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Abstract
The recognition of Dialog Acts has become a
crucial area of research in recent years, partic-
ularly with the growth of chat assistants like
ChatGPT. The key to generating a conversa-
tion that is as natural as possible is to un-
derstand the intent behind each message. In
this study, we focus on classifying a dataset
of multi-turn dialogs between two individuals,
with each message labelled according to its Di-
alog Act. Our objective is to predict the Di-
alog Act classification. We compare a basic
sequence-level model, where the neural net-
work learns from all labelled sequences, with
dialog-level models that take into account the
context of a dialog. We employ Recurrent
Neural Networks, both with and without self-
attention mechanisms, and find that our pre-
diction accuracy increases significantly within
a comparable training time, highlighting the
importance of context for better representa-
tion of dialogs in natural language processing.
Code is available on Github 1.

1 Introduction

Conversational agents, such as chatbots and vir-
tual assistants, have become increasingly preva-
lent in our daily lives. These agents rely on natural
language processing (NLP) techniques to under-
stand and respond to user requests and inquiries.
One essential aspect of NLP is intent classifica-
tion, which involves identifying the underlying
purpose or goal behind a user’s input. Accurately
identifying the user’s intent is crucial for designing
effective conversational agents that can provide
prompt and relevant responses (Colombo* et al.,
2019; Jalalzai* et al., 2020), thereby improving
the user’s experience.

However, conversations are not solely about in-
formation exchange, as emotions also play a crit-

1https://github.com/mgarrouty/NLP_
intent_classification

ical role in human communication. Recognizing
and responding appropriately to the user’s emo-
tional state is essential for creating empathetic and
engaging conversational experiences. Therefore,
emotion recognition is another critical component
that can help design better conversational agents.
By detecting the user’s emotional state, conversa-
tional agents can adjust their responses and tone to
provide appropriate and supportive interactions.

In this context, intent classification and emotion
recognition are closely intertwined, as the user’s
intent and emotional state can affect the content
and tone of their input. Thus, improving the ac-
curacy and effectiveness of these two NLP tasks
can significantly enhance the conversational expe-
rience and overall performance of conversational
agents.

In this work, we choose to focus on dialog act
due to the huge availability of open source datasets
(Godfrey et al., 1992; Li et al., 2017; Leech and
Weisser, 2003; Busso et al., 2008; Passonneau and
Sachar., 2014; Thompson et al., 1993; Shriberg
et al., 2004).

1.1 Problem Formulation

Our aim is to build a Sequence Classifier for di-
alogs acts. In linguistics and in particular in natu-
ral language understanding, a dialog act is an ut-
terance, in the context of a conversational dialog,
that serves a function in the dialog. Types of di-
alog acts include a question, a statement, or a re-
quest for action (McTear et al., 2016). Each dialog
involves two speakers, speaking turn by turn.

Dataset

To do so, we will use the DailyDialog Corpus
(Li, 2017), which is a human-written multiturn
dialogue dataset, reflecting our daily communi-
cation way and covering various topics about our
daily life. The dataset is already splitted into train,

https://github.com/mgarrouty/NLP_intent_classification
https://github.com/mgarrouty/NLP_intent_classification


validation and test set.

Total Dialogues 13,118
Average Speaker Turns Per Dialogue 7.9

Average Tokens per Dialogue 114.7
Average Tokens Per Utterance 14.6

Table 1: Statistics of DailyDialog Dataset

Dialogs in our database are multi-turned, and al-
ways involve only two speakers. Each speaker can
pronounce several sentences in a single sequence.
We can represent a Dialog D as follow

D = (Sa
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2 , S
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a
3 ..)

, where Sj
i represents a sequence. A sequence is

represented as follow

Sj
i = (si,j1 , si,j2 ..)

, where si,jk represents a sentence. Eventually, a
sentence is made of utterances :

si,jk = (uk,i,j1 , uk,i,j2 , uk,i,j3 ..)

Each sequence is manually labelled with its nature
(inform (1), question (2), directive (3), commis-
sive (4)), 0 being used as a dummy variable.

Dialog Act Count Percentage
Informative 39873 45.7

Question 24974 28.6
Directive 14242 16.3

Commissive 8081 9.4

Table 2: Dialog Act Repartition in Dailydialog

Sequence Act
”Say, Jim, how about going 3

for a few beers after dinner?”
”You know that is tempting 4

but is really not good for our fitness.”
”What do you mean? It will help us to relax.” 2

Table 3: Extract of a dialog

2 Experiments Protocol

To build our Dialog Act Classifier, we use Neu-
ral Network Architecture, widely used in Natural
Language Recognition. Especially, we are work-
ing with PyTorch library on Python. In this paper,
we use the notation (Xi, Yi) for data, where Xi

can either represent a dialog (list of messages) or
a message, and Yi either a list of labels (Dialog
Acts) or a label.

Our models are trained with these data, and are
ranked according to their accuracy on the test set :

Acc =
1

|TestSet|
∑

XiinTestSet

1Ŷi=Yi

Where Ŷi is the label predicted by our model. In
order to compare message and dialog level accu-
racy, we always compute the accuracy at a mes-
sage level. We are using accuracy to have re-
sults that are not relying on the loss used for train-
ing. As a consequence, we use both NLLLoss
and CrossEntropyLoss in our models, depending
on which provides the best accuracy.

Data Encoding

The first step of each NLP task consists in trans-
forming language into vectors. They are several
ways to do so, and we consider the BERT model
(Horev, 2018). It is an open-source NLP pre-
trained model powered by Google, transforming
each word into a vector. The original model turns
each token into a vector in R768. For compu-
tational efficience, we consider the Bert tiny li-
brary, allowing a dimension-reduced representa-
tion in R128.

Final Layer of our Network

As we are working on classification task, all our
models have the same final layer, consisting of a
Softmax Layer, to compute a probability score for
each label. We then take the highest probability
label.

Figure 1: Generic Network Architecture



Loss Function

We choose the CrossEntropy Loss function, givent
that it gives the best accuracy result. This function
is widely used in classification problem. For an in-
put X , with a softmax vector Ŷ = (p1, p2, p3, p4),
where (pi) represents the computed probability of
i being the right label for X , the value of the loss
function is :

L(X, Ŷ ) =
4∑

i=1

−yilog(pi)

where Y = (yi) is the vector of the real label of
X (yi = 1 only if label of X is i).

Dropout rate

In order to prevent our model from overfitting, we
add a dropout layer (consisting in ignoring a share
p of our data). This share, called the dropout rate,
is chosen by trying several numbers and selecting
the one giving the best accuracy on the validation
dataset. Indeed, we can have a signficant differ-
ence between the accuracy on the training and the
validation set.

2.1 Message-level classification

For our baseline, we flatten our dataset of dialog
into a dataset of messages. We encode them us-
ing Bert tiny, and we add two linear layers be-
fore classification. Formally, for a message S =
(s1, s2, s3, ...), where si = (ui1, u

i
2, ...) denotes a

sentence, and u denotes a token, our bert encoder
returns a vector from R128 for each token. To ob-
tain a vector for our sentence, we choose to av-
erage the vectors associated to each word of the
sentence.

2.2 Dialog level classification

We now consider a dialog-level, inducing a hierar-
chical architecture (Colombo et al., 2020) . We
now feed our models with matrices of R12∗128,
where each row represents a message. Each mes-
sage is represented by the average of the embed-
dings of its words, and 12 is the max length of di-
alog considered. We add rows of zeros for shorter
dialogs.

2.2.1 Linear Layer

After our encoding, we add two linear layers be-
fore classification.

2.2.2 BiLTSM Layer
After our encoding, we add a Bidirectionnal Re-
cursive Layer, to let the model learn the links be-
tween the rows of the input matrice.

3 Results

We implement our different methods. For each
one, we tried several hyperparameters (learning
rate, number of epochs), in order to maximize our
accuracy, within computation time constraint.

3.1 Baseline
For our baseline, we find the best accuracy for a
learning rate of 10−4, and the loss (best accuracy
with CrossEntropy) is not significantly decreasing
after 7-8 epochs (we ran over 10), as shown on the
graph :

Figure 2: Loss on validation test for Baseline Model

Precision Recall f1-score Support
Inform 0.32 0.88 0.47 2948

Question 0.84 0.88 0.86 2175
Directive 0.59 0.48 0.53 1705

Commissive 0.49 0.08 0.14 867
Micro-averaged 0.45 0.70 0.55 7695
Macro-averaged 0.56 0.58 0.50 7695

Weighted-averaged 0.54 0.70 0.55 7695

Table 4: Classification report for Baseline Model

We end with an average accuracy of 0.452 with
this model.

3.2 Linear Layer
We are now working at a dialog-level here, slightly
modifying our data preprocessing. We have the
same hyperparameters as for our baseline

The average accuracy on our validation test is
0.807.

3.3 BiLTSM Model
For this model, we replace the former linear lay-
ers by a Bidirectionnal LTSM. These layers allow



Figure 3: Loss on validation test for Linear Model

Precision Recall f1-score Support
Inform 0.66 0.88 0.76 2948

Question 0.82 0.91 0.86 2175
Directive 0.58 0.43 0.50 1705

Commissive 0.46 0.06 0.10 867
Micro-averaged 0.70 0.70 0.70 7695
Macro-averaged 0.63 0.57 0.55 7695

Weighted-averaged 0.67 0.70 0.66 7695

Table 5: Classification report for linear Model

Figure 4: Loss on validation test for BiLTSM Model

Precision Recall f1-score Support
Inform 0.67 0.89 0.76 2948

Question 0.81 0.92 0.86 2175
Directive 0.57 0.41 0.48 1705

Commissive 0.51 0.03 0.06 867
Micro-averaged 0.70 0.70 0.70 7695
Macro-averaged 0.64 0.56 0.54 7695

Weighted-averaged 0.67 0.70 0.65 7695

Table 6: Classification report for BiLTSM Model

to backpropagate data in the Network, but they re-
quire more computational power. The average ac-
curacy on our validation test is 0.804.

4 Discussion/Conclusion

4.1 Overall results on accuracy

Despite the quality of Bert encoding, the accuracy
of our baseline model was less than 0.5. We
obtained a significant increase when we took our

data to a dialog-level (30 percents). What can we
learn from this result ?

Our results demonstrate that Dialog Act Recog-
nition is not solely determined by individual mes-
sages, as context plays a critical role in enhancing
classification accuracy. This additional contextual
information can be learned by a neural network.

However, we did not observe a significant im-
provement in accuracy when using a BiLTSM
model at the dialog level, as messages are already
vectorized at the message level. Linking mes-
sages and utterances would require greater com-
putational resources.

Our classification report highlights that the ma-
jority of the difference in accuracy is attributed to
precision in classifying ”inform” messages, which
is the most frequently occurring label.

In addition, our model fine-tuning process re-
vealed the importance of incorporating a dropout
layer dropout layer, as it resulted in a 5% increase
in accuracy. This suggests that our models may
have too many parameters, particularly in the case
of the linear models, where two linear layers were
added for fine-tuning Bert.

4.2 Limitation of current loss
One possible approach to address the issue of un-
balanced data in our models would be to apply
weighting schemes to adjust the importance of dif-
ferent classes during the training process. This
could potentially improve the accuracy and fair-
ness of our models, especially when dealing with
imbalanced datasets.

In addition, an interesting research direction
would be to explore the joint classification of both
dialog act and emotion recognition in the same
model. This would enable the model to capture the
cross-information and potential relationships be-
tween these two tasks, which could lead to more
accurate and nuanced predictions. However, im-
plementing such a model would require careful
consideration of the appropriate architecture and
training approach to optimize performance.

4.3 Extension
To expand upon our findings, further research
could involve testing our models on additional
datasets to determine their generalizability. Addi-
tionally, exploring the integration of self-attention
mechanisms in our last model (Bert + BiLTSM)
could be a promising avenue for improving the



Figure 5: Distribution of emotion label in dailydialog

classification accuracy, especially for capturing
the relationships between different words in a sen-
tence. However, this approach would require
greater computational resources to train and test
effectively.

Another potential research direction would be
to adapt our models for code-switched dialogues
(Chapuis et al., 2021), where multiple languages
are used within a single conversation. This would
require an additional layer of classification to iden-
tify the language used in each utterance accurately.

Furthermore, pre-training our encoders on large
datasets could also improve their performance on
specific tasks. Additionally, our models could be
adapted for other classification tasks beyond in-
tent classification, such as classifying the emo-
tional state of the user (Dinkar* et al., 2020;
Witon* et al., 2018) or finding its opinion (Garcia*
et al., 2019). However, we note that this dataset’s
data distribution is significantly unbalanced, and
addressing fairness concerns (Colombo, 2021;
Colombo et al., 2021, 2022; Pichler et al., 2022)
in classification remains an important and press-
ing research direction for improving the accuracy
and fairness of NLP models.
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