreting the composi-433

tion table and systematically applying it to a single434

reasoning path (although not with perfect accuracy,435

even for b = 1). For b ≥ 2, the disjunctive nature436

of the reasoning problem proves problematic, sug-437

gesting that the model is limited in its capacity to438

generalize to unseen reasoning tasks.439

For the distilled Deepseek-R1 models (Guo et al.,440

2025), the results are below random chance for all441

settings where b ≥ 2. For k = 9 and b = 1, the442

results are above random chance (except for Qwen443

7B on RCC-8), but not meaningfully better than444

the non-reasoning models in the zero-shot setting.445

6 Analysis446

In Section 5, we already saw that the behavior of447

the fine-tuned LLMs, on the one hand, and o3-mini,448

on the other hand, was qualitatively different. To449

further analyze this, Table 3 shows a breakdown450

of the results per relation type, for one of the best-451

performing fine-tuned models (Qwen2.5-14B). Ta-452

Label Pr. Re. F1. Count

R
C

C
-8

DC 0.14 0.31 0.20 13
EC 0.43 0.25 0.32 12
PD 0.14 0.18 0.16 11
TPP 1.00 0.09 0.17 11

NTPP 0.00 0.00 0.00 17
TPPI 0.72 1.00 0.84 13
NTPPI 0.68 1.00 0.81 13

EQ 1.00 1.00 1.00 10

IA

= 0.14 0.83 0.24 6
< 0.00 0.00 0.00 4
> 0.00 0.00 0.00 9
d 1.00 0.10 0.18 10
di 0.00 0.00 0.00 9
o 1.00 0.57 0.73 7
oi 1.00 1.00 1.00 5
m 1.00 1.00 1.00 9
mi 1.00 0.67 0.80 6
s 1.00 1.00 1.00 9
si 1.00 1.00 1.00 8
f 1.00 0.83 0.91 6
fi 1.00 1.00 1.00 12

Table 3: Fine-grained breakdown of classification scores
for the k = 9, b = 2 dataset configuration for the fine-
tuned Qwen2.5-14B LLM. We sample 50 points ran-
domly from each STaR dataset.

ble 4 shows the same breakdown for o3-mini. In 453

both tables, we focus on the case where k = 9 and 454

b = 2. Focusing on Table 3 first, for RCC-8 we 455

can see that the fine-tuned Qwen2.5-14B model 456

achieves perfect results on eq, which can be ex- 457

plained by the fact that this relation can only be 458

predicted if there is a chain of eq relations between 459

the head and tail entity. For ntppi and tppi, the 460

model was able to exploit a similar insight. The per- 461

formance on the other relations, however, is much 462

worse, although still better than random chance (ex- 463

cept for ntpp). For IA, we can see a similar pattern. 464

Some of the relations are easier to predict, with the 465

model achieving perfect results on several relations: 466

oi, m, s, si and fi. However, for other relations, the 467

results are very poor. This again shows that the 468

model was able to learn some “tricks” that allow it 469

to reliably predict some of the easier relations, even 470

on out-of-distribution settings, while at the same 471

time failing to apply the rules from the composition 472

table in a systematic way. 473

The results for o3-mini in Table 4 paint a dra- 474

matically different picture. First, note that o3-mini 475

does not achieve perfect results on any of the re- 476

lations. This shows that it was not able to lever- 477

age domain-specific insights (such as the idea that 478

eq can only be predicted if there is a chain of eq- 479

relations). On the other hand, the model achieves 480
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Label Pr. Re. F1. Count

R
C

C
-8

DC 0.69 0.90 0.78 10
EC 0.50 1.00 0.67 3
PD 0.43 0.27 0.33 11
TPP 0.33 0.44 0.38 9
NTPP 1.00 0.20 0.33 5
TPPI 0.00 0.00 0.00 2
NTPPI 0.50 0.25 0.33 4

EQ 0.75 0.50 0.60 6

IA

= 0.50 0.17 0.25 6
< 0.10 1.00 0.18 1
> 0.83 1.00 0.91 5
d 0.50 0.60 0.55 5
di 0.67 0.50 0.57 4
o 0.00 0.00 0.00 2
oi 0.75 1.00 0.86 3
m 1.00 0.50 0.67 4
mi 1.00 0.33 0.50 3
s 1.00 0.20 0.33 5
si 1.00 0.25 0.40 4
f 0.33 0.50 0.40 2
fi 1.00 0.17 0.29 6

Table 4: Fine-grained breakdown of classification scores
for the k = 9, b = 2 dataset configuration for the o3-
mini LRM. We sample 50 points randomly from each
STaR dataset.

k = 9, b = 3 k = 9, b = 2 k = 9, b = 1 k = 8, b = 4 k = 8, b = 3 k = 5, b = 2 k = 5, b = 10
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Figure 5: The median number of output tokens with the
interquartile range for the Qwen 7B reasoning model
for the same dataset splits as in Table 2. The number of
maximum tokens was set to 8192.

non-trivial results for almost all the relations. This481

suggests that the correct predictions are due to the482

ability of the model to follow the instructions from483

the composition table in a somewhat systematic,484

albeit error-prone way.485

CoT analysis Reasoning models can adapt the486

number of output tokens, i.e. the amount of test-487

time compute, based on the difficulty of a given488

problem instance. To analyze this aspect, Figure489

5 shows the number of output tokens that were490

generated by the Qwen 7B reasoning model. Note491

that we cannot do this analysis for o3-mini as the492

intermediate reasoning process is hidden for this493

model. Counterintuitively, the analysis in Figure 5494

reveals that the number of output tokens goes down,495

as the number of paths b increases, for all the con-496

sidered values of k. This seems to suggest that the 497

model is aware of its limitations on these problem 498

instances, giving up the reasoning process more 499

quickly. In contrast, we can see that considerably 500

more output tokens were used for k = 9, b = 1 501

than for k = 5, b = 1, which further supports our 502

hypothesis that problem instances with b = 1 are 503

more natural for chain-of-thought based reasoning 504

problems. 505

7 Conclusions 506

We have studied the performance of recent LLMs 507

and so-called Large Reasoning Models (LRMs) on 508

a challenging benchmark involving qualitative spa- 509

tial and temporal reasoning problems. This analysis 510

allows us test the abilities of models on a differ- 511

ent style of reasoning problems than those that are 512

typically considered, and crucially, than those that 513

are used for training LRMs. The considered prob- 514

lems involve composing relations, using rules that 515

are specified in a composition table. A particular 516

challenge arises because multiple “reasoning paths” 517

need to be combined to arrive at the final answer, 518

which is harder to capture using a chain-of-thought 519

process. 520

Several insights arise from our analysis. While 521

LLMs perform poorly in zero-shot and few-shot 522

settings, fine-tuned LLMs achieved notably better 523

results. However, further analysis shows that this 524

is because fine-tuned models achieve near-perfect 525

results on some of the easier test instances, i.e. re- 526

lations that can be predicted by relying on simple 527

rules, rather than a systematic application of the 528

rules from the composition table. In particular, 529

these models still perform poorly on problem in- 530

stances that require systematic reasoning. As far as 531

LRMs are concerned, o3-mini performs much bet- 532

ter than LLMs in zero-shot and few-shot settings, 533

but does not overall improve on the performance 534

of fine-tuned LLMs. Interestingly, the behavior of 535

the fine-tuned LLMs and o3-mini is qualitatively 536

different. Indeed, o3-mini seems to rely more on 537

an error-prone, but systematic application of the 538

rules from the composition table, achieving strong 539

results for problems involving only a single reason- 540

ing path. However, when multiple reasoning paths 541

need to be combined, its performance deteriorates 542

quickly. These results suggest that LRMs, despite 543

their clearly improved reasoning abilities, are still 544

limited in terms of generalizing to previously un- 545

seen reasoning tasks. 546
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Limitations547

The state-of-the-art in reasoning models is still548

quickly changing, and any conclusions that can be549

drawn from current models, such as o3-mini, may550

quickly become obsolete as newer models are re-551

leased. A key question, which remains unanswered,552

is whether reasoning models can be designed that553

generalize to previously unseen reasoning tasks.554

Furthermore, while we have advocated the use of555

temporal and spatial reasoning, further analysis556

is needed to test the reasoning abilities of current557

models on a broader range of problems, and to558

better understand their failure modes more gener-559

ally. In terms of the considered models, we have560

focused our analysis on open-source models that561

can be run locally (with the exception of o3-mini),562

and quantization was used to make this possible. It563

is possible that fine-tuning larger models may lead564

to better results. Finally, only a limited set of (k, b)565

configurations was used to evaluate the reasoning566

models due to compute constraints.567
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Figure 6: Illustration of the IA relations.
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A Details on RCC-8 and IA910

Figure 6 provides an illustration of the 13 relations911

of the interval algebra. The composition tables for912

RCC-8 and IA are shown respectively in Tables913

5 and 6. To illustrate how reasoning with these914

calculi works, suppose we are given the following915

facts:916

ec(a, b) ntpp(b, c) po(a, d) ec(d, c)917

Using the composition table, from ec(a, b) and
ntpp(b, c), we know that the following must hold:

po(a, c) ∨ tpp(a, c) ∨ ntpp(a, c)

Similarly, from po(a, d) and ec(d, c), we know that
the following must hold:

dc(a,c)∨ec(a,c)∨po(a,c)∨tppi(a,c)∨ntppi(a,c)

Since it is not possible for more than one relation 918

to hold between a and c, the only possibility is that 919

po(a, c) holds. 920

In general, sound and complete reasoning in 921

RCC-8 and IA is possible by using the algebraic 922

closure algorithm (for the case where the initial in- 923

formation does not contain any disjunctions). This 924

algorithm amounts to maintaining, for each pair of 925

entities, a set of possible relations. These sets are it- 926

eratively refined by applying composition rules, un- 927

til convergence. The algorithm runs in cubic time. 928

The problem instances in the StaR benchmark are 929

simpler than general RCC-8 and IA problems. For 930

these instances, it always suffices to consider the 931

paths between the designated entities h and t. Each 932

path gives rise to a set of candidate relations, and 933

the final answer is obtained by taking the intersec- 934

tion of these sets. The complexity of reasoning is 935

thus linear in the number of entities. This ensures 936

that the considered models should, in principle, be 937

powerful enough to solve the problem instances, 938

even for larger problems, and without needing an 939

excessive number of output tokens for the LRMs. 940

B Implementation Details 941

B.1 Compute resources 942

All relevant hyperparameters were tuned using grid 943

search, as detailed below. All experiments were 944

conducted using RTX 4090 and RTX 6000 Ada 945

NVIDIA GPUs. For the small models, the results 946

for all (k, b) configurations, for the zero-shot, few- 947

shot and fine-tuned settings, can be obtained in 948

around 6-8 hours per model. For the large 70B mod- 949

els at 4-bit quantization, with a smaller sample size 950

of 50 instances per (k, b) configuration, a single 951

full run (i.e. 24 (k, b) configurations) takes around 952

1 day. We use the unsloth library (Daniel Han and 953

team, 2023) for fine-tuning all models with 4-bit 954

quantization and the transformers library for down- 955

loading the weights and running all the open-source 956

models locally (Wolf, 2020). 957
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dc ec po tpp ntpp tppi ntppi

dc R8
dc, ec, po,
tpp, ntpp

dc, ec, po,
tpp, ntpp

dc, ec, po,
tpp, ntpp

dc, ec, po, tpp,
ntpp

dc dc

ec
dc, ec, po,
tppi, ntppi

dc, ec, po,
tpp, tppi, eq

dc, ec, po,
tpp, ntpp

ec, po, tpp,
ntpp

po, tpp, ntpp dc, ec dc

po
dc, ec, po,
tppi, ntppi

dc, ec, po,
tppi, ntppi R8 po, tpp, ntpp po, tpp, ntpp dc, ec, po,

tppi, ntppi
dc, ec, po,
tppi, ntppi

tpp dc dc, ec dc, ec, po,
tpp, ntpp tpp, ntpp ntpp

dc, ec, po,
tpp, tppi, eq

dc, ec, po,
tppi, ntppi

ntpp dc dc
dc, ec, po,
tpp, ntpp ntpp ntpp

dc, ec, po,
tpp, ntpp R8

tppi
dc, ec, po,
tppi, ntppi

ec, po, tppi,
ntppi

po, tppi,
ntppi

po, eq, tpp,
tppi

po, tpp, ntpp tppi, ntppi ntppi

ntppi
dc, ec, po,
tppi, ntppi

po, tppi,
ntppi

po, tppi,
ntppi

po, tppi,
ntppi

po, tppi, tpp,
ntpp, ntppi, eq ntppi ntppi

Table 5: RCC-8 composition table (Randell et al., 1992), excluding the trivial composition with eq. We writeR8

for the trivial case, where the composition consists of all eight relations.

B.2 Hyper Parameters958

We use the 8-bit quantized AdamW opti-959

mizer (Dettmers et al., 2021; Kingma and Ba,960

2017) for fine-tuning the models. We use the same961

fine-tuning strategy and hyperparameters for all962

the models that are trained locally. For inference,963

the maximum output tokens for the non-reasoning964

models is set to 256. For fine-tuning we use a learn-965

ing rate of 2× 10−4 with a maximum step size of966

60 and weight decay with a linear scheduler for all967

the models. We use gradient accumulation with968

steps 4 and only fine-tune for 1 epoch since further969

training did not meaningfully improve the valida-970

tion loss. To maximize GPU memory utilization971

with respect to model size, we make use of Flash972

attention (Dao et al., 2022) and quantized low rank973

adaptors (Dettmers et al., 2024). The adaptors are974

applied as Q, K, V, O, Gate, Up and Down projec-975

tors with hidden dimension size of 128 for all small976

and medium models and 64 for large models (the977

latter only because 128 could not fit in memory on978

the RTX 6000 Ada).979

For the reasoning Qwen models in Table 2, we980

set the maximum output tokens to 8192, and for981

o3-mini this is set to 15000.982

B.3 Data Statistics983

The dataset statistics for the STaR benchmark for984

the training and test sets are summarized in the985

Table 7. These are respectively subsampled for986

the experimental evaluations in the main text. All987

random sampling is done with a global seed of 0988

for reproducibility. Some example graphs gener-989

ated via this procedure for the RCC-8 dataset are990

displayed in Figure 10.991

B.4 Prompts 992

The prompts used for non-fine tuning experiments 993

for RCC-8 are shown in Fig. 7 with mutatis mutan- 994

dis changes for IA and for IA for the instruction- 995

tuning setting in Fig. 8 with similar changes for 996

RCC-8. We experimented with textual graph la- 997

bels as opposed to integers in the prompt and the 998

requested output format but found the accuracy and 999

the adherence of the small models to be extremely 1000

poor in this setting with very low accuracies. 1001

C Additional Analysis 1002

Conducting a fine-grained classification level anal- 1003

ysis of o3-mini for the instances where it thought 1004

for longer than 15000 tokens and responded with 1005

nothing over all the reasoning datasets is shown in 1006

figure 9. We find that o3-mini took unexpectedly 1007

longer for the trivial relations such as =, and for 1008

and fi for IA and po for RCC-8. 1009
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Figure 7: The given prompt is for the inference RCC-8 dataset, while the Interval prompt for inference has a similar
structure but different base elements and composition table.

Input B.1: RCC8 Inference Prompt

System: You are a helpful assistant. Just answer the question as a single integer.

User: You are a qualitative spatial and temporal reasoning expert specializing in
RCC-8

The following are the base elements of RCC-8:

DC = 1
EC = 2
PO = 4
TPP = 8
NTPP = 16
TPPI = 32
NTPPI = 64
EQ = 128

The following is the composition table of RCC-8 as a JSON dictionary:
{(1, 1): [], (1, 2): [1, 2, 4, 8, 16], ..., (128, 64): [64], (128, 128):
[128]}

Now the question is: Given a consistent graph with edges comprising the 8
base relations, predict the label of the target edge. More specifically,
Given a data row delimited by a comma with the following columns:
`graph_edge_index`, `edge_labels`, `query_edge`, predict the label of the
`query_edge` as one of the 8 base relations as a power of 2 as defined above.

(The optional few-shot examples:
Example 1:
[(0, 1), (1, 2)], ['EQ', 'NTPPI'], (0, 2)
64

...

Example 5:
[(0, 1), (1, 2), (2, 3)], ['EQ', 'EQ', 'EC'], (0, 3)
2
Examples end here.
)

[(0, 1), (1, 4), (0, 2), (2, 4), (0, 3), (3, 4)],
['EQ', 'NTPPI', 'EQ', 'NTPPI', 'TPPI', 'NTPPI'], (0, 4)
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Figure 8: The given prompt is for the finetuining interval dataset, while the RCC-8 prompt for finetuning has a
similar structure but different base elements and composition table.

Input B.2: Interval Finetuning Prompt

Below is an instruction that describes a task, paired with an input that provides
further context. Write a response that appropriately completes the request.

### Instruction:
You are a qualitative spatial and temporal reasoning expert specializing in
Interval Algebra.

The following are the base elements of Interval Algebra:

'=': 1
'<': 2
'>': 4
'd': 8
'di': 16
'o': 32
'oi': 64
'm': 128
'mi': 256
's': 512
'si': 1028
'f': 2048
'fi': 4096

The following is the composition table of RCC-8 as a JSON dictionary:
(eq, eq): [eq], (eq, lt): [lt],, ..., (fi, gt): [gt, oi, di, mi, si]}

Now the question is: Given a consistent graph with edges comprising the 8
base relations, predict the label of the target edge. More specifically,
Given a data row delimited by a comma with the following columns:
`graph_edge_index`, `edge_labels`, `query_edge`, predict the label of the
`query_edge` as one of the 8 base relations as a power of 2 as defined above.

### Input:
[(0, 1), (1, 4), (0, 2), (2, 4), (0, 3), (3, 4)],
['m', '>', 'di', 'fi', 'di', 'oi'], (0, 4)

### Response:
16
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Table 6: Allen’s interval algebra composition table (Allen, 1983), excluding the trivial composition with =.

Table 7: Data statistics of the STaR reasoning datasets. These are respectively subsampled for the experimental
valuations in the main text.

Dataset Training regime No. of relations # Train # Test per config. Test regime

RCC-8 b ∈ {1, 2, 3}, k ∈ {2, 3} 8 57,600 6,400 b ∈ {1, 2, 4}, k ∈ {2, . . . , 10}
IA b ∈ {1, 2, 3}, k ∈ {2, 3} 13 93,400 9,300 b ∈ {1, 2, 4}, k ∈ {2, . . . , 10}
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Figure 9: Non-responses from o3 where it took longer than the maximum allotted number of tokens. Certain classes
are overrrepresented and for IA coincide with those that can easily predicted by leveraging heuristics based on
dataset construction constraints.
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Figure 10: Some graph instances for the RCC-8 dataset generated using the procedure described in (Khalid and
Schockaert, 2025). The target edge label between the source node and the tail node that needs to be predicted by the
model is indicated by the dotted line.
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